JP5183402B2 - Heating resistor type air flow measuring device - Google Patents

Heating resistor type air flow measuring device Download PDF

Info

Publication number
JP5183402B2
JP5183402B2 JP2008252122A JP2008252122A JP5183402B2 JP 5183402 B2 JP5183402 B2 JP 5183402B2 JP 2008252122 A JP2008252122 A JP 2008252122A JP 2008252122 A JP2008252122 A JP 2008252122A JP 5183402 B2 JP5183402 B2 JP 5183402B2
Authority
JP
Japan
Prior art keywords
heating resistor
air flow
air passage
measuring device
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008252122A
Other languages
Japanese (ja)
Other versions
JP2010085136A (en
Inventor
千尋 小林
崇裕 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2008252122A priority Critical patent/JP5183402B2/en
Publication of JP2010085136A publication Critical patent/JP2010085136A/en
Application granted granted Critical
Publication of JP5183402B2 publication Critical patent/JP5183402B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、内燃機関の吸気流量計測用に好適な発熱抵抗体式の空気流量測定装置に関する。   The present invention relates to a heating resistor type air flow rate measuring device suitable for intake air flow rate measurement of an internal combustion engine.

内燃機関用の流量測定技術としては発熱抵抗体式空気流量測定装置が知られている。これは発熱抵抗体の奪われる熱量が流入流量に対し相関関係があることを利用したものであり、エンジンの燃焼制御で必要となる質量流量を直接測定できるため特に自動車の空燃比制御用の流量計として広く使われている(例えば、特許文献1参照)。   A heating resistor type air flow rate measuring device is known as a flow rate measuring technique for an internal combustion engine. This utilizes the fact that the amount of heat taken away by the heating resistor has a correlation with the inflow flow rate, and can directly measure the mass flow rate required for engine combustion control. It is widely used as a total (see, for example, Patent Document 1).

特開平11−14423号公報Japanese Patent Laid-Open No. 11-14423

発熱抵抗体式空気流量測定装置は小型で応答性に優れ、更に質量空気流量が計測できる利点があり自動車用等の内燃機関の空気流量計として広く使われている。内燃機関に使われる場合、吸入空気は吸気バルブの開閉に伴い脈動流となり、時には逆流を伴うような脈動流となる。このため、流量検出素子である発熱抵抗体を副空気通路内に設置して脈動流の影響を低減させる必要がある。   The heating resistor type air flow measuring device is small and excellent in responsiveness, and has the advantage of being able to measure mass air flow, and is widely used as an air flow meter for internal combustion engines for automobiles and the like. When used in an internal combustion engine, the intake air becomes a pulsating flow with the opening and closing of the intake valve, and sometimes a pulsating flow with backflow. For this reason, it is necessary to reduce the influence of the pulsating flow by installing a heating resistor, which is a flow rate detecting element, in the auxiliary air passage.

副空気通路内に発熱抵抗体を設置する際には発熱抵抗体式空気流量測定装置の駆動回路と発熱抵抗体を電気的に繋ぐための金属により構成される発熱抵抗体支持部材が必要となる。この発熱抵抗体支持部材は一般的に副空気通路の一部を構成する樹脂部材と一体成型されている。   When the heating resistor is installed in the sub air passage, a heating resistor support member made of metal for electrically connecting the driving circuit of the heating resistor type air flow measuring device and the heating resistor is required. This heating resistor support member is generally integrally formed with a resin member that constitutes a part of the sub air passage.

金属の発熱抵抗体支持部材を一体成型される際には、金型で分割して成型する方法をとるのが一般的である。この型分割部は初期的には問題なく成型できるが、長期間使用した場合などでは型分割が旨くできずに薄皮状のバリが発生することがある。このバリが発生すると、発熱抵抗体付近の空気の流れが乱されてしまうこととなる。つまり、バリの有無やバリの大きさ等で発熱抵抗体の計測値にばらつきが生じてしまうのである。このばらつきは、空気流量の計測ばらつきに直接影響してしまうため、車両での高精度な燃料噴射制御に悪影響を及ぼしてしまうのである。   When a metal heating resistor support member is integrally molded, it is common to divide it with a mold and mold it. This mold division part can be molded without any problems at the beginning, but when it is used for a long period of time, the mold division is not successful and a thin burr may occur. When this burr occurs, the air flow near the heating resistor is disturbed. That is, the measurement value of the heating resistor varies depending on the presence or absence of burrs and the size of burrs. This variation directly affects the measurement variation of the air flow rate, and thus adversely affects highly accurate fuel injection control in the vehicle.

本発明の目的は、高精度な流量計測が可能な発熱抵抗体式空気流量測定装置を提供することにある。   An object of the present invention is to provide a heating resistor type air flow rate measuring device capable of highly accurate flow rate measurement.

一般的には上記のばらつきを抑えるためにパーティングラインを平らにし、更にバリが生じないように金型のメンテナンス等を頻繁に行う事が必要となる。これに対して、本発明においては、逆にこのパーティングを利用して、わざと段差を造ってしまい、初期的に空気を乱してしまうことで、例えバリが発生してもその影響を少なくすることを発案した。筆者らの検討結果によればパーティングライン部に初期的に0.3mm程度の段差を設けることで、バリの発生有無で発熱抵抗体の計測する空気の流れの計測値に大差が出ないことを確認した。   In general, it is necessary to flatten the parting line in order to suppress the above-mentioned variation, and to frequently perform maintenance of the mold so as not to generate burrs. On the other hand, in the present invention, on the contrary, by using this parting, a step is intentionally created and the air is disturbed initially, so that even if burrs occur, the effect is reduced. Invented to do. According to the results of the study by the authors, by providing an initial step of about 0.3 mm in the parting line part, there is no significant difference in the measured value of the air flow measured by the heating resistor with or without burr. It was confirmed.

現在、地球温暖化等、世界的に環境に関して目が向けられている。このため、低燃費の車両が求められている。一方で車のユーザーは、車を人や荷物を運ぶ手段だけでなく、車の運転自体を楽しむために、エンジンのパワーも必要としている。この両立のためには、エンジンの高精度な燃料制御が不可欠であり、本発明はこの高精度燃料制御のための高精度空気流量計測を可能とするものである。   At present, attention is focused on the global environment such as global warming. For this reason, a low fuel consumption vehicle is desired. On the other hand, car users need not only the means of carrying cars and people but also the power of the engine to enjoy driving the car itself. In order to achieve both, high-precision fuel control of the engine is indispensable, and the present invention enables high-precision air flow measurement for this high-precision fuel control.

本発明の実施例を以下の図面に従い詳細に説明する。   Embodiments of the present invention will be described in detail with reference to the following drawings.

まず、最初に吸入空気計測装置の一例として、発熱抵抗体を使った発熱抵抗体式空気流量測定装置の動作原理について説明する。   First, the principle of operation of a heating resistor type air flow measuring device using a heating resistor will be described as an example of an intake air measuring device.

図10は発熱抵抗体式空気流量測定装置の概略構成回路図である。発熱抵抗体式空気流量測定装置の駆動回路1は大きく分けてブリッジ回路とフィードバック回路から成り立っている。吸入空気流量測定を行うための発熱抵抗体RH,吸入空気温度を補償するための感温抵抗体RC及びR10,R11でブリッジ回路を組み、オペアンプOP1を使いフィードバックをかけながら発熱抵抗体RHと感温抵抗体RCの間に一定温度差を保つように発熱抵抗体RHに加熱電流Ihを流して空気流量に応じた出力信号V2を出力する。つまり流速の速い場合には発熱抵抗体RHから奪われる熱量が多いため加熱電流Ihを多く流す。これに対して流速の遅い場合には発熱抵抗体Rhから奪われる熱量が少ないため加熱電流も少なくてすむのである。   FIG. 10 is a schematic circuit diagram of the heating resistor type air flow measuring device. The drive circuit 1 of the heating resistor type air flow measuring device is roughly divided into a bridge circuit and a feedback circuit. The heating resistor RH for measuring the intake air flow rate and the temperature sensitive resistors RC and R10, R11 for compensating the intake air temperature are combined to form a bridge circuit, and the feedback is made using the operational amplifier OP1 to sense the heating resistor RH. A heating current Ih is supplied to the heating resistor RH so as to maintain a constant temperature difference between the temperature resistors RC, and an output signal V2 corresponding to the air flow rate is output. That is, when the flow rate is high, a large amount of heat is taken from the heating resistor RH, so that a large amount of heating current Ih is passed. On the other hand, when the flow rate is low, the amount of heat taken away from the heating resistor Rh is small, so that the heating current can be reduced.

図8は発熱抵抗式空気流量計の一例を示す横断面であり、図9はその上流(左側)から見た外観図である。   FIG. 8 is a cross-sectional view showing an example of a heating resistance type air flow meter, and FIG. 9 is an external view as viewed from the upstream side (left side).

発熱抵抗体式空気流量測定装置の構成部品としては駆動回路を構成する回路基板2を内蔵するハウジング部材1及び非導電性部材により形成される副空気通路構成部材10等があり、副空気通路構成部材10の中には空気流量検出のための発熱抵抗体3,吸入空気温度を補償するための感温抵抗体4が導電性部材により構成された支持体5を介して回路基板2と電気的に接続されるように配置され、ハウジング,回路基板,副空気通路,発熱抵抗体,感温抵抗体等、これらを発熱抵抗体式空気流量測定装置の一体のモジュールとして構成されている。また、主空気通路22となる吸気管を構成する主空気通路構成部材20の壁面には副空気通路挿入穴25があけられており、この副空気通路挿入穴25より発熱抵抗体式空気流量測定装置の副空気通路14部分を外部より挿入して副空気通路構成部材の壁面とハウジング部材1とをネジ7等で機械的強度を保つように固定されている。また、副空気通路構成部材10と主空気通路構成部材20の間にシール材6を取り付けて、吸気管内外との気密性を保っている。   Components of the heating resistor type air flow rate measuring device include a housing member 1 containing a circuit board 2 constituting a driving circuit, a sub air passage constituent member 10 formed by a non-conductive member, and the like. 10, a heating resistor 3 for detecting the air flow rate 3 and a temperature sensitive resistor 4 for compensating the intake air temperature are electrically connected to the circuit board 2 via a support 5 made of a conductive member. The housing, the circuit board, the auxiliary air passage, the heating resistor, the temperature sensing resistor, and the like are arranged as an integrated module of the heating resistor type air flow measuring device. Further, a sub air passage insertion hole 25 is formed in the wall surface of the main air passage constituting member 20 constituting the intake pipe serving as the main air passage 22, and a heating resistor type air flow measuring device is formed from the sub air passage insertion hole 25. The auxiliary air passage 14 is inserted from the outside, and the wall surface of the auxiliary air passage constituting member and the housing member 1 are fixed with screws 7 or the like so as to maintain the mechanical strength. Moreover, the sealing material 6 is attached between the sub air passage constituting member 10 and the main air passage constituting member 20 to maintain the airtightness between the inside and outside of the intake pipe.

図1は本発明の一実施例を示す発熱抵抗体式空気流量測定装置の横断面を、図2は図1を上流側から見た際の縦断面図を示す。主空気通路である吸入空気通路103の一部を構成する吸気管構成部材105には発熱抵抗体式空気流量測定装置200が組み付けられる穴(挿入孔)が開いており、ハウジング部材212がネジ211等を使い吸気管構成部材105に固定される。発熱抵抗体式空気流量測定装置200のハウジング部材212には、外部との電気信号のインターフェースのためのコネクタターミナル201,発熱抵抗体205,感温抵抗体206が固定されるターミナル部材207が樹脂材等により一体成型されている。また、ハウジング部材212の内部には発熱抵抗体式空気流量測定装置200の駆動回路基板202が内設されており、ベース部材210,カバー部材により保護固定される構成となっている。また、駆動回路基板202と、コネクタターミナル201やターミナル部材207はアルミワイヤー等の接続部材203,208を介して電気的に接続されている。   FIG. 1 is a cross-sectional view of a heating resistor type air flow measuring device showing an embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view when FIG. 1 is viewed from the upstream side. The intake pipe constituting member 105 constituting a part of the intake air passage 103 that is the main air passage has a hole (insertion hole) into which the heating resistor type air flow measuring device 200 is assembled, and the housing member 212 is a screw 211 or the like. Is fixed to the intake pipe constituting member 105. The housing member 212 of the heating resistor type air flow measuring device 200 has a connector terminal 201 for interfacing with an external electric signal, a heating resistor 205, and a terminal member 207 to which the temperature sensitive resistor 206 is fixed, such as a resin material. Is integrally molded. In addition, a drive circuit board 202 of the heating resistor type air flow measuring device 200 is provided inside the housing member 212 and is configured to be protected and fixed by the base member 210 and the cover member. Further, the drive circuit board 202 and the connector terminal 201 and the terminal member 207 are electrically connected via connection members 203 and 208 such as aluminum wires.

空気流100を計測するための発熱抵抗体205や感温抵抗体206は副空気通路構成部材204によって構成された、副空気通路106内に設置されており、副空気通路106内の空気の流れ101を計測することにより全体の空気流100を代表して計測するものである。   The heating resistor 205 and the temperature sensitive resistor 206 for measuring the air flow 100 are installed in the auxiliary air passage 106 constituted by the auxiliary air passage constituting member 204, and the air flow in the auxiliary air passage 106 is measured. By measuring 101, the entire air flow 100 is representatively measured.

ハウジング部材212の副空気通路106に面する面から、発熱抵抗体205や感温抵抗体206の端子を兼ねる支持部材であるターミナル部材207が突き出している。ターミナル部材207は、発熱抵抗体205と感温抵抗体206とに対して、それぞれ2本ずつ設けられている。各ターミナル部材207の根元部分のハウジング部材212には、段差212aが形成されている。   A terminal member 207, which is a support member that also serves as a terminal of the heating resistor 205 and the temperature-sensitive resistor 206, protrudes from the surface of the housing member 212 facing the sub air passage 106. Two terminal members 207 are provided for each of the heating resistor 205 and the temperature sensitive resistor 206. A step 212 a is formed in the housing member 212 at the base of each terminal member 207.

次に図5を使い図1の断面A−Aの部分詳細を説明する。副空気通路106はハウジング部材212,副空気通路構成部材204,ベース部材210により構成されている。ハウジング部材212にはターミナル部材207(207a,207b,207c,207d)が4箇所に一体成型されている。ターミナル部材207a,207bには発熱抵抗体205が取り付けられ、ターミナル部材207c,207dには感温抵抗体206が取り付けられている。   Next, the details of a portion of the cross section AA of FIG. 1 will be described with reference to FIG. The sub air passage 106 includes a housing member 212, a sub air passage constituting member 204, and a base member 210. Terminal members 207 (207a, 207b, 207c, 207d) are integrally formed in the housing member 212 at four locations. A heating resistor 205 is attached to the terminal members 207a and 207b, and a temperature sensitive resistor 206 is attached to the terminal members 207c and 207d.

このターミナル部材207は平面で構成されているが、複雑に入り組んだ形をしているため、成型時の金型構成は図の上下方面に割ることになる。この金型構成を示したのが図6及び図7である。   Although this terminal member 207 is configured by a plane, since it has a complicated and complicated shape, the mold configuration at the time of molding is divided into the upper and lower surfaces in the figure. FIG. 6 and FIG. 7 show this mold configuration.

金型400と金型401はターミナル207を押さえるために、部分的に櫛型に割る構造となる。このため、ハウジング部材212の壁面には410に示すようなパーティングライン(型分割)が発生する。このパーティングは副空気通路106を構成した際に副空気通路内流れに対してほぼ垂直に構成される事となる。   In order to hold down the terminal 207, the metal mold 400 and the metal mold 401 are partially divided into comb shapes. For this reason, a parting line (die division) as indicated by 410 occurs on the wall surface of the housing member 212. This parting is configured substantially perpendicular to the flow in the auxiliary air passage when the auxiliary air passage 106 is formed.

通常、このパーティングライン410はバリ(凸量)が最小に押さえるように金型400と金型401の型合わせの設計をする。しかし、経時変化等により金型の合わせに徐々に隙間が発生し、徐々にバリの高さが増えてしまう。高さが増えると副空気通路内の流れが微妙に変化し、発熱抵抗体の計測流量に変化が生じてしまう。   Normally, the parting line 410 is designed to match the mold 400 and the mold 401 so that the burr (convex amount) is minimized. However, due to changes over time and the like, gaps are gradually generated in fitting the molds, and the height of burrs is gradually increased. As the height increases, the flow in the sub air passage slightly changes, and the measured flow rate of the heating resistor changes.

このバリの高さによる発熱抵抗体の影響を筆者らの実験により検討した結果、図3のような結果が得られた。図2は横軸に空気流量を示し、図左側は少ない空気流量を示し、右側ほど空気流量が多くなる。また、縦軸は発熱抵抗体が計測する空気流れの乱れの度合いを示す出力ノイズの値を示している。出力ノイズは値が大きいほど、計測部の流れが乱れている事を示している。バリの高さがゼロの時は出力ノイズの値は少なくなる。しかし、バリの高さが0.2mmの時は特定の流量で出力ノイズが大きくなる。更に大きくしていくと出力ノイズは小さくなり、バリの高さゼロの値に近づくことになる。つまり、バリの高さは特定の高さの時に大きくなり、ある程度高くなるとその影響が少なくなるのである。   As a result of examining the influence of the heating resistor due to the height of this burr by the authors' experiment, the result as shown in FIG. 3 was obtained. 2 shows the air flow rate on the horizontal axis, the left side of the drawing shows a small air flow rate, and the air flow rate increases toward the right side. The vertical axis indicates the value of output noise indicating the degree of air flow disturbance measured by the heating resistor. The larger the output noise value, the more disturbed the flow of the measurement unit is. When the burr height is zero, the output noise value decreases. However, when the burr height is 0.2 mm, the output noise increases at a specific flow rate. As the value is further increased, the output noise becomes smaller and approaches the value of zero burr height. In other words, the height of the burr increases at a specific height, and the effect decreases when the height increases to some extent.

その理由として図12に示すような事が考えられる。副空気通路内にバリ300があると、その下流に空気流れの剥離渦が発生する剥離領域301が生じる。この剥離渦はバリ300の高さが低いと、剥離渦の発生が生じたり消えたりを繰り返すため、空気の流れが不安定となり発熱抵抗体の計測する出力ノイズの値が大きくなる。一方、バリ300の高さが充分に高いとバリの下流に剥離領域が充分に発達することになり、その場所では空気の流れが302のように絞られることとなる。空気の流れが絞られると部分的に空気の流速が上がり、その場所での流れが安定する。つまり、この絞られた場所に発熱抵抗体205が設置されていると、出力ノイズの値が小さくなるのである。   The reason is as shown in FIG. If there is a burr 300 in the auxiliary air passage, a separation region 301 in which a separation vortex of the air flow is generated downstream is generated. If the height of the burr 300 is low, the separation vortex repeatedly generates and disappears, so that the air flow becomes unstable and the value of the output noise measured by the heating resistor increases. On the other hand, if the height of the burr 300 is sufficiently high, a separation region will be sufficiently developed downstream of the burr, and the air flow will be throttled as shown at 302 in that place. When the air flow is throttled, the air flow velocity partially increases, and the flow at that location is stabilized. That is, if the heating resistor 205 is installed at this narrowed place, the value of the output noise becomes small.

バリを常にゼロに管理できれば問題は無い。しかし、金型のメンテナンスを頻繁に行う必要があり、管理が難しくなってしまう。このため、図4に示すように、初期的にバリを模擬した段差212aを金型で形成しおくことで、その後にバリが発生してもその影響度を少なくすることが可能となるのである。図5,図6,図7から分かるように、段差212aはパーティングライン410に沿って形成している。本実施例では、段差212aをターミナル207a,207b,207c,207dのそれぞれに対して設けているが、いずれか一つに設けてもよい。特に、段差212aを最上流側に位置するターミナル207aに対して設けた場合に、最も大きな効果が得られる。   There is no problem if the burr can always be managed at zero. However, it is necessary to frequently perform maintenance of the mold, which makes management difficult. For this reason, as shown in FIG. 4, by forming a step 212a that simulates burrs with a mold in the initial stage, it is possible to reduce the degree of influence even if burrs subsequently occur. . As can be seen from FIGS. 5, 6 and 7, the step 212 a is formed along the parting line 410. In this embodiment, the step 212a is provided for each of the terminals 207a, 207b, 207c, and 207d, but may be provided for any one of them. In particular, when the step 212a is provided for the terminal 207a located on the most upstream side, the greatest effect can be obtained.

最後に、図11を使い電子燃料噴射方式の内燃機関に本発明品を適用した一実施例を示す。エアクリーナ54から吸入された吸入空気67は、発熱抵抗式空気流量測定装置のボディ53,吸入ダクト55,スロットルボディ58及び燃料が供給されるインジェクタ60を備えた吸気マニホールド59を経て、エンジンシリンダ62に吸入される。一方、エンジンシリンダで発生したガス63は排気マニホールド64を経て排出される。   Finally, FIG. 11 shows an embodiment in which the product of the present invention is applied to an electronic fuel injection type internal combustion engine. The intake air 67 sucked from the air cleaner 54 passes through the intake manifold 59 including the body 53 of the heating resistance type air flow rate measuring device 53, the suction duct 55, the throttle body 58, and the injector 60 to which fuel is supplied, to the engine cylinder 62. Inhaled. On the other hand, the gas 63 generated in the engine cylinder is discharged through the exhaust manifold 64.

発熱抵抗式空気流量測定装置の回路モジュール52から出力される空気流量信号と圧力信号,温度センサからの吸入空気温度信号,スロットル角度センサ57から出力されるスロットルバルブ角度信号,排気マニホールド64に設けられた酸素濃度計65から出力される酸素濃度信号及び、エンジン回転速度計61から出力されるエンジン回転速度信号等、これらを入力するコントロールユニット66はこれらの信号を逐次演算して最適な燃料噴射量とアイドルエアコントロールバルブ開度を求め、その値を使って前記インジェクタ60及びアイドルコントロールバルブ56を制御する。   The air flow rate signal and pressure signal output from the circuit module 52 of the heating resistance type air flow rate measuring device, the intake air temperature signal from the temperature sensor, the throttle valve angle signal output from the throttle angle sensor 57, and the exhaust manifold 64 are provided. The control unit 66 for inputting the oxygen concentration signal output from the oxygen concentration meter 65 and the engine rotation speed signal output from the engine rotation speed meter 61, etc., sequentially calculates these signals to obtain the optimum fuel injection amount. And the idle air control valve opening is obtained, and the injector 60 and the idle control valve 56 are controlled using the values.

自動車用としてのエンジン制御が主な使用用途になり、ディーゼルエンジンやガソリンエンジンに対して利用が可能となる。   Engine control for automobiles is the main application, and it can be used for diesel engines and gasoline engines.

本発明の一実施例を示す空気流量測定装置の構成図である。It is a block diagram of the air flow rate measuring apparatus which shows one Example of this invention. 図1を空気の流れ上流側から見た縦断面図である。It is the longitudinal cross-sectional view which looked at FIG. 1 from the air flow upstream. バリの高さと出力ノイズの値を示すグラフである。It is a graph which shows the height of a burr | flash, and the value of output noise. 副空気通路内の詳細図である。It is detail drawing in a subair passage. 図1の断面A−Aを示す図である。It is a figure which shows the cross section AA of FIG. ハウジング部材の金型の合わせを示す図である。It is a figure which shows matching of the metal mold | die of a housing member. 図5の金型が開いた状態を示す図である。It is a figure which shows the state which the metal mold | die of FIG. 5 opened. 代表的な発熱抵抗体式空気流量測定装置の横断面図である。It is a cross-sectional view of a typical heating resistor type air flow measuring device. 図7を上流側から見た図である。It is the figure which looked at FIG. 7 from the upstream. 発熱抵抗体式空気流量測定装置の概略回路構成図である。It is a schematic circuit block diagram of a heating resistor type air flow measuring device. 発熱抵抗体式空気流量測定装置を使った内燃機関の概略システム構成図である。1 is a schematic system configuration diagram of an internal combustion engine using a heating resistor type air flow rate measuring device. バリと出力ノイズの関係を説明するための副空気通路内の図である。It is a figure in the subair passage for explaining the relation between a burr and output noise.

符号の説明Explanation of symbols

1,212 ハウジング部材
2 回路基板
3 発熱抵抗体
4 感温抵抗体
5 導電性支持体
6 シール材
7 ネジ
10 副空気通路構成部材
14 副空気通路
20 主空気通路構成部材
22 主空気通路
25 副空気通路挿入穴
51 吸気温度センサ
52 回路モジュール
53 ボディ
54 エアクリーナ
55 吸入ダクト
56 アイドルエアコントロールバルブ
57 スロットル角度センサ
58 スロットルボディ
59 吸気マニホールド
60 インジェクタ
61 エンジン回転速度計
62 エンジンシリンダ
63 ガス
64 排気マニホールド
65 酸素濃度計
66 コントロールユニット
67 吸入空気
100 主空気通路空気流れ
101 副空気通路内空気流れ
102 副空気通路内空気流れ(出口)
103 吸入空気通路
105 吸気管構成部材
106 副空気通路
200 発熱抵抗体式空気流量測定装置
201 コネクタターミナル
202 駆動回路基板
203 接続部材
204 副空気通路構成部材
205 発熱抵抗体
206 感温抵抗体
207 ターミナル部材
208 接続部材
209 カバー
210 ベース部材
211 ネジ
300 バリ
301 剥離領域
400 金型1
401 金型2
410 パーティングライン
DESCRIPTION OF SYMBOLS 1,212 Housing member 2 Circuit board 3 Heating resistor 4 Temperature sensitive resistor 5 Conductive support 6 Sealing material 7 Screw 10 Sub air passage member 14 Sub air passage 20 Main air passage member 22 Main air passage 25 Sub air Passage insertion hole 51 Intake temperature sensor 52 Circuit module 53 Body 54 Air cleaner 55 Intake duct 56 Idle air control valve 57 Throttle angle sensor 58 Throttle body 59 Intake manifold 60 Injector 61 Engine tachometer 62 Engine cylinder 63 Gas 64 Exhaust manifold 65 Oxygen concentration Total 66 Control unit 67 Intake air 100 Main air passage air flow 101 Air flow in sub air passage 102 Air flow in sub air passage (exit)
103 Intake air passage 105 Intake pipe constituent member 106 Sub air passage 200 Heating resistor type air flow measuring device 201 Connector terminal 202 Drive circuit board 203 Connection member 204 Sub air passage constituent member 205 Heat generating resistor 206 Temperature sensing resistor 207 Terminal member 208 Connection member 209 Cover 210 Base member 211 Screw 300 Burr 301 Peeling area 400 Mold 1
401 Mold 2
410 Parting line

Claims (2)

主空気通路内に配置される副空気通路内に設置され、副空気通路を流れる空気への放熱
を基に主空気通路を流れる空気の流量を測定する発熱抵抗体を具備し、副空気通路を構成
する内壁から突き出した支持部材を介して前記発熱抵抗体を副空気通路内に支持した発熱
抵抗体式空気流量測定装置において、
前記支持部材の根元部付近の副空気通路内壁に段差を設け、
前記副空気通路は樹脂材によりその内壁面から金属である支持部材が突き出すように複
数の金型を用いて成型されており、前記段差は、成型の際の金型分割によって生じるパー
ティングラインを利用して、副空気通路内の空気の流れに対して垂直方向に形成されてい
ることを特徴とする発熱抵抗体式空気流量測定装置。
A heating resistor is installed in the sub air passage disposed in the main air passage and measures the flow rate of the air flowing through the main air passage based on the heat radiation to the air flowing through the sub air passage. In the heating resistor type air flow rate measuring device in which the heating resistor is supported in the auxiliary air passage through the supporting member protruding from the inner wall constituting the structure,
Providing a step on the inner wall of the auxiliary air passage near the base of the support member;
The sub air passage is molded by using a plurality of molds so that a metal supporting member protrudes from the inner wall surface by a resin material, and the step is formed by a parting line generated by mold division during molding. A heating resistor type air flow rate measuring device that is formed in a direction perpendicular to the air flow in the auxiliary air passage.
請求項1に記載の発熱抵抗体式空気流量測定装置において、副空気通路内壁の段差の高
さは、おおよそ0.3mm以上の段差であることを特徴とする発熱抵抗体式空気流量測定装
置。
2. A heating resistor type air flow rate measuring device according to claim 1, wherein the height of the step on the inner wall of the sub air passage is approximately 0.3 mm or more.
JP2008252122A 2008-09-30 2008-09-30 Heating resistor type air flow measuring device Expired - Fee Related JP5183402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252122A JP5183402B2 (en) 2008-09-30 2008-09-30 Heating resistor type air flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252122A JP5183402B2 (en) 2008-09-30 2008-09-30 Heating resistor type air flow measuring device

Publications (2)

Publication Number Publication Date
JP2010085136A JP2010085136A (en) 2010-04-15
JP5183402B2 true JP5183402B2 (en) 2013-04-17

Family

ID=42249251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252122A Expired - Fee Related JP5183402B2 (en) 2008-09-30 2008-09-30 Heating resistor type air flow measuring device

Country Status (1)

Country Link
JP (1) JP5183402B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5425021B2 (en) * 2010-09-06 2014-02-26 日立オートモティブシステムズ株式会社 Flow measuring device
JP5321563B2 (en) 2010-10-29 2013-10-23 株式会社デンソー Air flow measurement device
JP5501302B2 (en) * 2011-08-01 2014-05-21 日立オートモティブシステムズ株式会社 Air flow measurement device
DE102011080894A1 (en) * 2011-08-12 2013-02-14 Endress + Hauser Flowtec Ag Sensor module for measuring and / or monitoring parameters of media flowing in pipelines and measuring system formed therewith
JP7056590B2 (en) 2019-01-15 2022-04-19 株式会社デンソー Air flow measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2886719B2 (en) * 1991-12-05 1999-04-26 日本碍子株式会社 Thermal flow meter
JP3770369B2 (en) * 1999-06-21 2006-04-26 日本特殊陶業株式会社 Flow rate and flow rate measuring device
JP4437713B2 (en) * 2004-07-09 2010-03-24 株式会社日立製作所 Air flow measurement device and its terminal

Also Published As

Publication number Publication date
JP2010085136A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP4416012B2 (en) Intake air flow rate measuring device
JP5496027B2 (en) Thermal air flow meter
JP5183164B2 (en) Flow measuring device
JP4979262B2 (en) Flow measuring device
US20100242589A1 (en) Thermal Type Flow Measuring Device
JP5183402B2 (en) Heating resistor type air flow measuring device
CN1072798C (en) Device for measuring mass of flowing medium
US10520343B2 (en) Thermal flowmeter
US20180313681A1 (en) Air Flow Rate Detecting Device
US10900820B2 (en) Air flow rate measurement device having a segmented board portion at an upstream side to suppress flow disturbances
JPWO2020202722A1 (en) Physical quantity detector
JP2015068759A (en) Thermal flowmeter
JP4836179B2 (en) Heating resistor type fluid flow measuring device
JPH085427A (en) Heating resistance type air flow rate measuring apparatus
JPH03233168A (en) Measuring device of air flow amount for internal combustion engine
JP5711399B2 (en) Thermal air flow meter
JP2009085855A (en) Flow-measuring device and control system for internal combustion engine
JP5462114B2 (en) Heating resistor type air flow measuring device
JP2009063391A (en) Intake-system component mounted with heating resistor type air flow rate measuring device
JP2020003312A (en) Physical quantity detector
JP4512616B2 (en) Air flow measurement module
JP4006463B2 (en) Flow rate measuring module and internal combustion engine control method
JPH1123334A (en) Heating resistor type apparatus for measuring air flow rate and method and apparatus for correcting measurement error thereof
JP2003161652A (en) Flow rate measuring device
JP2007248137A (en) Flow rate measuring device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5183402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees