JP5183986B2 - Piezoelectric / electrostrictive element, piezoelectric / electrostrictive ceramic composition, and piezoelectric motor - Google Patents

Piezoelectric / electrostrictive element, piezoelectric / electrostrictive ceramic composition, and piezoelectric motor Download PDF

Info

Publication number
JP5183986B2
JP5183986B2 JP2007174212A JP2007174212A JP5183986B2 JP 5183986 B2 JP5183986 B2 JP 5183986B2 JP 2007174212 A JP2007174212 A JP 2007174212A JP 2007174212 A JP2007174212 A JP 2007174212A JP 5183986 B2 JP5183986 B2 JP 5183986B2
Authority
JP
Japan
Prior art keywords
piezoelectric
electrostrictive
mass
terms
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007174212A
Other languages
Japanese (ja)
Other versions
JP2007259700A (en
Inventor
信 谷
陽彦 伊藤
伸夫 高橋
俊克 柏屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JP2007259700A publication Critical patent/JP2007259700A/en
Application granted granted Critical
Publication of JP5183986B2 publication Critical patent/JP5183986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧電/電歪素子、圧電/電歪セラミック組成物及び圧電モータに関する。   The present invention relates to a piezoelectric / electrostrictive element, a piezoelectric / electrostrictive ceramic composition, and a piezoelectric motor.

従来、圧電/電歪材料は超音波モータや、圧電トランス、発音体、アクチュエータ、センサ等に使用されている。これら用途においては、圧電/電歪材料の特性改善として組成や微構造の検討がなされてきた。そして、特性改善により装置や素子の小型化、エネルギー変換効率の向上等がなされてきた。   Conventionally, piezoelectric / electrostrictive materials are used in ultrasonic motors, piezoelectric transformers, sounding bodies, actuators, sensors, and the like. In these applications, the composition and microstructure have been studied as an improvement in the properties of piezoelectric / electrostrictive materials. And by the characteristic improvement, size reduction of an apparatus and an element, improvement of energy conversion efficiency, etc. have been made.

圧電/電歪材料としては、いわゆるPZT(チタン酸ジルコン酸鉛)を主成分とした材料(以下、PZT系圧電/電歪材料と称する)が各種用いられているが、超音波モータや圧電トランス等の用途には、機械的品質係数の大きな材料が好ましいことがわかっている。そのため、PZT系圧電/電歪材料についてMnやCoを添加することにより特性改善が図られている。   As the piezoelectric / electrostrictive material, various materials mainly composed of so-called PZT (lead zirconate titanate) (hereinafter referred to as PZT-based piezoelectric / electrostrictive material) are used, but an ultrasonic motor or a piezoelectric transformer is used. It has been found that materials with a high mechanical quality factor are preferred for such applications. For this reason, characteristics are improved by adding Mn or Co to the PZT piezoelectric / electrostrictive material.

しかし、PZT系圧電材料は、焼成のために1250℃程度の高温が必要であり、その焼成途中の1000℃付近からPbが蒸発することが知られている。このような圧電/電歪体からのPbの蒸発が起きると、焼成後に得られる圧電/電歪体においてはPb不足によって引き起こされる組成ずれによる圧電特性、具体的には電気機械結合係数や、比誘電率、機械的品質係数、弾性コンプライアンスの劣化が生じたり、特性ばらつきが生じたりする、といった問題が生じる場合もある。また、1250℃程度の焼成が必要な場合、圧電/電歪層間に形成する電極層は、その温度での焼成に耐えられる電極材料が必要となり、このため、高価な白金や白金を主成分とした電極材料を使うこととなるが、これは圧電/電歪素子のコスト高要因となっている。   However, it is known that the PZT piezoelectric material requires a high temperature of about 1250 ° C. for firing, and Pb evaporates from around 1000 ° C. during the firing. When evaporation of Pb from such a piezoelectric / electrostrictive body occurs, the piezoelectric / electrostrictive body obtained after firing has piezoelectric characteristics due to a composition shift caused by Pb shortage, specifically, an electromechanical coupling coefficient, a ratio There may be a problem that the dielectric constant, the mechanical quality factor, and the elastic compliance are deteriorated or the characteristics are varied. When firing at about 1250 ° C. is necessary, the electrode layer formed between the piezoelectric / electrostrictive layers requires an electrode material that can withstand firing at that temperature. For this reason, expensive platinum or platinum is the main component. However, this is a high cost factor for the piezoelectric / electrostrictive element.

また、圧電/電歪材料を共振子として使用する場合、共振周波数と駆動周波数のずれが大きくなると、変位が急激に低下するという問題があり、特に、室温では大きな変位が得られていたとしても、温度変化に対する共振周波数の変化が大きい場合には、共振子の温度が低下したり上昇したりすると、変位の低下が大きくなり問題となっていた。   In addition, when a piezoelectric / electrostrictive material is used as a resonator, there is a problem that the displacement rapidly decreases when the difference between the resonance frequency and the driving frequency increases, even if a large displacement is obtained at room temperature. When the change of the resonance frequency with respect to the temperature change is large, if the temperature of the resonator is lowered or raised, the displacement is greatly lowered, which is a problem.

上記問題は超音波モータについても例外ではなく、例えば、非特許文献1に開示された超音波モータは、一次縦、二次屈曲モードを使用したモータ素子であって、矩形の圧電層と、該圧電層を略二分割するように形成された電極層と、を交互に積層してなる圧電モータ素子に関するものであるが、この超音波モータの駆動モードについても、使用する圧電材料の共振周波数の温度変化が大きな場合には、変位の温度変化が大きくなるという問題を有していた。   The above problem is not an exception for an ultrasonic motor. For example, the ultrasonic motor disclosed in Non-Patent Document 1 is a motor element using a primary longitudinal and secondary bending mode, and includes a rectangular piezoelectric layer, This relates to a piezoelectric motor element formed by alternately laminating electrode layers formed so as to divide the piezoelectric layer into approximately two parts. The driving mode of this ultrasonic motor also has the resonance frequency of the piezoelectric material used. When the temperature change is large, there is a problem that the temperature change of the displacement becomes large.

この問題に対し、これまで圧電/電歪材料の共振周波数の温度変化率が小さな材料を用いて共振子を作製することで改善を試みており、圧電/電歪材料自体の共振周波数の温度変化率を考慮しない共振子に比べると、変位の低下量は小さくなった。しかし、未だ実用の観点からすると改善は不十分であった。   To solve this problem, attempts have been made to improve the resonance frequency of piezoelectric / electrostrictive materials by using a material that has a small temperature change rate of the resonance frequency. Compared to a resonator that does not consider the rate, the amount of decrease in displacement was smaller. However, the improvement was still insufficient from the practical point of view.

また、別の解決手段として、素子の共振周波数の温度変化をあらかじめ測定しておき、温度センサで素子の温度を測定して、測定温度に合わせて駆動周波数を制御する方法も考案されているが、温度センサが必要となりコストが高くなるという問題があった。
ACTUATOR2006予講集A1.1(Piezoelectric Ultrasonic Motors for Lens Positioning of Cellular Phone Camera Modules)
As another solution, a method has been devised in which the temperature change of the resonance frequency of the element is measured in advance, the temperature of the element is measured with a temperature sensor, and the drive frequency is controlled according to the measured temperature. There is a problem that a temperature sensor is required and the cost is increased.
ACTUATOR2006 Preliminary Lecture A1.1 (Piezoelectric Ultrasonic Motors for Lens Positioning of Cellular Phone Camera Modules)

本発明は、このような従来技術の課題を解決するためになされたものであって、圧電/電歪素子とした場合に、Q値が高い圧電/電歪素子であって、かつ、共振周波数の温度変化が小さい圧電/電歪素子を提供することにある。また、本発明の圧電/電歪セラミック組成物及び圧電モータによれば、焼成時における圧電/電歪体からのPbの蒸発を低減させることによる、圧電/電歪特性の劣化抑止、および安価な電極材料を用いることが可能である。   The present invention has been made to solve the above-described problems of the prior art, and is a piezoelectric / electrostrictive element having a high Q value in the case of a piezoelectric / electrostrictive element, and has a resonance frequency. An object of the present invention is to provide a piezoelectric / electrostrictive element having a small temperature change. Moreover, according to the piezoelectric / electrostrictive ceramic composition and the piezoelectric motor of the present invention, the deterioration of piezoelectric / electrostrictive characteristics can be suppressed by reducing the evaporation of Pb from the piezoelectric / electrostrictive body during firing, and inexpensive. It is possible to use an electrode material.

上記課題を解決するため、本発明によって以下の圧電/電歪素子、圧電/電歪セラミックス組成物及び圧電モータが提供される。   In order to solve the above problems, the present invention provides the following piezoelectric / electrostrictive element, piezoelectric / electrostrictive ceramic composition, and piezoelectric motor.

[1] 圧電/電歪体と、前記圧電/電歪体上に設けられた一対以上の電極とからなる圧電/電歪素子であって、前記圧電/電歪体に使用している圧電/電歪材料の共振周波数の温度変化率と、電極材料の共振周波数の温度変化率とが、−40℃から+80℃の温度範囲において、正負の符号が異なることを特徴とする圧電/電歪素子。 [1] A piezoelectric / electrostrictive element comprising a piezoelectric / electrostrictive body and a pair of electrodes provided on the piezoelectric / electrostrictive body, wherein the piezoelectric / electrostrictive body is used in the piezoelectric / electrostrictive body. A piezoelectric / electrostrictive element characterized in that the temperature change rate of the resonance frequency of the electrostrictive material and the temperature change rate of the resonance frequency of the electrode material have different signs in the temperature range of −40 ° C. to + 80 ° C. .

[2] 前記電極材料が金属材料からなり、前記圧電/電歪体に使用している圧電/電歪材料のヤング率の温度変化率と、前記金属材料のヤング率の温度変化率とが、−40℃から+80℃の温度範囲において、正負の符号が異なることを特徴とする[1]に記載の圧電/電歪素子。 [2] The electrode material is made of a metal material, and the temperature change rate of the Young's modulus of the piezoelectric / electrostrictive material used in the piezoelectric / electrostrictive body and the temperature change rate of the Young's modulus of the metal material are: The piezoelectric / electrostrictive element according to [1], wherein positive and negative signs are different in a temperature range of −40 ° C. to + 80 ° C.

[3] 圧電/電歪層と内部電極層とが、交互に、複数、積層されてなる柱状積層体と、その柱状積層体の周面に設けられ、前記内部電極層のうち、極性の同じものを、それぞれ接続する一対の側面電極と、を有する[1]又は[2]に記載の圧電/電歪素子。 [3] A columnar laminated body in which a plurality of piezoelectric / electrostrictive layers and internal electrode layers are alternately laminated, and a circumferential surface of the columnar laminated body, and the polarity of the internal electrode layers is the same. The piezoelectric / electrostrictive element according to [1] or [2], which has a pair of side surface electrodes that respectively connect the electrodes.

[4] 前記圧電/電歪素子において、前記内部電極層に使用している金属材料のヤング率の温度変化率が、温度範囲において、−8.0%以上−1.0%以下であることを特徴とする[1]〜[3]のいずれかに記載の圧電/電歪素子。 [4] In the piezoelectric / electrostrictive element, the temperature change rate of the Young's modulus of the metal material used for the internal electrode layer is −8.0% to −1.0% in the temperature range. The piezoelectric / electrostrictive element according to any one of [1] to [3].

[5] 前記圧電/電歪素子において、前記圧電/電歪材料のヤング率の温度変化率が、−40℃から+80℃の温度範囲において、0%より大きく4.0%以下であることを特徴とする[1]〜[4]のいずれかに記載の圧電/電歪素子。 [5] In the piezoelectric / electrostrictive element, the temperature change rate of Young's modulus of the piezoelectric / electrostrictive material is greater than 0% and not more than 4.0% in a temperature range of −40 ° C. to + 80 ° C. The piezoelectric / electrostrictive element according to any one of [1] to [4], which is characterized.

[6] 前記圧電/電歪材料が、正方晶を主相とすることを特徴とする[1]〜[5]のいずれかに記載の圧電/電歪素子。 [6] The piezoelectric / electrostrictive element according to any one of [1] to [5], wherein the piezoelectric / electrostrictive material has tetragonal crystal as a main phase.

[7] 前記[1]〜[6]のいずれかに記載の前記圧電/電歪体が、PbをPbO換算で65質量%以上70質量%以下含み、TiをTiO換算で7.0質量%以上16.0質量%以下含み、ZrをZrO換算で10.5質量%以上24.5質量%以下含み、SbをSb換算で0.65質量%以上1.05質量%以下含み、NbをNb換算で0.5質量%以上0.8質量%以下含み、CuをCuO換算で0.3質量%以上0.7質量%以下含み、WをWO換算で0.6質量%以上1.5質量%以下含み、MnをMnO換算で0.3質量%以上0.7質量%以下含み、CuとWのモル比が1.5:1以上2.5:1以下であることを特徴とする圧電/電歪セラミック組成物。 [7] The [1] The piezoelectric / electrostrictive body according to any one of - [6], Pb and includes less than 70 mass% 65 mass% in terms of PbO, 7.0 mass Ti in terms of TiO 2 From 10.5% to 16.0% by mass, Zr from 10.5% to 24.5% by mass in terms of ZrO 2 , and Sb from 0.65% to 1.05% by mass in terms of Sb 2 O 3 Nb is contained in an amount of 0.5 to 0.8 mass% in terms of Nb 2 O 5 , Cu is contained in an amount of 0.3 to 0.7 mass% in terms of CuO, and W is 0 in terms of WO 3 0.6 mass% or more and 1.5 mass% or less, Mn containing 0.3 mass% or more and 0.7 mass% or less in terms of MnO 2 , and the molar ratio of Cu and W is 1.5: 1 or more and 2.5: A piezoelectric / electrostrictive ceramic composition characterized by being 1 or less.

[8] 前記圧電/電歪セラミック組成物を主成分とする圧電/電歪体と、この圧電/電歪体上に設けられた一対以上の電極とからなることを特徴とする前記[1]〜[7]のいずれかに記載の圧電/電歪素子。 [8] The above [1], comprising a piezoelectric / electrostrictive body mainly composed of the piezoelectric / electrostrictive ceramic composition, and a pair of electrodes provided on the piezoelectric / electrostrictive body. The piezoelectric / electrostrictive element according to any one of to [7].

[9] 圧電/電歪層と内部電極層とが、交互に、複数、積層されてなる柱状積層体と、その柱状積層体の周面に設けられ、前記内部電極層のうち、極性の同じものを、それぞれ接続する一対の側面電極と、を有する圧電/電歪素子であって、前記圧電/電歪層のヤング率に対する、前記内部電極層のヤング率の比率(電極層のヤング率÷圧電/電歪層のヤング率)が0.75以上1.30以下であることを特徴とする前記[1]〜[8]のいずれかに記載の圧電/電歪素子。 [9] A columnar laminated body in which a plurality of piezoelectric / electrostrictive layers and internal electrode layers are alternately laminated, and a circumferential surface of the columnar laminated body, and the polarity of the internal electrode layers is the same. A piezoelectric / electrostrictive element having a pair of side electrodes connected to each other, the ratio of the Young's modulus of the internal electrode layer to the Young's modulus of the piezoelectric / electrostrictive layer (Young's modulus of the electrode layer ÷ The piezoelectric / electrostrictive element according to any one of [1] to [8], wherein a Young's modulus of the piezoelectric / electrostrictive layer is 0.75 or more and 1.30 or less.

[10] 前記圧電/電歪層のヤング率が60GPa以上100GPa以下であることを特徴とする前記[1]〜[9]のいずれかに記載の圧電/電歪素子。 [10] The piezoelectric / electrostrictive element according to any one of [1] to [9], wherein a Young's modulus of the piezoelectric / electrostrictive layer is 60 GPa or more and 100 GPa or less.

[11] 前記圧電/電歪層中にAgを含むことを特徴とする前記[1]〜[10]のいずれかに記載の圧電/電歪素子。 [11] The piezoelectric / electrostrictive element according to any one of [1] to [10], wherein the piezoelectric / electrostrictive layer includes Ag.

[12] 前記圧電/電歪層中一次縦−二次屈曲振動モードを利用した定在波型圧電モータであることを特徴とする前記[1]〜[11]のいずれかに記載の圧電モータ。 [12] The piezoelectric motor according to any one of [1] to [11], which is a standing wave type piezoelectric motor using a primary longitudinal-secondary bending vibration mode in the piezoelectric / electrostrictive layer. .

[13] 前記[12]の圧電モータであって、一次縦共振周波数および二次屈曲共振周波数の温度変化が、−40℃から80℃の温度範囲において1.0%以内であることを特徴とする[12]に記載の圧電モータ。 [13] The piezoelectric motor according to [12], wherein temperature changes of the primary longitudinal resonance frequency and the secondary bending resonance frequency are within 1.0% in a temperature range of −40 ° C. to 80 ° C. The piezoelectric motor according to [12].

本発明の圧電/電歪素子によれば、Q値が高いと共に、共振周波数の温度変化が小さい圧電/電歪素子を提供できる。また、本発明の圧電/電歪セラミック組成物及び圧電モータによれば、焼成時における圧電/電歪体からのPbの蒸発を低減させるとともに、さらに、1050℃以下で焼成ができることから、圧電/電歪特性の劣化抑止、および安価な電極材料を用いることが可能である。   According to the piezoelectric / electrostrictive element of the present invention, it is possible to provide a piezoelectric / electrostrictive element having a high Q value and a small temperature change of the resonance frequency. In addition, according to the piezoelectric / electrostrictive ceramic composition and the piezoelectric motor of the present invention, it is possible to reduce the evaporation of Pb from the piezoelectric / electrostrictive body during firing, and further, firing can be performed at 1050 ° C. or less. It is possible to suppress deterioration of electrostrictive characteristics and to use an inexpensive electrode material.

以下、本発明を実施するための最良の形態を、図面を参照しながら具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。   Hereinafter, the best mode for carrying out the present invention will be specifically described with reference to the drawings. However, the present invention is not limited to the following embodiment and does not depart from the spirit of the present invention. Therefore, it should be understood that design changes, improvements, and the like can be made as appropriate based on ordinary knowledge of those skilled in the art.

[1]本発明の圧電/電歪素子の構成:
本発明の圧電素子11は、図1及び図2に示すように、圧電体と、この圧電体上に設けられた一対以上の電極(第一電極3、第二電極4)とから概ね構成される。ここで、図1は本発明の圧電素子の一実施形態を模式的に示す斜視図であり、図2は図1で示した圧電素子の構成をわかりやすく説明するために、各層で分解した分解斜視図である。以下、圧電/電歪素子について説明するが、主に圧電素子について説明する。電歪素子については、電圧を加えると微小に伸縮する素子として圧電素子と基本的構成が同様であることから、圧電素子を電歪素子と置き換えて、圧電素子の説明として参照されることを望む。
[1] Configuration of the piezoelectric / electrostrictive element of the present invention:
As shown in FIGS. 1 and 2, the piezoelectric element 11 of the present invention is generally composed of a piezoelectric body and a pair of electrodes (first electrode 3 and second electrode 4) provided on the piezoelectric body. The Here, FIG. 1 is a perspective view schematically showing an embodiment of the piezoelectric element of the present invention, and FIG. 2 is an exploded view in which each layer is disassembled for easy understanding of the configuration of the piezoelectric element shown in FIG. It is a perspective view. Hereinafter, the piezoelectric / electrostrictive element will be described, but mainly the piezoelectric element will be described. As for the electrostrictive element, the basic configuration is the same as that of a piezoelectric element as an element that expands and contracts slightly when a voltage is applied. Therefore, it is desirable to replace the piezoelectric element with an electrostrictive element and refer to the description of the piezoelectric element. .

より具体的には、圧電/電歪素子11は、圧電体からなる圧電層1と圧電層2が少なくとも交互に1層以上積層されて形成されている。図1では、5層の圧電層1と5層の圧電層2が交互に積層されている。しかし、図1で示した交互に5層組み合わせられて積層形成された圧電/電歪素子は一例に過ぎず、これに限定する趣旨ではない。交互に圧電層1と圧電層2が、多層組み合わせられて圧電/電歪素子を形成する場合を含む趣旨である。ここで、図2で示すように、圧電体からなる圧電層1の上面及びその下面には、第一電極3と第二電極4が形成され、その下側に形成される圧電層2には、共通電極5が形成されている。さらに、その圧電層2の下側に位置する圧電層1の上面には、上述と同じ構成、すなわち、上面及び下面に第一電極3と第二電極4が形成された圧電層1が形成される。このように交互に、圧電層1と圧電層2とが順次積層される。また、圧電/電歪素子11は、積層厚み方向の側面に、圧電層1で隔離された複数の第一電極3、複数の第二電極4、複数の共通電極5が形成され、さらに、電気的に接続する側面電極6が形成されている。   More specifically, the piezoelectric / electrostrictive element 11 is formed by laminating at least one piezoelectric layer 1 and piezoelectric layer 2 made of a piezoelectric material alternately. In FIG. 1, five piezoelectric layers 1 and five piezoelectric layers 2 are alternately stacked. However, the piezoelectric / electrostrictive element formed by stacking five layers alternately as shown in FIG. 1 is merely an example, and the present invention is not limited to this. This is intended to include the case where piezoelectric layers 1 and piezoelectric layers 2 are alternately combined to form a piezoelectric / electrostrictive element. Here, as shown in FIG. 2, the first electrode 3 and the second electrode 4 are formed on the upper surface and the lower surface of the piezoelectric layer 1 made of a piezoelectric material, and the piezoelectric layer 2 formed below the first electrode 3 The common electrode 5 is formed. Further, on the upper surface of the piezoelectric layer 1 positioned below the piezoelectric layer 2, the same configuration as described above, that is, the piezoelectric layer 1 in which the first electrode 3 and the second electrode 4 are formed on the upper surface and the lower surface is formed. The In this manner, the piezoelectric layers 1 and the piezoelectric layers 2 are sequentially stacked. The piezoelectric / electrostrictive element 11 includes a plurality of first electrodes 3, a plurality of second electrodes 4, and a plurality of common electrodes 5 that are separated by the piezoelectric layer 1 on the side surface in the stacking thickness direction. A side electrode 6 is formed for connection.

本発明の圧電素子11は、共振周波数の温度変化率が−40℃から+80℃の温度範囲において、±1%未満であることを特徴とする。このような所望の温度範囲において、共振周波数の温度変化率の数値が±1%未満であれば、圧電/電歪材料を共振子として使用する場合、共振子の共振周波数の温度変化を制御でき、Q値が高いと共に、共振周波数の温度変化が小さい圧電/電歪素子を提供できる。   The piezoelectric element 11 of the present invention is characterized in that the temperature change rate of the resonance frequency is less than ± 1% in the temperature range of −40 ° C. to + 80 ° C. In such a desired temperature range, if the numerical value of the temperature change rate of the resonance frequency is less than ± 1%, the temperature change of the resonance frequency of the resonator can be controlled when the piezoelectric / electrostrictive material is used as the resonator. A piezoelectric / electrostrictive element having a high Q value and a small temperature change of the resonance frequency can be provided.

また、上述の圧電/電歪素子においては、圧電/電歪体に使用している圧電/電歪材料の共振周波数の温度変化率と、電極材料の共振周波数の温度変化率とが、正負の符号が異なることが、より好ましい。なお、ここで『正負の符号が異なる』ということは、例えば温度上昇に伴って温度変化率(例えば、後述する「ヤング率」も同様)が増加する圧電/電歪材料と、温度上昇に伴って温度変化率(例えば、後述する「ヤング率」も同様)が減少する電極材料の組み合わせのように、温度変化率(例えば、後述する「ヤング率」も同様)の増減が逆であることを指す。圧電/電歪材料の共振周波数の温度変化率と電極材料の共振周波数の温度変化率との、それぞれの温度変化を相殺しやすく、圧電/電歪素子として見た場合に、共振周波数の温度変化を小さくすることが可能であるから、より好ましい。   In the above-described piezoelectric / electrostrictive element, the temperature change rate of the resonance frequency of the piezoelectric / electrostrictive material used in the piezoelectric / electrostrictive body and the temperature change rate of the resonance frequency of the electrode material are positive and negative. More preferably, the signs are different. Here, “the sign of positive / negative is different” means that, for example, a piezoelectric / electrostrictive material whose rate of temperature change (for example, “Young's modulus” to be described later) increases as the temperature rises, and The change in temperature change rate (for example, “Young's modulus” to be described later) also decreases and decreases, such as a combination of electrode materials whose temperature change rate (for example, “Young's modulus” to be described later) decreases). Point to. The temperature change rate of the resonance frequency of the piezoelectric / electrostrictive material and the temperature change rate of the resonance frequency of the electrode material can easily cancel each other, and when viewed as a piezoelectric / electrostrictive element, the temperature change of the resonance frequency Is more preferable because it can be made smaller.

また、上述の圧電/電歪素子においては、電極材料が金属材料からなり、前記圧電/電歪体に使用している圧電/電歪材料のヤング率の温度変化率と、前記金属材料のヤング率の温度変化率とが、−40℃から+80℃の温度範囲において、正負の符号が異なることが、好ましい。圧電/電歪材料だけで改善を図ろうとすると、共振周波数の温度特性を満足させることが出来ても、その他の特性を低下させる場合もある。しかし、本発明のように、圧電/電歪素子を構成する各材料のヤング率の温度変化を制御して、共振子の共振周波数の温度変化を制御できるようし、圧電/電歪材料と内部電極層のヤング率の変化を相殺し、圧電/電歪素子として見た場合に、共振周波数の温度変化を小さくすることが可能となるため、より好ましい。   Further, in the above-described piezoelectric / electrostrictive element, the electrode material is made of a metal material, and the temperature change rate of the Young's modulus of the piezoelectric / electrostrictive material used for the piezoelectric / electrostrictive body and the Young of the metal material are It is preferable that the sign of positive and negative differ in the temperature change rate of the rate in the temperature range of −40 ° C. to + 80 ° C. If an attempt is made to improve the piezoelectric / electrostrictive material alone, the temperature characteristic of the resonance frequency can be satisfied, but other characteristics may be lowered. However, as in the present invention, the temperature change of the Young's modulus of each material constituting the piezoelectric / electrostrictive element can be controlled to control the temperature change of the resonance frequency of the resonator. When the change in the Young's modulus of the electrode layer is canceled and the piezoelectric layer is viewed as a piezoelectric / electrostrictive element, the temperature change of the resonance frequency can be reduced, which is more preferable.

なお、上述の電極として用いる金属材料は、温度上昇に伴ってヤング率が低下するため、圧電/電歪材料として温度上昇に伴ってヤング率が増加するものを選定することが好ましい。   In addition, since the Young's modulus decreases as the temperature rises, the metal material used as the electrode described above is preferably selected as a piezoelectric / electrostrictive material whose Young's modulus increases as the temperature rises.

また、圧電/電歪層と内部電極層とが、交互に、複数、積層されてなる柱状積層体と、その柱状積層体の周面に設けられ、前記内部電極層のうち、極性の同じものを、それぞれ接続する一対の側面電極と、を有する圧電/電歪素子として構成することが好ましい。   In addition, a plurality of piezoelectric / electrostrictive layers and internal electrode layers, which are alternately stacked, are provided on the circumferential surface of the columnar laminate, and the internal electrode layers have the same polarity. Is preferably configured as a piezoelectric / electrostrictive element having a pair of side electrodes connected to each other.

さらに、この内部電極層に使用している金属材料のヤング率の温度変化率は、温度範囲において、−8.0%以上−1.0%以下であることが好ましく、更に好ましいのは、−40℃から+80℃の温度範囲において、−4.0%以上から−1.0%以下であることがより好ましく、−3.0%以上から−1.5%以下であることが更に好ましい。   Further, the temperature change rate of the Young's modulus of the metal material used for the internal electrode layer is preferably −8.0% or more and −1.0% or less in the temperature range, and more preferably − In the temperature range of 40 ° C. to + 80 ° C., it is more preferably −4.0% or more and −1.0% or less, and further preferably −3.0% or more and −1.5% or less.

また、前記圧電/電歪素子において、前記圧電/電歪材料のヤング率の温度変化率が、−40℃〜+80℃の温度範囲において、0%より大きく4.0%以下であることが好ましく、0.3%以上3.0%以下であることがより好ましく、0.5%以上2.5%以下であることが更に好ましい。   In the piezoelectric / electrostrictive element, the temperature change rate of Young's modulus of the piezoelectric / electrostrictive material is preferably greater than 0% and not greater than 4.0% in a temperature range of −40 ° C. to + 80 ° C. It is more preferably 0.3% or more and 3.0% or less, and further preferably 0.5% or more and 2.5% or less.

また、前記圧電/電歪材料が、正方晶を主相とすることが好ましい。   Moreover, it is preferable that the piezoelectric / electrostrictive material has a tetragonal crystal as a main phase.

[1−1]圧電/電歪セラミック組成物:
また、前記圧電/電歪体が、PbをPbO換算で65質量%以上70質量%以下含み、TiをTiO換算で7.0質量%以上16.0質量%以下含み、ZrをZrO換算で10.5質量%以上24.5質量%以下含み、SbをSb換算で0.65質量%以上1.05質量%以下含み、NbをNb換算で0.5質量%以上0.8質量%以下含み、CuをCuO換算で0.3質量%以上0.7質量%以下含み、WをWO換算で0.6質量%以上1.5質量%以下含み、MnをMnO換算で0.3質量%以上0.7質量%以下含み、CuとWのモル比が1.5:1以上2.5:1以下である圧電/電歪セラミック組成物からなることが好ましく、より好ましいのは、上記圧電/電歪セラミック組成物を主成分とする圧電/電歪体と、この圧電/電歪体上に設けられた一対以上の電極とから圧電/電歪素子が構成されることである。この圧電/電歪セラミック組成物、或いは、上記圧電/電歪セラミック組成物を主成分とする圧電/電歪体は、焼成温度が1050度以下であっても、十分に緻密化し高い特性を有し、更に、この圧電/電歪セラミック組成物を用いて作製した圧電/電歪素子では、共振周波数の温度変化率が小さいという特性を有している。
[1-1] Piezoelectric / electrostrictive ceramic composition:
Further, the piezoelectric / electrostrictive body contains Pb in an amount of 65% by mass or more and 70% by mass or less in terms of PbO, Ti in an amount of 7.0% by mass or more and 16.0% by mass or less in terms of TiO 2 , and Zr in terms of ZrO 2. 10.5 mass% or more and 24.5 mass% or less, Sb containing 0.65 mass% or more and 1.05 mass% or less in terms of Sb 2 O 3 , and Nb containing 0.5 mass% in terms of Nb 2 O 5 0.8% by mass or less, Cu 0.3% to 0.7% by mass in terms of CuO, W 3 % to 1.5% by mass in terms of WO 3 and Mn It comprises a piezoelectric / electrostrictive ceramic composition containing 0.3% by mass to 0.7% by mass in terms of MnO 2 and having a molar ratio of Cu to W of 1.5: 1 to 2.5: 1. Preferably, more preferably, the piezoelectric material having the piezoelectric / electrostrictive ceramic composition as a main component. That is, a piezoelectric / electrostrictive element is constituted by the / electrostrictive body and a pair of electrodes provided on the piezoelectric / electrostrictive body. This piezoelectric / electrostrictive ceramic composition or a piezoelectric / electrostrictive body mainly composed of the above-mentioned piezoelectric / electrostrictive ceramic composition is sufficiently densified and has high characteristics even when the firing temperature is 1050 ° C. or less. Furthermore, the piezoelectric / electrostrictive element manufactured using this piezoelectric / electrostrictive ceramic composition has a characteristic that the temperature change rate of the resonance frequency is small.

また、上記圧電/電歪素子は、圧電/電歪層と内部電極層とが、交互に、複数、積層されてなる柱状積層体と、その柱状積層体の周面に設けられ、前記内部電極層のうち、極性の同じものを、それぞれ接続する一対の側面電極と、を有する圧電/電歪素子であって、前記圧電/電歪層のヤング率に対する、前記内部電極層のヤング率の比率(電極層のヤング率÷圧電/電歪層のヤング率)が0.75以上1.30以下であることが好ましく、圧電セラミック層のヤング率に対する、圧電セラミック層に挟まれる電極層のヤング率の比率が0.80以上1.25以下であることがより好ましく、0.85以上1.20以下であることが更に好ましい。   The piezoelectric / electrostrictive element includes a columnar laminate in which a plurality of piezoelectric / electrostrictive layers and internal electrode layers are alternately laminated, and a peripheral surface of the columnar laminate. A piezoelectric / electrostrictive element having a pair of side electrodes that connect the same polarity of the layers, and a ratio of Young's modulus of the internal electrode layer to Young's modulus of the piezoelectric / electrostrictive layer (Young's modulus of the electrode layer ÷ Young's modulus of the piezoelectric / electrostrictive layer) is preferably 0.75 or more and 1.30 or less, and the Young's modulus of the electrode layer sandwiched between the piezoelectric ceramic layers with respect to the Young's modulus of the piezoelectric ceramic layer Is more preferably 0.80 or more and 1.25 or less, and further preferably 0.85 or more and 1.20 or less.

また、圧電/電歪層のヤング率が60GPa以上100GPa以下であることが好ましい。圧電セラミック層ヤング率は、70GPa以上95GPa以下であることがより好ましく、80GPa以上90GPa以下であることが更に好ましい。   The Young's modulus of the piezoelectric / electrostrictive layer is preferably 60 GPa or more and 100 GPa or less. The Young's modulus of the piezoelectric ceramic layer is more preferably 70 GPa or more and 95 GPa or less, and further preferably 80 GPa or more and 90 GPa or less.

[1−1−1]圧電/電歪セラミック組成物の調製方法:
このような圧電/電歪セラミック組成物の調製方法としては、次のものがある。なお、
本実施形態の圧電/電歪セラミック組成物は、全原料をまとめて混合してなる混合原料を仮焼・粉砕して調製しても良いし、一部の原料を混合してなる混合原料を仮焼・粉砕した二次原料を数種類調製し、これら数種類の二次原料および原料を混合してなる混合原料を仮焼・粉砕して調製しても良い。以下、圧電/電歪セラミック組成物の調製方法について具体的に説明する。
[1-1-1] Preparation method of piezoelectric / electrostrictive ceramic composition:
Examples of a method for preparing such a piezoelectric / electrostrictive ceramic composition include the following. In addition,
The piezoelectric / electrostrictive ceramic composition of the present embodiment may be prepared by calcining and pulverizing a mixed raw material obtained by mixing all raw materials together, or a mixed raw material obtained by mixing some raw materials. It may be prepared by preparing several kinds of calcined and pulverized secondary raw materials and calcining and crushing mixed raw materials obtained by mixing these several types of secondary raw materials and raw materials. Hereinafter, a method for preparing the piezoelectric / electrostrictive ceramic composition will be specifically described.

第一の圧電/電歪セラミック組成物の調製方法としては、次のような調製方法がある。まず、Pb、Sb、Nb、Zr、Ti、Mn、Cu、Wの各元素単体、これら各元素の酸化物(PbO、Pb、Sb、Nb、TiO、ZrO、MnO、MnO、CuO、CuO、WO等)、炭酸塩(MnCO等)、又はこれら各元素を複数種含有する化合物(SbNbO等)等を、各元素の含有率が所望の組成割合になるように混合する。この混合方法としては、一般的な方法を用いればよく、例えばボールミルを挙げることができる。具体的には、ボールミル装置内に所定量の各種原料、玉石、水を入れ、所定時間だけ回転させて混合スラリーを調製する。その後、得られた混合スラリーに含まれる水分を、蒸発させて乾燥する、或いは、ろ過する等して除去することにより混合原料を得ることができる。得られた混合原料を500〜1000℃で仮焼した後、ボールミル、アトライタ、ビーズミル等の一般的な粉砕装置を用いて粉砕すれば、粒子状の圧電/電歪セラミック組成物とすることができる。 As a preparation method of the first piezoelectric / electrostrictive ceramic composition, there are the following preparation methods. First, each element of Pb, Sb, Nb, Zr, Ti, Mn, Cu, and W, oxides of these elements (PbO, Pb 3 O 4 , Sb 2 O 3 , Nb 2 O 5 , TiO 2 , ZrO 2 , MnO, MnO 2 , CuO, Cu 2 O, WO 3, etc.), carbonates (MnCO 3, etc.), or compounds containing a plurality of these elements (SbNbO 2, etc.), etc. Mix to achieve desired composition ratio. As this mixing method, a general method may be used, for example, a ball mill. Specifically, a predetermined amount of various raw materials, cobblestones, and water are placed in a ball mill apparatus and rotated for a predetermined time to prepare a mixed slurry. Thereafter, the mixed raw material can be obtained by evaporating and removing the moisture contained in the obtained mixed slurry by drying or filtering. The obtained mixed raw material is calcined at 500 to 1000 ° C. and then pulverized using a general pulverizer such as a ball mill, an attritor, or a bead mill, whereby a particulate piezoelectric / electrostrictive ceramic composition can be obtained. .

第二の圧電/電歪セラミック組成物の調製方法としては、次のような調製方法がある。Pb、Sb、Nb、Zr、Ti、Mnの各元素単体、これら各元素の酸化物(PbO、Pb、Sb、Nb、TiO、ZrO、MnO、MnO等)、炭酸塩(MnCO等)、又はこれら各元素を複数種含有する化合物(SbNbO等)等を、各元素の含有率が所望の組成割合になるように混合する。この混合方法としては、一般的な方法を用いればよく、例えばボールミルを挙げることができる。具体的には、ボールミル装置内に所定量の各種原料、玉石、水を入れ、所定時間だけ回転させて混合スラリーを調製する。その後、得られた混合スラリーに含まれる水分を、蒸発させて乾燥する、或いは、ろ過する等して除去することにより混合原料を得ることができる。得られた混合原料を750〜1300℃で仮焼した後、ボールミル、アトライタ、ビーズミル等の一般的な粉砕装置を用いて粉砕すれば、二次原料とすることができる。 As a preparation method of the second piezoelectric / electrostrictive ceramic composition, there are the following preparation methods. Each element of Pb, Sb, Nb, Zr, Ti, Mn, oxides of these elements (PbO, Pb 3 O 4 , Sb 2 O 3 , Nb 2 O 5 , TiO 2 , ZrO 2 , MnO, MnO 2 Etc.), carbonate (MnCO 3 or the like), or a compound containing a plurality of these elements (SbNbO 2 or the like) or the like is mixed so that the content of each element is a desired composition ratio. As this mixing method, a general method may be used, for example, a ball mill. Specifically, a predetermined amount of various raw materials, cobblestones, and water are placed in a ball mill apparatus and rotated for a predetermined time to prepare a mixed slurry. Thereafter, the mixed raw material can be obtained by evaporating and removing the moisture contained in the obtained mixed slurry by drying or filtering. If the obtained mixed raw material is calcined at 750 to 1300 ° C. and then pulverized using a general pulverizing apparatus such as a ball mill, an attritor, or a bead mill, the secondary raw material can be obtained.

次いで、Pb、Cu、Wの各元素単体、これら各元素の酸化物(PbO、Pb、CuO、CuO、WO等)等を、各元素の含有率が所望の組成割合になるように混合する。混合方法としては、前記同様に一般的な方法を用いればよく、例えばボールミルを挙げることができる。具体的には、ボールミル装置内に所定量の各種原料、玉石、水を入れ、所定時間だけ回転させて混合スラリーを調製する。その後、得られた混合スラリーに含まれる水分を、蒸発させて乾燥する、ろ過する等して除去することにより混合原料を得ることができる。得られた混合原料を500〜1000℃で仮焼した後、ボールミル、アトライタ、ビーズミル等の一般的な粉砕装置を用いて粉砕すれば、二次原料とすることができる。 Next, each element of Pb, Cu and W, oxides of these elements (PbO, Pb 3 O 4 , CuO, Cu 2 O, WO 3 etc.), etc., are contained in the desired composition ratio of each element. Mix to be. As a mixing method, a general method may be used as described above, and for example, a ball mill may be used. Specifically, a predetermined amount of various raw materials, cobblestones, and water are placed in a ball mill apparatus and rotated for a predetermined time to prepare a mixed slurry. Thereafter, the mixed raw material can be obtained by removing the moisture contained in the obtained mixed slurry by evaporating, drying, filtering and the like. If the obtained mixed raw material is calcined at 500 to 1000 ° C. and then pulverized using a general pulverizing apparatus such as a ball mill, an attritor or a bead mill, it can be used as a secondary raw material.

上記で得られた2種類の二次原料を、更に各元素の含有率が所望の組成割合になるように混合する。混合方法としては、前記同様に一般的な方法を用いればよく、例えばボールミルを挙げることができる。具体的には、ボールミル装置内に所定量の各種原料、玉石、水を入れ、所定時間だけ回転させて混合スラリーを調製する。その後、得られた混合スラリーに含まれる水分を、蒸発させて乾燥する、ろ過する等して除去することにより混合原料を得ることができる。得られた混合原料を500〜1000℃で仮焼した後、ボールミル、アトライタ、ビーズミル等の一般的な粉砕装置を用いて粉砕すれば、粒子状の圧電/電歪セラミック組成物とすることができる。   The two types of secondary raw materials obtained above are further mixed so that the content of each element becomes a desired composition ratio. As a mixing method, a general method may be used as described above, and for example, a ball mill may be used. Specifically, a predetermined amount of various raw materials, cobblestones, and water are placed in a ball mill apparatus and rotated for a predetermined time to prepare a mixed slurry. Thereafter, the mixed raw material can be obtained by removing the moisture contained in the obtained mixed slurry by evaporating, drying, filtering and the like. The obtained mixed raw material is calcined at 500 to 1000 ° C. and then pulverized using a general pulverizer such as a ball mill, an attritor, or a bead mill, whereby a particulate piezoelectric / electrostrictive ceramic composition can be obtained. .

[1−1-2]粒子状の圧電/電歪セラミック組成物:
上記の第一及び第二の圧電/電歪セラミック組成物の調製方法によって作製した粒子状の圧電/電歪セラミック組成物の平均粒子径は0.03〜1.0μmであることが好ましく、0.05〜0.5μmであることが更に好ましい。
[1-1-2] Particulate piezoelectric / electrostrictive ceramic composition:
The average particle size of the particulate piezoelectric / electrostrictive ceramic composition produced by the above-described first and second piezoelectric / electrostrictive ceramic composition preparation methods is preferably 0.03 to 1.0 μm. More preferably, it is 0.05-0.5 micrometer.

なお、上述の粒子径の調整は、粉砕して得られた圧電/電歪セラミック組成物の粉末を400〜750℃で熱処理することにより行ってもよい。この際には、微細な粒子ほど他の粒子と一体化して粒子径の揃った粉末となり、粒子径が揃った圧電/電歪層とすることができるため好ましい。また、圧電/電歪セラミック組成物は、例えば、アルコキシド法や共沈法等によって調製してもよい。   The above-mentioned adjustment of the particle diameter may be performed by heat-treating the powder of the piezoelectric / electrostrictive ceramic composition obtained by pulverization at 400 to 750 ° C. In this case, finer particles are preferable because they can be integrated with other particles to become a powder having a uniform particle diameter, and a piezoelectric / electrostrictive layer having a uniform particle diameter can be obtained. The piezoelectric / electrostrictive ceramic composition may be prepared by, for example, an alkoxide method or a coprecipitation method.

[1-2]圧電/電歪層の形成方法:
本実施形態の圧電/電歪層を形成するための方法としては、圧電/ 電歪セラミック組成物に可塑剤や分散剤や溶媒等を加えて、ボールミル等の一般的な混合装置を用いてスラリー化した後、ドクターブレード等の一般的なシート成形機によりシート状に成形することができる。その後、切断し、所望の寸法の圧電/電歪層を形成する。
[1-2] Method for forming piezoelectric / electrostrictive layer:
As a method for forming the piezoelectric / electrostrictive layer of the present embodiment, a plasticizer, a dispersing agent, a solvent, and the like are added to the piezoelectric / electrostrictive ceramic composition, and a slurry is obtained using a general mixing device such as a ball mill. Then, it can be formed into a sheet by a general sheet forming machine such as a doctor blade. Thereafter, cutting is performed to form a piezoelectric / electrostrictive layer having a desired dimension.

[1−3]第一電極、第二電極、共通電極の形成方法:
上記圧電/電歪層間に第一電極、第二電極、共通電極を形成するには、前記で所望の寸法にて作製した圧電/電歪層上に、例えばスクリーン印刷のような一般的な膜形成装置を用いて形成し、これらを順次積層し、加圧一体化する工程を経た後、電気炉等の加熱装置により焼成する。
[1-3] Formation method of first electrode, second electrode, common electrode:
In order to form the first electrode, the second electrode, and the common electrode between the piezoelectric / electrostrictive layers, a general film such as screen printing is formed on the piezoelectric / electrostrictive layer manufactured with the desired dimensions described above. After forming using a forming apparatus, sequentially laminating them and integrating them under pressure, they are fired by a heating device such as an electric furnace.

[1−4]その他の圧電/電歪層:
また、上記圧電/電歪層中にAgを含むことが好ましい。
[1-4] Other piezoelectric / electrostrictive layers:
Moreover, it is preferable that Ag is contained in the piezoelectric / electrostrictive layer.

[1−5]定在波型圧電モータ:
更に、上記圧電/電歪層中一次縦−二次屈曲振動モードを利用した定在波型圧電モータであることも望ましい実施形態の一つである。
[1-5] Standing wave type piezoelectric motor:
Furthermore, it is also a desirable embodiment to be a standing wave type piezoelectric motor using a primary longitudinal-secondary bending vibration mode in the piezoelectric / electrostrictive layer.

更に、上記圧電モータであって、一次縦共振周波数および二次屈曲共振周波数の温度変化が、−40℃から80℃の温度範囲において1.0%以内であることが好ましく、より好ましいのは0.8%以内であること、更に、0.6%以内であることが好ましい。   Further, in the piezoelectric motor, the temperature change of the primary longitudinal resonance frequency and the secondary bending resonance frequency is preferably within 1.0% in the temperature range of −40 ° C. to 80 ° C., more preferably 0. It is preferably within 8%, more preferably within 0.6%.

以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1)
PbOを68.5質量%、TiOを11.7質量%、ZrOを17.5質量%、Sbを0.90質量%、Nbを0.82質量%、MnCOをMnO換算で0.60質量%となるように、各原料を量り取り、所定量の水と共にボールミルにて24時間の混合を行った。その後、調製スラリーを熱風乾燥機内に入れて蒸発・乾燥させた。得られた混合原料は、マグネシアのサヤ内に入れマグネシアの蓋をして、電気炉中で1000℃に加熱し仮焼・合成を行う。得られた仮焼物は、再度、所定量の水と共にボールミルにて所定時間の粉砕を行い、熱風乾燥機内にて蒸発・乾燥させ第一の二次原料とした。
Example 1
The PbO 68.5 wt%, the TiO 2 11.7 wt%, a ZrO 2 17.5 wt%, the Sb 2 O 3 0.90 wt%, Nb 2 O 5 0.82% by mass, MnCO 3 Each raw material was weighed out so as to be 0.60% by mass in terms of MnO 2 and mixed with a predetermined amount of water in a ball mill for 24 hours. Thereafter, the prepared slurry was put in a hot air dryer and evaporated and dried. The obtained mixed raw material is put in a magnesia sheath, covered with magnesia, heated to 1000 ° C. in an electric furnace, and calcined and synthesized. The obtained calcined product was again pulverized for a predetermined time with a predetermined amount of water in a ball mill, evaporated and dried in a hot air dryer to obtain a first secondary material.

次いで、PbOを53.3質量%、CuOを19.0質量%、WOを27.7質量%となるように各原料を量り取り、所定量の水と共にボールミルにて24時間の混合を行った。その後、調製スラリーを熱風乾燥機内に入れて蒸発・乾燥させた。得られた混合原料は、マグネシアのサヤ内に入れマグネシアの蓋をして、電気炉中で800℃に加熱し仮焼・合成を行う。得られた仮焼物は、再度、所定量の水と共にボールミルにて所定時間の粉砕を行い、熱風乾燥機内にて蒸発・乾燥させ第二の二次原料とした。 Next, each raw material was weighed so that PbO was 53.3% by mass, CuO was 19.0% by mass, and WO 3 was 27.7% by mass, and the mixture was mixed with a predetermined amount of water in a ball mill for 24 hours. It was. Thereafter, the prepared slurry was put in a hot air dryer and evaporated and dried. The obtained mixed raw material is put in a magnesia sheath, covered with magnesia, heated to 800 ° C. in an electric furnace, and calcined and synthesized. The obtained calcined product was again pulverized with a predetermined amount of water in a ball mill for a predetermined time, evaporated and dried in a hot air dryer to obtain a second secondary material.

前記で調製した、第一の二次原料を97.4質量%、第二の二次原料を2.6質量%、で量り取り、所定量の水と共にボールミルにて24時間の混合を行った。その後、調製スラリーを熱風乾燥機内に入れて蒸発・乾燥させた。得られた混合原料は、マグネシアのサヤ内に入れマグネシアの蓋をして、電気炉中で800℃に加熱し仮焼・合成を行う。得られた仮焼物は、再度、所定量の水と共にボールミルにて所定時間の粉砕を行い、熱風乾燥機内にて蒸発・乾燥させ圧電セラミック組成物とした。   The first secondary raw material prepared above was weighed at 97.4% by mass and the second secondary raw material was 2.6% by mass, and mixed for 24 hours with a predetermined amount of water in a ball mill. . Thereafter, the prepared slurry was put in a hot air dryer and evaporated and dried. The obtained mixed raw material is put in a magnesia sheath, covered with magnesia, heated to 800 ° C. in an electric furnace, and calcined and synthesized. The obtained calcined product was again pulverized with a predetermined amount of water in a ball mill for a predetermined time, evaporated and dried in a hot air dryer to obtain a piezoelectric ceramic composition.

このようにして作製した圧電セラミック組成物粉末を、直径20mm、厚み7mmの円板形状に圧粉成形した後、マグネシアサヤ中に入れて、電気炉にて950℃で3時間保持して圧電セラミックバルクを作製した。得られた圧電セラミックバルクを12mm×3mm×1mmの形状に加工し、12mm×3mmの二面にAgペーストを塗布・熱処理して試験片を作製した。試験片は140℃のシリコンオイル中で、3kV/mmの電界を、15分間印加することで分極処理を行った。   The piezoelectric ceramic composition powder thus produced was compacted into a disk shape having a diameter of 20 mm and a thickness of 7 mm, and then placed in a magnesia sheath and held at 950 ° C. for 3 hours in an electric furnace. A bulk was made. The obtained piezoelectric ceramic bulk was processed into a shape of 12 mm × 3 mm × 1 mm, and an Ag paste was applied and heat-treated on two sides of 12 mm × 3 mm to prepare a test piece. The test piece was subjected to polarization treatment by applying an electric field of 3 kV / mm for 15 minutes in 140 ° C. silicone oil.

この分極処理を行った試験片のヤング率は、EMAS6100に従って弾性コンプライアンスを測定し、その逆数として求めた。また、ヤング率の温度変化率を測定する場合は、恒温槽内で−40℃から80℃までの所定の温度で弾性コンプライアンスを測定し、その逆数として求めた。その結果、−40℃では83.4GPa、80℃では84.7GPaと、正の傾きを持っていることを確認した。   The Young's modulus of the test piece subjected to the polarization treatment was obtained as the reciprocal of the elastic compliance measured according to EMAS6100. Moreover, when measuring the temperature change rate of Young's modulus, the elastic compliance was measured at a predetermined temperature from −40 ° C. to 80 ° C. in a constant temperature bath, and the reciprocal thereof was obtained. As a result, it was confirmed that the positive slope was 83.4 GPa at −40 ° C. and 84.7 GPa at 80 ° C.

また、Ag−Pd電極材料のヤング率の温度変化は、所定温度において曲げ法によりヤング率を測定した。結果、−40℃では65.9GPa、80℃では64.6GPaと負の傾きを持っていることを確認した。   Moreover, the temperature change of the Young's modulus of the Ag—Pd electrode material was measured by a bending method at a predetermined temperature. As a result, it was confirmed that the negative slope was 65.9 GPa at −40 ° C. and 64.6 GPa at 80 ° C.

(実施例2)
PbOを68.5質量%、TiOを11.7質量%、ZrOを17.5質量%、Sbを0.90質量%、Nbを0.82質量%、MnCOをMnO換算で0.60質量%となるように、各原料を量り取り、所定量の水と共にボールミルにて24時間の混合を行った。その後、調製スラリーを熱風乾燥機内に入れて蒸発・乾燥させた。得られた混合原料は、マグネシアのサヤ内に入れマグネシアの蓋をして、電気炉中で1000℃に加熱し仮焼・合成を行う。得られた仮焼物は、再度、所定量の水と共にボールミルにて所定時間の粉砕を行い、熱風乾燥機内にて蒸発・乾燥させ第一の二次原料とした。
(Example 2)
The PbO 68.5 wt%, the TiO 2 11.7 wt%, a ZrO 2 17.5 wt%, the Sb 2 O 3 0.90 wt%, Nb 2 O 5 0.82% by mass, MnCO 3 Each raw material was weighed out so as to be 0.60% by mass in terms of MnO 2 and mixed with a predetermined amount of water in a ball mill for 24 hours. Thereafter, the prepared slurry was put in a hot air dryer and evaporated and dried. The obtained mixed raw material is put in a magnesia sheath, covered with magnesia, heated to 1000 ° C. in an electric furnace, and calcined and synthesized. The obtained calcined product was again pulverized for a predetermined time with a predetermined amount of water in a ball mill, evaporated and dried in a hot air dryer to obtain a first secondary material.

次いで、PbOを53.3質量%、CuOを19.0質量%、WOを27.7質量%となるように各原料を量り取り、所定量の水と共にボールミルにて24時間の混合を行った。その後、調製スラリーを熱風乾燥機内に入れて蒸発・乾燥させた。得られた混合原料は、マグネシアのサヤ内に入れマグネシアの蓋をして、電気炉中で800℃に加熱し仮焼・合成を行う。得られた仮焼物は、再度、所定量の水と共にボールミルにて所定時間の粉砕を行い、熱風乾燥機内にて蒸発・乾燥させ第二の二次原料とした。 Next, each raw material was weighed so that PbO was 53.3% by mass, CuO was 19.0% by mass, and WO 3 was 27.7% by mass, and the mixture was mixed with a predetermined amount of water in a ball mill for 24 hours. It was. Thereafter, the prepared slurry was put in a hot air dryer and evaporated and dried. The obtained mixed raw material is put in a magnesia sheath, covered with magnesia, heated to 800 ° C. in an electric furnace, and calcined and synthesized. The obtained calcined product was again pulverized with a predetermined amount of water in a ball mill for a predetermined time, evaporated and dried in a hot air dryer to obtain a second secondary material.

前記で調製した、第一の二次原料を97.4質量%、第二の二次原料を2.6質量%、で量り取り、所定量の水と共にボールミルにて24時間の混合を行った。その後、調製スラリーを熱風乾燥機内に入れて蒸発・乾燥させた。得られた混合原料は、マグネシアのサヤ内に入れマグネシアの蓋をして、電気炉中で800℃に加熱し仮焼・合成を行う。得られた仮焼物は、再度、所定量の水と共にボールミルにて所定時間の粉砕を行い、熱風乾燥機内にて蒸発・乾燥させ圧電セラミック組成物とした。   The first secondary raw material prepared above was weighed at 97.4% by mass and the second secondary raw material was 2.6% by mass, and mixed for 24 hours with a predetermined amount of water in a ball mill. . Thereafter, the prepared slurry was put in a hot air dryer and evaporated and dried. The obtained mixed raw material is put in a magnesia sheath, covered with magnesia, heated to 800 ° C. in an electric furnace, and calcined and synthesized. The obtained calcined product was again pulverized with a predetermined amount of water in a ball mill for a predetermined time, evaporated and dried in a hot air dryer to obtain a piezoelectric ceramic composition.

こうして得られた圧電セラミック組成物を分散材、可塑剤、溶媒と共に混合してスラリーを調製し、ドクターブレード法にて圧電セラミックシートを成形した。圧電セラミックシートの厚みは、焼成後に40μmとなるように調製した。圧電セラミックシート上に70wt%Ag−30wt%Pd電極材料ペーストを所定形状で印刷形成したものを所定順序で36層分を積層してグリーンシート積層体を作製した。電極材料の厚みは、焼成後に1.5μmとなるように調製した。得られたグリーンシート積層体を電気炉中で900℃で焼成した後、長さ5.0mm×幅1.5mm×厚み1.5mmの寸法となるように機械加工した後、70wt%Ag−30wt%Pd電極材料ペーストにより側面電極を形成し、圧電素子とした。   The piezoelectric ceramic composition thus obtained was mixed with a dispersing material, a plasticizer and a solvent to prepare a slurry, and a piezoelectric ceramic sheet was formed by a doctor blade method. The thickness of the piezoelectric ceramic sheet was adjusted to 40 μm after firing. A green sheet laminate was produced by laminating 36 layers of a 70 wt% Ag-30 wt% Pd electrode material paste printed in a predetermined shape on a piezoelectric ceramic sheet in a predetermined order. The thickness of the electrode material was adjusted to 1.5 μm after firing. The obtained green sheet laminate was fired at 900 ° C. in an electric furnace, then machined to have a length of 5.0 mm × width of 1.5 mm × thickness of 1.5 mm, and then 70 wt% Ag-30 wt Side electrodes were formed from% Pd electrode material paste to form piezoelectric elements.

(実施例3、4、比較例1、2)
各原料を下記の表1に示した割合となるように量り取り、実施例2と同様な方法にて圧電素子を作製した。
(Examples 3 and 4, Comparative Examples 1 and 2)
Each raw material was weighed so as to have the ratio shown in Table 1 below, and a piezoelectric element was produced in the same manner as in Example 2.

Figure 0005183986
Figure 0005183986

(評価)
上記実施例及び比較例における、Q値、MnO量、共振周波数の温度変化率の数値を下記の表2に示した。なお、Q値、共振周波数の温度変化率の数値は、次式を用いて算出した。
Q値:(素子の共振周波数)/(共振周波数の半値幅)
共振周波数の温度変化率:(fmax−fmin)/f20
fmax:−40℃から80℃における最大の共振周波数
fmin:−40℃から80℃における最小の共振周波数
20:20℃における共振周波数
(Evaluation)
The numerical values of the Q value, the amount of MnO 2 , and the temperature change rate of the resonance frequency in the above examples and comparative examples are shown in Table 2 below. In addition, the numerical value of the temperature change rate of Q value and resonance frequency was calculated using the following equation.
Q value: (resonance frequency of the element) / (half-value width of resonance frequency)
Temperature change rate of resonance frequency: (fmax−fmin) / f 20
fmax: maximum resonance frequency from −40 ° C. to 80 ° C.
fmin: minimum resonance frequency from −40 ° C. to 80 ° C.
f 20 : resonance frequency at 20 ° C.

Figure 0005183986
Figure 0005183986

実施例1〜4および比較例1,2の圧電素子についてQ値を測定したところ、実施例のQ値はいずれも650を超えているのに対し、比較例1のQ値は31であった。また、比較例2では焼成後でも圧電層が緻密化していないために、Q値の測定ができなかった。実施例2に使用した圧電セラミック材料のヤング率は84.1GPaであり、電極に使用した70wt%Ag−30wt%Pd合金のヤング率は65.3GPaであった。従って、圧電セラミック材料のヤング率に対する、電極材料のヤング率の比率は0.78であった。これらの結果により、Q値が高いと共に、共振周波数の温度変化が小さい圧電/電歪素子が可能となることがわかる。 When the Q values of the piezoelectric elements of Examples 1 to 4 and Comparative Examples 1 and 2 were measured, the Q value of the Examples exceeded 650, whereas the Q value of Comparative Example 1 was 31. . In Comparative Example 2, the Q value could not be measured because the piezoelectric layer was not densified even after firing. The Young's modulus of the piezoelectric ceramic material used in Example 2 was 84.1 GPa, and the Young's modulus of the 70 wt% Ag-30 wt% Pd alloy used for the electrode was 65.3 GPa. Therefore, the ratio of the Young's modulus of the electrode material to the Young's modulus of the piezoelectric ceramic material was 0.78. From these results, it can be seen that a piezoelectric / electrostrictive element having a high Q value and a small temperature change of the resonance frequency can be realized.

本発明は、超音波モータや、圧電トランス、発音体、アクチュエータ、センサ等の圧電/電歪素子、圧電/電歪セラミックス組成物及び圧電モータ等に利用できる。そして、本発明の圧電/電歪素子によれば、Q値が高いと共に、共振周波数の温度変化が小さい圧電/電歪素子を提供できる。   The present invention can be used for ultrasonic motors, piezoelectric / electrostrictive elements such as piezoelectric transformers, sounding bodies, actuators, and sensors, piezoelectric / electrostrictive ceramic compositions, and piezoelectric motors. According to the piezoelectric / electrostrictive element of the present invention, it is possible to provide a piezoelectric / electrostrictive element having a high Q value and a small temperature change of the resonance frequency.

本発明の圧電/電歪素子の一実施形態を模式的に示す斜視図であって、概略斜視図である。It is a perspective view showing typically one embodiment of a piezoelectric / electrostrictive element of the present invention, and is a schematic perspective view. 本発明の圧電/電歪素子の一実施形態を模式的に示す斜視図であって、図1の概略斜視図で示した圧電/電歪素子の構成をわかりやすく説明するために、各層で分解した、分解斜視図である。FIG. 2 is a perspective view schematically showing an embodiment of the piezoelectric / electrostrictive element of the present invention, and is decomposed in each layer in order to easily understand the configuration of the piezoelectric / electrostrictive element shown in the schematic perspective view of FIG. 1. FIG.

符号の説明Explanation of symbols

1,2:圧電/電歪層、3:第一電極、4:第二電極、5:共通電極、6:側面電極。 1, 2: Piezoelectric / electrostrictive layer, 3: First electrode, 4: Second electrode, 5: Common electrode, 6: Side electrode.

Claims (12)

圧電/電歪体と、前記圧電/電歪体上に設けられた一対以上の電極とからなる圧電/電歪素子であって、
前記圧電/電歪体に使用している圧電/電歪材料の共振周波数の温度変化率と、電極材料の共振周波数の温度変化率とが、−40℃から+80℃の温度範囲において、正負の符号が異なるとともに、
前記圧電/電歪体が、PbをPbO換算で65質量%以上70質量%以下含み、TiをTiO 換算で7.0質量%以上16.0質量%以下含み、ZrをZrO 換算で10.5質量%以上24.5質量%以下含み、SbをSb 換算で0.65質量%以上1.05質量%以下含み、NbをNb 換算で0.5質量%以上0.8質量%以下含み、CuをCuO換算で0.3質量%以上0.7質量%以下含み、WをWO 換算で0.6質量%以上1.5質量%以下含み、MnをMnO 換算で0.3質量%以上0.7質量%以下含み、CuとWのモル比が1.5:1以上2.5:1以下である圧電/電歪セラミック組成物を主成分とする圧電/電歪素子。
A piezoelectric / electrostrictive element comprising a piezoelectric / electrostrictive body and a pair of electrodes provided on the piezoelectric / electrostrictive body,
The temperature change rate of the resonance frequency of the piezoelectric / electrostrictive material used in the piezoelectric / electrostrictive body and the temperature change rate of the resonance frequency of the electrode material are positive and negative in a temperature range of −40 ° C. to + 80 ° C. The sign is different ,
The piezoelectric / electrostrictive body, Pb and includes less than 70 mass% 65 mass% in terms of PbO, Ti hints in terms of TiO 2 7.0% by mass or more 16.0 mass% or less, a Zr in terms of ZrO 2 10 0.5% by mass or more and 24.5% by mass or less, Sb by 0.65% by mass or more by 1.05% by mass or less in terms of Sb 2 O 3 , and Nb by 0.5% by mass or more by Nb 2 O 5 in terms of 0 0.8 mass% or less, Cu 0.3 to 0.7 mass% in terms of CuO, W 3 to 0.6 mass% in terms of WO3 , and Mn to MnO 2 Piezoelectric / electrostrictive ceramic composition containing 0.3% to 0.7% by weight in terms of conversion and having a Cu to W molar ratio of 1.5: 1 to 2.5: 1. / Electrostrictive element.
前記電極材料が金属材料からなり、前記圧電/電歪体に使用している圧電/電歪材料のヤング率の温度変化率と、前記金属材料のヤング率の温度変化率とが、−40℃から+80℃の温度範囲において、正負の符号が異なる請求項1に記載の圧電/電歪素子。   The electrode material is made of a metal material, and the temperature change rate of the Young's modulus of the piezoelectric / electrostrictive material used in the piezoelectric / electrostrictive body and the temperature change rate of the Young's modulus of the metal material are −40 ° C. 2. The piezoelectric / electrostrictive element according to claim 1, wherein positive and negative signs are different in a temperature range from to 80 ° C. 3. 圧電/電歪層と内部電極層とが、交互に、複数、積層されてなる柱状積層体と、その柱状積層体の周面に設けられ、前記内部電極層のうち、極性の同じものを、それぞれ接続する一対の側面電極と、を有する請求項1又は2に記載の圧電/電歪素子。   Piezoelectric / electrostrictive layers and internal electrode layers are alternately provided in a plurality of stacked columnar laminates, and provided on the peripheral surface of the columnar laminate, and the same polarity among the internal electrode layers, The piezoelectric / electrostrictive element according to claim 1, further comprising a pair of side electrodes connected to each other. 前記圧電/電歪素子において、前記内部電極層に使用している金属材料のヤング率の温度変化率が、−40℃から+80℃の温度範囲において、−8.0%以上−1.0%以下である請求項1〜3の何れか一項に記載の圧電/電歪素子。 In the piezoelectric / electrostrictive element, the temperature change rate of the Young's modulus of the metal material used for the internal electrode layer is −8.0% or more and −1.0% in a temperature range of −40 ° C. to + 80 ° C. The piezoelectric / electrostrictive element according to any one of claims 1 to 3, wherein: 前記圧電/電歪素子において、前記圧電/電歪材料のヤング率の温度変化率が、−40℃から+80℃の温度範囲において、0%より大きく4.0%以下である請求項1〜4の何れか一項に記載の圧電/電歪素子。   In the piezoelectric / electrostrictive element, a temperature change rate of Young's modulus of the piezoelectric / electrostrictive material is greater than 0% and not more than 4.0% in a temperature range of -40 ° C to + 80 ° C. The piezoelectric / electrostrictive element according to any one of the above. 前記圧電/電歪材料が、正方晶を主相とする請求項1〜5の何れか一項に記載の圧電/電歪素子。   The piezoelectric / electrostrictive element according to any one of claims 1 to 5, wherein the piezoelectric / electrostrictive material has tetragonal crystal as a main phase. 前記圧電/電歪層のヤング率に対する、前記内部電極層のヤング率の比率(電極層のヤング率÷圧電/電歪層のヤング率)が0.75以上1.30以下である請求項3〜6の何れか一項に記載の圧電/電歪素子。 Wherein for the Young's modulus of the piezoelectric / electrostrictive layer, the inner electrode layer of the Young's modulus ratio claim (Young's modulus Young's modulus of the electrode layer ÷ piezoelectric / electrostrictive layer) is 0.75 or more 1.30 or less 3 the piezoelectric / electrostrictive element according to any one of 6. 前記圧電/電歪層のヤング率が60GPa以上100GPa以下である請求項3〜7の何れか一項に記載の圧電/電歪素子。 The piezoelectric / electrostrictive element according to any one of claims 3 to 7, wherein a Young's modulus of the piezoelectric / electrostrictive layer is 60 GPa or more and 100 GPa or less. 前記圧電/電歪層中にAgを含む請求項3〜8の何れか一項に記載の圧電/電歪素子。 The piezoelectric / electrostrictive element according to claim 3, wherein Ag is contained in the piezoelectric / electrostrictive layer. 請求項3〜9の何れか一項に記載の圧電/電歪素子を用い、前記圧電/電歪層中一次縦−二次屈曲振動モードを利用した定在波型圧電モータである圧電モータ。 A piezoelectric motor which is a standing wave type piezoelectric motor using the piezoelectric / electrostrictive element according to any one of claims 3 to 9 and utilizing a primary longitudinal-secondary bending vibration mode in the piezoelectric / electrostrictive layer. 一次縦共振周波数および二次屈曲共振周波数の温度変化が、−40℃から80℃の温度範囲において1.0%以内である請求項10に記載の圧電モータ。 11. The piezoelectric motor according to claim 10, wherein a temperature change of the primary longitudinal resonance frequency and the secondary bending resonance frequency is within 1.0% in a temperature range of −40 ° C. to + 80 ° C. 11 . 圧電/電歪体と、圧電/電歪体上に設けられた一対以上の電極とからなる圧電/電歪素子であり、圧電/電歪体に使用している圧電/電歪材料の共振周波数の温度変化率と、電極材料の共振周波数の温度変化率とが、−40℃から+80℃の温度範囲において、正負の符号が異なる圧電/電歪素子における、前記圧電/電歪体を構成する圧電/電歪セラミック組成物であり、
PbをPbO換算で65質量%以上70質量%以下含み、TiをTiO換算で7.0質量%以上16.0質量%以下含み、ZrをZrO換算で10.5質量%以上24.5質量%以下含み、SbをSb換算で0.65質量%以上1.05質量%以下含み、NbをNb換算で0.5質量%以上0.8質量%以下含み、CuをCuO換算で0.3質量%以上0.7質量%以下含み、WをWO換算で0.6質量%以上1.5質量%以下含み、MnをMnO換算で0.3質量%以上0.7質量%以下含み、CuとWのモル比が1.5:1以上2.5:1以下である圧電/電歪セラミック組成物。
A piezoelectric / electrostrictive element comprising a piezoelectric / electrostrictive body and a pair of electrodes provided on the piezoelectric / electrostrictive body, and the resonance frequency of the piezoelectric / electrostrictive material used in the piezoelectric / electrostrictive body The piezoelectric / electrostrictive body in the piezoelectric / electrostrictive element in which the temperature change rate of the electrode material and the temperature change rate of the resonance frequency of the electrode material have different signs in the temperature range of −40 ° C. to + 80 ° C. A piezoelectric / electrostrictive ceramic composition;
Pb contains 65% by mass or more and 70% by mass or less in terms of PbO, Ti contains 7.0% by mass or more and 16.0% by mass or less in terms of TiO 2 , and Zr contains 10.5% by mass or more in terms of ZrO 2 and 24.5% by mass or more. Less than or equal to 0.5% by mass, less than or equal to 1.05% by mass in terms of Sb 2 O 3 , less than or equal to 0.5% by mass in terms of Nb 2 O 5 , Cu Is 0.3 mass% or more and 0.7 mass% or less in terms of CuO, W is 0.6 mass% or more and 1.5 mass% or less in terms of WO 3 , and Mn is 0.3 mass% or more in terms of MnO 2. A piezoelectric / electrostrictive ceramic composition comprising 0.7% by mass or less and having a molar ratio of Cu to W of 1.5: 1 to 2.5: 1.
JP2007174212A 2006-07-26 2007-07-02 Piezoelectric / electrostrictive element, piezoelectric / electrostrictive ceramic composition, and piezoelectric motor Expired - Fee Related JP5183986B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US83330806A 2006-07-26 2006-07-26
US60/833,308 2006-07-26
US82915906A 2006-10-12 2006-10-12
US60/829,159 2006-10-12

Publications (2)

Publication Number Publication Date
JP2007259700A JP2007259700A (en) 2007-10-04
JP5183986B2 true JP5183986B2 (en) 2013-04-17

Family

ID=38633328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174212A Expired - Fee Related JP5183986B2 (en) 2006-07-26 2007-07-02 Piezoelectric / electrostrictive element, piezoelectric / electrostrictive ceramic composition, and piezoelectric motor

Country Status (1)

Country Link
JP (1) JP5183986B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8456066B2 (en) * 2009-07-10 2013-06-04 Ngk Insulators, Ltd. Piezoelectric / electrostrictive material, piezoelectric / electrostrictive ceramic composition, piezoelectric / electrostrictive element, and piezoelectric motor
KR101654681B1 (en) * 2011-10-20 2016-09-07 캐논 가부시끼가이샤 Dust removing device and imaging device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579334B2 (en) * 1988-02-05 1997-02-05 三井東圧化学株式会社 Electrostrictive material
JPH0570225A (en) * 1991-09-09 1993-03-23 Hitachi Metals Ltd Piezoelectric ceramic composition
JPH0672717A (en) * 1992-08-24 1994-03-15 Honda Motor Co Ltd Piezoelectric electrostrictive material
JPH07241090A (en) * 1994-02-28 1995-09-12 Nikon Corp Ultrasonic motor
JPH10271857A (en) * 1997-01-23 1998-10-09 Nikon Corp Vibrating actuator and manufacture thereof
JP3971279B2 (en) * 2002-09-20 2007-09-05 キヤノン株式会社 Method for manufacturing piezoelectric element
JP4423850B2 (en) * 2002-11-12 2010-03-03 株式会社村田製作所 Piezoelectric ceramic composition and piezoelectric element using the same
US7332985B2 (en) * 2003-10-30 2008-02-19 Avago Technologies Wireless Ip (Singapore) Pte Ltd. Cavity-less film bulk acoustic resonator (FBAR) devices
JP4795748B2 (en) * 2004-09-13 2011-10-19 株式会社デンソー Piezoelectric actuator
JP2006188414A (en) * 2004-12-07 2006-07-20 Murata Mfg Co Ltd Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP3923064B2 (en) * 2005-03-25 2007-05-30 Tdk株式会社 Multilayer piezoelectric element and method for manufacturing the same
CN101326651B (en) * 2005-12-08 2010-07-14 株式会社村田制作所 Laminated piezoelectric element and process for producing the same

Also Published As

Publication number Publication date
JP2007259700A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP5864168B2 (en) Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP4400754B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP5967988B2 (en) Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP4727458B2 (en) Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
JP5815404B2 (en) Piezoelectric body / electrostrictive body, piezoelectric / electrostrictive ceramic composition, piezoelectric element / electrostrictive element, and piezoelectric motor
JP6175528B2 (en) Piezoelectric device
JP5345834B2 (en) Lead-free piezoelectric ceramic, multilayer piezoelectric device, and lead-free piezoelectric ceramic manufacturing method
JP5506731B2 (en) Method for manufacturing piezoelectric element
JP5183986B2 (en) Piezoelectric / electrostrictive element, piezoelectric / electrostrictive ceramic composition, and piezoelectric motor
JP2006269813A (en) Process for producing piezoelectric ceramics and piezoelectric element
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP5462759B2 (en) Piezoelectric ceramics and piezoelectric element
WO2024070626A1 (en) Lead-free piezoelectric composition, and piezoelectric element
JP5894222B2 (en) Multilayer electronic component and manufacturing method thereof
WO2024122087A1 (en) Piezoelectric element, piezoelectric ceramic composition, production method for piezoelectric element, and production method for piezoelectric ceramic composition
WO2024070625A1 (en) Lead-free piezoelectric composition and piezoelectric element
WO2024070849A1 (en) Lead-free piezoelectric composition and piezoelectric element
JP2009114049A (en) Piezoelectric/electrostrictive ceramic composition and piezoelectric/electrostrictive element
JP5482609B2 (en) Piezoelectric ceramic, piezoelectric element including the same, and piezoelectric device including the piezoelectric element
TW202430485A (en) Lead-free piezoelectric composition and piezoelectric element
JP2003055046A (en) Piezoelectric ceramic composition, piezoelectric device using the same and producing method therefor
JP5482607B2 (en) Piezoelectric ceramic, piezoelectric element and piezoelectric device
JP5488382B2 (en) Ultrasonic motor
JP2005255511A (en) Piezoelectric ceramic composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5183986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees