JP5188324B2 - Air conditioner control system - Google Patents

Air conditioner control system Download PDF

Info

Publication number
JP5188324B2
JP5188324B2 JP2008218163A JP2008218163A JP5188324B2 JP 5188324 B2 JP5188324 B2 JP 5188324B2 JP 2008218163 A JP2008218163 A JP 2008218163A JP 2008218163 A JP2008218163 A JP 2008218163A JP 5188324 B2 JP5188324 B2 JP 5188324B2
Authority
JP
Japan
Prior art keywords
room
air conditioner
wave
control system
people
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008218163A
Other languages
Japanese (ja)
Other versions
JP2010054098A (en
Inventor
哲生 久永
立 鄭
敏勝 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2008218163A priority Critical patent/JP5188324B2/en
Publication of JP2010054098A publication Critical patent/JP2010054098A/en
Application granted granted Critical
Publication of JP5188324B2 publication Critical patent/JP5188324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は空調技術に関し、特に空調機制御システムに関する。   The present invention relates to air conditioning technology, and more particularly to an air conditioner control system.

ビル等の居住空間においては、空調機が室内の温度等を測定し、設定温度との差がなくなるよう、空調機が適当な温度の空気を適当な風量で室内に供給する。また、室内の二酸化炭素(CO2)濃度が高くならないよう、空調機が一定の外気を室内に供給する。しかし、より効率的に空調機を駆動するためには、室内の在室者の人数を把握し、人数に基づいて空調機を制御することが求められる。人数に応じて、室内への外気の取入れを最小限にすれば、空調機の消費エネルギを最小限に抑えることが可能になるからである。エレベータ等では、荷重の変化からエレベータ内の人数を推測し、推測された人数に応じて、空調機を制御する方法が提案されている(例えば、特許文献1参照。)。しかし、各個人の体重の違い、及び荷物の有無等により、荷重の変化から人数を推定するのは誤差が生じやすい。また、監視カメラによって室内の人数を求める方法もあるが、在室者のプライバシーを侵害するという問題が生じる。 In a living space such as a building, the air conditioner measures the indoor temperature and the like, and the air conditioner supplies air at an appropriate temperature to the room with an appropriate air volume so that there is no difference from the set temperature. In addition, the air conditioner supplies a certain amount of outside air into the room so that the carbon dioxide (CO 2 ) concentration in the room does not increase. However, in order to drive the air conditioner more efficiently, it is required to grasp the number of people in the room and control the air conditioner based on the number of persons. This is because if the intake of outside air into the room is minimized according to the number of people, the energy consumption of the air conditioner can be minimized. In an elevator or the like, a method has been proposed in which the number of people in an elevator is estimated from a change in load, and an air conditioner is controlled according to the estimated number of people (see, for example, Patent Document 1). However, estimating the number of persons from the change in load is likely to cause an error due to the difference in weight of each individual and the presence or absence of luggage. In addition, there is a method of obtaining the number of people in the room by using a surveillance camera, but there is a problem that the privacy of the resident is infringed.

また、室内の在室者は、静止したり、動き回ったりする。そのため、在室者の活動度は、在室者の意思によって任意に変化する。活動度が高いほど、人は低い温度を快適に感じるため、在室者の活動度を把握し、活動度に基づいて空調機を制御することも求められる。人の活動度を求める方法として、人感センサにより人の発する赤外線を計測する方法が提案されている(例えば、特許文献2参照。)。しかし、赤外線を計測する方法は、人の着衣量の違いや、OA機器や飲食物等の暖かい物体の存在により、人の活動度の推定に誤差が生じやすい。また、監視カメラによって人の動きを監視する方法もあるが(例えば、特許文献3参照。)、在室者のプライバシーを侵害するという問題がある。さらに、在室者に加速度センサを装着させ、加速度センサの出力に基づいて在室者の活動度を計測する方法が提案されている(例えば、特許文献4参照。)。しかし、在室者総てに加速度センサを装着させるのは現実的でない。
特開平9-269262号公報 特開平2-166335号公報 特開平4-121542号公報 特開2006-247410号公報
In addition, the occupants in the room are stationary or move around. Therefore, the activity level of the occupants varies arbitrarily depending on the intentions of the occupants. Since the higher the activity level, the more comfortable the person feels the lower temperature, it is also required to grasp the activity level of the occupants and control the air conditioner based on the activity level. As a method for obtaining the activity level of a person, a method of measuring infrared rays emitted by a person using a human sensor has been proposed (for example, see Patent Document 2). However, the method of measuring infrared rays tends to cause an error in estimation of human activity due to the difference in the amount of clothes of people and the presence of warm objects such as OA equipment and food and drink. In addition, there is a method of monitoring the movement of a person with a monitoring camera (see, for example, Patent Document 3), but there is a problem that the privacy of the occupant is infringed. Furthermore, a method has been proposed in which an occupant is attached with an acceleration sensor and the activity level of the occupant is measured based on the output of the acceleration sensor (see, for example, Patent Document 4). However, it is not realistic to attach an acceleration sensor to all occupants.
JP 9-269262 A Japanese Unexamined Patent Publication No. 2-166335 Japanese Patent Laid-Open No. 4-121542 JP 2006-247410 A

本発明は、室内の人数の増減又は人の活動度に応じて適切に空調機を制御可能な空調機制御システムを提供することを目的とする。   An object of this invention is to provide the air-conditioner control system which can control an air-conditioner appropriately according to the increase / decrease in the number of persons in a room, or the activity level of a person.

本発明の特徴は、(イ)空間を伝播する波を室内に放射する送信機と、(ロ)波を受信する受信機と、(ハ)受信機が受信した波の振幅をモニタする振幅モニタと、(ニ)モニタされた波の振幅の変化に基づいて、室内用の空調機を制御する制御モジュールと、を備える空調機制御システムであることを要旨とする。発明者は、室内に放射された波の振幅が、室内の在室者数に応じて変化することを見出した。よって、本発明の空調機制御システムによれば、室内に放射された波の振幅の変化に基づいて空調機が制御されるため、室内の在室者数の増減に応じて、室内の空調が適切に制御にされる。   The features of the present invention are: (a) a transmitter that radiates a wave propagating in space, (b) a receiver that receives the wave, and (c) an amplitude monitor that monitors the amplitude of the wave received by the receiver. And (d) an air conditioner control system including a control module that controls an indoor air conditioner based on a change in the amplitude of the monitored wave. The inventor has found that the amplitude of the wave radiated into the room changes according to the number of people in the room. Therefore, according to the air conditioner control system of the present invention, the air conditioner is controlled based on the change in the amplitude of the wave radiated into the room. Be properly controlled.

また、本発明の他の特徴は、(イ)空間を伝播する波を室内に放射する送信機と、(ロ)波を受信する受信機と、(ハ)受信機が受信した波の周波数をモニタする周波数モニタと、(ニ)モニタされた波の周波数の変化に基づいて、室内用の空調機を制御する制御モジュールと、を備える空調機制御システムであることを要旨とする。発明者は、室内に放射された波の周波数特性が、室内の人の活動度に応じて変化することを見出した。よって、本発明の空調機制御システムによれば、室内に放射された波の周波数の変化に基づいて空調機が制御されるため、室内の人の活動度に応じて、室内の空調が適切に制御される。   Other features of the present invention include (a) a transmitter that radiates a wave propagating in space, (b) a receiver that receives the wave, and (c) a frequency of the wave received by the receiver. The gist of the invention is an air conditioner control system comprising a frequency monitor to be monitored and (d) a control module for controlling an indoor air conditioner based on a change in the frequency of the monitored wave. The inventor has found that the frequency characteristics of waves radiated into the room change according to the activity level of the person in the room. Therefore, according to the air conditioner control system of the present invention, the air conditioner is controlled based on the change in the frequency of the wave radiated into the room. Be controlled.

さらに、本発明の他の特徴は、(イ)拡散符号で変調された変調波を室内に放射する送信機と、(ロ)変調波を受信する受信機と、(ハ)受信した変調波を、逆拡散符号で復調し、復調波を生成する復調モジュールと、(ニ)復調波の信号強度をモニタする復調波モニタと、(ホ)モニタされた復調波の信号強度の変化に基づいて、室内用の空調機を制御する制御モジュールと、を備える空調機制御システムであることを要旨とする。発明者は、復調波の信号強度が、室内の在室者数に応じて変化することを見出した。よって、本発明の空調機制御システムによれば、復調波の信号強度の変化に基づいて空調機が制御されるため、室内の在室者数の増減に応じて、室内の空調が適切に制御される。   Further, other features of the present invention are as follows: (a) a transmitter that radiates a modulated wave modulated with a spread code into the room, (b) a receiver that receives the modulated wave, and (c) a received modulated wave. A demodulating module that demodulates with a despreading code and generates a demodulated wave; (d) a demodulated wave monitor that monitors the signal strength of the demodulated wave; The gist of the present invention is an air conditioner control system including a control module for controlling an indoor air conditioner. The inventor has found that the signal strength of the demodulated wave changes according to the number of people in the room. Therefore, according to the air conditioner control system of the present invention, since the air conditioner is controlled based on the change in the signal intensity of the demodulated wave, the air conditioning in the room is appropriately controlled according to the increase or decrease in the number of people in the room. Is done.

本発明によれば、室内の人数の増減又は人の活動度に応じて適切に空調機を制御可能な空調機制御システムを提供可能である。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioner control system which can control an air conditioner appropriately according to the increase / decrease in the number of people in a room or the activity level of a person can be provided.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
第1の実施の形態に係る空調機制御システムは、図1に示す室内10用の空調機5を制御するためのシステムである。空調機5は、室内10の温度、湿度、及び二酸化炭素(CO2)濃度等を調節可能な装置である。空調機5は、室内10の温度及び湿度が設定された温度及び湿度になるよう、適当な温度及び湿度に制御された風を室内10に送り込むことが可能である。また空調機5は、在室者の呼気によって室内10のCO2濃度が上昇した場合、室内10を換気して、室内10のCO2濃度を低下させることが可能である。
(First embodiment)
The air conditioner control system according to the first embodiment is a system for controlling the air conditioner 5 for the room 10 shown in FIG. The air conditioner 5 is a device that can adjust the temperature, humidity, carbon dioxide (CO 2 ) concentration, and the like of the room 10. The air conditioner 5 can send air controlled to an appropriate temperature and humidity into the room 10 so that the temperature and humidity of the room 10 become the set temperature and humidity. The air conditioner 5, when the CO 2 concentration in the chamber 10 was raised by the breath of the person in the room, and ventilating the room 10, it is possible to reduce the CO 2 concentration in the chamber 10.

第1の実施の形態に係る空調機制御システムは、空間を伝播する波を室内10に放射する送信機1と、波を受信する受信機2と、受信機2及び空調機5に接続された中央演算処理装置(CPU)300を備える。CPU300は、受信機2が受信した波の振幅をモニタする振幅モニタ301、及びモニタされた波の振幅の変化に基づいて、空調機5を制御する制御モジュール302を備える。なお、空間を伝播する波とは、電波及び超音波等を指す。以下においては、空間を伝播する波として電波を用いる例を説明する。   The air conditioner control system according to the first embodiment is connected to a transmitter 1 that radiates waves propagating in space into the room 10, a receiver 2 that receives the waves, a receiver 2, and an air conditioner 5. A central processing unit (CPU) 300 is provided. The CPU 300 includes an amplitude monitor 301 that monitors the amplitude of the wave received by the receiver 2, and a control module 302 that controls the air conditioner 5 based on a change in the amplitude of the monitored wave. Note that the wave propagating in space refers to radio waves, ultrasonic waves, and the like. In the following, an example in which radio waves are used as waves propagating in space will be described.

図1において、送信機1と受信機2は、天井11裏に一定の間隔をおいて配置されている。例えば送信機1と受信機2の間隔は、5mである。ただし、送信機1と受信機2は、天井11の室内10側に配置されていてもよい。送信機1は一定振幅の電波を、一定の間隔、又は連続的に放射する。図2は、20m×12m×3mの室内に、1個の受信機から2.4GHzの電波を放射した際の、電波の軌跡をシミュレーションした結果である。シミュレーション結果からも明らかなように、図1に示す送信機1から放射された電波は、室内10の総ての空間に放射され、室内10の壁や人3等で反射される。したがって受信機2は、天井11裏をなんら干渉されずに伝播した直接波と、室内10の壁や人3等で反射された複数の反射波との合成波を受信する。   In FIG. 1, the transmitter 1 and the receiver 2 are arranged behind the ceiling 11 with a certain interval. For example, the interval between the transmitter 1 and the receiver 2 is 5 m. However, the transmitter 1 and the receiver 2 may be arranged on the room 10 side of the ceiling 11. The transmitter 1 emits a radio wave having a constant amplitude at a constant interval or continuously. Fig. 2 shows the result of simulating the trajectory of a radio wave when a 2.4 GHz radio wave is radiated from a single receiver in a 20m x 12m x 3m room. As is clear from the simulation results, the radio waves radiated from the transmitter 1 shown in FIG. 1 are radiated to all the spaces in the room 10 and reflected by the walls of the room 10, the person 3, and the like. Therefore, the receiver 2 receives a combined wave of a direct wave that has propagated through the ceiling 11 without any interference and a plurality of reflected waves reflected by the wall of the room 10 or a person 3 or the like.

ここで、複数の反射波は、反射位置によってそれぞれパス長が異なる経路を伝播する。そのため、複数の反射波のそれぞれが、受信機2に到達するまでの伝播時間は異なる。よって、複数の反射波のそれぞれには位相差が生じ、合成波の振幅が直接波の振幅から変化する。電波の周波数が例えば2.4GHzのように高い場合、人体も電波をよく反射する。したがって、人3が室内10に入ってくると、合成波の振幅は変化する。さらに多くの人3が室内10に入ってくると、反射面積が増えるために、合成波の振幅はより大きく変化する。   Here, the plurality of reflected waves propagate along paths having different path lengths depending on the reflection positions. Therefore, the propagation time until each of the plurality of reflected waves reaches the receiver 2 is different. Therefore, a phase difference occurs in each of the plurality of reflected waves, and the amplitude of the combined wave changes from the amplitude of the direct wave. When the frequency of radio waves is high, for example, 2.4 GHz, the human body also reflects radio waves well. Therefore, when the person 3 enters the room 10, the amplitude of the synthesized wave changes. As more people 3 enter the room 10, the reflected area increases, so the amplitude of the synthesized wave changes more greatly.

振幅モニタ301は、合成波の振幅をモニタする。モニタは、例えば1秒毎に実施してもよい。なお、振幅モニタ301は、必ずしも合成波の振幅を直接モニタする必要はなく、合成波の受信信号強度(RSSI: Received Signal Strength Indicator)等から間接的に合成波の振幅をモニタすればよい。図3は、室内10に人3がいない場合の、合成波の受信信号強度の経時変化の例を示す。室内10に人3がいない場合、合成波の受信信号強度はほとんど変化しない。しかし、図4に示すように、室内10に人3が在室しているときは、人3が在室していないときと比べて、合成波の受信信号強度に変化が生じる。さらに図5、図6、図7に示すように、室内10の在室者数が増えるにつれて、合成波の受信信号強度も変化する。   The amplitude monitor 301 monitors the amplitude of the synthesized wave. The monitoring may be performed every second, for example. Note that the amplitude monitor 301 is not necessarily required to directly monitor the amplitude of the combined wave, and may be monitored indirectly from the received signal strength indicator (RSSI) of the combined wave. FIG. 3 shows an example of the change over time of the received signal strength of the synthesized wave when there is no person 3 in the room 10. When there is no person 3 in the room 10, the received signal strength of the synthesized wave hardly changes. However, as shown in FIG. 4, when the person 3 is present in the room 10, the received signal strength of the synthesized wave changes compared to when the person 3 is not present. Furthermore, as shown in FIGS. 5, 6, and 7, as the number of people in the room 10 increases, the received signal strength of the combined wave also changes.

図1に示す振幅モニタ301は、さらに、一定時間内の合成波の受信信号強度の標準偏差を算出する。図8は、室内10の在室者数が0人乃至4人のそれぞれの場合における、振幅モニタ301が算出した合成波の受信信号強度の標準偏差の一例である。図9に示すように、室内10の在室者数が増加するにつれて、合成波の受信信号強度の標準偏差は増加する。反対に、室内10の在室者数が減少するにつれて、合成波の受信信号強度の標準偏差は減少する。なお、図8及び図9に示す標準偏差の単位は、デシベル(dB)である。   The amplitude monitor 301 shown in FIG. 1 further calculates the standard deviation of the received signal strength of the composite wave within a certain time. FIG. 8 is an example of the standard deviation of the received signal strength of the composite wave calculated by the amplitude monitor 301 when the number of people in the room 10 is 0 to 4 respectively. As shown in FIG. 9, the standard deviation of the received signal strength of the synthesized wave increases as the number of people in the room 10 increases. Conversely, as the number of people in the room 10 decreases, the standard deviation of the received signal strength of the synthesized wave decreases. The unit of standard deviation shown in FIGS. 8 and 9 is decibel (dB).

振幅モニタ301が算出した標準偏差が、図8に示すように0.36近傍から1.84に増加した場合、図1に示す制御モジュール302は、室内10に人3が一人入ってきたとみなして、標準偏差が0.36近傍であった場合と比較して、空調機5の冷房を強めるか、あるいは暖房を弱める。空調機5が冷房機能で運転している場合、制御モジュール302は、具体的には、空調機5から室内10に供給される風の温度を低下させるか、空調機5から室内10に供給させる風量を増加させ、室内10の温度を設定温度に維持する。振幅モニタ301が算出した標準偏差がさらに増加した場合、制御モジュール302は、室内10の在室者数がさらに増加したものとみなして、空調機5から室内10に供給される風の温度をさらに低下させるか、空調機5から室内10に供給させる風量をさらに増加させ、室内10の温度を設定温度に維持する。また、在室者数の増加に伴うCO2濃度の上昇に備えて、空調機5に室内10を換気させてもよい。さらに、在室者数の増加に伴う湿度の上昇に備えて、空調機5から室内10に供給される風の湿度を低下させてもよい。 When the standard deviation calculated by the amplitude monitor 301 increases from near 0.36 to 1.84 as shown in FIG. 8, the control module 302 shown in FIG. 1 assumes that one person 3 has entered the room 10, and the standard deviation is Compared with the case where it is in the vicinity of 0.36, the cooling of the air conditioner 5 is strengthened or the heating is weakened. When the air conditioner 5 is operating with the cooling function, the control module 302 specifically decreases the temperature of the wind supplied from the air conditioner 5 to the room 10 or causes the air conditioner 5 to supply the room 10 to the room 10. The air volume is increased and the temperature of the room 10 is maintained at the set temperature. When the standard deviation calculated by the amplitude monitor 301 further increases, the control module 302 considers that the number of people in the room 10 has further increased, and further increases the temperature of the wind supplied from the air conditioner 5 to the room 10. The air volume supplied to the room 10 from the air conditioner 5 is further decreased, and the temperature of the room 10 is maintained at the set temperature. In addition, the air conditioner 5 may ventilate the room 10 in preparation for an increase in the CO 2 concentration accompanying an increase in the number of people in the room. Furthermore, the humidity of the wind supplied from the air conditioner 5 to the room 10 may be reduced in preparation for an increase in humidity accompanying an increase in the number of people in the room.

また、振幅モニタ301が算出した標準偏差が減少した場合、制御モジュール302は、室内10の在室者数が減少したものとみなして、空調機5の冷房を弱めるか、あるいは暖房を強める。空調機5が冷房機能で運転している場合、制御モジュール302は、具体的には、空調機5から室内10に供給される風の温度を上昇させるか、空調機5から室内10に供給させる風量を減少させ、室内10の温度を設定温度に維持する。さらに制御モジュール302は、振幅モニタ301が算出した標準偏差が、図8に示すように0.36近傍になった場合、図1に示す室内10の在室者数が0になったとみなして、空調機5の出力を下げるか、あるいは空調機5を停止する。   When the standard deviation calculated by the amplitude monitor 301 decreases, the control module 302 considers that the number of people in the room 10 has decreased, and weakens the cooling of the air conditioner 5 or increases the heating. When the air conditioner 5 is operating with a cooling function, the control module 302 specifically increases the temperature of the wind supplied from the air conditioner 5 to the room 10 or supplies it from the air conditioner 5 to the room 10. Reduce the air volume and keep the temperature of the room 10 at the set temperature. Further, when the standard deviation calculated by the amplitude monitor 301 is close to 0.36 as shown in FIG. 8, the control module 302 considers that the number of people in the room 10 shown in FIG. Reduce the output of 5 or stop the air conditioner 5.

室内10の人3は、熱を発し、呼気によりCO2を排出する。したがって、第1の実施の形態に係る空調機制御システムがない場合、室内10の在室者数が増えるに従って、室内の気温が上昇し、CO2濃度も上昇する。従来においては、室内10の在室者数を正確に把握することは困難であったため、室内10の在室者数の増加を直接検出せず、室内10の気温の上昇に応じて、室内10に冷風を送っていた。そのため、室内10の温度が設定温度から一時的に上昇し、在室者の温熱快適性等が失われていた。また、従来は、室内10のCO2濃度の上昇に応じて、室内10を換気していたが、一時的であれ、CO2濃度の上昇は、在室者に眠気をもたらす等の問題があった。 The person 3 in the room 10 generates heat and emits CO 2 by exhalation. Therefore, in the absence of the air conditioner control system according to the first embodiment, the indoor temperature increases and the CO 2 concentration also increases as the number of people in the room 10 increases. Conventionally, it has been difficult to accurately grasp the number of people in the room 10, so the increase in the number of people in the room 10 is not directly detected, and the room 10 I was sending cold air. For this reason, the temperature of the room 10 temporarily rises from the set temperature, and the thermal comfort of the occupants has been lost. Conventionally, the room 10 is ventilated in accordance with the increase in the CO 2 concentration in the room 10. However, even if temporarily, the increase in the CO 2 concentration has problems such as bringing sleepiness to the occupants. It was.

これに対し、第1の実施の形態に係る空調機制御システムを用いれば、室内10の在室者数の増加を瞬時に検出し、室内10の温度上昇を待たずして、空調機5から室内10に冷風を供給させ、室内10の温度を設定温度に保つことが可能となる。したがって、在室者数の増加に伴う室内10の温度の一時的な上昇を抑制することが可能となり、在室者の温熱快適性を向上することが可能となる。   In contrast, if the air conditioner control system according to the first embodiment is used, an increase in the number of people in the room 10 is instantaneously detected, and the air conditioner 5 It is possible to supply cold air to the room 10 and keep the temperature of the room 10 at the set temperature. Therefore, it is possible to suppress a temporary increase in the temperature of the room 10 accompanying the increase in the number of occupants, and it is possible to improve the thermal comfort of the occupants.

また、室内10の在室者数の増加を検出することにより、室内10のCO2濃度の上昇を待たずして、空調機5に室内10を換気させ、室内10のCO2濃度を低く維持することが可能となる。したがって、在室者数の増加に伴う室内10のCO2濃度の一時的な上昇を抑制することが可能となり、在室者の作業能率等を向上することが可能となる。 Further, maintained by detecting the occupants increase in the number of indoor 10, and without waiting for the rise of the CO 2 concentration in the room 10, the room 10 is ventilated air conditioner 5, the CO 2 concentration in the chamber 10 lower It becomes possible to do. Therefore, it is possible to suppress a temporary increase in the CO 2 concentration in the room 10 due to the increase in the number of people in the room, and it is possible to improve the working efficiency of the people in the room.

また、従来においては、室内10の在室者数の減少を検出できなかったため、発熱体である在室者数が減少しても、減少前と同じ冷風が室内10に供給されていた。そのため、室内10の温度が設定温度から一時的に低下し、室内10に残っている在室者に寒気をもたらすという問題があった。これに対し、第1の実施の形態に係る空調機制御システムを用いれば、室内10の在室者数の減少を瞬時に検出し、室内10の温度低下を待たずして、空調機5の冷房を弱めさせ、室内10の温度を設定温度に保つことが可能となる。   Conventionally, since the decrease in the number of occupants in the room 10 could not be detected, the same cold air as before the decrease was supplied to the room 10 even when the number of occupants as heat generating elements decreased. For this reason, there is a problem that the temperature of the room 10 temporarily decreases from the set temperature and causes chills to the people who remain in the room 10. On the other hand, if the air conditioner control system according to the first embodiment is used, a decrease in the number of people in the room 10 is detected instantaneously, and the air conditioner 5 It becomes possible to weaken the cooling and keep the temperature of the room 10 at the set temperature.

なお、図2のシミュレーション結果に示すように、図1に示す室内10は、壁、床、天井、及び什器等で反射した非常に多くの反射波によって埋め尽くされる。そのため、送信機1及び受信機2の配置には制約はない。よって、送信機1と受信機2を結ぶ直線上、すなわち直接波パス上に人3がいなくとも、人3は検出可能である。   As shown in the simulation result of FIG. 2, the room 10 shown in FIG. 1 is filled with a very large number of reflected waves reflected by walls, floors, ceilings, furniture, and the like. Therefore, there is no restriction on the arrangement of the transmitter 1 and the receiver 2. Therefore, even if there is no person 3 on the straight line connecting the transmitter 1 and the receiver 2, that is, on the direct wave path, the person 3 can be detected.

(第2の実施の形態)
第2の実施の形態に係る空調機制御システムは、図10に示す室内10用の空調機5を制御するためのシステムであり、送信機1、受信機2、受信機2が受信した波の周波数をモニタする周波数モニタ303、及びモニタされた波の周波数の変化に基づいて、室内10用の空調機5を制御する制御モジュール302を備える。周波数モニタ303及び制御モジュール302は、CPU300に含まれている。空調機5、送信機1、及び受信機2のそれぞれは、第1の実施の形態と同様であるので、説明は省略する。
(Second embodiment)
The air conditioner control system according to the second embodiment is a system for controlling the air conditioner 5 for the room 10 shown in FIG. 10, and the waves received by the transmitter 1, the receiver 2, and the receiver 2 are A frequency monitor 303 that monitors the frequency, and a control module 302 that controls the air conditioner 5 for the room 10 based on a change in the monitored wave frequency. The frequency monitor 303 and the control module 302 are included in the CPU 300. Since each of the air conditioner 5, the transmitter 1, and the receiver 2 is the same as that of the first embodiment, the description thereof is omitted.

ここで、人の活動度と受信電波の周波数変化の関係について説明する。周囲30m×20m、高さ3mの部屋があるとする。部屋の床と天井はコンクリートでできており、壁は石膏ボードでできていると仮定する。図11に示すように、垂直ダイポールアンテナである送信機と受信機を天井近くに配置する。送信機から送信される電波の周波数は2.45GHzであり、出力は1mWであるとする。部屋の中央付近にいる人が矢印方向に移動したときの受信電波の受信信号強度を、レイトレーシング法の伝播シミュレーションで算出すると、図12に示す結果が得られる。受信信号強度は、人の移動に応じて変化するが、完全にランダムではなく、多少の周期性が認められる。   Here, the relationship between the human activity and the frequency change of the received radio wave will be described. Suppose there is a room with a circumference of 30m x 20m and a height of 3m. Assume that the floor and ceiling of the room are made of concrete and the walls are made of plasterboard. As shown in FIG. 11, a transmitter and a receiver that are vertical dipole antennas are arranged near the ceiling. The frequency of the radio wave transmitted from the transmitter is 2.45 GHz, and the output is 1 mW. If the received signal strength of the received radio wave when the person near the center of the room moves in the direction of the arrow is calculated by the ray tracing method propagation simulation, the result shown in FIG. 12 is obtained. The received signal strength changes according to the movement of the person, but is not completely random, and some periodicity is recognized.

そこで、二つのパターンで人が移動したときの受信信号強度の変化を周波数分析してみる。図13において、条件Aでは、200mmの距離を人が1秒で移動する。条件Bでは、400mmの距離を人が1秒で移動する。したがって、条件Aにおいて人の活動度は低く、条件Bにおいて人の活動度は高い。条件Aで取得された受信信号強度のデータをフーリエ変換して得られるパワースペクトルを図14に示す。また、条件Bで取得された受信信号強度のデータをフーリエ変換して得られるパワースペクトルを図15に示す。図14に示すように、人の活動度が低い場合は、2Hzにピークが現れる。一方、図15に示すように、人の活動度が高い場合は、5Hzにピークが現れる。   Therefore, frequency analysis is performed on changes in received signal strength when a person moves in two patterns. In FIG. 13, in condition A, a person moves a distance of 200 mm in 1 second. In Condition B, a person moves in a second over a distance of 400 mm. Therefore, the human activity level is low in the condition A, and the human activity level is high in the condition B. FIG. 14 shows a power spectrum obtained by performing Fourier transform on the received signal strength data acquired under the condition A. Further, FIG. 15 shows a power spectrum obtained by performing Fourier transform on the received signal strength data acquired under the condition B. As shown in FIG. 14, when human activity is low, a peak appears at 2 Hz. On the other hand, as shown in FIG. 15, when human activity is high, a peak appears at 5 Hz.

以上示したように、人の移動速度に比例して、ピーク周波数は高周波側に変化する。したがって、受信信号強度を周波数分析することにより、室内の人の活動度を求めることが可能になる。ここで、室内の人は、活動度が高くなると、低い温度を快適に感じる。そのため、図10に示す周波数モニタ303がモニタする合成波の高周波成分が増加した場合、制御モジュール302は、室内10の在室者の活動度が上昇したものとみなして、室内10の空調機5の設定温度を低下させる。また、在室者の活動度の上昇に伴うCO2濃度の上昇に備えて、空調機5に室内10を換気させてもよい。さらに、在室者の活動度の上昇に伴う湿度の上昇に備えて、空調機5から室内10に供給される風の湿度を低下させてもよい。 As described above, the peak frequency changes to the high frequency side in proportion to the moving speed of the person. Therefore, it is possible to obtain the activity level of a person in the room by analyzing the frequency of the received signal strength. Here, a person in the room feels comfortable at a low temperature when the activity level increases. Therefore, when the high frequency component of the synthetic wave monitored by the frequency monitor 303 shown in FIG. 10 increases, the control module 302 considers that the activity level of the occupants in the room 10 has increased, and the air conditioner 5 in the room 10 Reduce the set temperature. In addition, the air conditioner 5 may ventilate the room 10 in preparation for an increase in CO 2 concentration accompanying an increase in the activity level of the occupants. Furthermore, the humidity of the wind supplied from the air conditioner 5 to the room 10 may be reduced in preparation for an increase in humidity accompanying an increase in the activity level of the occupants.

また、室内の人は、活動度が低くなると、高い温度を快適に感じる。そのため、周波数モニタ303がモニタする合成波の高周波成分が減少した場合、制御モジュール302は、室内10の活動度が低下したものとみなして、室内10の空調機5の設定温度を上昇させる。   In addition, indoor people feel a high temperature comfortably when the activity level decreases. Therefore, when the high frequency component of the synthetic wave monitored by the frequency monitor 303 decreases, the control module 302 considers that the activity level of the room 10 has decreased, and increases the set temperature of the air conditioner 5 in the room 10.

フーリエ変換は、マイクロコンピュータやデジタル信号処理(DSP : Digital Signal Processing)を用いて、離散フーリエ変換(DFT : Discrete Fourier Transform)又は高速フーリエ変換(FFT : Fast Fourier Transform)演算を行うことにより、容易に実行可能である。そのため、第2の実施の形態に係る空調機制御システムによれば、室内10の在室者の活動度の上昇を瞬時に検出し、室内10の空調機の設定温度を低下させることが可能になる。また、室内10の在室者の活動度の低下も瞬時に検出し、室内10の空調機の設定温度を上昇させることが可能になる。   The Fourier transform is easily performed by performing discrete Fourier transform (DFT) or fast Fourier transform (FFT) operation using a microcomputer or digital signal processing (DSP). It is feasible. Therefore, according to the air conditioner control system according to the second embodiment, it is possible to instantaneously detect an increase in the activity level of the occupants in the room 10 and to reduce the set temperature of the air conditioner in the room 10 Become. Further, a decrease in the activity level of the occupants in the room 10 can be detected instantaneously, and the set temperature of the air conditioner in the room 10 can be increased.

(第3の実施の形態)
第3の実施の形態に係る空調機制御システムは、図16に示すように、拡散符号で変調された変調波を室内10に放射する送信機41、変調波を受信する受信機42、及び受信機42に接続されたCPU400を備える。CPU400は、受信した変調波を、逆拡散符号で復調し、復調波を生成する復調モジュール401、復調波の信号強度をモニタする復調波モニタ402、及びモニタされた復調波の信号強度の変化に基づいて、室内10用の空調機5を制御する制御モジュール403を備える。
(Third embodiment)
As shown in FIG. 16, the air conditioner control system according to the third embodiment includes a transmitter 41 that radiates a modulated wave modulated with a spread code into the room 10, a receiver 42 that receives the modulated wave, and a receiver. A CPU 400 connected to the machine 42 is provided. The CPU 400 demodulates the received modulated wave using a despreading code, generates a demodulated wave, a demodulated wave monitor 402 that monitors the demodulated wave signal intensity, and changes in the monitored signal intensity of the demodulated wave Based on this, a control module 403 for controlling the air conditioner 5 for the room 10 is provided.

送信機41で送信される変調波は、拡散符号で2次変調されている。ここで拡散符号とは、擬似ランダム信号(PN:Psudo Noise)とも呼ばれるデジタル信号である。変調波は室内10で人3等によって反射され、受信機2に到達する。受信機2で受信された変調波の信号は、CPU400の復調モジュール401に伝達され、復調モジュール401によって復調される。復調モジュール401が用いる逆拡散符号は、拡散符号と同じであってもよい。   The modulated wave transmitted by the transmitter 41 is secondarily modulated by a spreading code. Here, the spreading code is a digital signal also called a pseudo random signal (PN: Psudo Noise). The modulated wave is reflected by the person 3 etc. in the room 10 and reaches the receiver 2. The modulated wave signal received by the receiver 2 is transmitted to the demodulation module 401 of the CPU 400 and demodulated by the demodulation module 401. The despread code used by the demodulation module 401 may be the same as the spread code.

復調波モニタ402は、復調モジュール401が生成した復調波の信号強度をモニタする。ここで、室内10に人3が存在する場合、人3表面で反射された変調波と、人3表面で反射されなかった変調波との間に、伝播時間の相違が生じる。そのため、復調波の信号強度は、室内10の在室者数が増えるほど低下し、室内10の在室者数が減るほど強まる。   The demodulated wave monitor 402 monitors the signal strength of the demodulated wave generated by the demodulation module 401. Here, when the person 3 is present in the room 10, there is a difference in propagation time between the modulated wave reflected on the surface of the person 3 and the modulated wave not reflected on the surface of the person 3. Therefore, the signal strength of the demodulated wave decreases as the number of people in the room 10 increases, and increases as the number of people in the room 10 decreases.

復調波モニタ402がモニタする復調波の信号強度が低下した場合、制御モジュール403は、室内10の在室者数が増加したものとみなして、空調機5から室内10に供給される風の温度を低下させるか、空調機5から室内10に供給させる風量を増加させ、室内10の温度を設定温度に維持する。また、在室者数の増加に伴うCO2濃度の上昇に備えて、空調機5に室内10を換気させてもよい。さらに、在室者数の増加に伴う湿度の上昇に備えて、空調機5から室内10に供給される風の湿度を低下させてもよい。 When the signal intensity of the demodulated wave monitored by the demodulated wave monitor 402 decreases, the control module 403 considers that the number of people in the room 10 has increased, and the temperature of the wind supplied from the air conditioner 5 to the room 10 Or the air volume supplied from the air conditioner 5 to the room 10 is increased to maintain the temperature of the room 10 at the set temperature. In addition, the air conditioner 5 may ventilate the room 10 in preparation for an increase in the CO 2 concentration accompanying an increase in the number of people in the room. Furthermore, the humidity of the wind supplied from the air conditioner 5 to the room 10 may be reduced in preparation for an increase in humidity accompanying an increase in the number of people in the room.

また、復調波モニタ402がモニタする復調波の信号強度が強まった場合、制御モジュール403は、室内10の在室者数が減少したものとみなして、空調機5から室内10に供給される風の温度を上昇させるか、空調機5から室内10に供給させる風量を減少させ、室内10の温度を設定温度に維持する。   When the signal strength of the demodulated wave monitored by the demodulated wave monitor 402 is increased, the control module 403 considers that the number of people in the room 10 has decreased, and the wind supplied from the air conditioner 5 to the room 10 Or the air volume supplied from the air conditioner 5 to the room 10 is decreased to maintain the temperature of the room 10 at the set temperature.

第3の実施の形態に係る空調機制御システムによれば、送信機1から放射される電波が変調波であっても、室内10の在室者数の増減を正確に把握し、空調機5を適切に制御することが可能になる。   According to the air conditioner control system according to the third embodiment, even if the radio wave radiated from the transmitter 1 is a modulated wave, the air conditioner 5 Can be controlled appropriately.

(その他の実施の形態)
上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。
(Other embodiments)
Although the present invention has been described by the embodiments as described above, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art.

例えば、第1の実施の形態においては、空調機5が冷房機能を運転している例を説明したが、空調機5の暖房機能を運転している際も、室内10の在室者数の増減にあわせて、空調機5から室内10に供給させる風の温度を上下させてもよいことはもちろんである。また、近年、室内10にワイヤレス方式の温度センサ、湿度センサ、及び空調機5のリモートコントローラ等が配置されていることが多い。そのため、人3の検出専用に送信機1を設けず、温度センサ等が発した通信用の電波の特性の変動をモニタすることにより、制御モジュール302は空調機5を制御してもよい。   For example, in the first embodiment, an example in which the air conditioner 5 operates the cooling function has been described, but when the heating function of the air conditioner 5 is operated, the number of people in the room 10 It goes without saying that the temperature of the wind supplied from the air conditioner 5 to the room 10 may be increased or decreased in accordance with the increase or decrease. In recent years, a wireless temperature sensor, a humidity sensor, a remote controller for the air conditioner 5 and the like are often arranged in the room 10. Therefore, the control module 302 may control the air conditioner 5 by not providing the transmitter 1 exclusively for the detection of the person 3 and monitoring the fluctuation of the characteristics of the communication radio wave emitted by the temperature sensor or the like.

この様に、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。   Thus, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure.

本発明の第1の実施の形態に係る空調機制御システムの模式図である。It is a mimetic diagram of an air-conditioner control system concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る電波のマルチパスを示す模式図である。It is a schematic diagram which shows the multipath of the electromagnetic wave which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電波の受信信号強度を示す第1のグラフである。It is a 1st graph which shows the received signal strength of the electromagnetic wave which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電波の受信信号強度を示す第2のグラフである。It is a 2nd graph which shows the received signal strength of the electromagnetic wave which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電波の受信信号強度を示す第3のグラフである。It is a 3rd graph which shows the received signal strength of the electromagnetic wave which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電波の受信信号強度を示す第4のグラフである。It is a 4th graph which shows the received signal strength of the electromagnetic wave which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電波の受信信号強度を示す第5のグラフである。It is a 5th graph which shows the received signal strength of the electromagnetic wave which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電波の受信信号強度の標準偏差を示す表である。It is a table | surface which shows the standard deviation of the received signal strength of the electromagnetic wave which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電波の受信信号強度の標準偏差を示すグラフである。It is a graph which shows the standard deviation of the received signal strength of the electromagnetic wave which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る空調機制御システムの模式図である。It is a schematic diagram of the air-conditioner control system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係るシミュレーション条件を示す模式図である。It is a schematic diagram which shows the simulation conditions which concern on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る受信信号強度を示すグラフである。It is a graph which shows the received signal strength which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る人の移動のグラフである。It is a graph of the movement of a person concerning a 2nd embodiment of the present invention. 本発明の第2の実施の形態に係るパワースペクトルを示す第1のグラフである。It is a 1st graph which shows the power spectrum which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係るパワースペクトルを示す第2のグラフである。It is a 2nd graph which shows the power spectrum which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る空調機制御システムの模式図である。It is a schematic diagram of the air-conditioner control system which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1, 41・・・送信機
2, 42・・・受信機
3・・・人
10・・・室内
11・・・天井
300, 400・・・CPU
301・・・振幅モニタ
302, 403・・・制御モジュール
303・・・周波数モニタ
401・・・復調モジュール
402・・・復調波モニタ
1, 41 ・ ・ ・ Transmitter
2, 42 ・ ・ ・ receiver
3 persons
10 ... Indoor
11 ... Ceiling
300, 400 ... CPU
301 ・ ・ ・ Amplitude monitor
302, 403 ・ ・ ・ Control module
303 ・ ・ ・ Frequency monitor
401: Demodulation module
402 ・ ・ ・ Demodulated wave monitor

Claims (3)

空間を伝播する波を室内に放射する送信機と、
前記波を受信する受信機と、
前記受信機が受信した波の振幅をモニタする振幅モニタと、
前記モニタされた波の振幅の変化に基づいて、前記室内用の空調機を制御する制御モジュールと、
を備え
前記振幅モニタが、前記受信した波の強度の標準偏差を算出し、前記標準偏差に基づいて、前記空間に存在する人の数を推定する、
空調機制御システム。
A transmitter that radiates waves propagating in space into the room;
A receiver for receiving the wave;
An amplitude monitor for monitoring the amplitude of the wave received by the receiver;
A control module for controlling the indoor air conditioner based on a change in amplitude of the monitored wave;
Equipped with a,
The amplitude monitor calculates a standard deviation of the intensity of the received wave, and estimates the number of persons existing in the space based on the standard deviation;
Air conditioner control system.
前記標準偏差が増加した場合、前記制御モジュールが、前記空調機から前記室内に供給される風の温度を低下させるか、前記空調機から前記室内に供給される風量を増加させ、
前記標準偏差が減少した場合、前記制御モジュールが、前記空調機から前記室内に供給される風の温度を上昇させるか、前記空調機から前記室内に供給される風量を減少させる
請求項に記載の空調機制御システム。
When the standard deviation increases, the control module decreases the temperature of the wind supplied from the air conditioner into the room or increases the amount of air supplied from the air conditioner to the room,
When the standard deviation decreases, the control module increases the temperature of the wind supplied from the air conditioner to the room or reduces the amount of air supplied from the air conditioner to the room .
The air conditioner control system according to claim 1 .
前記標準偏差が増加した場合、前記制御モジュールが、前記空調機に前記室内を換気させる請求項又はに記載の空調機制御システム。 If the standard deviation is increased, the control module, thereby ventilating the room to the air conditioner, the air conditioner control system according to claim 1 or 2.
JP2008218163A 2008-08-27 2008-08-27 Air conditioner control system Expired - Fee Related JP5188324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218163A JP5188324B2 (en) 2008-08-27 2008-08-27 Air conditioner control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218163A JP5188324B2 (en) 2008-08-27 2008-08-27 Air conditioner control system

Publications (2)

Publication Number Publication Date
JP2010054098A JP2010054098A (en) 2010-03-11
JP5188324B2 true JP5188324B2 (en) 2013-04-24

Family

ID=42070227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218163A Expired - Fee Related JP5188324B2 (en) 2008-08-27 2008-08-27 Air conditioner control system

Country Status (1)

Country Link
JP (1) JP5188324B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107178B2 (en) * 2008-08-27 2012-12-26 アズビル株式会社 Person distribution measurement system and person distribution measurement method
CN105363298B (en) * 2014-08-15 2017-11-03 台达电子工业股份有限公司 Have the air regenerating device and its detection method of the dirty detection function of filter screen
CN109690200A (en) * 2016-09-12 2019-04-26 株式会社技术未来 Digital intelligent energy conserving system, methods and procedures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305220A (en) * 2000-02-18 2001-10-31 Toto Ltd Automatic door device, lighting system and air conditioner
JP2007003305A (en) * 2005-06-22 2007-01-11 Matsushita Electric Ind Co Ltd Spread spectrum radar device

Also Published As

Publication number Publication date
JP2010054098A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
KR101677651B1 (en) Air quality sensing apparatus and method for controlling the same
JP6775908B2 (en) Person position detection device, person position detection system, person position detection method and program
US20160139576A1 (en) Occupancy based demand controlled utility system
JP5780534B2 (en) Setting unit and method for setting presence detection sensor
JP2019510960A (en) System and method for monitoring an environment using radio frequency signals and sensors
JP5188324B2 (en) Air conditioner control system
JP5107178B2 (en) Person distribution measurement system and person distribution measurement method
KR20140147287A (en) Air conditioning apparatus having an antenna unit for sensing human
CN108195023A (en) Air conditioner wind sensing control method, apparatus, air conditioner and readable storage medium storing program for executing
JP6355761B2 (en) State detection system, air conditioning control system, and state detection method
CN108917086B (en) Sleep mode automatic control method and air conditioner
JP6435529B2 (en) A system for managing the location of facility users in the facility
US8907785B2 (en) Locator system using disparate locator signals
JP2010130873A (en) Power monitoring apparatus
JP2011241990A (en) Air conditioner controller
WO2017013760A1 (en) Wireless communication device, presence detection system, method, and program
JP4108685B2 (en) Air conditioning management system, air conditioning equipment control device, air conditioning equipment control method and program thereof
CN112013504B (en) Air conditioning system and control method thereof
KR101134988B1 (en) Method and apparatus for controlling system air-conditioner using motion detecting sensor
US20240282182A1 (en) Apparatus for controlling radiofrequency sensing
Nivetha et al. Wi-fi based occupancy detection in a building with indoor localization
JP2007147167A (en) Wind direction control system, and wind direction control method
US20060074647A1 (en) Device for recording air-conditioning variables
JP2006084150A (en) Air-conditioning system
KR20170125649A (en) Apparatus and method for controlling noise in collection of buildings, and noise processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees