JP5187262B2 - Brazing composite material and method for producing the same - Google Patents

Brazing composite material and method for producing the same Download PDF

Info

Publication number
JP5187262B2
JP5187262B2 JP2009094898A JP2009094898A JP5187262B2 JP 5187262 B2 JP5187262 B2 JP 5187262B2 JP 2009094898 A JP2009094898 A JP 2009094898A JP 2009094898 A JP2009094898 A JP 2009094898A JP 5187262 B2 JP5187262 B2 JP 5187262B2
Authority
JP
Japan
Prior art keywords
brazing
material layer
layer
laminated
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009094898A
Other languages
Japanese (ja)
Other versions
JP2010240724A (en
Inventor
一真 黒木
英之 佐川
稔之 堀越
洋光 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009094898A priority Critical patent/JP5187262B2/en
Publication of JP2010240724A publication Critical patent/JP2010240724A/en
Application granted granted Critical
Publication of JP5187262B2 publication Critical patent/JP5187262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶融温度(融点)が低いろう付け用複合材及びその製造方法に関する。   The present invention relates to a brazing composite material having a low melting temperature (melting point) and a method for producing the same.

自動車用オイルクーラの構造材としてステンレス基クラッドろう材等のろう付け材が使用されている。ステンレス基クラッドろう材は、ステンレス板の片面あるいは両面にろう材としての機能を持つ銅がクラッドされている。また、ステンレス鋼やニッケル基およびコバルト基合金などの部品のろう付け材として、ろう付け部の耐酸化性や耐食性に優れる各種ニッケルろう材がJIS規格により規定されている。   Brazing materials such as stainless steel clad brazing materials are used as structural materials for oil coolers for automobiles. In the stainless steel clad brazing material, copper having a function as a brazing material is clad on one surface or both surfaces of a stainless steel plate. Further, as a brazing material for parts such as stainless steel, nickel base and cobalt base alloy, various nickel brazing materials having excellent oxidation resistance and corrosion resistance of the brazed portion are defined by JIS standards.

さらに、熱交換器ろう付け用のニッケルろう材として、粉末状ニッケルろう材に、ニッケル、クロム、ニッケル−クロム合金のうち選ばれた金属粉末を4重量%〜22重量%添加して構成されるニッケルろう材が特許文献1に開示されている。   Further, the nickel brazing material for brazing the heat exchanger is constituted by adding 4 wt% to 22 wt% of a metal powder selected from nickel, chromium and nickel-chromium alloy to a powdered nickel brazing material. A nickel brazing material is disclosed in Patent Document 1.

また、自己ろう付け性複合材の製造方法が特許文献2に開示されている。   Further, Patent Document 2 discloses a method for producing a self-brazing composite material.

特開2000−107883号公報JP 2000-107883 A 特開平7−299592号公報Japanese Patent Laid-Open No. 7-299592

特許文献2の製造方法で得られる複合材には、以下のような問題がある。   The composite material obtained by the manufacturing method of Patent Document 2 has the following problems.

上記複合材は、ニッケルに対してチタンの比率が大きい場合は、1000℃以下でろう材が溶解するものの、ろう付け部が固く脆いためクラックが生じやすく、ろう付け強度に問題がある。一方、ニッケルに対してチタンの比率が小さい場合は、ろう材が溶融した後のろう付け強度は十分に確保されるが、ろう付け温度が1150℃以上必要となる。1150℃のろう付け温度にて工業的にろう付け量産を行う場合、熱処理炉に与える熱負荷が非常に大きく、炉の構成材の熱疲労および高温酸化等の腐食が原因で炉の寿命が短縮される。   In the above composite material, when the ratio of titanium to nickel is large, the brazing material dissolves at 1000 ° C. or less, but the brazed portion is hard and brittle, so that cracks are likely to occur and there is a problem in brazing strength. On the other hand, when the ratio of titanium to nickel is small, the brazing strength after the brazing material is melted is sufficiently ensured, but the brazing temperature is required to be 1150 ° C. or higher. When mass production of brazing is carried out industrially at a brazing temperature of 1150 ° C, the heat load applied to the heat treatment furnace is very large, and the lifetime of the furnace is shortened due to thermal fatigue of the furnace components and corrosion such as high-temperature oxidation. Is done.

そこで、本発明の目的は、上記課題を解決し、溶融温度が低いろう付け用複合材及びその製造方法を提供することにある。   Therefore, an object of the present invention is to solve the above-mentioned problems and provide a brazing composite material having a low melting temperature and a method for producing the same.

上記目的を達成するために本発明のろう付け用複合材は、チタンまたはチタン合金をろう材とするチタン成分層とニッケルまたはニッケル合金をろう材とするニッケル成分層とを含む積層ろう材層と、該積層ろう材層に接合され、基材からなる基材層と、該基材層と上記積層ろう材層との間に介在され、溶融温度低下材からなる溶融温度低下材層とを備え、上記溶融温度低下材は、シリコン粒子またはシリコン粉末であり、上記積層ろう材層全体のろう材に対する質量比率が4質量%以上10質量%以下であるものである。 In order to achieve the above object, a brazing composite material of the present invention comprises a laminated brazing material layer comprising a titanium component layer having a brazing material of titanium or a titanium alloy and a nickel component layer having a brazing material of nickel or a nickel alloy. A base material layer joined to the laminated brazing filler metal layer and comprising a base material; and a melting temperature lowering material layer made of a melting temperature lowering material interposed between the base material layer and the laminated brazing filler metal layer. The melting temperature lowering material is silicon particles or silicon powder, and the mass ratio of the entire laminated brazing material layer to the brazing material is 4% by mass or more and 10% by mass or less .

上記積層ろう材層が鉄または鉄合金をろう材とする第三ろう材層を含んでもよい。   The laminated brazing material layer may include a third brazing material layer using iron or an iron alloy as a brazing material.

上記溶融温度低下材は、粒径が直径1μm以上5μm以下であってもよい。

The melting temperature lowering material has a particle size may even under 5μm or less than a diameter of 1 [mu] m.

上記基材がステンレス鋼であってもよい。   The base material may be stainless steel.

また、本発明の製造方法は、積層ろう材層が基材層に接合されたろう付け用複合材の製造方法において、シリコン粒子を有機系溶剤に混合し、この混合物をチタンまたはチタン合金をろう材とするチタン成分層とニッケルまたはニッケル合金をろう材とするニッケル成分層とを含む積層ろう材層または基材層に塗布した後、上記積層ろう材層と上記基材層を接合させるものである。   The manufacturing method of the present invention is a method for manufacturing a brazing composite material in which a laminated brazing material layer is bonded to a base material layer, wherein silicon particles are mixed with an organic solvent, and this mixture is mixed with titanium or a titanium alloy. After applying to a laminated brazing material layer or a base material layer containing a titanium component layer and a nickel component layer using nickel or a nickel alloy as a brazing material, the laminated brazing material layer and the base material layer are joined together. .

上記有機系溶剤に、70℃以上100℃以下で揮発する有機系溶剤を用い、上記混合物を塗布してから上記積層ろう材層と上記基材層とを接合するまでの間は、70℃未満で保管し、上記積層ろう材層と上記基材層の接合は、冷間圧延により行い、冷間圧延後、100℃超にて焼鈍してもよい。   The organic solvent that volatilizes at 70 ° C. or higher and 100 ° C. or lower is used as the organic solvent, and the time from applying the mixture to bonding the laminated brazing filler metal layer and the base material layer is less than 70 ° C. The laminated brazing filler metal layer and the base material layer may be joined by cold rolling, and may be annealed at over 100 ° C. after cold rolling.

本発明により、溶融温度が低いろう付け用複合材及びその製造方法が提供される。   The present invention provides a brazing composite material having a low melting temperature and a method for producing the same.

本発明の一実施形態を示すろう付け用複合材の断面図である。It is sectional drawing of the composite material for brazing which shows one Embodiment of this invention. 本発明の一実施形態を示すろう付け用複合材の断面図である。It is sectional drawing of the composite material for brazing which shows one Embodiment of this invention. 本発明の一実施形態を示すろう付け用複合材の断面図である。It is sectional drawing of the composite material for brazing which shows one Embodiment of this invention. 本発明における基材層、溶融温度低下材層、積層ろう材層の断面の拡大イメージ図である。It is an enlarged image figure of the cross section of the base material layer in this invention, a melting temperature reduction material layer, and a lamination brazing material layer.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1〜図3に示されるように、本発明に係るろう付け用複合材1,2,3は、チタンまたはチタン合金をろう材とするチタン成分層4とニッケルまたはニッケル合金をろう材とするニッケル成分層5とを含む積層ろう材層6と、該積層ろう材層6に接合され、基材からなる基材層7と、該基材層7と上記積層ろう材層6との間に介在され、溶融温度低下材からなる溶融温度低下材層8とを備えたものである。   As shown in FIGS. 1 to 3, the brazing composite materials 1, 2, and 3 according to the present invention include a titanium component layer 4 that uses titanium or a titanium alloy as a brazing material and nickel or a nickel alloy as a brazing material. A laminated brazing filler metal layer 6 including a nickel component layer 5, a base material layer 7 joined to the laminated brazing filler metal layer 6 and made of a base material, and between the base material layer 7 and the laminated brazing filler metal layer 6 And a melt temperature reducing material layer 8 made of a melt temperature reducing material.

溶融温度低下材層8に用いる溶融温度低下材は、例えば、シリコンである。ここではシリコン粒子(シリコン粉末でもよい)を用いる。   The melting temperature lowering material used for the melting temperature lowering material layer 8 is, for example, silicon. Here, silicon particles (which may be silicon powder) are used.

基材層7に用いる基材は、例えば、ステンレス鋼である。   The base material used for the base material layer 7 is, for example, stainless steel.

図1のろう付け用複合材1は、基材層7の表面(図示上側)に溶融温度低下材層8を有し、溶融温度低下材層8の表面に積層ろう材層6を有する。積層ろう材層6は、チタン成分層4の表面にニッケル成分層5を積層したものである。   The brazing composite material 1 in FIG. 1 has a melting temperature lowering material layer 8 on the surface (upper side in the drawing) of a base material layer 7 and a laminated brazing material layer 6 on the surface of the melting temperature lowering material layer 8. The laminated brazing material layer 6 is obtained by laminating the nickel component layer 5 on the surface of the titanium component layer 4.

図2のろう付け用複合材2は、基材層7の表面(図示上側)に溶融温度低下材層8を有し、溶融温度低下材層8の表面に積層ろう材層6を有する。積層ろう材層6は、ニッケル成分層5の表面にチタン成分層4積層し、さらにそのチタン成分層4の表面にニッケル成分層5を積層したものである。   The brazing composite material 2 in FIG. 2 has a melting temperature lowering material layer 8 on the surface (upper side in the drawing) of the base material layer 7 and a laminated brazing material layer 6 on the surface of the melting temperature lowering material layer 8. The laminated brazing material layer 6 is obtained by laminating the titanium component layer 4 on the surface of the nickel component layer 5 and further laminating the nickel component layer 5 on the surface of the titanium component layer 4.

図3のろう付け用複合材3は、基材層7の表面(図示上側)に溶融温度低下材層8を有し、溶融温度低下材層8の表面に積層ろう材層6を有する。積層ろう材層6は、チタン成分層4の表面にニッケル成分層5を積層し、さらにニッケル成分層5の表面に第三ろう材層9を積層したものである。第三ろう材層9は、鉄または鉄合金をろう材とする。   The brazing composite material 3 in FIG. 3 has a melting temperature lowering material layer 8 on the surface (upper side in the drawing) of the base material layer 7 and a laminated brazing material layer 6 on the surface of the melting temperature lowering material layer 8. The laminated brazing material layer 6 is obtained by laminating a nickel component layer 5 on the surface of the titanium component layer 4 and further laminating a third brazing material layer 9 on the surface of the nickel component layer 5. The third brazing material layer 9 uses iron or an iron alloy as a brazing material.

本発明のろう付け用複合材の効果を説明するために、図1のろう付け用複合材1をステンレス鋼からなる対象部材にろう付けする場合を例に説明する。   In order to explain the effect of the brazing composite material of the present invention, a case where the brazing composite material 1 of FIG. 1 is brazed to a target member made of stainless steel will be described as an example.

積層ろう材層6には、チタンまたはチタン合金をろう材とするチタン成分層4とニッケルまたはニッケル合金をろう材とするニッケル成分層5とが含まれる。ろう付け熱処理の温度上昇過程において、チタン成分層4とニッケル成分層5は、両者の界面から拡散反応が始まり、チタン成分が積層ろう材層6の表面にまで拡散する。   The laminated brazing material layer 6 includes a titanium component layer 4 using titanium or a titanium alloy as a brazing material and a nickel component layer 5 using nickel or a nickel alloy as a brazing material. In the temperature increase process of the brazing heat treatment, the titanium component layer 4 and the nickel component layer 5 start a diffusion reaction from the interface between them, and the titanium component diffuses to the surface of the laminated brazing material layer 6.

チタンは酸化しやすい金属なので、ろう付け雰囲気内に微量でも酸素が残留していると、積層ろう材層6の表面まで拡散したチタン成分が酸化し、酸化物を形成してしまう。積層ろう材層6の表面に形成された酸化物は積層ろう材層6の全体が溶融温度に達した後に、ろう材の流動を大きく阻害し、ろう流れが著しく悪化する。したがって、熱処理雰囲気は、ろう材の溶融前における表面酸化を抑制するために、7×10-2Pa以下の真空中であることが望ましい。 Since titanium is a metal that is easily oxidized, if a small amount of oxygen remains in the brazing atmosphere, the titanium component that has diffused to the surface of the laminated brazing material layer 6 will be oxidized to form an oxide. The oxide formed on the surface of the laminated brazing filler metal layer 6 greatly hinders the flow of the brazing filler metal after the entire laminated brazing filler metal layer 6 reaches the melting temperature, and the brazing flow is remarkably deteriorated. Therefore, the heat treatment atmosphere is preferably in a vacuum of 7 × 10 −2 Pa or less in order to suppress surface oxidation before melting the brazing material.

ろう付け熱処理開始後、基材及びろう材を構成する各金属同士の相互拡散による合金化が進行し、ろう付け温度にてろう材全体が溶融して、ろう付け用複合材1と対象部材の接触箇所や隙間・谷間に流動し、冷却によりろう付け温度以下になると凝固してろう付けが完了する。   After the start of brazing heat treatment, alloying by mutual diffusion of the base metal and the metal constituting the brazing material proceeds, and the entire brazing material is melted at the brazing temperature, and the brazing composite material 1 and the target member It flows in the contact area, gaps, and valleys, and solidifies when the temperature falls below the brazing temperature by cooling to complete brazing.

ろう材が溶融する際、主にニッケル成分とチタン成分で構成されているろう材全体の溶融温度を、溶融温度低下材であるシリコン成分が低下させる働きをし、従来のろう付け温度である1150℃よりも低い温度でのろう付けが可能となる。   When the brazing material is melted, the melting temperature of the brazing material composed mainly of a nickel component and a titanium component is reduced by the silicon component, which is a melting temperature lowering material. Brazing at a temperature lower than ℃ is possible.

以上説明したように、本発明のろう付け用複合材1によれば、ニッケルとチタンの比率に関わらず、基材層7と積層ろう材層6との間に溶融温度低下材層8が介在するので、ろう材の溶融温度が低くできる。   As described above, according to the brazing composite material 1 of the present invention, the melting temperature lowering material layer 8 is interposed between the base material layer 7 and the laminated brazing material layer 6 regardless of the ratio of nickel and titanium. Therefore, the melting temperature of the brazing material can be lowered.

また、本発明のろう付け用複合材1によれば、ろう材中のチタン成分の高耐食性を損なうことなく、ろう材の溶融温度が低くできる。   Moreover, according to the brazing composite material 1 of the present invention, the melting temperature of the brazing material can be lowered without impairing the high corrosion resistance of the titanium component in the brazing material.

また、本発明のろう付け用複合材1によれば、ろう材の溶融温度が低くなることにより、ろう付け熱処理炉の寿命を延ばすことができる。   Moreover, according to the composite material 1 for brazing of this invention, the lifetime of a brazing heat treatment furnace can be extended because the melting temperature of brazing material becomes low.

本発明のろう付け用複合材の効果は、図1のろう付け用複合材1に限らず、図2,3のろう付け用複合材2,3でも同様である。   The effects of the brazing composite material of the present invention are not limited to the brazing composite material 1 of FIG. 1, but are the same as the brazing composite materials 2 and 3 of FIGS.

上記実施形態では、溶融温度低下材層8における溶融温度低下材の濃度は限定しなかったが、溶融温度低下材(シリコン)は、積層ろう材層6全体のろう材(チタンまたはチタン合金とニッケルまたはニッケル合金)に対して、質量比率が4質量%以上10質量%以下であることが望ましい。シリコンの質量比率が4質量%未満では、ろう材の溶融温度は1080℃以上となり、ろう付け温度は1100℃となるので、ろう付け温度を低下させる効果が十分ではない。シリコンの質量比率が10質量%超では、溶融温度低下材層8の厚さが厚くなり、基材層7と積層ろう材層6とを接合させることが困難となる。すなわち、溶融温度低下材の濃度を上記のように限定することにより、ろう材の溶融温度を十分に低下させることができ、かつ、基材層7と積層ろう材層6との接合が容易となる。   In the above embodiment, the concentration of the melting temperature lowering material in the melting temperature lowering material layer 8 is not limited, but the melting temperature lowering material (silicon) is the brazing material (titanium or titanium alloy and nickel) of the laminated brazing material layer 6 as a whole. (Or nickel alloy), the mass ratio is desirably 4% by mass or more and 10% by mass or less. When the mass ratio of silicon is less than 4% by mass, the melting temperature of the brazing material is 1080 ° C. or higher, and the brazing temperature is 1100 ° C., so the effect of lowering the brazing temperature is not sufficient. When the mass ratio of silicon exceeds 10 mass%, the thickness of the melting temperature lowering material layer 8 becomes thick, and it becomes difficult to join the base material layer 7 and the laminated brazing material layer 6. That is, by limiting the concentration of the melting temperature lowering material as described above, the melting temperature of the brazing material can be sufficiently lowered, and the joining of the base material layer 7 and the laminated brazing material layer 6 is facilitated. Become.

上記実施形態では、溶融温度低下材層8の溶融温度低下材として用いるシリコン粒子の粒径は限定しなかったが、溶融温度低下材(シリコン)の粒径は、直径1μm以上5μm以下であることが望ましい。シリコン粒子の粒径が直径1μm未満では、溶融温度低下材層8内が緻密になりすぎて、基材層7と積層ろう材層6とを接合させるとき、基材層7と積層ろう材層6とが接触する接触面積がほとんどなくなり、接合が困難となる。シリコン粒子の粒径が5μm超では、シリコン粒子による溶融温度低下材層8の凹凸が積層ろう材層6の表面に反映され、積層ろう材層6の表面が粗くなり、平坦度が悪化する。すなわち、シリコン粒子の粒径を上記のように限定することにより、図4に示されるように、基材層7と積層ろう材層6との界面に介在する溶融温度低下材層8内では、シリコン粒子41同士間に適宜な幅の空隙42が形成され、基材層7と積層ろう材層6との接合が容易、かつ、積層ろう材層6の表面の平坦度が良好となる。   In the above embodiment, the particle size of the silicon particles used as the melting temperature lowering material of the melting temperature lowering material layer 8 is not limited, but the particle size of the melting temperature lowering material (silicon) is 1 μm or more and 5 μm or less in diameter. Is desirable. When the particle diameter of the silicon particles is less than 1 μm in diameter, the inside of the melting temperature lowering material layer 8 becomes too dense, and when the base material layer 7 and the laminated brazing material layer 6 are joined, the base material layer 7 and the laminated brazing material layer are combined. There is almost no contact area in contact with 6, and joining becomes difficult. When the particle size of the silicon particles exceeds 5 μm, the unevenness of the melting temperature lowering material layer 8 due to the silicon particles is reflected on the surface of the laminated brazing filler metal layer 6, the surface of the laminated brazing filler metal layer 6 becomes rough, and the flatness deteriorates. That is, by limiting the particle size of the silicon particles as described above, as shown in FIG. 4, in the melting temperature lowering material layer 8 interposed at the interface between the base material layer 7 and the laminated brazing filler metal layer 6, A gap 42 having an appropriate width is formed between the silicon particles 41, the joining between the base material layer 7 and the laminated brazing filler metal layer 6 is easy, and the flatness of the surface of the laminated brazing filler metal layer 6 is improved.

本発明のろう付け用複合材1,2,3は、ろう付け性能を向上させると共に、耐熱性と耐食性能を向上し得る。また、本発明のろう付け用複合材1,2,3は、熱交換器(排ガス再循環装置(EGR)用クーラや燃料電池用改質器用クーラ)、燃料電池用部材に応用される。   The brazing composites 1, 2, and 3 according to the present invention can improve the brazing performance and the heat resistance and the corrosion resistance. Also, the brazing composite materials 1, 2, and 3 of the present invention are applied to heat exchangers (exhaust gas recirculation (EGR) coolers and fuel cell reformer coolers) and fuel cell members.

次に、本発明に係るろう付け用複合材1の製造方法は、積層ろう材層6を基材層7に接合する際に積層ろう材層6と基材層7との界面に溶融温度低下材層8を介在させるものである。   Next, in the method for producing the brazing composite material 1 according to the present invention, when the laminated brazing material layer 6 is joined to the base material layer 7, the melting temperature is lowered at the interface between the laminated brazing material layer 6 and the base material layer 7. The material layer 8 is interposed.

積層ろう材層6と基材層7との界面に溶融温度低下材層8を介在させる方法として、例えば、積層ろう材層6と基材層7との複合工程を行う前に行う前工程にて、溶融温度低下材を基材層7または積層ろう材層6に塗布する方法がある。以下、溶融温度低下材を基材層7に塗布するものとして説明する。   As a method of interposing the melting temperature lowering material layer 8 at the interface between the laminated brazing filler metal layer 6 and the base material layer 7, for example, in a pre-process performed before performing the composite process of the laminated brazing filler metal layer 6 and the base material layer 7. Then, there is a method of applying the melting temperature lowering material to the base material layer 7 or the laminated brazing material layer 6. Hereinafter, it demonstrates as what applies a melting temperature decreasing material to the base material layer 7. FIG.

溶融温度低下材であるシリコン粒子を基材層7の表面に均一に塗布するためには、シリコン粒子が基材層7の表面の所定の位置に配置されるよう、基材層7にシリコン粒子を直接噴射してもよい。また、シリコン粒子をまとめるバインダとして有機系溶剤を用いてもよい。すなわち、シリコン粒子を有機系溶剤に混合しておき、この混合物を基材層7に塗布する。これによって、シリコン粒子を基材層7の表面に均一に塗布することができる。   In order to uniformly apply the silicon particles as the melting temperature lowering material to the surface of the base material layer 7, the silicon particles are placed on the base material layer 7 so that the silicon particles are arranged at predetermined positions on the surface of the base material layer 7. May be directly injected. An organic solvent may be used as a binder for collecting silicon particles. That is, silicon particles are mixed with an organic solvent, and this mixture is applied to the base material layer 7. Thereby, the silicon particles can be uniformly applied to the surface of the base material layer 7.

このとき、混合物を塗布して溶融温度低下材層8が形成された基材層7をそのまま積層ろう材層6に接合すると、接合工程後に材料調質のために行う焼鈍工程にて加熱されたとき、溶融温度低下材層8内に存在する有機系溶剤が揮発、膨張するため、製造したろう付け用複合材1に表面膨れが生じる。また、焼鈍工程を行わない場合、ろう付け時に溶融温度低下材層8内でガスが発生し、そのガスがろう材中のチタン成分と反応して化合物が形成され、その化合物がろう材の流動を阻害する。したがって、有機系溶剤は、焼鈍工程より前、またはろう付けを行うよりも前に揮発していることが望ましい。   At this time, when the base material layer 7 on which the mixture temperature was applied and the melting temperature lowering material layer 8 was formed was joined to the laminated brazing filler metal layer 6 as it was, it was heated in an annealing process for material refining after the joining process. At this time, since the organic solvent present in the melting temperature lowering material layer 8 volatilizes and expands, surface swelling occurs in the manufactured brazing composite material 1. When the annealing process is not performed, a gas is generated in the melting temperature lowering material layer 8 during brazing, and the gas reacts with the titanium component in the brazing material to form a compound. Inhibits. Therefore, it is desirable that the organic solvent is volatilized before the annealing step or before brazing.

そこで、本発明では、有機系溶剤が接合工程において揮発するようにした。例えば、冷間圧延による接合工程(クラッド接合工程)では、接合される積層ろう材層6及び基材層7が発熱して100℃超となる。有機系溶剤の揮発温度が100℃以下であれば、有機系溶剤が接合工程において揮発することになるので、焼鈍工程またはろう付け時にガスが発生することを防止することができる。   Therefore, in the present invention, the organic solvent is volatilized in the bonding step. For example, in the joining step (clad joining step) by cold rolling, the laminated brazing filler metal layer 6 and the base material layer 7 to be joined generate heat and exceed 100 ° C. If the volatilization temperature of the organic solvent is 100 ° C. or lower, the organic solvent is volatilized in the bonding step, and thus it is possible to prevent gas generation during the annealing step or brazing.

また、シリコン粒子と有機系溶剤の混合物を基材層7に塗布してから、積層ろう材層6と基材層7を接合するまでの保管中に有機系溶剤が揮発するのを防ぐためには、有機系溶剤の揮発温度が室温(保管雰囲気温度;70℃未満)より高い温度であればよい。シリコン粒子は有機系溶剤によって基材層7の表面に固定されているので、保管中に有機系溶剤が揮発すると、シリコン粒子の固定が妨げられるという不具合が生じる。   In order to prevent the organic solvent from volatilizing during the storage from the time when the mixture of the silicon particles and the organic solvent is applied to the base material layer 7 until the laminated brazing filler metal layer 6 and the base material layer 7 are joined. The volatilization temperature of the organic solvent may be higher than room temperature (storage atmosphere temperature; less than 70 ° C.). Since the silicon particles are fixed to the surface of the base material layer 7 by an organic solvent, if the organic solvent volatilizes during storage, there is a problem that the fixing of the silicon particles is hindered.

以上の理由で、本発明では、有機系溶剤に70℃以上100℃以下で揮発するものを使用する。   For these reasons, in the present invention, an organic solvent that volatilizes at 70 ° C. or higher and 100 ° C. or lower is used.

このようにして、シリコン粒子と有機系溶剤の混合物を基材層7に塗布した後、積層ろう材層6と基材層7を冷間圧延して接合させ、その後、100℃超にて焼鈍する。   Thus, after apply | coating the mixture of a silicon particle and an organic type solvent to the base material layer 7, the laminated brazing filler metal layer 6 and the base material layer 7 were cold-rolled and joined, and it annealed above 100 degreeC after that. To do.

本発明の製造方法によれば、溶融温度低下材としてシリコン粒子を用いた場合に、シリコン粒子をまとめるバインダとして有機系溶剤を用い、シリコン粒子を有機系溶剤に混合しておき、この混合物を基材層7に塗布するようにしたので、シリコン粒子を基材層7の表面に均一に塗布することができる。   According to the production method of the present invention, when silicon particles are used as the melting temperature lowering material, an organic solvent is used as a binder for collecting silicon particles, the silicon particles are mixed in the organic solvent, and this mixture is used as a base. Since it applied to the material layer 7, the silicon particles can be uniformly applied to the surface of the base material layer 7.

また、本発明の製造方法によれば、70℃以上100℃以下で揮発する有機系溶剤を用いたので、接合工程において有機系溶剤を揮発させることができ、焼鈍工程またはろう付け時にガスが発生することを防止することができると共に、保管中に有機系溶剤が揮発するのを防ぐことができる。   Moreover, according to the manufacturing method of the present invention, since the organic solvent that volatilizes at 70 ° C. or more and 100 ° C. or less is used, the organic solvent can be volatilized in the joining process, and gas is generated during the annealing process or brazing. This can prevent the organic solvent from volatilizing during storage.

(実施例1)
板厚1.64mmのコイル状純ニッケル板をニッケル成分層5のろう材とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、これら2層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの2層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
Example 1
A coiled pure nickel plate having a thickness of 1.64 mm is used as the brazing material for the nickel component layer 5, and a coiled pure titanium plate having a thickness of 2.0 mm is used as the brazing material for the titanium component layer 4. In addition, a clad plate having a two-layer structure with a thickness of 1.4 mm was obtained by cold rolling. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が0.86mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しチタン成分層4が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材1を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as the base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per 1 cm 2 is 0.86 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the titanium component layer 4 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material 1 having a thickness of 0.3 mm.

(実施例2)
板厚1.64mmのコイル状純ニッケル板をニッケル成分層5のろう材とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、これら2層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの2層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Example 2)
A coiled pure nickel plate having a thickness of 1.64 mm is used as the brazing material for the nickel component layer 5, and a coiled pure titanium plate having a thickness of 2.0 mm is used as the brazing material for the titanium component layer 4. In addition, a clad plate having a two-layer structure with a thickness of 1.4 mm was obtained by cold rolling. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が1.29mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しチタン成分層4が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材1を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as the base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per cm 2 is 1.29 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the titanium component layer 4 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material 1 having a thickness of 0.3 mm.

(実施例3)
板厚0.82mmのコイル状純ニッケル板をニッケル成分層5のろう材とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、板厚0.82mmのコイル状純ニッケル板をもうひとつのニッケル成分層5のろう材とし、これら3層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの3層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Example 3)
A coiled pure nickel plate having a thickness of 0.82 mm is used as a brazing material for the nickel component layer 5, a coiled pure titanium plate having a thickness of 2.0 mm is used as a brazing material for the titanium component layer 4, and a coiled shape having a thickness of 0.82 mm A pure nickel plate was used as another brazing material for the nickel component layer 5, and these three layers of brazing material were superposed, and a clad plate having a thickness of 1.4 mm was obtained by cold rolling. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が1.08mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しニッケル成分層5が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材2を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as the base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per 1 cm 2 is 1.08 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the nickel component layer 5 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material 2 having a thickness of 0.3 mm.

(実施例4)
板厚0.82mmのコイル状純ニッケル板をニッケル成分層5のろう材とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、板厚0.82mmのコイル状純ニッケル板をもうひとつのニッケル成分層5のろう材とし、これら3層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの3層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
Example 4
A coiled pure nickel plate having a thickness of 0.82 mm is used as a brazing material for the nickel component layer 5, a coiled pure titanium plate having a thickness of 2.0 mm is used as a brazing material for the titanium component layer 4, and a coiled shape having a thickness of 0.82 mm A pure nickel plate was used as another brazing material for the nickel component layer 5, and these three layers of brazing material were superposed, and a clad plate having a thickness of 1.4 mm was obtained by cold rolling. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が2.15mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しニッケル成分層5が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材2を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as the base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per 1 cm 2 is 2.15 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the nickel component layer 5 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material 2 having a thickness of 0.3 mm.

(実施例5)
板厚1.0mmのコイル状インバー合金(鉄−36質量%ニッケル合金)板を第三ろう材層9とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、板厚1.35mmのコイル状純ニッケル板をもうひとつのニッケル成分層5のろう材とし、これら3層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの3層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Example 5)
A coiled invar alloy (iron-36 mass% nickel alloy) plate with a plate thickness of 1.0 mm is used as the third brazing material layer 9, and a coiled pure titanium plate with a plate thickness of 2.0 mm is used as the brazing material for the titanium component layer 4, A coil-like pure nickel plate having a thickness of 1.35 mm is used as another brazing material for the nickel component layer 5, and these three layers of brazing material are overlapped, and a clad plate having a thickness of 1.4 mm is obtained by cold rolling. Got. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が0.86mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しニッケル成分層5が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材3を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as the base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per 1 cm 2 is 0.86 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the nickel component layer 5 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material 3 having a thickness of 0.3 mm.

(実施例6)
板厚1.0mmのコイル状インバー合金(鉄−36質量%ニッケル合金)板を第三ろう材層9とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、板厚1.35mmのコイル状純ニッケル板をもうひとつのニッケル成分層5のろう材とし、これら3層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの3層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Example 6)
A coiled invar alloy (iron-36 mass% nickel alloy) plate with a plate thickness of 1.0 mm is used as the third brazing material layer 9, and a coiled pure titanium plate with a plate thickness of 2.0 mm is used as the brazing material for the titanium component layer 4, A coil-like pure nickel plate having a thickness of 1.35 mm is used as another brazing material for the nickel component layer 5, and these three layers of brazing material are overlapped, and a clad plate having a thickness of 1.4 mm is obtained by cold rolling. Got. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が1.72mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しニッケル成分層5が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材3を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as a base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per 1 cm 2 is 1.72 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the nickel component layer 5 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material 3 having a thickness of 0.3 mm.

(比較例1)
板厚1.64mmのコイル状純ニッケル板をニッケル成分層5のろう材とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、これら2層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの2層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Comparative Example 1)
A coiled pure nickel plate having a thickness of 1.64 mm is used as the brazing material for the nickel component layer 5, and a coiled pure titanium plate having a thickness of 2.0 mm is used as the brazing material for the titanium component layer 4. In addition, a clad plate having a two-layer structure with a thickness of 1.4 mm was obtained by cold rolling. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が0.22mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しチタン成分層4が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as a base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per 1 cm 2 is 0.22 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the titanium component layer 4 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material having a thickness of 0.3 mm.

比較例1のろう付け用複合材は、図1のろう付け用複合材1と構造は同じであるが、積層ろう材層6全体のろう材に対する溶融温度低下材の質量比率が4質量%未満となる。   The brazing composite material of Comparative Example 1 has the same structure as the brazing composite material 1 of FIG. 1, but the mass ratio of the melting temperature lowering material to the brazing material of the entire laminated brazing material layer 6 is less than 4% by mass. It becomes.

(比較例2)
板厚1.64mmのコイル状純ニッケル板をニッケル成分層5のろう材とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、これら2層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの2層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Comparative Example 2)
A coiled pure nickel plate having a thickness of 1.64 mm is used as the brazing material for the nickel component layer 5, and a coiled pure titanium plate having a thickness of 2.0 mm is used as the brazing material for the titanium component layer 4. In addition, a clad plate having a two-layer structure with a thickness of 1.4 mm was obtained by cold rolling. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が0.65mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しチタン成分層4が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as the base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per 1 cm 2 is 0.65 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the titanium component layer 4 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material having a thickness of 0.3 mm.

比較例2のろう付け用複合材は、図1のろう付け用複合材1と構造は同じであるが、積層ろう材層6全体のろう材に対する溶融温度低下材の質量比率が4質量%未満となる。   The brazing composite material of Comparative Example 2 has the same structure as the brazing composite material 1 of FIG. 1, but the mass ratio of the melting temperature lowering material to the brazing material of the entire laminated brazing material layer 6 is less than 4 mass%. It becomes.

(比較例3)
板厚0.82mmのコイル状純ニッケル板をニッケル成分層5のろう材とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、板厚0.82mmのコイル状純ニッケル板をもうひとつのニッケル成分層5のろう材とし、これら3層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの3層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Comparative Example 3)
A coiled pure nickel plate having a thickness of 0.82 mm is used as a brazing material for the nickel component layer 5, a coiled pure titanium plate having a thickness of 2.0 mm is used as a brazing material for the titanium component layer 4, and a coiled shape having a thickness of 0.82 mm A pure nickel plate was used as another brazing material for the nickel component layer 5, and these three layers of brazing material were superposed, and a clad plate having a thickness of 1.4 mm was obtained by cold rolling. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が0.32mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しニッケル成分層5が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as a base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per cm 2 is 0.32 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the nickel component layer 5 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material having a thickness of 0.3 mm.

比較例3のろう付け用複合材は、図2のろう付け用複合材2と構造は同じであるが、積層ろう材層6全体のろう材に対する溶融温度低下材の質量比率が4質量%未満となる。   The brazing composite material of Comparative Example 3 has the same structure as the brazing composite material 2 of FIG. 2, but the mass ratio of the melting temperature lowering material to the brazing material of the entire laminated brazing material layer 6 is less than 4% by mass. It becomes.

(比較例4)
板厚0.82mmのコイル状純ニッケル板をニッケル成分層5のろう材とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、板厚0.82mmのコイル状純ニッケル板をもうひとつのニッケル成分層5のろう材とし、これら3層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの3層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Comparative Example 4)
A coiled pure nickel plate having a thickness of 0.82 mm is used as a brazing material for the nickel component layer 5, a coiled pure titanium plate having a thickness of 2.0 mm is used as a brazing material for the titanium component layer 4, and a coiled shape having a thickness of 0.82 mm A pure nickel plate was used as another brazing material for the nickel component layer 5, and these three layers of brazing material were superposed, and a clad plate having a thickness of 1.4 mm was obtained by cold rolling. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が0.43mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しニッケル成分層5が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as the base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per 1 cm 2 is 0.43 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the nickel component layer 5 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material having a thickness of 0.3 mm.

比較例4のろう付け用複合材は、図2のろう付け用複合材2と構造は同じであるが、積層ろう材層6全体のろう材に対する溶融温度低下材の質量比率が4質量%未満となる。   The brazing composite material of Comparative Example 4 has the same structure as the brazing composite material 2 of FIG. 2, but the mass ratio of the melting temperature lowering material to the brazing material of the entire laminated brazing material layer 6 is less than 4 mass%. It becomes.

(比較例5)
板厚1.0mmのコイル状インバー合金(鉄−36質量%ニッケル合金)板を第三ろう材層9とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、板厚1.35mmのコイル状純ニッケル板をもうひとつのニッケル成分層5のろう材とし、これら3層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの3層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Comparative Example 5)
A coiled invar alloy (iron-36 mass% nickel alloy) plate with a plate thickness of 1.0 mm is used as the third brazing material layer 9, and a coiled pure titanium plate with a plate thickness of 2.0 mm is used as the brazing material for the titanium component layer 4, A coil-like pure nickel plate having a thickness of 1.35 mm is used as another brazing material for the nickel component layer 5, and these three layers of brazing material are overlapped, and a clad plate having a thickness of 1.4 mm is obtained by cold rolling. Got. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が0.43mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しニッケル成分層5が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as the base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per 1 cm 2 is 0.43 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the nickel component layer 5 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material having a thickness of 0.3 mm.

比較例5のろう付け用複合材は、図3のろう付け用複合材3と構造は同じであるが、積層ろう材層6全体のろう材に対する溶融温度低下材の質量比率が4質量%未満となる。   The brazing composite material of Comparative Example 5 has the same structure as the brazing composite material 3 of FIG. 3, but the mass ratio of the melting temperature lowering material to the brazing material of the entire laminated brazing material layer 6 is less than 4 mass%. It becomes.

(比較例6)
板厚1.0mmのコイル状インバー合金(鉄−36質量%ニッケル合金)板を第三ろう材層9とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、板厚1.35mmのコイル状純ニッケル板をもうひとつのニッケル成分層5のろう材とし、これら3層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの3層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Comparative Example 6)
A coiled invar alloy (iron-36 mass% nickel alloy) plate with a plate thickness of 1.0 mm is used as the third brazing material layer 9, and a coiled pure titanium plate with a plate thickness of 2.0 mm is used as the brazing material for the titanium component layer 4, A coil-like pure nickel plate having a thickness of 1.35 mm is used as another brazing material for the nickel component layer 5, and these three layers of brazing material are overlapped, and a clad plate having a thickness of 1.4 mm is obtained by cold rolling. Got. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7にシリコン粒子と有機系溶剤との混合物を1cm2当たりのシリコン粒子重量が0.54mgとなるように塗布し、溶融温度低下材層8を形成した。この基材層7に対しニッケル成分層5が溶融温度低下材層8に接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材を作製した。 A stainless steel strip (SUS304, thickness 1.5 mm) is used as the base material layer 7, and a mixture of silicon particles and an organic solvent is applied to the base material layer 7 so that the weight of silicon particles per 1 cm 2 is 0.54 mg. Then, the melting temperature lowering material layer 8 was formed. The laminated brazing filler metal layer 6 was disposed so that the nickel component layer 5 was in contact with the melting temperature lowering material layer 8 with respect to the base material layer 7, and the laminated brazing filler metal layer 6 and the base material layer 7 were joined by cold rolling. Thereafter, cold rolling was further performed to produce a brazing composite material having a thickness of 0.3 mm.

比較例5のろう付け用複合材は、図3のろう付け用複合材3と構造は同じであるが、積層ろう材層6全体のろう材に対する溶融温度低下材の質量比率が4質量%未満となる。   The brazing composite material of Comparative Example 5 has the same structure as the brazing composite material 3 of FIG. 3, but the mass ratio of the melting temperature lowering material to the brazing material of the entire laminated brazing material layer 6 is less than 4 mass%. It becomes.

(従来例1)
板厚1.64mmのコイル状純ニッケル板をニッケル成分層5のろう材とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、これら2層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの2層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Conventional example 1)
A coiled pure nickel plate having a thickness of 1.64 mm is used as the brazing material for the nickel component layer 5, and a coiled pure titanium plate having a thickness of 2.0 mm is used as the brazing material for the titanium component layer 4. In addition, a clad plate having a two-layer structure with a thickness of 1.4 mm was obtained by cold rolling. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7に対しチタン成分層4が接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材を作製した。   A stainless steel strip (SUS304, thickness 1.5 mm) is used as a base material layer 7, and a laminated brazing filler metal layer 6 is arranged so that the titanium component layer 4 is in contact with the base material layer 7, and the laminated brazing filler metal layer is formed by cold rolling. 6 and the base material layer 7 were joined. Thereafter, cold rolling was further performed to produce a brazing composite material having a thickness of 0.3 mm.

従来例1のろう付け用複合材は、図1のろう付け用複合材1と比較し、溶融温度低下材層8を有さない。   The brazing composite material of Conventional Example 1 does not have the melting temperature lowering material layer 8 as compared with the brazing composite material 1 of FIG.

(従来例2)
板厚0.82mmのコイル状純ニッケル板をニッケル成分層5のろう材とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、板厚0.82mmのコイル状純ニッケル板をもうひとつのニッケル成分層5のろう材とし、これら3層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの3層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Conventional example 2)
A coiled pure nickel plate having a thickness of 0.82 mm is used as a brazing material for the nickel component layer 5, a coiled pure titanium plate having a thickness of 2.0 mm is used as a brazing material for the titanium component layer 4, and a coiled shape having a thickness of 0.82 mm A pure nickel plate was used as another brazing material for the nickel component layer 5, and these three layers of brazing material were superposed, and a clad plate having a thickness of 1.4 mm was obtained by cold rolling. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7に対しニッケル成分層5が接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材を作製した。   A stainless steel strip (SUS304, thickness 1.5 mm) is used as a base material layer 7, and a laminated brazing material layer 6 is disposed so that the nickel component layer 5 is in contact with the base material layer 7, and the laminated brazing material layer is formed by cold rolling. 6 and the base material layer 7 were joined. Thereafter, cold rolling was further performed to produce a brazing composite material having a thickness of 0.3 mm.

従来例2のろう付け用複合材は、図2のろう付け用複合材2と比較し、溶融温度低下材層8を有さない。   The brazing composite material of Conventional Example 2 does not have the melting temperature lowering material layer 8 as compared with the brazing composite material 2 of FIG.

(従来例3)
板厚1.0mmのコイル状インバー合金(鉄−36質量%ニッケル合金)板を第三ろう材層9とし、板厚2.0mmのコイル状純チタン板をチタン成分層4のろう材とし、板厚1.35mmのコイル状純ニッケル板をもうひとつのニッケル成分層5のろう材とし、これら3層のろう材を重ね合わせ、冷間圧延により板厚1.4mmの3層構造のクラッド板を得た。引き続き冷間圧延により、板厚0.15mmのクラッド板に仕上げ、これを積層ろう材層6とした。
(Conventional example 3)
A coiled invar alloy (iron-36 mass% nickel alloy) plate with a plate thickness of 1.0 mm is used as the third brazing material layer 9, and a coiled pure titanium plate with a plate thickness of 2.0 mm is used as the brazing material for the titanium component layer 4, A coil-like pure nickel plate having a thickness of 1.35 mm is used as another brazing material for the nickel component layer 5, and these three layers of brazing material are overlapped, and a clad plate having a thickness of 1.4 mm is obtained by cold rolling. Got. Subsequently, the clad plate having a thickness of 0.15 mm was finished by cold rolling, and this was used as the laminated brazing material layer 6.

ステンレス条(SUS304、厚さ1.5mm)を基材層7とし、この基材層7に対しニッケル成分層5が接するように積層ろう材層6を配置し、冷間圧延により積層ろう材層6と基材層7を接合加工した。その後、さらに冷間圧延を行い、厚さ0.3mmのろう付け用複合材を作製した。   A stainless steel strip (SUS304, thickness 1.5 mm) is used as a base material layer 7, and a laminated brazing material layer 6 is disposed so that the nickel component layer 5 is in contact with the base material layer 7, and the laminated brazing material layer is formed by cold rolling. 6 and the base material layer 7 were joined. Thereafter, cold rolling was further performed to produce a brazing composite material having a thickness of 0.3 mm.

従来例3のろう付け用複合材は、図3のろう付け用複合材3と比較し、溶融温度低下材層8を有さない。   The brazing composite material of Conventional Example 3 does not have the melting temperature lowering material layer 8 as compared with the brazing composite material 3 of FIG.

実施例1〜6、比較例1〜6、従来例1〜3のろう付け用複合材を20mm×25mmに切り出して試料とし、試料の目視観察が可能な真空熱処理炉内にて、ろう付け熱処理(試料のみを加熱)を行った。真空度は5.0×10-2Paで、加熱温度は常温から開始し、1000℃までは昇温速度20℃/min、1000℃を超えて以降は昇温速度10℃/minで昇温した。積層ろう材層6の溶融を確認後、加熱を停止し、観察を終了した。 The brazing composite materials of Examples 1 to 6, Comparative Examples 1 to 6, and Conventional Examples 1 to 3 were cut into 20 mm × 25 mm samples, and brazing heat treatment was performed in a vacuum heat treatment furnace capable of visual observation of the samples. (Only the sample was heated). The degree of vacuum is 5.0 × 10 −2 Pa, the heating temperature starts from room temperature, the temperature is increased to 20 ° C./min up to 1000 ° C., and the temperature is increased at a rate of 10 ° C./min after exceeding 1000 ° C. did. After confirming melting of the laminated brazing filler metal layer 6, heating was stopped and the observation was terminated.

Figure 0005187262
Figure 0005187262

表1は、実施例1〜6、比較例1〜6、従来例1〜3のろう付け用複合材について、構成(表面側から裏面側へ積層順に見た各層の主要構成材料を元素記号、英語名等で示す)、シリコン濃度(全体のろう材に対する溶融温度低下材の質量比率)、溶融温度の実測値を示したものである。   Table 1 shows the composition of the brazing composite materials of Examples 1 to 6, Comparative Examples 1 to 6, and Conventional Examples 1 to 3 (elemental symbols representing the main constituent materials of each layer viewed in the order of lamination from the front surface side to the back surface side, It shows the measured values of the silicon concentration (mass ratio of the melting temperature lowering material to the total brazing material) and the melting temperature.

表1によれば、実施例1〜6のろう付け用複合材1,2,3は、比較例1〜6、従来例1〜3のろう付け用複合材よりもろう材の溶融温度が50℃以上低く、1100℃以下のろう付け温度でろう付けを行うことが可能である。   According to Table 1, the brazing composite materials 1, 2 and 3 of Examples 1 to 6 have a melting temperature of 50 higher than that of the brazing composite materials of Comparative Examples 1 to 6 and Conventional Examples 1 to 3. It is possible to braze at a brazing temperature lower than 1 ° C. and lower than 1100 ° C.

本発明は、主にニッケル成分とチタン成分で構成されるろう材又は主にニッケル成分とチタン成分と鉄成分で構成されるろう材が溶融する際、シリコン成分がろう材の溶融温度を低下させる作用を利用したものである。ニッケルとチタンの濃度比率(または板厚比率)や鉄合金とニッケルとチタンの濃度比率(または板厚比率)が実施例1〜6における比率とは異なっても、本発明は適用でき、実施例と同等の効果が得られる。また、図1のろう付け用複合材1では、表面側にニッケル成分層5を配置し基材層7側にチタン成分層4を配置したが、表面側にチタン成分層4を配置し基材層7側にニッケル成分層5を配置しても本発明は適用でき、同等の効果が得られる。また、実施例1〜6では、ろう材にニッケルとチタンを用いたが、ニッケルをニッケル合金に変えたり、チタンをチタン合金に変えても本発明は適用でき、同等の効果が得られる。また、実施例5,6において、鉄合金層を最表面に設けたが、鉄又は鉄合金とチタン又はチタン合金とニッケル又はニッケル合金の積層順は、任意に変更可能であり、同等の効果が得られる。   In the present invention, when a brazing material mainly composed of a nickel component and a titanium component or a brazing material mainly composed of a nickel component, a titanium component and an iron component is melted, the silicon component lowers the melting temperature of the brazing material. It uses the action. Even if the concentration ratio (or plate thickness ratio) of nickel and titanium and the concentration ratio (or plate thickness ratio) of iron alloy, nickel and titanium are different from the ratios in Examples 1 to 6, the present invention can be applied. Equivalent effect is obtained. Further, in the brazing composite material 1 of FIG. 1, the nickel component layer 5 is arranged on the surface side and the titanium component layer 4 is arranged on the base material layer 7 side, but the titanium component layer 4 is arranged on the surface side and the base material is arranged. Even if the nickel component layer 5 is arranged on the layer 7 side, the present invention can be applied and the same effect can be obtained. In Examples 1 to 6, nickel and titanium were used for the brazing material, but the present invention can be applied even if nickel is changed to a nickel alloy or titanium is changed to a titanium alloy, and equivalent effects are obtained. Further, in Examples 5 and 6, the iron alloy layer was provided on the outermost surface, but the stacking order of iron or iron alloy and titanium or titanium alloy and nickel or nickel alloy can be arbitrarily changed, and the same effect can be obtained. can get.

1,2,3 ろう付け用複合材
4 チタン成分層
5 ニッケル成分層
6 積層ろう材層
7 基材層
8 溶融温度低下材層
9 第三ろう材層
1, 2, 3 Brazing composite material 4 Titanium component layer 5 Nickel component layer 6 Laminated brazing material layer 7 Base material layer 8 Melting temperature lowering material layer 9 Third brazing material layer

Claims (6)

チタンまたはチタン合金をろう材とするチタン成分層とニッケルまたはニッケル合金をろう材とするニッケル成分層とを含む積層ろう材層と、
該積層ろう材層に接合され、基材からなる基材層と、
該基材層と上記積層ろう材層との間に介在され、溶融温度低下材からなる溶融温度低下材層とを備え
上記溶融温度低下材は、シリコン粒子またはシリコン粉末であり、上記積層ろう材層全体のろう材に対する質量比率が4質量%以上10質量%以下であることを特徴とするろう付け用複合材。
A laminated brazing filler metal layer including a titanium component layer having a brazing material of titanium or a titanium alloy and a nickel component layer having a brazing material of nickel or a nickel alloy;
A base material layer made of a base material joined to the laminated brazing material layer;
It is interposed between the base material layer and the laminated brazing material layer, and comprises a melting temperature lowering material layer made of a melting temperature lowering material ,
The brazing composite material, wherein the melting temperature lowering material is silicon particles or silicon powder, and a mass ratio of the entire laminated brazing material layer to a brazing material is 4% by mass or more and 10% by mass or less .
上記積層ろう材層が鉄または鉄合金をろう材とする第三ろう材層を含むことを特徴とする請求項1記載のろう付け用複合材。   2. The brazing composite material according to claim 1, wherein the laminated brazing material layer includes a third brazing material layer using iron or an iron alloy as a brazing material. 上記溶融温度低下材は、粒径が直径1μm以上5μm以下であることを特徴とする請求項1または2に記載のろう付け用複合材。 The melting temperature lowering material, brazing composite material according to claim 1 or 2, characterized in that the particle size is below 5μm or less than a diameter of 1 [mu] m. 上記基材がステンレス鋼であることを特徴とする請求項1〜いずれか記載のろう付け用複合材。 The brazing composite material according to any one of claims 1 to 3 , wherein the base material is stainless steel. 積層ろう材層が基材層に接合されたろう付け用複合材の製造方法において、
シリコン粒子を有機系溶剤に混合し、
この混合物をチタンまたはチタン合金をろう材とするチタン成分層とニッケルまたはニッケル合金をろう材とするニッケル成分層とを含む積層ろう材層または基材層に塗布した後、
上記積層ろう材層と上記基材層を接合させることを特徴とするろう付け用複合材の製造方法。
In the method for producing a brazing composite material in which a laminated brazing material layer is bonded to a base material layer,
Mix silicon particles with organic solvent,
After this mixture is applied to a laminated brazing material layer or a base material layer including a titanium component layer using titanium or a titanium alloy as a brazing material and a nickel component layer using nickel or a nickel alloy as a brazing material,
A method for producing a brazing composite material, comprising bonding the laminated brazing material layer and the base material layer.
上記有機系溶剤に、70℃以上100℃以下で揮発する有機系溶剤を用い、
上記混合物を塗布してから上記積層ろう材層と上記基材層とを接合するまでの間は、70℃未満で保管し、
上記積層ろう材層と上記基材層の接合は、冷間圧延により行い、
冷間圧延後、100℃超にて焼鈍することを特徴とする請求項記載のろう付け用複合材の製造方法。
For the organic solvent, an organic solvent that volatilizes at 70 ° C. or higher and 100 ° C. or lower is used.
Between applying the mixture and bonding the laminated brazing filler metal layer and the base material layer, store at less than 70 ° C.,
The laminated brazing filler metal layer and the base material layer are joined by cold rolling,
6. The method for producing a brazing composite material according to claim 5 , wherein annealing is performed at a temperature exceeding 100 ° C. after the cold rolling.
JP2009094898A 2009-04-09 2009-04-09 Brazing composite material and method for producing the same Expired - Fee Related JP5187262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094898A JP5187262B2 (en) 2009-04-09 2009-04-09 Brazing composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094898A JP5187262B2 (en) 2009-04-09 2009-04-09 Brazing composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010240724A JP2010240724A (en) 2010-10-28
JP5187262B2 true JP5187262B2 (en) 2013-04-24

Family

ID=43094380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094898A Expired - Fee Related JP5187262B2 (en) 2009-04-09 2009-04-09 Brazing composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5187262B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915726B2 (en) * 2003-03-28 2007-05-16 日立電線株式会社 Brazing composite material and brazing product using the same
JP4239853B2 (en) * 2004-02-27 2009-03-18 日立電線株式会社 Brazing composite material, method for producing the same, and brazed product
JP2006334602A (en) * 2005-05-31 2006-12-14 Hitachi Cable Ltd Composite material for brazing, and brazed product using the same
JP2008212985A (en) * 2007-03-05 2008-09-18 Hitachi Cable Ltd Composite material for brazing and brazed product using the same
JP2008272763A (en) * 2007-04-25 2008-11-13 Ihi Corp Clad sheet and method for producing the same

Also Published As

Publication number Publication date
JP2010240724A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP2006175506A (en) Clad material for brazing, method of brazing with it, and brazed product
US20090129999A1 (en) Method of brazing a first metal member to a second metal member using a high wettability metal as layer between the two metal members; reformer manufactured by this method, the metal members having grooves
JP4507942B2 (en) Brazing clad material and brazing product using the same
JP5061969B2 (en) Brazing composites and brazing products
JP3765533B2 (en) Brazing composite material and brazing product using the same
JP3915726B2 (en) Brazing composite material and brazing product using the same
JP5187262B2 (en) Brazing composite material and method for producing the same
JP2006334603A (en) Composite material for brazing, and brazed product using the same
JP2008030102A (en) Brazing method of composite material for brazing, and brazed product
JP4880219B2 (en) Brazing composite material and brazed structure brazed and bonded using the same
JP4893542B2 (en) Brazing composite material and brazing product using the same
JP4239853B2 (en) Brazing composite material, method for producing the same, and brazed product
JP3909015B2 (en) Brazing composite material, brazing method and brazing product using the same
JP4239764B2 (en) Brazing composite material and brazing method using the same
JP2003117686A (en) Composite material for brazing, and brazed product obtained by using the composite material
JP4939158B2 (en) Brazing material, brazing composite material and brazing structure brazed and bonded using the same
JP4840190B2 (en) Brazing composite material and brazing product using the same
JP4507943B2 (en) Brazing clad material and brazing product using the same
JP2005329440A (en) Composite material for brazing and brazed product using the same
JP3891137B2 (en) Brazing composite material and brazing product using the same
JP2005297047A (en) Composite material for brazing, and product using the same
JP5194895B2 (en) Brazing composites and brazing products
JP4107206B2 (en) Brazing method using a brazing composite material
JP4835862B2 (en) Brazing composite material and brazing product using the same
JP4244112B2 (en) Brazing composite material and brazing product using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees