JP5187733B2 - Manufacturing method of multilayer secondary battery - Google Patents

Manufacturing method of multilayer secondary battery Download PDF

Info

Publication number
JP5187733B2
JP5187733B2 JP2007319772A JP2007319772A JP5187733B2 JP 5187733 B2 JP5187733 B2 JP 5187733B2 JP 2007319772 A JP2007319772 A JP 2007319772A JP 2007319772 A JP2007319772 A JP 2007319772A JP 5187733 B2 JP5187733 B2 JP 5187733B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
secondary battery
electrode terminal
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007319772A
Other languages
Japanese (ja)
Other versions
JP2009146602A (en
Inventor
悟 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2007319772A priority Critical patent/JP5187733B2/en
Publication of JP2009146602A publication Critical patent/JP2009146602A/en
Application granted granted Critical
Publication of JP5187733B2 publication Critical patent/JP5187733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明はラミネート外装された積層型二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a laminated secondary battery with a laminated exterior.

ラミネート外装された積層型二次電池は、金属箔などからなる集電体上に活物質層を形成したシート状の正極電極と負極電極とをセパレータを介して積層した電池要素をラミネート外装材に収納し封止する構造で構成される。   A laminated secondary battery with a laminate sheath is made of a battery element in which a sheet-like positive electrode and a negative electrode formed by forming an active material layer on a current collector made of metal foil or the like are laminated with a separator interposed therebetween. Consists of a structure for storing and sealing.

近年、電気自動車の普及やハイブリッド自動車の普及に伴って二次電池の高容量化と共に高率放電が可能な積層型二次電池の要求が高まっている。また、同時に低価格への要求も高まっており、高い製造歩留まりが求められている。   In recent years, with the widespread use of electric vehicles and hybrid vehicles, there is an increasing demand for stacked secondary batteries capable of high-rate discharge as well as increasing the capacity of secondary batteries. At the same time, the demand for low prices is increasing, and a high production yield is required.

図2はラミネート外装された積層型二次電池の断面図であり、図3は従来の積層型二次電池の電解液注液工程を示す図であり、図3(a)は正面図、図3(b)は側面図である。一般に、ラミネート外装された積層型二次電池は 図2に示す様に正極電極1、負極電極2、セパレータ3から構成される積層体を、正極端子5および負極端子6を露出した状態で、アルミ箔に樹脂コーティングしたラミネート外装材4により外装し、電解液を注入し密閉して構成される。電解液の注液は図3に示す様に積層体の周囲を、注液口8以外をラミネート外装材4で封止した後(封止部をハッチングで示す)、注液口8から定量ポンプ9などを使用し電解液7を一気に注入し、積層体を真空条件下に一定時間放置し、電解液を積層体に含浸させる。含浸後、注液口8を真空状態にて封止する。   FIG. 2 is a cross-sectional view of a laminated secondary battery with a laminated exterior, FIG. 3 is a diagram showing an electrolyte solution injection process of a conventional laminated secondary battery, and FIG. 3 (a) is a front view, FIG. 3 (b) is a side view. In general, a laminated secondary battery with a laminate is made of a laminate composed of a positive electrode 1, a negative electrode 2, and a separator 3 as shown in FIG. 2, with the positive electrode terminal 5 and the negative electrode terminal 6 exposed. The foil is covered with a laminate coating material 4 that is resin-coated, and an electrolyte is injected and sealed. As shown in FIG. 3, the electrolyte solution is injected by sealing the periphery of the laminate with the laminate exterior material 4 except for the injection port 8 (the sealing portion is indicated by hatching), and then feeding the metering pump from the injection port 8. 9 or the like is used to inject the electrolyte solution 7 at a stroke, and the laminate is allowed to stand for a certain period of time under vacuum conditions to impregnate the laminate with the electrolyte solution. After the impregnation, the liquid inlet 8 is sealed in a vacuum state.

ところが 電解液注入・封止後、電極及びセパレータにしわが発生することがある。しわは、セパレータと電極の間に空間を作り、密着しないため、後にしわを伸ばす為の物理的外力をあたえても、消去することは出来ず、歩留まりを悪化させる。   However, wrinkles may occur in the electrode and the separator after electrolyte injection and sealing. Since the wrinkle creates a space between the separator and the electrode and does not adhere to it, even if a physical external force for stretching the wrinkle is applied later, it cannot be erased and the yield is deteriorated.

しわの発生理由としては、積層体の正極電極・負極電極・セパレータ間に電解液を注入する時、正極電極・負極電極・セパレータ間の隙間が大きい状態で 一気に電解液を注入すると、電解液の染み込みばらつきが大きくなり、染み込みの遅いところでは、正極電極・負極電極・セパレータ間の元からある空気が周囲を電解液で囲まれ排出される経路がなくなり、真空状態においても 排出することができず、しわとなるためと考えられる。   The reason for the generation of wrinkles is that when the electrolyte is injected between the positive electrode, negative electrode, and separator of the laminate, if the electrolyte is injected all at once with a large gap between the positive electrode, negative electrode, and separator, The soaking variability increases, and in areas where soaking is slow, there is no path for the original air between the positive electrode, the negative electrode, and the separator to be surrounded by the electrolyte, and it cannot be discharged even in a vacuum. This is considered to be a wrinkle.

特許文献1では、電解液が浸透することによる膨張異方性を有するシート状セパレータを用い、電解液を注入する際に、セパレータの最大膨張方向の動きが固定されず、最大膨張方向と電解液の浸透方向とが略平行状態で電解液をセパレータに浸透させる技術が提案されているが、注液口の配置、セパレータの向きが制限される欠点があった。   In Patent Document 1, when a sheet-like separator having expansion anisotropy due to permeation of the electrolytic solution is used and the electrolytic solution is injected, the movement of the separator in the maximum expansion direction is not fixed, and the maximum expansion direction and the electrolytic solution are not fixed. A technique for infiltrating the electrolytic solution into the separator in a substantially parallel state with respect to the permeation direction of the liquid has been proposed.

特開2005−222787号公報JP 2005-222787 A

本発明は、このような問題点を解決するためになされたもので、その技術課題は電解液を注入する積層型二次電池の製造方法において、電極およびセパレータにしわが発生せず、電気的特性がよく歩留まりのよい積層型二次電池の製造方法を提供することにある。   The present invention has been made to solve such problems, and its technical problem is that in the method of manufacturing a laminated secondary battery in which an electrolyte is injected, the electrode and the separator are not wrinkled, and the electrical characteristics are It is an object of the present invention to provide a method for manufacturing a stacked secondary battery with a good yield.

本発明の積層型二次電池の製造方法は、正極端子が接続された正極電極と、負極端子が接続された負極端子とをセパレータを介して積層した電池要素を、前記正極端子および前記負極端子を露出させ、ラミネート外装材に収納し、注液口を除いて封止する工程と、前記電池要素を収納したラミネート外装材を押え板で挟持し、前記注液口より電解液を全液量の10〜30%/時の注液速度で注入する工程と、前記注液口を封止する工程とを含むことを特徴とする。 The method for producing a laminated secondary battery according to the present invention includes a battery element in which a positive electrode connected to a positive electrode terminal and a negative electrode terminal connected to a negative electrode terminal are stacked via a separator, the positive electrode terminal and the negative electrode terminal. to expose the, housed in laminated outer member, a step of sealing with the exception of the injection port, the battery element is sandwiched between the housing and the laminated outer material in pressing plate, Zen'ekiryou the electrolyte from the pouring hole And a step of injecting at a liquid injection rate of 10 to 30% / hour, and a step of sealing the liquid injection port.

本発明によれば、電解液を正極電極・負極電極・セパレータ間の隙間を小さくした状態で、電解液が少しずつ浸透するため、電解液の染み込みが均一となる。また、電解液注入前において、正極電極・負極電極・セパレータ間の気体成分が少ないため しわが発生しない。また、真空条件下で一定時間放置する必要がないため、高価な真空機器への投資が削減できる。   According to the present invention, since the electrolytic solution permeates little by little in a state where the gap between the positive electrode, the negative electrode, and the separator is reduced, the penetration of the electrolytic solution becomes uniform. In addition, wrinkles do not occur before the electrolyte injection because there are few gas components between the positive electrode, negative electrode, and separator. Moreover, since it is not necessary to leave for a certain period of time under vacuum conditions, investment in expensive vacuum equipment can be reduced.

以下、本発明の積層型二次電池の製造方法の実施の形態について図面を参照してより具体的に説明する。図1は本発明の積層型二次電池の製造方法の電解液注液工程を示す図であり、図1(a)は正面から見た透視図、図1(b)は側面図である。図2はラミネート外装された積層型二次電池の断面図である。   Hereinafter, an embodiment of a method for manufacturing a laminated secondary battery of the present invention will be described more specifically with reference to the drawings. 1A and 1B are diagrams showing an electrolytic solution pouring step of the method for manufacturing a laminated secondary battery of the present invention, FIG. 1A being a perspective view seen from the front, and FIG. 1B being a side view. FIG. 2 is a cross-sectional view of a laminated secondary battery with a laminated exterior.

積層型二次電池は 図2に示す様に正極電極1、負極電極2、セパレータ3から構成される積層体を、正極端子5および負極端子6を露出した状態で、アルミ箔に樹脂コーティングしたラミネート外装材4により外装し、電解液を注入し密閉して構成される。正極電極1は、例えば厚さ20μmの帯状のアルミニウム箔からなる正極集電体上に正極活物質層が形成された物である。正極活物質層は例えばコバルト酸リチウムからなる正極活物質に、PVDF等からなる結着剤とアセチレンブラック等からなる導電剤を添加してスラリー状となるように調整した調剤を正極集電体上の両面に塗布し、乾燥し、ロールプレス機により圧延することで形成される。また、負極電極2は、負極集電体、例えば厚さ10μmの銅箔からなる集電体上に負極活物質層が形成された物である。負極活物質層は例えばグラファイト粉末からなる負極活物質をPVDF等からなる結着剤とともにスラリー状となるよう調整した調剤を負極集電体上の両面に塗布し、乾燥し、ロールプレス機により圧延することで形成される。正極電極1と負極電極2の間にはセパレータ3としてポリエチレン不織布等を介して所定の数量だけ対向させて積層させ電池要素を作製する。次に正極端子5及び負極端子6をそれぞれ集電体と接合させる。外装となるラミネート外装材4は、ナイロン/アルミ/ポリプロピレンの3層構造をもつアルミラミネートフィルムであり、電池要素を収納するためフィルムに絞り加工による収納部をポリプロピレン側が凹状となるように設けた。上記電池要素をフィルムの電池要素収納部に収納し、もう一方のフィルムで電池要素を覆い、接合部を重ね合わせてラミネート外装材4の周囲を注液口を残し熱融着によって3辺を融着する。   As shown in FIG. 2, the laminated secondary battery is a laminate in which a laminate composed of a positive electrode 1, a negative electrode 2, and a separator 3 is resin-coated on an aluminum foil with the positive electrode terminal 5 and the negative electrode terminal 6 exposed. An exterior material 4 is used for the exterior, and an electrolyte is injected and sealed. The positive electrode 1 is obtained by forming a positive electrode active material layer on a positive electrode current collector made of, for example, a strip-shaped aluminum foil having a thickness of 20 μm. The positive electrode active material layer is a positive electrode active material made of, for example, lithium cobaltate, and a preparation prepared by adding a binder made of PVDF or the like and a conductive agent made of acetylene black or the like to form a slurry on the positive electrode current collector It is formed by coating on both sides of the film, drying, and rolling with a roll press. The negative electrode 2 is a negative electrode current collector, for example, a current collector made of a copper foil having a thickness of 10 μm, on which a negative electrode active material layer is formed. The negative electrode active material layer is prepared by, for example, applying a negative electrode active material made of graphite powder to a slurry with a binder made of PVDF or the like so as to form a slurry, drying it, and rolling it with a roll press It is formed by doing. Between the positive electrode 1 and the negative electrode 2, a battery element is produced by laminating a predetermined number of separators 3 as a separator 3 through a polyethylene nonwoven fabric or the like. Next, the positive electrode terminal 5 and the negative electrode terminal 6 are each joined to a current collector. The laminate outer packaging material 4 serving as an outer package is an aluminum laminate film having a three-layer structure of nylon / aluminum / polypropylene. In order to store battery elements, a storage portion by drawing is provided on the film so that the polypropylene side is concave. The battery element is housed in the battery element housing part of the film, the battery element is covered with the other film, the joints are overlapped, and the three sides are melted by thermal fusion, leaving a liquid injection port around the laminate exterior material 4. To wear.

次に、図1に示すように、電池要素をラミネート外装材で覆い、周囲3辺を融着した(融着部をハッチングで示す)電解液注入前の未封止積層型二次電池12を注液口8を上部にして配置し、平板状の押え板11で未封止積層型二次電池12に圧力を加えて挟持する。この状態で 注液口8より例えばニードルシリンジ10を用いて 点滴のごとく少しずつ電解液7を注入する。電解液を全量注入した後、真空状態にて封止する。   Next, as shown in FIG. 1, the battery element is covered with a laminate exterior material, and the surrounding three sides are fused (the fused portion is indicated by hatching). The liquid injection port 8 is arranged at the top, and the unsealed laminated secondary battery 12 is pressed and sandwiched by the flat pressing plate 11. In this state, the electrolyte solution 7 is injected little by little like an infusion using the needle syringe 10 from the injection port 8. After injecting the entire amount of the electrolytic solution, sealing is performed in a vacuum state.

ラミネート外装材の両側を押さえ板11で 1〜10kPaの圧力を加えられた状態の電池要素に、電解液を点滴のごとく少しずつ注入すると、電解液は正極電極、負極電極、セパレータに均一に染み込む。均一に染み込むことにより、正極電極・負極電極・セパレータ間に空気が偏在して溜まることはない。   When the electrolyte solution is injected little by little like a drip into the battery element in which the pressure of 1 to 10 kPa is applied to both sides of the laminate exterior material by the pressing plate 11, the electrolyte solution soaks uniformly into the positive electrode, the negative electrode, and the separator. . By soaking uniformly, air is not unevenly distributed between the positive electrode, the negative electrode and the separator.

また、この注液方法の場合、積層体からなる電池要素を押さえているため、電解液が入る充分なスペースがないが、積層体に含浸させながら注液するため、ニードルシリンジなどの器具を使用し全液量の10〜30%/時の注液速度で全量を3〜数時間かけて電解液を注入するとよい。   In addition, in the case of this liquid injection method, there is not enough space for the electrolyte to enter because the battery element made of the laminated body is pressed, but since the liquid is injected while impregnating the laminated body, a device such as a needle syringe is used. However, it is preferable to inject the electrolytic solution over a period of 3 to several hours at an injection rate of 10 to 30% / hour of the total amount of liquid.

さらに、電解液注入を真空装置内で行うと、正極電極、負極電極、セパレータへの電解液の含浸速度が速まり、時間短縮を図ることができる。   Furthermore, when the electrolytic solution is injected in a vacuum apparatus, the impregnation rate of the electrolytic solution into the positive electrode, the negative electrode, and the separator is increased, and the time can be reduced.

以下、本発明を実施例に基づき具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

正極電極は、コバルト酸リチウムからなる正極活物質に、PVDF等からなる結着剤とアセチレンブラックからなる導電剤を添加してスラリー状となるように調整した調剤を厚さ20μmの帯状のアルミニウム箔からなる正極集電体上の両面に塗布し、乾燥し、ロールプレス機により圧延することで形成した。また、負極電極は、グラファイト粉末からなる負極活物質をPVDFからなる結着剤とともにスラリー状となるよう調整した調剤を、厚さ10μmの銅箔からなる集電体上の両面に塗布し、乾燥し、ロールプレス機により圧延することで形成した。正極電極及び負極電極の寸法が120mm×200mmとなるように切断し、ポリエチレン不織布からなるセパレータを介して正極電極と負極電極を対向させて正極電極数を14層、負極電極数を15層となるように積層させ電池要素を作製した。次に正極端子及び負極端子をそれぞれ集電体と接合させ、ナイロン/アルミ/ポリプロピレンの3層構造をもつアルミラミネートフィルムからなるラミネート外装材に電池要素を収納し、ラミネート外装材の周囲を注液口を残し熱融着によって3辺を融着した。この未封止積層型二次電池に平板状の押え板で圧力を加えて挟持し、 注液口より、ニードルシリンジを用いて、電解液を注入した。電解液を全量(15g)注入した後、真空状態にて封止した。このときの押さえ板圧力および電解液の注入速度を変えて、しわの良品の歩留まりを調査した結果を表1に示す。   The positive electrode is a strip-shaped aluminum foil having a thickness of 20 μm prepared by adding a binder made of PVDF or the like and a conductive agent made of acetylene black to a positive electrode active material made of lithium cobalt oxide to form a slurry. It was formed by coating on both sides of a positive electrode current collector made of, drying, and rolling with a roll press. The negative electrode was prepared by applying a preparation prepared by making a negative electrode active material made of graphite powder into a slurry together with a binder made of PVDF on both sides of a current collector made of a copper foil having a thickness of 10 μm. And formed by rolling with a roll press. The positive electrode and the negative electrode are cut so that the dimensions are 120 mm × 200 mm, and the positive electrode and the negative electrode are opposed to each other through a separator made of polyethylene nonwoven fabric, so that the number of positive electrodes is 14 and the number of negative electrodes is 15 layers. In this way, a battery element was produced. Next, the positive electrode terminal and the negative electrode terminal are respectively joined to the current collector, the battery element is stored in a laminate outer material made of an aluminum laminate film having a three-layer structure of nylon / aluminum / polypropylene, and the periphery of the laminate outer material is injected. The three sides were fused by heat fusion leaving the mouth. The unsealed stacked secondary battery was sandwiched by applying pressure with a flat pressing plate, and an electrolytic solution was injected from the injection port using a needle syringe. After injecting the whole amount (15 g) of the electrolyte, it was sealed in a vacuum state. Table 1 shows the results of investigating the yield of good wrinkles by changing the pressure on the pressure plate and the injection rate of the electrolyte.

Figure 0005187733
Figure 0005187733

押さえ板圧力をかけなかった場合には注入速度によらず歩留まりが20%だったのに対し、押さえ板圧力をかけた場合には歩留まりが向上する。なお、電解液全量を一時に注入したもので電解液が含浸しないものについては電解液含浸不可と記した。   When the pressing plate pressure was not applied, the yield was 20% regardless of the injection speed, whereas when the pressing plate pressure was applied, the yield was improved. In addition, what inject | poured the whole amount of electrolyte solution, and the electrolyte solution does not impregnate was described as electrolyte solution impregnation impossible.

本発明の積層型二次電池の製造方法の電解液注液工程を示す図、図1(a)は正面から見た透視図、図1(b)は側面図。The figure which shows the electrolyte solution pouring process of the manufacturing method of the laminated type secondary battery of this invention, FIG.1 (a) is the perspective view seen from the front, FIG.1 (b) is a side view. ラミネート外装された積層型二次電池の断面図。FIG. 3 is a cross-sectional view of a laminated secondary battery that is laminated. 従来の積層型二次電池の電解液注液工程を示す図、図3(a)は正面図、図3(b)は側面図。The figure which shows the electrolyte solution pouring process of the conventional multilayer secondary battery, FIG. 3 (a) is a front view, FIG.3 (b) is a side view.

符号の説明Explanation of symbols

1 正極電極
2 負極電極
3 セパレータ
4 ラミネート外装材
5 正極端子
6 負極端子
7 電解液
8 注液口
9 定量ポンプ
10 ニードルシリンジ
11 押さえ板
12 未封止積層型二次電池
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Laminate exterior material 5 Positive electrode terminal 6 Negative electrode terminal 7 Electrolyte 8 Injection port 9 Metering pump 10 Needle syringe 11 Holding plate 12 Unsealed laminated secondary battery

Claims (2)

正極端子が接続された正極電極と、負極端子が接続された負極端子とをセパレータを介して積層した電池要素を、前記正極端子および前記負極端子を露出させ、ラミネート外装材に収納し、注液口を除いて封止する工程と、前記電池要素を収納したラミネート外装材を押え板で挟持し、前記注液口より電解液を全液量の10〜30%/時の注液速度で注入する工程と、前記注液口を封止する工程とを含むことを特徴とする積層型二次電池の製造方法。 A battery element in which a positive electrode connected to a positive electrode terminal and a negative electrode terminal connected to a negative electrode terminal are stacked via a separator, the positive electrode terminal and the negative electrode terminal are exposed, and stored in a laminate exterior material. The step of sealing except for the mouth, and the laminate outer material containing the battery element are sandwiched by a pressing plate, and the electrolyte is injected from the liquid inlet at an injection rate of 10 to 30% / hour of the total liquid volume. And a step of sealing the liquid injection port. A method for manufacturing a laminated secondary battery, comprising: 前記電池要素を収納したラミネート外装材を押え板で1〜10kPaで挟持することを特徴とする請求項1に記載の積層型二次電池の製造方法。   The method for manufacturing a laminated secondary battery according to claim 1, wherein the laminate packaging material containing the battery element is clamped at 1 to 10 kPa with a pressing plate.
JP2007319772A 2007-12-11 2007-12-11 Manufacturing method of multilayer secondary battery Active JP5187733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007319772A JP5187733B2 (en) 2007-12-11 2007-12-11 Manufacturing method of multilayer secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007319772A JP5187733B2 (en) 2007-12-11 2007-12-11 Manufacturing method of multilayer secondary battery

Publications (2)

Publication Number Publication Date
JP2009146602A JP2009146602A (en) 2009-07-02
JP5187733B2 true JP5187733B2 (en) 2013-04-24

Family

ID=40916992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319772A Active JP5187733B2 (en) 2007-12-11 2007-12-11 Manufacturing method of multilayer secondary battery

Country Status (1)

Country Link
JP (1) JP5187733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978749B2 (en) 2016-12-15 2021-04-13 Lg Chem, Ltd. Method for injecting electrolyte to pouch secondary battery using gap-controlling jig

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5492125B2 (en) * 2011-03-24 2014-05-14 株式会社東芝 Secondary battery and method for manufacturing secondary battery
KR101307876B1 (en) 2012-01-03 2013-09-13 주식회사 엠플러스 Secondary battery soaking pallet
CN102646809B (en) * 2012-04-23 2014-07-30 宁德新能源科技有限公司 Filling and activating method for flexible-packaging lithium ion battery
CN103346286B (en) * 2013-07-10 2016-08-10 长兴雉城天收电子厂 A kind of acid adding machine
WO2015016032A1 (en) * 2013-07-31 2015-02-05 Necエナジーデバイス株式会社 Method for manufacturing laminated secondary battery
KR102004295B1 (en) 2013-10-15 2019-07-29 에스케이이노베이션 주식회사 Manufacturing method of secondary battery
CN109860722B (en) * 2019-02-22 2022-04-05 天津力神电池股份有限公司 Electrolyte injection method of lithium battery
JP2020167353A (en) * 2019-03-29 2020-10-08 旭化成株式会社 Method for manufacturing nonaqueous alkali metal power storage element
CN112838298B (en) * 2019-11-22 2021-11-12 比亚迪股份有限公司 Battery, battery module, battery pack and electric vehicle
KR102598968B1 (en) * 2020-12-31 2023-11-07 현대자동차주식회사 Energy storage module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025618A (en) * 2000-07-05 2002-01-25 Matsushita Electric Ind Co Ltd Method for manufacturing lithium polymer secondary battery
JP4188668B2 (en) * 2002-11-19 2008-11-26 シャープ株式会社 Lithium polymer secondary battery, manufacturing method thereof and manufacturing apparatus thereof
JP2005093261A (en) * 2003-09-18 2005-04-07 Nec Lamilion Energy Ltd Method for manufacturing battery wrapped with laminated film
JP5526481B2 (en) * 2007-06-06 2014-06-18 日産自動車株式会社 Secondary battery and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978749B2 (en) 2016-12-15 2021-04-13 Lg Chem, Ltd. Method for injecting electrolyte to pouch secondary battery using gap-controlling jig

Also Published As

Publication number Publication date
JP2009146602A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP5187733B2 (en) Manufacturing method of multilayer secondary battery
JP4920957B2 (en) Stacked lithium ion polymer battery
JP4571610B2 (en) Pouch-type lithium secondary battery and manufacturing method thereof
JP6572204B2 (en) Secondary battery and manufacturing method thereof
JP5526481B2 (en) Secondary battery and manufacturing method thereof
TWI466365B (en) An insulating layer with heat-resistant insulation
JP4187870B2 (en) Battery manufacturing method
CN109952668B (en) Electrode for electrochemical device, and method for manufacturing same
US20200212450A1 (en) Electrode for solid state battery and solid state battery
JP3745593B2 (en) Battery and manufacturing method thereof
JP5096851B2 (en) Method for manufacturing power storage device
US11545699B2 (en) Solid state battery and solid state battery manufacturing method
CN107851768A (en) The manufacture method of electrochemical device
JP3904935B2 (en) Method for producing lithium polymer secondary battery
JP4359809B2 (en) Storage element module and manufacturing method thereof
JP2000268813A (en) Battery, electrode structure of capacitor, and manufacture of electrode
TW201301634A (en) Secondary battery comprising insulator
KR101154883B1 (en) Method for Production of Electrode Assembly with Improved Electrolyte Wetting Property
JP2011129378A (en) Laminated sealed battery
JP7302593B2 (en) lithium polymer battery
JP2003077545A (en) Method of manufacturing nonaqueous electrolyte battery
JP2010245086A (en) Method for manufacturing lithium ion capacitor
JP2011216209A (en) Laminated battery and its manufacturing method
JP6542754B2 (en) Method of manufacturing secondary battery
JP2003086172A (en) Secondary battery and its method of manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250