JP5189021B2 - Operation method of gasification melting furnace - Google Patents

Operation method of gasification melting furnace Download PDF

Info

Publication number
JP5189021B2
JP5189021B2 JP2009082982A JP2009082982A JP5189021B2 JP 5189021 B2 JP5189021 B2 JP 5189021B2 JP 2009082982 A JP2009082982 A JP 2009082982A JP 2009082982 A JP2009082982 A JP 2009082982A JP 5189021 B2 JP5189021 B2 JP 5189021B2
Authority
JP
Japan
Prior art keywords
melting furnace
furnace
gasification
operation method
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009082982A
Other languages
Japanese (ja)
Other versions
JP2010236718A (en
Inventor
寿一 米田
優毅 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2009082982A priority Critical patent/JP5189021B2/en
Publication of JP2010236718A publication Critical patent/JP2010236718A/en
Application granted granted Critical
Publication of JP5189021B2 publication Critical patent/JP5189021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Chimneys And Flues (AREA)

Description

本発明は、ガス化溶融炉の操業方法に関し、さらに詳しくは、廃自動車、電化製品等の産業廃棄物のシュレッダーダストをガス化処理する際のガス化溶融炉の操業方法に関する。   The present invention relates to a method for operating a gasification melting furnace, and more particularly, to a method for operating a gasification melting furnace when gasifying a shredder dust of industrial waste such as a scrap car and an electric appliance.

自動車シュレッダーダスト(Automobile Shredder Residue=ASR)、家電シュレッダーダストのような、鉛、亜鉛、銅といった金属や塩素源となる塩化ビニル等が混入している産業廃棄物を溶融処理する設備としては、流動層式のガス化炉を備えた産業廃棄物の溶融処理施設が知られており、例えば、特許文献1に開示されたような溶融処理施設がある。   As equipment for melting industrial waste mixed with metals such as lead, zinc, copper, and vinyl chloride as a chlorine source, such as automobile shredder dust (Automobile Shredder Residue = ASR) An industrial waste melting treatment facility equipped with a stratified gasification furnace is known. For example, there is a melting treatment facility as disclosed in Patent Document 1.

特許文献1に開示された流動層式のガス化炉は、上述した産業廃棄物の中に含まれる有価金属の回収を目的としたものであり、図1に示すような溶融処理施設において産業廃棄物の処理を行っている。この溶融処理施設の主要な設備について概略の処理工程と共に説明する。   The fluidized bed type gasification furnace disclosed in Patent Document 1 is for the purpose of recovering valuable metals contained in the above-mentioned industrial waste, and is industrially discarded in a melting treatment facility as shown in FIG. Processing of things. The main equipment of this melting processing facility will be described together with the outline processing steps.

まず、図1の溶融処理施設の概略構成図に示されているように、汚泥A1を第1の貯蔵所1に貯蔵し、有価金属を含む産業廃棄物A2等を別の第2の貯蔵所2に貯蔵する。
第1の貯蔵所1から汚泥A1等を、破砕機(図示せず)に掛けて細かく粉砕した産業廃棄物A2等と共に供給コンベア3により供給フィーダー4に投入し、供給フィーダー4から一定量を流動層式ガス化炉11に投入する。
ここで、産業廃棄物A2には、自動車、家庭電化製品等をシュレッダーで処理した有価金属とプラスチックを含むシュレッダーダスト、工業用の廃プラスチックなどが含まれる。
First, as shown in the schematic configuration diagram of the melting treatment facility in FIG. 1, sludge A1 is stored in the first storage 1, and industrial waste A2 containing valuable metals is stored in another second storage. Store in 2.
Sludge A1 and the like from the first storage 1 are put into a supply feeder 4 by a supply conveyor 3 together with industrial waste A2 and the like finely crushed by a crusher (not shown), and a certain amount flows from the supply feeder 4 The stratified gasifier 11 is charged.
Here, the industrial waste A2 includes shredder dust containing valuable metals and plastics obtained by treating automobiles, home appliances, and the like with a shredder, industrial waste plastics, and the like.

流動層式ガス化炉11では、図1に示すように、投入された産業廃棄物A2と汚泥等A1が、流動床12から吹き込まれる空気Cにより流動層式ガス化炉11内で流動層を形成して循環している。流動層式ガス化炉11内では、産業廃棄物A2中の廃プラスチックの燃焼を抑制しつつ、廃プラスチックを熱分解しガス化する。その後、ガス化炉11内で生成された熱分解ガスE等が溶融炉21に移送される。   In the fluidized bed gasification furnace 11, as shown in FIG. 1, the industrial waste A 2 and the sludge etc. A 1 that have been input are converted into a fluidized bed in the fluidized bed gasification furnace 11 by the air C blown from the fluidized bed 12. Form and circulate. In the fluidized bed gasification furnace 11, the waste plastic is pyrolyzed and gasified while suppressing the combustion of the waste plastic in the industrial waste A2. Thereafter, the pyrolysis gas E and the like generated in the gasification furnace 11 are transferred to the melting furnace 21.

溶融炉21では、熱分解ガスE等が移送されると同時に、空気を供給しつつ燃焼させる。これにより熱分解ガスEは、燃焼して排ガスFとなり排出される。ここで、排ガスFの温度が200〜600℃の範囲にあるとダイオキシン等の有害物質が再合成されることを考慮し、この温度範囲にある時間を少なくして有害物質の再度の生成を防止すべく、溶融炉21からの排ガスFを、熱交換器26で間接冷却し、急冷塔41の廃液分解部42に廃液L1を噴霧し、さらに急冷部43で冷却水としての工業用水(工水)L2を噴霧して排ガスFを冷却している。   In the melting furnace 21, the pyrolysis gas E and the like are transferred and simultaneously burned while supplying air. As a result, the pyrolysis gas E burns and becomes exhaust gas F and is discharged. Here, considering that the temperature of the exhaust gas F is in the range of 200 to 600 ° C., harmful substances such as dioxin are re-synthesized, and the time in this temperature range is reduced to prevent the generation of harmful substances again. Therefore, the exhaust gas F from the melting furnace 21 is indirectly cooled by the heat exchanger 26, the waste liquid L1 is sprayed on the waste liquid decomposition part 42 of the quenching tower 41, and industrial water (technical water as cooling water) is further cooled by the quenching part 43. ) L2 is sprayed to cool the exhaust gas F.

ここで、製錬で生ずる廃液には金属イオンや酸が含まれ、化学工場等で生ずる廃液には、無機物、有機物等が残存するが、これらは焼却処理することが望ましいことから、廃液分解部42で廃液L1を熱分解処理する工程を含ませている。廃液L1を高温度に曝すことにより廃液L1に含まれる有機物等と酸等は分解し、無機物と金属イオン等は酸化物にして消石灰吹込装置52を介してバグフィルタ51で回収している。そして、溶融炉21から回収したスラグGを水砕する。また、排ガスは中和塔61、ミストコットレル71を介して排突81から大気に放出される。   Here, the waste liquid produced by smelting contains metal ions and acids, and the waste liquid produced at chemical factories, etc. contains inorganic substances, organic substances, etc., but these are preferably incinerated, so the waste liquid decomposition unit 42 includes a step of thermally decomposing the waste liquid L1. By exposing the waste liquid L1 to a high temperature, organic substances and acids contained in the waste liquid L1 are decomposed, and inorganic substances and metal ions are converted into oxides and collected by the bag filter 51 via the slaked lime blowing device 52. And the slag G collect | recovered from the melting furnace 21 is granulated. Further, the exhaust gas is discharged from the exhaust bump 81 to the atmosphere via the neutralization tower 61 and the mist cot rel 71.

流動層式ガス化炉11の構造について概要を説明すると、炉底部の上方に位置する熱媒体投入口から熱媒体となる粒状物質、例えば「砂」を投入し、炉底部に設けた空気吹出孔から空気を上方に向かって吹出すことによって対流を起こさせた流動床を形成している。そして、熱媒体としての砂は、炉底部の上方から投入された廃棄物中の不燃物と共に、炉底部から下方に延びる排出シュート15を通じて炉内から排出する。一旦排出された砂は、図示しない循環通路を通じて再び炉底部の上方から炉内へ投入される。   An outline of the structure of the fluidized bed gasification furnace 11 will be described. A granular material, for example, “sand” serving as a heat medium is introduced from a heat medium inlet located above the furnace bottom, and an air outlet hole provided in the furnace bottom is provided. A fluidized bed is formed in which convection is caused by blowing air upward. And the sand as a heat medium is discharged | emitted from the inside of the furnace through the discharge chute 15 extended below from a furnace bottom part with the incombustible material in the waste thrown in from the upper part of a furnace bottom part. The sand once discharged is put into the furnace again from above the bottom of the furnace through a circulation passage (not shown).

しかし、特許文献1の流動層式ガス化炉11は、熱媒体としての砂と不燃物とを排出シュート15を通じて排出しているが、排出シュート15内にクリンカが付着するという問題があった。排出シュート15内にクリンカが付着し、排出シュート15が閉塞されると、砂と不燃物を排出、循環させることができないことから、このようなクリンカの問題を解消すべく特許文献2では、流動床の上部から投入した砂を流動床の下部に位置する排出シュート15から排出する際に、炉内燃焼維持温度を下回らせることのない範囲内で、排出シュート内を流通する砂の排出速度を単位面積当りの排出速度で管理し、必要であればさらに排出シュート内に蒸気を噴射してクリンカの生成を防止する流動層式ガス化炉の操業方法を提案している。   However, although the fluidized bed gasification furnace 11 of Patent Document 1 discharges sand and non-combustible material as a heat medium through the discharge chute 15, there is a problem that clinker adheres to the discharge chute 15. If the clinker adheres in the discharge chute 15 and the discharge chute 15 is closed, sand and incombustibles cannot be discharged and circulated. When the sand introduced from the upper part of the bed is discharged from the discharge chute 15 located at the lower part of the fluidized bed, the discharge speed of the sand flowing through the discharge chute is set within a range that does not fall below the furnace combustion maintenance temperature. We have proposed a method for operating a fluidized bed gasifier that controls the discharge rate per unit area and, if necessary, injects steam into the discharge chute to prevent clinker formation.

しかし、特許文献2の流動層式ガス化炉の操業方法では、排出シュートから排出コンベアへ至るまでの必然的な経路の形状によって排出シュート内での棚吊り現象により砂及び不燃物の降下が止まってしまうという問題があった。棚吊り現象が発生すると砂及び不燃物の抜き出しができなくなるのでガス化炉の操業を一旦停止してその対応をせざるを得ず操業効率が著しく減殺される。そのため、本願出願人は排出シュート内における棚吊り現象の発生を未然に防止し、砂及び不燃物の連続的な抜き出しを可能とする流動層式のガス化炉の提案を行った(特許文献3)。   However, in the operation method of the fluidized bed type gasification furnace disclosed in Patent Document 2, sand and incombustibles are prevented from dropping due to a shelf hanging phenomenon in the discharge chute due to the shape of an inevitable path from the discharge chute to the discharge conveyor. There was a problem that. When the shelves occur, sand and incombustibles cannot be extracted, so the operation of the gasifier must be stopped and the countermeasures must be dealt with. Therefore, the applicant of the present application has proposed a fluidized bed type gasification furnace that prevents the occurrence of a shelf hanging phenomenon in the discharge chute and enables continuous extraction of sand and incombustibles (Patent Document 3). ).

特開平11−302748号公報JP-A-11-302748 特開2005−282960号公報JP 2005-282960 A 特開2008−232523号公報JP 2008-232523 A

上述したようなガス化溶融炉による産業廃棄物の溶融処理において、従来は、急冷塔から回収したダスト、バグフィルタで捕集したダスト、中和塔又はミストコットレルでの洗浄液を排水処理した中和滓から回収したダスト等は別な施設の溶解炉等によって処理していた。しかし、別な施設での処理は前記ダスト類の輸送コストがかかるほか、廃棄物として外部へ処理を委託する場合にはさらに委託処理コストがかかる。そのため、回収及び捕集された前記ダスト類を当該ガス化溶融炉で処理すべく流動層式ガス化炉に再度投入して処理することを検討したが、前記ダスト類には約14〜16重量%のカルシウムが含まれているため、回収ダストを流動層式ガス化炉で繰り返し処理する場合には炉動床の散気ノズルにカルシウム分が付着してしまい、散気ノズルが閉塞するという問題が発生した。   In the melting treatment of industrial waste by the gasification melting furnace as described above, conventionally, the neutralization was performed by draining the dust collected from the quenching tower, the dust collected by the bag filter, or the washing liquid in the neutralization tower or mist cotrel. Dust collected from the dredger was processed by a melting furnace in another facility. However, processing at another facility incurs a transportation cost of the dusts, and further entrusts a processing cost when processing the waste as waste. For this reason, it was considered that the collected and collected dusts were again put into a fluidized bed gasification furnace to be treated in the gasification melting furnace. % Of calcium is contained, when the collected dust is repeatedly processed in a fluidized bed gasification furnace, the calcium content adheres to the diffuser nozzle of the moving bed of the furnace, and the diffuser nozzle closes. There has occurred.

また、近年では自動車や家電製品のライフサイクルが短くなっているためASRや家電シュレッダーダスト等の産業廃棄物が大量に発生し、その処理も年々増加傾向にある。そのため、これまでのガス化溶融炉で時間あたりの処理量を増加させると溶融炉の温度が1,400℃を越えるような高温となり、炉内壁の耐熱煉瓦等に対する負担が上昇し、溶融炉の寿命が短くなるという問題があった。   In recent years, the life cycle of automobiles and home appliances has been shortened, so that a large amount of industrial waste such as ASR and home appliance shredder dust is generated, and its treatment is increasing year by year. For this reason, increasing the throughput per hour in conventional gasification melting furnaces increases the temperature of the melting furnace to over 1,400 ° C., increasing the burden on the heat-resistant bricks on the inner wall of the furnace, There was a problem that the lifetime was shortened.

そこで、本発明は、増加する産業廃棄物をこれまで以上に大量に処理しても溶融炉の炉内温度の上昇を押さえ、溶融炉の寿命を保持することが可能なガス化溶融炉の操業方法を提供することを目的とする。   Therefore, the present invention is an operation of a gasification melting furnace capable of suppressing the rise in the temperature of the melting furnace and maintaining the life of the melting furnace even when processing an increasing amount of industrial waste more than before. It aims to provide a method.

また、本発明は、ASR、家電シュレッダーダスト等のように有価金属や塩素等を含む産業廃棄物をガス化溶融炉で処理した際に急冷塔やバグフィルタさらには中和塔又はミストコットレルでの洗浄液を排水処理した中和滓から回収されるダスト等を当該ガス化溶融炉で再度処理するに際して流動層式ガス化炉の炉動床の散気ノズルの閉塞を起こすことがないガス化溶融炉の操業方法を提供することを目的とする。   In addition, the present invention provides a quenching tower, a bag filter, a neutralization tower, or a mist cot rel when industrial waste containing valuable metals or chlorine such as ASR and home appliance shredder dust is treated in a gasification melting furnace. Gasification melting furnace that does not cause clogging of the aeration nozzle of the fluidized bed gasification furnace moving bed when the dust recovered from the neutralized soot after draining the cleaning liquid is treated again in the gasification melting furnace The purpose is to provide a method of operation.

上記目的を達成するため請求項1に記載の発明は、流動層式のガス化炉に投入した産業廃棄物を下部側から吹き込んだ空気によって流動層を形成することにより産業廃棄物の一部を熱分解によってガス化して有価金属を含む不燃物を回収すると共に、ガス化炉で生成した熱分解ガスと熱分解ガスによって移送される不燃物の一部を溶融炉で処理してスラグを生成するガス化溶融炉の操業方法において、カルシウムを含むダストをスラリー化して溶融炉内に吹き込むことを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, a part of the industrial waste is formed by forming a fluidized bed by air blown from the lower side of the industrial waste introduced into the fluidized bed type gasification furnace. Gasification by pyrolysis collects incombustibles containing valuable metals, and pyrolysis gas generated in the gasification furnace and part of the incombustibles transferred by the pyrolysis gas are processed in the melting furnace to produce slag. In the operation method of the gasification melting furnace, the dust containing calcium is slurried and blown into the melting furnace.

上記目的を達成するため請求項2に記載の発明は、請求項1に記載のガス化溶融炉の操業方法において、ダストのスラリー化は、水浸出して塩素分を除去し、脱塩素後のスラリーを脱水又はデカンテーションにより上澄みを除いた後、さらに水を加えてスラリー液とすることを特徴とする。   In order to achieve the above object, the invention according to claim 2 is the operation method of the gasification melting furnace according to claim 1, wherein the slurry of dust is leached with water to remove chlorine, and after dechlorination After removing the supernatant by dehydration or decantation, water is further added to form a slurry liquid.

上記目的を達成するため請求項3に記載の発明は、請求項1又2に記載のガス化溶融炉の操業方法において、ダストは、急冷塔から回収したダスト、バグフィルタで捕集したダスト、中和塔又はミストコットレルでの洗浄液を排水処理した中和滓から回収したダスト、のいずれか1つを含むことを特徴とする。   In order to achieve the above object, the invention described in claim 3 is the operation method of the gasification melting furnace according to claim 1 or 2, wherein the dust is dust collected from a quenching tower, dust collected by a bag filter, Any one of the dust collect | recovered from the neutralization tank which drained the washing | cleaning liquid in a neutralization tower or a mist cot rel was included, It is characterized by the above-mentioned.

上記目的を達成するため請求項4に記載の発明は請求項2又は3に記載のガス化溶融炉の操業方法において、スラリー液を溶融炉の頂部近傍から炉内へ噴霧することを特徴とする。   In order to achieve the above object, the invention described in claim 4 is characterized in that, in the operation method of the gasification melting furnace according to claim 2 or 3, the slurry liquid is sprayed from the vicinity of the top of the melting furnace into the furnace. .

本発明に係るガス化溶融炉の操業方法によれば、カルシウムを含むダストをスラリー化して溶融炉内に吹き込むこととしたのでスラグの融点が約1,350℃から約1,250℃へと低下し、これまでよりも低い温度でスラグの流動性を確保することができる。そのため、スラグの回収が容易となるという効果がある。   According to the operation method of the gasification melting furnace according to the present invention, since the dust containing calcium is slurried and blown into the melting furnace, the melting point of the slag is lowered from about 1,350 ° C. to about 1,250 ° C. And the fluidity | liquidity of slag can be ensured at temperature lower than before. Therefore, there is an effect that slag can be easily collected.

また、ガス化溶融炉の操業方法によれば、急冷塔から回収したダスト、バグフィルタで捕集したダスト、中和塔又はミストコットレルでの洗浄液を排水処理した中和滓から回収したダストにはカルシウムが含まれていたため、それらダストの処理を図るために流動層式ガス化炉へ再投入してしまうと、カルシウム分が散気ノズルを閉塞する問題があったが、溶融炉で処理することで散気ノズルの閉塞の問題が解消すると共に、上述のように溶融炉におけるスラグの流動性の確保を図ることができ、一石二鳥の効果がある。   In addition, according to the operation method of the gasification and melting furnace, the dust collected from the quenching tower, the dust collected by the bag filter, the dust collected from the neutralization soot treated with the washing liquid in the neutralization tower or mist cotrel Since calcium was included, if it was re-introduced into the fluidized bed gasification furnace in order to treat these dusts, there was a problem that the calcium content would block the diffuser nozzle. Thus, the problem of the obstruction of the diffuser nozzle is solved, and the fluidity of the slag in the melting furnace can be ensured as described above, which has the effect of two birds with one stone.

さらに、本発明に係るガス化溶融炉の操業方法によれば、急冷塔から回収したダスト、バグフィルタで捕集したダスト、中和塔又はミストコットレルでの洗浄液を排水処理した中和滓から回収したダストを脱塩素後にスラリー化したスラリー液を溶融炉の頂部近傍から炉内へ噴霧することとしたので、冷却水の代替となり、大量処理に伴う溶融炉内の温度上昇が抑制され、炉壁の劣化が防止されるという効果がある。これにより、溶融炉の寿命が短命化することがないという効果がある。   Furthermore, according to the operation method of the gasification melting furnace according to the present invention, the dust recovered from the quenching tower, the dust collected by the bag filter, the cleaning liquid in the neutralization tower or the mist cotrel is recovered from the neutralization basin subjected to the drainage treatment. Since the slurry liquid, which was slurried after dechlorination, was sprayed from the vicinity of the top of the melting furnace into the furnace, it became an alternative to cooling water, and the temperature rise in the melting furnace due to mass processing was suppressed, and the furnace wall There is an effect that the deterioration of is prevented. Thereby, there is an effect that the life of the melting furnace is not shortened.

ガス化溶融炉を含む溶融処理施設の概略構成図である。It is a schematic block diagram of the melting processing facility containing a gasification melting furnace. 本発明に係るガス化溶融炉の操業方法のフローチャートである。It is a flowchart of the operating method of the gasification melting furnace which concerns on this invention. スラリー液の噴霧を示すための溶融炉の断面図である。It is sectional drawing of the melting furnace for showing spraying of a slurry liquid.

以下、本発明に係るガス化溶融炉の操業方法について好ましい一実施形態に基づいて説明する。図2は、本発明に係るガス化溶融炉の操業方法のフローチャートである。   Hereinafter, the operation method of the gasification melting furnace which concerns on this invention is demonstrated based on preferable one Embodiment. FIG. 2 is a flowchart of the operation method of the gasification melting furnace according to the present invention.

はじめに、ASR、家電シュレッダーダストのような産業廃棄物をトロンメルによって篩分し、所定のサイズ、例えば、約40mm×40mm程度の大きさを基準に篩別物をアンダーサイズとオーバーサイズに篩分ける(ステップS1)。アンダーサイズは、後述するように、そのまま流動層式ガス化炉11に投入する(図1参照)。オーバーサイズは磁選機によって選別し、鉄スクラップとそれ以外に分ける(ステップS2)。さらに手選別によってアルミ屑を取り除き(ステップS3)、残った篩別物はさらに粉砕機によって所定サイズ、例えば約40mm×40mm以下に粉砕する(ステップS4)。そして、この粉砕物とトロンメルによって篩別したアンダーサイズの篩別物、さらには、廃プラスチック類、木くず、ウレタンなどを流動層式ガス化炉11に投入する。   First, industrial waste such as ASR and home appliance shredder dust is sieved with a trommel, and the sieved material is sieved into an undersize and an oversize based on a predetermined size, for example, about 40 mm × 40 mm (step) S1). As will be described later, the undersize is put into the fluidized bed gasification furnace 11 as it is (see FIG. 1). The oversize is sorted by a magnetic separator and divided into iron scrap and other parts (step S2). Further, the aluminum waste is removed by manual sorting (step S3), and the remaining sieved material is further pulverized to a predetermined size, for example, about 40 mm × 40 mm or less by a pulverizer (step S4). Then, this pulverized product and an undersized sieve product screened by a trommel, and waste plastics, wood waste, urethane, and the like are charged into the fluidized bed gasification furnace 11.

流動層式ガス化炉11では、流動床12から吹き込まれる空気Cにより流動層を形成して循環しており(図1参照)、投入された産業廃棄物の粉砕物に含まれる廃プラスチックを熱分解し、ガス化する(ステップS5)。その後、流動層式ガス化炉11内で生成された熱分解ガスEは溶融炉21に移送される。   In the fluidized bed gasifier 11, a fluidized bed is formed and circulated by the air C blown from the fluidized bed 12 (see FIG. 1), and the waste plastic contained in the pulverized industrial waste is heated. Decompose and gasify (step S5). Thereafter, the pyrolysis gas E generated in the fluidized bed gasification furnace 11 is transferred to the melting furnace 21.

流動層式ガス化炉11では、その上方に位置する熱媒体投入口から投入された熱媒体となる粒状物質である「砂」が炉底部に設けた空気吹出孔から上方に向かって吹出される空気Cによって流動床を形成している。そして、熱媒体としての砂は、炉底部の上方から投入された廃棄物中の不燃物と共に、炉底部から下方に延びる排出シュート15を通じて炉内から排出される。排出された不燃物と砂は篩別機によって篩い分けされ、砂は図示しない循環通路を通じて再び炉底部の上方から炉内へ投入される。一方、不燃物は磁選機によって大きな鉄屑とそれ以外のものに分けられ、さらに選別することで玉がね大とアルミニウムを含むミックスメタルとに分けられる。また、砂は粉砕機によって粉砕すると共に、細かい鉄は図示しない磁選機によって砂鉄として回収される。   In the fluidized bed type gasification furnace 11, “sand” which is a particulate material serving as a heat medium introduced from a heat medium inlet located above is blown upward from an air blowing hole provided in the bottom of the furnace. A fluidized bed is formed by the air C. And the sand as a heat medium is discharged | emitted from the inside of the furnace through the discharge chute 15 extended below from a furnace bottom part with the incombustible material in the waste thrown in from the upper part of a furnace bottom part. The discharged incombustible material and sand are sieved by a sieving machine, and the sand is again put into the furnace from above the furnace bottom through a circulation passage (not shown). On the other hand, non-combustible materials are separated into large iron scraps and other things by a magnetic separator, and further sorted into mixed ball size and mixed metal containing aluminum. Further, the sand is pulverized by a pulverizer, and fine iron is recovered as iron sand by a magnetic separator not shown.

熱分解ガスE等が溶融炉21に移送されてくると、溶融炉21内に空気を供給しつつ熱分解ガスEを燃焼させる(ステップS6)。これにより熱分解ガスEは、燃焼して排ガスFとなり、排ガスの処理設備に移送される。ここで、排ガスFの温度が200〜600℃の範囲にあるとダイオキシン等の有害物質が再合成されることを考慮し、この温度範囲にある時間を少なくして有害物質の再度の生成を防止すべく、溶融炉21から送られてくる排ガスFを、熱交換器26で間接冷却し、急冷塔41の廃液分解部42に廃液L1を噴霧し、さらに急冷部43で冷却水としての工業用水(工水)L2を噴霧して排ガスFを冷却している。廃液L1を噴霧するのは、上述したように、廃液L1に金属イオンや酸が含まれ、化学工場等で生ずる廃液L1には、無機物、有機物等が残存するが、これらは焼却処理することが望ましいからである。そして、溶融炉21から回収したスラグGを水砕装置によって粉砕し、水砕したスラグは地盤改良剤、セメント、インターロッキングブロックなどの原料として利用される。   When the pyrolysis gas E or the like is transferred to the melting furnace 21, the pyrolysis gas E is burned while supplying air into the melting furnace 21 (step S6). As a result, the pyrolysis gas E burns to become exhaust gas F and is transferred to the exhaust gas treatment facility. Here, considering that the temperature of the exhaust gas F is in the range of 200 to 600 ° C., harmful substances such as dioxin are re-synthesized, and the time in this temperature range is reduced to prevent the generation of harmful substances again. Therefore, the exhaust gas F sent from the melting furnace 21 is indirectly cooled by the heat exchanger 26, the waste liquid L1 is sprayed on the waste liquid decomposition part 42 of the quenching tower 41, and further, industrial water as cooling water in the quenching part 43. (Engineering water) L2 is sprayed to cool the exhaust gas F. As described above, the waste liquid L1 is sprayed because the waste liquid L1 contains metal ions and acids, and the waste liquid L1 generated in a chemical factory or the like contains inorganic substances, organic substances, etc., which can be incinerated. This is desirable. And the slag G collect | recovered from the melting furnace 21 is grind | pulverized with a water granulator, and the granulated slag is utilized as raw materials, such as a ground improvement agent, cement, an interlocking block.

本発明に係るガス化溶融炉の操業方法では、図3に示すように、急冷塔41から回収されたダストは水侵出して脱塩素処理を行った後、脱水又はデカンテーションにより上澄みを除き(ステップS8)、さらに水でリパルプしてスラリー液とし(ステップS9)、溶融炉21の炉頂から噴霧して炉内温度の冷却に利用する。また、冷却された排ガスFはバグフィルタ51を介して触媒分解塔(ステップS12)へ送られるが、バグフィルタ51で回収したダスト(ステップS10)は、水添加して脱塩素処理を行った後、ダスト処理設備91に送り、フィルタープレスで脱水した浸出滓をさらに水でリパルプしてスラリー液とし(ステップS9)、溶融炉21の炉頂から噴霧して炉内温度の冷却に利用する。さらに、排ガスFは中和塔61(ステップS13)、ミストコットレル71(ステップS14)を介して大気に放出される(ステップS15)が、中和塔61及びミストコットレル71での洗浄液を総合排水処理設備で脱塩素処理を行った後中和回収し(ステップS16)、フィルタープレスすることによって回収した中和滓をさらに水でリパルプしてスラリー液とし(ステップS9)、溶融炉21の炉頂から噴霧して炉内温度の冷却に利用する。   In the operation method of the gasification melting furnace according to the present invention, as shown in FIG. 3, the dust recovered from the quenching tower 41 is water leached and dechlorinated, and then the supernatant is removed by dehydration or decantation ( Step S8), repulped with water to make a slurry liquid (Step S9), sprayed from the top of the melting furnace 21 and used for cooling the furnace temperature. The cooled exhaust gas F is sent to the catalytic decomposition tower (step S12) via the bag filter 51. The dust collected by the bag filter 51 (step S10) is added with water and dechlorinated. The leached soot dehydrated by the filter press is repulped with water to form a slurry liquid (step S9), sprayed from the top of the melting furnace 21 and used for cooling the furnace temperature. Further, the exhaust gas F is released to the atmosphere through the neutralization tower 61 (step S13) and the mist cot rel 71 (step S14) (step S15). After dechlorination is performed by the equipment, neutralization and recovery are performed (step S16), and the neutralized soot recovered by filter pressing is further repulped with water to form a slurry liquid (step S9), from the top of the melting furnace 21. Spray to cool the furnace temperature.

このようにして、急冷塔41から回収したダスト、バグフィルタ51から回収したダスト、中和塔61及びミストコットレル71から回収した中和滓から回収したダストのいずれかにはカルシウム分が含まれているため、これに水を加えてリパルプし、スラリー液として再び溶融炉21内に冷却水として噴霧することでスラグGにカルシウムが移行することになる。そのため、これまで約1,350℃であったスラグG融点が約1,250℃に下がり、溶融炉21内の温度が従来よりも低くなってもスラグGの流動性が確保され、スラグGの回収作業の効率化を図ることができる。また、溶融炉21内の温度をこれまでよりも低くすることが出来るので耐熱煉瓦などへ与える温度の影響も改善され、ひいては溶融炉21の寿命を延ばすことにつながる。さらに、回収ダスト類を流動層式ガス化炉11へ再投入して処理するとカルシウム分が散気ノズルを閉塞するという問題があったが、溶融炉21で処理することとしたので流動層式ガス化炉11の散気ノズルの閉塞の問題は起こらない。   In this way, any of the dust recovered from the quenching tower 41, the dust recovered from the bag filter 51, and the dust recovered from the neutralization tower 61 and the neutralization soot recovered from the mist cot rel 71 contain calcium. Therefore, calcium is transferred to the slag G by adding water to this and repulping and spraying it again as cooling water into the melting furnace 21 as a slurry liquid. Therefore, the melting point of the slag G, which was about 1,350 ° C. until now, is lowered to about 1,250 ° C., and the fluidity of the slag G is ensured even when the temperature in the melting furnace 21 is lower than the conventional one. The collection work can be made more efficient. In addition, since the temperature in the melting furnace 21 can be made lower than before, the influence of the temperature on the heat-resistant brick and the like is improved, leading to extending the life of the melting furnace 21. Furthermore, there is a problem that when the recovered dust is re-introduced into the fluidized bed gasification furnace 11 and processed, the calcium content closes the aeration nozzle. The problem of the clogging of the diffuser nozzle of the converter 11 does not occur.

以上のように、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能であることはいうまでもない。   As described above, the preferred embodiment of the present invention has been described in detail. However, the present invention is not limited to the specific embodiment, and within the scope of the gist of the present invention described in the claims, Needless to say, various modifications and changes are possible.

10 ガス化炉
12 流動床
15 排出シュート
21 溶融炉
26 熱交換器
41 急冷塔
42 廃液分解部
43 急冷部
51 バグフィルタ
61 中和塔
71 ミストコットレル
81 排突
DESCRIPTION OF SYMBOLS 10 Gasification furnace 12 Fluidized bed 15 Discharge chute 21 Melting furnace 26 Heat exchanger 41 Quenching tower 42 Waste liquid decomposition part 43 Quenching part 51 Bag filter 61 Neutralization tower 71 Mist cot rel 81 Extrusion

Claims (4)

流動層式のガス化炉に投入した産業廃棄物を下部側から吹き込んだ空気によって流動層を形成することにより前記産業廃棄物の一部を熱分解によってガス化して有価金属を含む不燃物を回収すると共に、前記ガス化炉で生成した熱分解ガスと当該熱分解ガスによって移送される前記不燃物の一部を溶融炉で処理してスラグを生成するガス化溶融炉の操業方法において、
カルシウムを含むダストをスラリー化して前記溶融炉内に吹き込むことを特徴とするガス化溶融炉の操業方法。
By forming the fluidized bed with the air blown from the bottom side of the industrial waste thrown into the fluidized bed type gasification furnace, a part of the industrial waste is gasified by pyrolysis to recover incombustibles containing valuable metals In addition, in the operation method of the gasification melting furnace in which the pyrolysis gas generated in the gasification furnace and a part of the incombustible material transferred by the pyrolysis gas are processed in the melting furnace to generate slag,
A method for operating a gasification melting furnace, wherein dust containing calcium is slurried and blown into the melting furnace.
請求項1に記載のガス化溶融炉の操業方法において、
前記ダストのスラリー化は、水侵出して塩素分を除去し、脱塩素後のスラリーを脱水又はデカンテーションにより上澄みを除いた後、さらに水を加えてスラリー液とすることを特徴とするガス化溶融炉の操業方法。
In the operation method of the gasification melting furnace of Claim 1,
Slurry of the dust is a gasification characterized by removing chlorine by leaching water, removing the supernatant from the dechlorinated slurry by dehydration or decantation, and adding water to make a slurry liquid. How to operate the melting furnace.
請求項1又2に記載のガス化溶融炉の操業方法において、
前記ダストは、急冷塔から回収したダスト、バグフィルタで捕集したダスト、中和塔又はミストコットレルでの洗浄液を排水処理した中和滓から回収したダスト、のいずれか1つを含むことを特徴とするガス化溶融炉の操業方法。
In the operation method of the gasification melting furnace of Claim 1 or 2,
The dust includes any one of dust collected from a quenching tower, dust collected by a bag filter, and dust collected from a neutralization tub that has been subjected to a wastewater treatment of a cleaning liquid in a neutralization tower or a mistcottrel. The operation method of the gasification melting furnace.
請求項2又は3に記載のガス化溶融炉の操業方法において、
前記スラリー液を前記溶融炉の頂部近傍から炉内へ噴霧することを特徴とするガス化溶融炉の操業方法。
In the operation method of the gasification melting furnace of Claim 2 or 3,
An operation method of a gasification melting furnace, wherein the slurry liquid is sprayed from the vicinity of the top of the melting furnace into the furnace.
JP2009082982A 2009-03-30 2009-03-30 Operation method of gasification melting furnace Active JP5189021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082982A JP5189021B2 (en) 2009-03-30 2009-03-30 Operation method of gasification melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082982A JP5189021B2 (en) 2009-03-30 2009-03-30 Operation method of gasification melting furnace

Publications (2)

Publication Number Publication Date
JP2010236718A JP2010236718A (en) 2010-10-21
JP5189021B2 true JP5189021B2 (en) 2013-04-24

Family

ID=43091208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082982A Active JP5189021B2 (en) 2009-03-30 2009-03-30 Operation method of gasification melting furnace

Country Status (1)

Country Link
JP (1) JP5189021B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169944A (en) * 1996-12-03 1998-06-26 Kobe Steel Ltd Fluidized layer control method in waste thermal decomposition furnace
JP2001041436A (en) * 1999-07-30 2001-02-13 Nippon Mining & Metals Co Ltd Slag produced from copper sludge and industrial waste and excellent in fluidity and method for modifying slag
JP2004150706A (en) * 2002-10-30 2004-05-27 Kobe Steel Ltd Method for gasifying waste
JP2007225168A (en) * 2006-02-22 2007-09-06 Hitachi Zosen Corp Molten deposit removal method and melting furnace

Also Published As

Publication number Publication date
JP2010236718A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
KR100914150B1 (en) Method and system for the recycling of municipal solid wastes, and exploitation of the Wasted Solid Recovery Fuel
US20100160709A1 (en) Process and appratus for waste treatment
JP4199637B2 (en) Waste plastic recycling and molding methods
JP2011206696A (en) Deposit drying device using waste heat
SK282345B6 (en) Device for energetic exploitation of municipal waste and similar materials
JP2003039056A (en) Waste treatment method and apparatus utilizing metal refining process
EP2163319A2 (en) Process for waste treatment
JP4969186B2 (en) Industrial waste treatment method and industrial waste treatment facility
JP5189021B2 (en) Operation method of gasification melting furnace
JP3830096B2 (en) Carbonization system
JP4039647B2 (en) Method and apparatus for treating dust in waste melting furnace
CN209782638U (en) system for hazardous waste is handled to pyrolysis gasifier
JP6391046B2 (en) Metal smelting raw material recovery apparatus and method from waste incineration ash, and metal recovery apparatus and method from waste incineration ash
JP4243661B2 (en) Dust disposal method
JP4561779B2 (en) Swivel melting furnace and waste gasification method using swirl melting furnace
JP3535381B2 (en) Collection of valuable metals
KR100470730B1 (en) Smelting Incineration Apparatus and Method of Solid Waste Treatment
JP2005030663A (en) Waste treatment device
JP2008232523A (en) Gasification furnace
JP2005195228A (en) Waste material melting treatment system
JP2006272163A (en) Waste separation recovery device and recovery method
KR100581509B1 (en) Method for improving properties of combustion residues produced by combustion plant, and method for treatment of the residues
JP2013076149A (en) Recycling system
JP2005270696A (en) Recycle method of sewage sludge
JP5737588B2 (en) Abrasive material manufacturing method and abrasive material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250