JP5182884B2 - 無線通信装置及び再送制御方法 - Google Patents

無線通信装置及び再送制御方法 Download PDF

Info

Publication number
JP5182884B2
JP5182884B2 JP2008552072A JP2008552072A JP5182884B2 JP 5182884 B2 JP5182884 B2 JP 5182884B2 JP 2008552072 A JP2008552072 A JP 2008552072A JP 2008552072 A JP2008552072 A JP 2008552072A JP 5182884 B2 JP5182884 B2 JP 5182884B2
Authority
JP
Japan
Prior art keywords
signal
phase
wireless communication
unit
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008552072A
Other languages
English (en)
Other versions
JPWO2008081683A1 (ja
Inventor
正幸 星野
勝彦 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008552072A priority Critical patent/JP5182884B2/ja
Publication of JPWO2008081683A1 publication Critical patent/JPWO2008081683A1/ja
Application granted granted Critical
Publication of JP5182884B2 publication Critical patent/JP5182884B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Description

本発明は、MIMO(Multi Input Multi Output)を採用した無線通信システムに適用可能な無線通信装置及び再送制御方法に関する。
例えば携帯電話等の移動体通信用のセルラーシステムなどに用いられる、最新の無線通信システムにおいては、MIMOを採用して各無線通信局に複数のアンテナを備えると共に、送信ダイバーシチとして、遅延ダイバーシチ(DD:Delay Diversity)の一種であるCDD(Cyclic Delay Diversity、循環遅延ダイバーシチ)を導入することについて検討が進められている。
遅延ダイバーシチでは、送信局が同じ信号を複数のアンテナから送信すると共に、複数のアンテナの間で信号に十分な時間差(遅延)が生じるように制御する。これにより、複数のアンテナの間隔が小さい場合であっても、送信局の複数のアンテナのそれぞれから受信局に届く無線信号に十分な違い(時間差)が生じるため、受信局では電波の伝搬経路(パス)の違いを認識して経路毎に各々の信号を分離して目的の信号を抽出することができる。これによりダイバーシチ効果が得られる。
また、CDDでは、遅延時間(周波数軸上では位相)を循環的に変更する。例えば、互いに周波数の異なる多数のサブキャリアを重畳したOFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)信号を用いて通信する場合には、非特許文献1に開示されているように、サブキャリアの周波数毎に遅延量(又は位相)が変化するように、各サブキャリアの周波数に対して循環的な互いに異なる遅延を割り当てる。
これにより、送信局から受信局へ至る無線伝搬路の伝搬特性に、例えば図17(a)に示すように周波数選択性が表れる。図17は無線伝搬路における周波数特性及び位相シフトの周波数特性の具体例を示すグラフである。図17において、(a)は1回目の送信時、(b)は再送による2回目の送信時のそれぞれの伝搬路の振幅を示している。図17(a)に示す例では、次式に示す位相差(位相回転量)φを位相シフトとして各サブキャリアの信号に与える場合を想定している。但し、NはFFT(フーリエ変換)サイズ(サブキャリア数)、Dは位相シフト量、kはサブキャリア番号である。
Figure 0005182884
すなわち、周波数軸上にN/Dの間隔で、受信レベル(振幅)の大きい(受信状態の良好な)部分と小さい部分(レベルの落ち込み:ノッチ)とが周期的に現れるような周波数特性になる。そのため、CDDを採用することによって無線伝搬路の周波数選択性を強めることができ、周波数ダイバーシチの効果が得られる。ここでいう受信レベル(振幅)の大きい部分は、各送信アンテナから到来する信号の瞬時変動のうち受信状態の良好な部分を足し合わせたものに相当し、所望波に対するSINR(Signal-to-Interference plus Noise power Ratio:信号対干渉雑音電力比(干渉信号抑圧度))を高めることができる。
一方で、送信局と受信局との間の無線伝搬路における伝搬状態が悪化している場合には、目的の送信局から送信された信号(所望波)を受信局で正しく受信できない場合がある。そのような場合には、再送制御が実施される場合が多い。すなわち、受信局は所望波のパケット等を正しく受信できなかった場合に送信局に対してNACK(Not Acknowledgement)を通知し、送信局は受信局からのNACKを検出すると、前に送信したデータ(送信に失敗したデータ)と同じデータ(パケット等)を繰り返し送信する。
再送制御を実施することにより、無線伝搬路における伝搬状態が悪化している場合であっても、受信局が目的の信号を正しく受信できる可能性が高くなる。特に、ハイブリッドARQ(Automatic Request for Repetition)を採用する場合には、過去に受信した信号の情報をも利用して受信信号の復号を試みるので、再送時に受信に成功する確率が高くなる。
しかしながら、所定の周波数幅内において無線伝搬路における伝搬状態が時間の経過に伴ってあまり変化しないような環境においては、再送制御を実施しても、受信局がパケットの受信に成功する確率は高くならない。このため、結果的に同じパケットを何回も繰り返して送信することになり、スループット(単位時間あたりのデータ伝送量)が低下してしまう。このように、伝搬路変動が一定とみなせる周波数幅内(相関帯域幅内)での伝搬路の振幅が変化しないことに起因して、再送による合成利得が小さくなり、再送制御の効果があまり得られない場合がある。
また、CDDを採用することによって周波数ダイバーシチの効果が得られるが、この場合の再送制御を考えると、再送時に初回の送信時と比べて無線伝搬路の伝搬状態がほとんど変化していなければ、再送制御の効果があまり得られない。この場合、CDDによって生じる周波数選択性については、図17(b)に示すように、再送制御を行っても1回目の送信と2回目の送信(再送時)との間にあまり変化が生じず、周波数選択性によるフェージングの落ち込みが周波数軸上で同じ位置に生じる。したがって、再送制御によって再送信号を合成する場合の合成利得は、CDDを採用してもあまり改善されず、再送時の受信成功確率をあまり高めることができないという課題がある。
3GPP TSG RAN WG1 ♯42, R1-050715, Motorola, "EUTRA Downlink MIMO Requirements and Design", 2005
前述したように、CDDによる送信ダイバーシチを行いながら再送制御を行う場合には、CDDによって作り出される周波数選択性によるフェージングの落ち込みが再送時に周波数軸上で同じ位置に生じ、再送制御によって再送信号を合成する場合の合成利得を大きくできないという課題がある。
本発明は、上記事情に鑑みてなされたもので、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、再送による合成利得を比較的簡単な制御によって大幅に改善することが可能な無線通信装置及び再送制御方法を提供することを目的とする。
本発明の無線通信装置は、複数のアンテナを用いてMIMO(Multi Input Multi Output)による通信を行う無線通信装置であって、少なくとも1つのアンテナから送信する信号に対して、位相が周波数領域で循環的に変化するように、サブキャリア毎の位相を与える循環遅延ダイバーシチ処理部と、前記サブキャリア毎の位相に含まれる、全サブキャリアに対して一定のオフセット量を、前記信号の再送回数に応じて設定するオフセット制御部と、を備えるものである。
これにより、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、送信回数に応じて設定した位相シフトのオフセットを与えることで、無線伝搬路の周波数特性を送信回数ごとに変化させることができ、各送信時の周波数特性のノッチにずれが生じる。したがって、受信側での再送合成時に独立な伝搬路特性の信号を加算できるので、再送による合成利得を比較的簡単な制御によって大幅に改善することができ、CDDによる周波数ダイバーシチ効果を十分に得ることが可能となる。
また、本発明は、上記の無線通信装置であって、前記オフセット制御部は、前記オフセット量として、複数の値の中から、前回の送信時におけるオフセット量との差が、前記複数の値における最大差に近い値を設定するものを含む
また、本発明は、上記の無線通信装置であって、前記最大差は、πであるものを含む
これにより、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、前回の送信時に対してオフセットの位相差ができるだけ大きい値となるように、例えば最大位相差のπに近い値となるようにすることで、送信回数ごとのオフセットによる位相差を大きくでき、再送による合成利得の改善効果をより高めることが可能となる。
また、本発明は、上記の無線通信装置であって、前記複数のアンテナと前記信号との対応関係を前記再送回数に応じて設定するアンテナマッピング制御部を備えるものを含む
これにより、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、送信回数に応じてアンテナマッピングを設定することで、再送時に送信するアンテナを送信回数ごとに変更することができ、送信回数に応じてそれぞれ平均的に得られる無線伝搬路の品質が異なるものとなる。したがって、受信側での再送合成時に送信ごとの伝搬路特性の独立性をより高めることができ、再送による合成利得を大きくすることが可能となり、より大きなダイバーシチ利得が得られる。
また、本発明は、上記の無線通信装置であって、前記アンテナマッピング制御部は、前記信号を送信するアンテナを前記再送回数ごとに切り替えるものを含む
これにより、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、送信信号に対するアンテナを送信回数ごとに切り替えることで、送信回数に応じて異なる無線伝搬路の品質を実現でき、受信側での再送合成時に再送による合成利得を大きくすることが可能となる。
また、本発明は、上記の無線通信装置であって、隣接するサブキャリア間の位相差を、前記再送回数に応じて設定する位相シフト量制御部を備えるものを含む
これにより、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、送信回数に応じて位相シフト量を設定することで、例えば送信回数ごとに位相シフト量を変化させて無線伝搬路の周波数特性を変化させることができ、各送信時の周波数特性のノッチの位置及び間隔が変化する。したがって、受信側での再送合成時に送信ごとの伝搬路特性の独立性をより高めることができ、再送による合成利得を大きくすることが可能となり、より大きなダイバーシチ利得が得られる。
本発明の無線通信装置は、複数のアンテナを用いてMIMO(Multi Input Multi Output)による通信を行う無線通信装置であって、なくとも1つのアンテナから送信された、位相が周波数領域で循環的に変化するように、サブキャリア毎の位相が与えられた信号であって、前記サブキャリア毎の位相に含まれる、全サブキャリアに対して一定のオフセット量が、前記信号の再送回数に応じて設定された前記信号を、復調する復調部を備え、前記復調部は、前記再送回数に応じた前記オフセット量を示す情報に基づいて、前記信号復調するものである。
これにより、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、受信側で再送合成を行う際の再送による合成利得を比較的簡単な制御によって大幅に改善することが可能となる。
また、本発明は、上記の無線通信装置であって、前記復調部は、前記複数のアンテナと前記信号との対応関係前記再送回数に応じて設定された前記信号を、前記対応関係を示す情報に基づいて復調するものを含む
また、本発明は、上記の無線通信装置であって、前記復調部は、隣接するサブキャリア間の位相差が前記再送回数に応じて設定された前記信号を前記再送回数に応じた前記位相差を示す情報に基づいて復調するものを含む
本発明の再送制御方法は、複数のアンテナを用いてMIMO(Multi Input Multi Output)による通信を行う無線通信装置における再送制御方法であって、少なくとも1つのアンテナから送信する信号に対して、位相が周波数領域で循環的に変化するように、サブキャリア毎の位相を与えるステップと、前記サブキャリア毎の位相に含まれる、全サブキャリアに対して一定のオフセット量を、前記信号の再送回数に応じて設定するステップと、を有するものである。
これにより、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、再送による合成利得を比較的簡単な制御によって大幅に改善することが可能となる。
また、本発明は、複数のアンテナを用いてMIMO(Multi Input Multi Output)による通信を行う無線通信システムであって、少なくとも1つのアンテナから送信する信号に対して、位相が周波数領域で循環的に変化するように、サブキャリア毎の位相を与える循環遅延ダイバーシチ処理部と、前記サブキャリア毎の位相に含まれる、全サブキャリアに対して一定のオフセット量を、前記信号の再送回数に応じて設定するオフセット制御部と、を有する送信装置と、前記信号を、前記再送回数に応じた前記オフセット量を示す情報に基づいて復調する復調部を有する受信装置と、を備える無線通信システムを提供する。
本発明によれば、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、再送による合成利得を比較的簡単な制御によって大幅に改善することが可能な無線通信装置及び再送制御方法を提供できる。
本実施の形態では、本発明に係る無線通信装置及び再送制御方法の一例として、MIMOを採用した無線通信システムにおいて、OFDMによるマルチキャリア通信方式で通信を行い、CDDによる送信ダイバーシチを行いながら再送制御を行う場合の構成例を示す。なお、下記の実施の形態は説明のための一例であり、本発明はこれに限定されるものではない。
(第1の実施の形態)
図1は本発明の第1の実施の形態で用いる送信局の主要部の構成を示すブロック図、図2は本発明の第1の実施の形態で用いる受信局の主要部の構成を示すブロック図である。
本実施の形態では、図1に示した送信局と図2に示した受信局との間で電波を用いて無線通信を行う場合を想定している。例えば、携帯電話等の移動体通信の通信サービスを提供するセルラーシステムの無線通信基地局装置(無線基地局)に図1に示す送信局(送信装置)を適用し、携帯電話装置などの無線通信移動局装置であるユーザ端末(UE: User Equipment)に図2に示す受信局(受信装置)を適用することが想定される。また、ここでは送受信双方で複数のアンテナを用いて無線送受信を行うMIMO(Multiple Input Multiple Output antenna:多入力・多出力アンテナ)システムを構成することを前提としている。
図1に示す送信局は、符号化部11と、レートマッチング部12と、インターリーブ部13と、変調部14と、シリアル/パラレル変換部(S/P)15と、応答信号(ACK/NACK)復調部16と、初期位相制御部17と、位相シフト量付与部18と、複数の逆フーリエ変換部(IFFT)19a、19bと、複数のアンテナ20a、20bとを備えている。
符号化部11は、入力された送信対象である送信データを符号化処理する。レートマッチング部12は、符号化部11から出力されるデータに関する変調多値数や符号化率を適応的に変更することにより、送信局と受信局との間の無線伝搬路の状況に適した情報伝送レートを実現する。インターリーブ部13は、レートマッチング部12から出力されるデータに対して、誤り訂正符号化の能力を向上するために所定のインターリーブ処理を行う。つまり、誤り訂正困難な連続するバースト誤りを分散し訂正可能な誤りに変換するために符号の並べ替えを実施する。変調部14は、インターリーブ部13から出力されるデータを変調する。
シリアル/パラレル変換部15は、シリアルデータとして変調部14から入力されるデータをOFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)通信のためのパラレルデータに変換して出力する。すなわち、OFDM信号として重畳される複数のサブキャリアのそれぞれに対応する信号が、並列データとしてシリアル/パラレル変換部15から出力される。
シリアル/パラレル変換部15から出力される並列データは、2系統に分岐され、一方の系統の並列データはアンテナ20aから送信する信号を生成するために使用され、もう一方の系統の並列データはアンテナ20bから送信する信号を生成するために使用される。
逆フーリエ変換部19aは、シリアル/パラレル変換部15から出力される並列データに対して逆フーリエ変換を実施することにより、信号を周波数領域から時間領域へ変換し、周波数軸上で互いに隣接する信号が直交信号となるように変換する。また、並列データのそれぞれの信号にサブキャリアを時間軸上で重畳すると共に、時間軸上で互いに隣接する信号(シンボル)の間にガードインターバル(GI)を挿入し、OFDM信号を生成する。
逆フーリエ変換部19aから出力されるOFDM信号は、図示しない高周波信号処理回路によって所定の無線周波数帯の高周波信号に変換され、電力増幅された後、アンテナ20aから電波として送信される。
逆フーリエ変換部19bは、逆フーリエ変換部19aと同様にシリアル/パラレル変換部15から出力される並列データに対して逆フーリエ変換を実施するが、シリアル/パラレル変換部15と逆フーリエ変換部19bとの間には、初期位相制御部17及び位相シフト量付与部18が設けてある。この初期位相制御部17が循環遅延ダイバーシチ処理部の機能を実現し、位相シフト量付与部18が送信位相オフセット制御部の機能を実現する。また、応答信号復調部16が再送制御部の機能を実現する。
図3は第1の実施の形態に係る送信局と受信局との間の無線伝搬路における周波数特性及び位相シフトの周波数特性の具体例を示すグラフである。図3において、(a)は1回目の送信時、(b)は再送による2回目の送信時のそれぞれの伝搬路の振幅を示している。
本実施の形態では、MIMOシステムにてCDDによる送信ダイバーシチを行いながら再送制御を行う場合に、初期位相制御部17及び位相シフト量付与部18によって、少なくとも一つの信号に対して循環的な位相シフトを行うと共に、再送回数に応じて初期の位相シフト量(初期位相としてのオフセット)を制御する。
位相シフト量付与部18は、逆フーリエ変換部19bに入力される信号に対して、周波数領域で循環的な位相シフトを与える。例えば、図3に示す例では、図3(a)の第1回目の送信時に、周波数f1〜f2の範囲と、周波数f2〜f3の範囲と、周波数f3〜f4の範囲とについて、それぞれ角度(0〜2π[rad])の範囲で位相が直線的にかつ循環的に変化するように制御する。実際には、逆フーリエ変換部19bに入力されるそれぞれの信号に対応するサブキャリアの周波数毎に変化するような、離散的で循環的な位相シフトが割り当てられることになる。
初期位相制御部17は、再送を行う毎に位相シフト量付与部18が与える位相シフトの基準となる初期位相を決定する。この初期位相は、該当するアンテナの全サブキャリアに付与する一定のオフセット量として与えるものである。初期位相は各アンテナで個別に設定可能である。初期位相制御部17が決定した初期位相は、位相シフト量付与部18が与える位相シフトに再送回数ごとに変化するような異なるオフセットとして現れ、他のアンテナの信号との間に上記位相シフトに加えてオフセット分の一定の位相差が生じる。例えば、図3に示す例では、図3(b)の第2回目の送信時に、初期位相が角度π[rad]となる場合を想定しているので、それぞれの周波数の位置で、角度π[rad]のオフセットOST分だけ図3(a)の第1回目の場合と比べて位相シフトが全体的にずれている。
したがって、シリアル/パラレル変換部15から出力される並列データは、該当する周波数毎に図3に示すような位相シフトを受けた後で逆フーリエ変換部19bに入力される。逆フーリエ変換部19bで生成されたOFDM信号は、図示しない高周波信号処理回路によって所定の無線周波数帯の高周波信号に変換され、電力増幅された後、アンテナ20bから電波として送信される。
ここで、サブキャリア番号がkの信号に対する位相回転量φは次式で表される。
Figure 0005182884
但し、NはFFTサイズ(サブキャリア数)、Dは位相シフト量のパラメータであり、αは送信回数に応じて変化するオフセットである。
すなわち、初期位相制御部17がオフセットαを設定し、位相シフト量付与部18がφ全体の位相シフトを与えることになる。
したがって、アンテナ20bから送信する信号には、アンテナ20aから送信する信号に対して時間軸上の遅延が発生し、この遅延時間はサブキャリアの周波数毎に循環的に変化する。つまり、送信側で循環的な遅延ダイバーシチ(CDD)を行うことになる。
応答信号復調部16は、当該送信局が送信した信号を受信する相手局(例えば図2に示す受信局)から送信される、図示しない受信部で受信した応答信号を復調し、応答信号に応じて再送制御に関する処理を行う。すなわち、応答信号としてのACK(Acknowledgement)及びNACK(Not Acknowledgement)に基づき、再送を行う場合は、次に送信するデータに関する送信回数(再送回数+1)をレートマッチング部12及び初期位相制御部17に通知する。初期位相制御部17は、応答信号復調部16から入力される送信回数に基づいて、次に送信するデータに対する初期位相を決定する。
図4は第1の実施の形態における送信局が送信信号にオフセットとして与える初期位相の遷移の第1例を表す模式図である。図5は図4に示す第1例の初期位相の遷移を実現するために用いる初期位相テーブルの内容の具体例を示す模式図である。図4及び図5は3回まで再送を行う場合(最大送信回数が4回までの場合)の例を示している。
本実施の形態では、初期位相を再送回数ごとに変化させる場合、前回に対してできるだけ位相差が大きく生じるように、例えば前回の初期位相に対して所定条件において位相差ができるだけ大きい値となるように、ここでは最大位相差πに近い値を初期位相として設定する。
初期位相制御部17は、図5に示すような初期位相テーブルを備えている。図5に示す初期位相テーブルは、初期位相として0〜2πの間で4つの値を用意し、同じデータに関する1〜4の送信回数にそれぞれ対応付けられた初期位相の値を保持している。つまり、図5に示す初期位相テーブルの内容に従って制御する場合には、送信回数(再送回数+1)に応じて、初期位相が図4に示すように、0、π、(π/2)、(3π/2)と順番に変化する。
図6は第1の実施の形態における送信局が送信信号にオフセットとして与える初期位相の遷移の第2例を表す模式図である。図7は図6に示す第2例の初期位相の遷移を実現するために用いる初期位相テーブルの内容の具体例を示す模式図である。図6及び図7は4回まで再送を行う場合(最大送信回数が5回までの場合)の例を示している。
図7に示す初期位相テーブルは、初期位相として0〜2πの間で5つの値を用意し、同じデータに関する1〜5の送信回数にそれぞれ対応付けられた初期位相の値を保持している。つまり、図7に示す初期位相テーブルの内容に従って制御する場合には、送信回数(再送回数+1)に応じて、初期位相が図6に示すように、0、(4π/5)、(8π/5)、(2π/5)、(6π/5)と順番に変化する。
一方、図2に示す受信局は、複数のアンテナ31a、31bと、複数のフーリエ変換部(FFT)32a、32bと、複数のパラレル/シリアル変換部(P/S)33a、33bと、制御信号復調部34と、復調部35と、チャネル推定部36と、初期位相情報保存部37と、デインターリーブ部38と、レートデマッチング部39と、尤度保存部40と、尤度合成部41と、復号部42と、CRC検査部43と、応答信号(ACK/NACK)出力部44とを備えている。
相手局(例えば図1に示す送信局)から送信される電波は、独立した複数のアンテナ31a、31bによりそれぞれ受信される。
アンテナ31aで受信された電波の高周波信号は、図示しない高周波信号処理回路によってベースバンド信号などの比較的低い周波数帯の信号に変換されフーリエ変換部32aに入力される。同様に、アンテナ31bで受信された電波の高周波信号は、ベースバンド信号などの比較的低い周波数帯の信号に変換されフーリエ変換部32bに入力される。
フーリエ変換部32a、32bは、各々OFDM信号として入力される受信信号に対してフーリエ変換を実施することにより、時間領域から周波数領域への変換を行う。すなわち、OFDM信号に重畳されている多数のサブキャリアのそれぞれの周波数成分を周波数毎に分離して抽出する。そして、サブキャリア毎に独立した並列データを受信信号として出力する。
パラレル/シリアル変換部33aは、フーリエ変換部32aから出力される並列データをシリアルデータの受信信号に変換して出力する。同様に、パラレル/シリアル変換部33bは、フーリエ変換部32bから出力される並列データをシリアルデータの受信信号に変換して出力する。
制御信号復調部34は、パラレル/シリアル変換部33a、33bからそれぞれ出力される受信信号から該当データ用の制御信号を復調する。そして、制御信号に含まれる送信回数の値を出力する。この送信回数の値は初期位相情報保存部37に入力される。
初期位相情報保存部37は、制御信号復調部34から入力された送信回数の値を保存し、この送信回数の値に応じた初期位相の値を出力する。ここで、送信回数と初期位相との対応関係を把握するために、初期位相情報保存部37は送信局と同様に図5、図7に示すようなテーブルを備えている。初期位相情報保存部37が出力する初期位相の値はチャネル推定部36に入力される。
チャネル推定部36は、相手局(送信局)の各送信アンテナから送信される信号に含まれているパイロット信号に基づいてチャネル推定を実施し、初期位相情報保存部37から受け取った初期位相の値に基づいてチャネル推定値を算出する。算出されたチャネル推定値は復調部35に入力される。
復調部35は、チャネル推定部36から受け取ったチャネル推定値を用いて自局に対応する受信信号の復調処理を行う。復調部35から出力される受信信号は、デインターリーブ部38でデインターリーブ処理された後、制御信号復調部34から出力される制御信号に従って、レートデマッチング部39で変調多値数や符号化率が送信側と一致するように制御される。
尤度保存部40は、レートデマッチング部39から出力される受信信号について、尤度を表す情報を保存する。尤度合成部41は、尤度保存部40に保存されている過去の受信信号に関する尤度情報と、現在受信している受信信号に関する尤度情報とを合成してその結果を出力する。
復号部42は、尤度合成部41から入力される受信信号について復号処理を行い送信されたデータを復元する。CRC検査部43は、復号部42から出力されるデータについてCRC(Cyclic Redundancy Check)検査を実施して、データエラーの有無を調べる。そして、CRC検査部43より受信データとして出力される。応答信号出力部44は、CRC検査に基づき、復号結果がOKで受信に成功した場合は応答信号としてACKを出力し、復号結果がNGで受信に失敗した場合は応答信号としてNACKを出力し、これらの応答信号を図示しない送信部から送信して相手局(例えば図1に示す送信局)へ通知する。この応答信号出力部44が応答通知部の機能を実現する。
次に、本実施の形態において、図1に示した送信局と図2に示した受信局との間で通信する場合の具体例を含む制御手順について、図8を参照しながら以下に説明する。
図8は第1の実施の形態における送信局と受信局との間の通信に関する制御手順の具体例を示すシーケンス図である。
送信局(送信装置)においては、ステップS1で応答信号復調部16により制御信号を生成し、ステップS2で符号化部11、レートマッチング部12、インターリーブ部13、変調部14、シリアル/パラレル変換部15により伝送すべきデータや誤り訂正符号等を含む送信データを生成する。また、ステップS3で初期位相制御部17、位相シフト量付与部18により送信データに対して前述したCDD処理を施す。そして、ステップS4で逆フーリエ変換部19a、19bを介してアンテナ20a、20bより制御信号及び送信データをそれぞれ無線信号として送信局から送信する。ここで制御信号には、同じ信号に対する送信回数(再送回数+1)が含まれている。
なお、初回の送信ではCDDにおいて位相オフセットは与えないので、送信データのOFDM信号に対しては、図3(a)に示すように周波数軸上で、周波数f1〜f2、f2〜f3、f3〜f4の範囲で、それぞれ0から2π[rad]まで循環的に変化する位相シフトが発生する。
受信局(受信装置)においては、ステップS5でアンテナ31a、31b、フーリエ変換部32a、32b、パラレル/シリアル変換部33a、33bにより送信局からの信号を受信し、制御信号復調部34により制御信号を復調する。また、ステップS6で同様にデータを受信し、ステップS7で復調部35、チャネル推定部36、初期位相情報保存部37、デインターリーブ部38、レートデマッチング部39、尤度保存部40、尤度合成部41、復号部42により受信データの復号処理を行い、ステップS8でCRC検査部43によりCRC検査を実施する。このCRC検査に基づき、応答信号出力部44により復号結果がOKの場合は応答信号としてACKを出力し、復号結果がNGの場合は応答信号としてNACKを出力する。そして、これらの応答信号を図示しない送信部から送信して送信局へ通知する。
ここでは、最初の送信で受信局がデータの受信に失敗し、ステップS8でデータエラーが検出された場合を想定している。このため、次のステップS9で受信局は応答としてNACK(Not Acknowledgement)を送信局に向けて無線信号により送信する。
送信局は、ステップS10で受信局からのNACKを受信すると、ステップS11で応答信号復調部16により再送に対応する制御信号を生成する。前回の送信が1回目であれば、次の送信は2回目(再送)なので、送信回数が2回目であることを表す制御信号を生成する。ステップS12では、前回の送信と同じデータについて上記と同様に伝送すべきデータや誤り訂正符号等を含む送信データを生成する。
次のステップS13では、送信局において、送信回数に従って初期位相制御部17により初期位相を決定する。例えば、初期位相制御部17が図5に示す初期位相テーブルを使用する場合には、次が2回目の送信なので、π[rad]の初期位相をCDDに対する位相オフセットとして与える。
ステップS14では、送信局は初期位相制御部17、位相シフト量付与部18により送信データに対して前述したCDD処理を施す。この時、ステップS13で初期位相が変更されているので、この後で送信される送信データについては位相シフトにオフセットが生じる。
すなわち、図3(b)に示すように周波数軸上の起点である周波数f1の位置における初期位相がπ[rad]になるので、周波数f1〜f2、f2〜f3、f3〜f4の範囲で、それぞれ0から2π[rad]まで循環的に変化する位相シフトの全体に対して、送信回数に応じたπ[rad]の位相オフセットOSTが加算された位相シフトが発生する。そして、送信局はステップS15で上記と同様にアンテナ20a、20bから制御信号及び送信データをそれぞれ送信する。
受信局は、ステップS16で上記と同様に送信局からの制御信号を受信して制御信号復調部34により制御信号を復調する。また、ステップS17で同様にデータを受信し、復調部35で復調した受信信号についてステップS18で尤度合成部41により尤度合成処理を実施し、ステップS19で復号部42によってデータの復号処理を行う。そして、ステップS20でCRC検査部43によりCRC検査を実施する。このCRC検査に基づき、応答信号出力部44により復号結果がOKの場合は応答信号としてACKを出力し、復号結果がNGの場合は応答信号としてNACKを出力する。そして、これらの応答信号を図示しない送信部から送信して送信局へ通知する。
ここでは、ステップS15で送信局から再送された2回目の送信データを受信局が正しく受信できる場合を想定している。このため、次のステップS21で受信局は応答として受信に成功したことを表すACK(Acknowledgement)を送信局に向けて送信する。
送信局は、ステップS22で受信局からの応答としてACKを受信することにより、ステップS15で応答信号復調部16により送信したデータの伝送が完了したことを認識する。このため、次回の送信処理においては次に送信すべき他のデータを送信データとして送信する。
上述したように、第1の実施の形態では、送信局において、CDDにより送信する信号に与える位相シフトについて、送信回数に応じて異なるオフセットを初期位相制御部17によって与えるようにしている。これによって、送信局と受信局との間の無線伝搬路における伝搬特性が送信回数(再送回数)に応じて変化する。例えば、図3(b)に示すように、無線伝搬路の周波数特性において、1回目に送信した信号に対する周波数特性と、再送により2回目に送信した信号に対する周波数特性との間には、位相シフトのオフセットOSTによって周波数軸方向においてずれが生じる。これによって、1回目と再送時とで無線伝搬路の周波数特性のノッチの位置を相対的にずらすことができ、送信回数ごとに周波数特性の相関が小さく、それぞれ独立した特性となるようにすることが可能となる。
また、受信局においては、送信局における送信回数に応じた位相シフトのオフセットを認識して、チャネル推定部36においてチャネル推定値を算出するので、復調部35は自局に関する受信信号を正しく復調することができる。このとき、再送された受信信号を復号する場合には、再送合成を行い、尤度合成部41が過去の受信信号に対する尤度(尤度保存部40の出力)と現在の受信信号に対する尤度とを合成した結果を用いて復号を実施することによって、再送信号の受信に成功する可能性を高めることができる。
つまり、再送時には、図3(b)に示すように、再送合成によって1回目の送信の際の伝搬路周波数特性と2回目の送信の際の伝搬路周波数特性とを合成したような互いにほぼ独立な伝搬路の信号を加算できるので、CDDによる周波数ダイバーシチ効果を十分に得ることができ、SNRを改善することができる。
これによって、CDDによる送信ダイバーシチを行いながら再送制御を行う場合に、再送による合成利得を大きくすることが可能となる。またこの場合、ノッチに相当する特定周波数の受信振幅の落ち込みの影響を緩和することができる。したがって、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、位相シフトに再送回数毎で可変のオフセット量を与えない場合と比べて、より大きなダイバーシチ利得が得られる。
(第2の実施の形態)
図9は本発明の第2の実施の形態で用いる送信局の主要部の構成を示すブロック図、図10は本発明の第2の実施の形態で用いる受信局の主要部の構成を示すブロック図である。
第2の実施の形態は第1の実施の形態の一部を変更した例である。なお、第2の実施の形態において第1の実施の形態と同様の要素は同一の符号を付し、詳細な説明を省略する。
図9に示す送信局は、図1の構成に対し、新たな構成要素としてアンテナマッピング部21を備えている。このアンテナマッピング部21がアンテナマッピング制御部の機能を実現する。アンテナマッピング部21は、シリアル/パラレル変換部15の出力と逆フーリエ変換部19aの入力との間、並びに位相シフト量付与部18の出力と逆フーリエ変換部19bの入力との間に設けられる。また、アンテナマッピング部21の制御入力には、応答信号復調部16から出力される送信回数、すなわち(再送回数+1)の情報が入力される。それ以外の構成要素に関する構成及び動作は図1に示した第1の実施の形態の送信局と同様である。
アンテナマッピング部21は、逆フーリエ変換部19a、19bにそれぞれ入力する、CDDにより循環的な位相シフトを発生させた信号と送信アンテナとの組み合わせ(マッピング)を送信回数に応じて設定する。ここでは、2つの送信信号を2つのアンテナに対して交互に切り替える。
図11は第2の実施の形態の送信局が用いるアンテナマッピングテーブルの内容の具体例を表す模式図である。アンテナマッピング部21は、図11に示すようなアンテナマッピングテーブルを備えており、各々の送信回数に対応付けた初期位相とアンテナ割り当ての情報を保持している。ここではアンテナが2つのため、送信回数が奇数か偶数かに応じてアンテナへの送信信号の出力を交互に切り替える。
すなわち、アンテナマッピング部21は、送信回数が奇数の場合には、シリアル/パラレル変換部15から出力される信号Aを逆フーリエ変換部19aの入力(第1アンテナ20a)に与えると共に、位相シフト量付与部18から出力される信号Bを逆フーリエ変換部19bの入力(第2アンテナ20b)に与える。また、送信回数が偶数の場合には、シリアル/パラレル変換部15から出力される信号Aを逆フーリエ変換部19bの入力(第2アンテナ20b)に与えると共に、位相シフト量付与部18から出力される信号Bを逆フーリエ変換部19aの入力(第1アンテナ20a)に与える。
したがって、送信回数が奇数の場合には、CDDにより位相シフトを与えない信号が第1アンテナ20aから、位相シフトを与えた信号が第2アンテナ20bからそれぞれ送信され、送信回数が偶数の場合には、逆にCDDにより位相シフトを与えない信号が第2アンテナ20bから、位相シフトを与えた信号が第1アンテナ20aからそれぞれ送信される。
また、アンテナ20a又はアンテナ20bから送信される信号に与える位相シフトには、前述した第1の実施の形態と同様に、送信回数に応じたオフセットが初期位相制御部17の制御により加算される。
一方、図10に示す受信局は、図2に示した第1の実施の形態の初期位相情報保存部37の代わりに初期位相・アンテナマッピング情報保存部57が設けられ、チャネル推定部56の動作が第1の実施の形態とは少し異なっている。それ以外の構成要素に関する構成及び動作は図2に示した第1の実施の形態の受信局と同様である。
初期位相・アンテナマッピング情報保存部57は、制御信号復調部34から入力された送信回数の値を保存し、この送信回数の値に応じた初期位相の値及びアンテナマッピング情報を出力する。アンテナマッピング情報については、位相シフトの状態と2つの送信アンテナ(20a,20b)との対応関係を表すものであり、送信回数に応じて特定される。ここで、アンテナマッピング情報及び初期位相の情報と送信回数との対応関係を把握するために、初期位相・アンテナマッピング情報保存部57はそれらの情報を予め保持するテーブルを送信局と同様に搭載している。
初期位相・アンテナマッピング情報保存部57より出力される初期位相の値及びアンテナマッピング情報は、チャネル推定部56に入力される。チャネル推定部56は、相手局(送信局)の各送信アンテナから送信される信号に含まれているパイロット信号に基づいてチャネル推定を実施し、初期位相・アンテナマッピング情報保存部57から受け取った初期位相の値及びアンテナマッピング情報に基づいてチャネル推定値を算出する。算出されたチャネル推定値は復調部35に入力される。
次に、送信局のアンテナマッピング部21の制御によって生じる動作について図12を参照しながら説明する。
図12は第2の実施の形態における送信局が2つのアンテナから送信する信号の合成ベクトルの具体例を表すベクトル図である。図12において、(a)は1回目の送信時、(b)は再送による2回目の送信時をそれぞれ示している。位相シフト量付与部18の制御により、一方のアンテナから送出される信号は、第1の実施の形態と同様、前述の数2で示されるように、サブキャリア番号kが1つ増えると複素平面上で(2πD/N)だけ信号の位相が回転することになる。
図12では、IQ平面上において一方の送信アンテナ20aの伝搬路変動をベクトルh1で表し、他方の送信アンテナ20bの伝搬路変動をベクトルh2で表し、2つのアンテナから送出される信号の合成ベクトルとして表している。図12(a)に示す第1回目の送信時の場合、送信アンテナ20aからの送信信号には位相シフトが与えられず、送信アンテナ20bからの送信信号にCDDによる循環的な位相シフトが与えられる。よって、h1は所定の大きさ及び方向を持つベクトルとなり、h2は所定の大きさを持ち位相シフトにより回転するベクトルとなる。2本の送信アンテナから受信局に到来する信号が伝搬路で合成されて観測されるときの伝搬路変動は、h1が一定とみなせる周波数幅内では、h1の終点を中心としてh2を2π回転させたものに相当する。すなわち、この周波数区間で平均的に得られる伝搬路の品質は、h2は1回転するために平均が0となり、図中で「平均SNR」として示したようにh1の振幅で決まる値となる。
また、図12(b)に示す第2回目の送信時の場合、送信アンテナ20aからの送信信号にCDDによる循環的な位相シフトが与えられ、送信アンテナ20bからの送信信号には位相シフトが与えられない。よって、h1は所定の大きさを持ち位相シフトにより回転するベクトルとなり、h2は所定の大きさ及び方向を持つベクトルとなる。2本の送信アンテナから受信局に到来する信号を合成した伝搬路変動は、h2が一定とみなせる周波数幅内では、h2の終点を中心としてh1を2π回転させたものに相当する。この周波数区間で平均的に得られる伝搬路の品質は、h2の振幅で決まる値となる。
すなわち、数2で算出される位相回転量を送信アンテナ20bに付与するか送信アンテナ20aに付与するかによって、得られる平均的な伝搬路の品質が変わることになる。図12の例では、アンテナマッピング部21の制御により、送信回数が奇数か偶数かに応じて、再送回数によって図12(a)に示す状態と図12(b)に示す状態とを交互に切り替えることになる。
このように第2の実施形態によれば、初回の送信と2回目の送信など、送信回数に応じてそれぞれ平均的に得られる無線伝搬路の品質(平均SNR)を異なる値とすることができる。特に、h1とh2の振幅(ベクトルの大きさ)に差がある場合は、再送回数ごとに平均SNRの値を大きく変えることができる。したがって、CDDによる送信ダイバーシチを行いながら再送制御を行う場合に、送信回数に応じて、送信信号に対するアンテナマッピング(送信するアンテナの割り当て)を変えることにより、再送回数ごとに異なるSNRを実現できる。これによって、再送による合成利得を大きくすることが可能となり、より大きなダイバーシチ利得が得られる。
なお、本実施の形態におけるアンテナマッピングは、伝搬路変動が一定とみなせる周波数幅である相関帯域幅内における特性に着目したものであるから、アンテナマッピング部21の動作は、送信する全周波数で同一としてもよいし、隣接するいくつかのサブキャリアをブロック化し、各ブロックごとでそれぞれ異なるマッピングとするように、ブロック個別の動作としてもよい。
(第3の実施の形態)
図13は本発明の第3の実施の形態で用いる送信局の主要部の構成を示すブロック図、図14は本発明の第3の実施の形態で用いる受信局の主要部の構成を示すブロック図である。
第3の実施の形態は第1の実施の形態の一部を変更した例である。なお、第3の実施の形態において第1の実施の形態と同様の要素は同一の符号を付し、詳細な説明を省略する。
図13に示す送信局は、図1の構成に対し、位相シフト量付与部23の動作が第1の実施の形態とは少し異なっている。この位相シフト量付与部23が位相シフト量制御部の機能を実現する。それ以外の構成要素に関する構成及び動作は図1に示した第1の実施の形態の送信局と同様である。
また、図14に示す受信局は、第1の実施の形態の初期位相情報保存部37の代わりに初期位相・シフト量情報保存部59が設けられ、チャネル推定部58の動作が第1の実施の形態とは少し異なっている。それ以外の構成要素に関する構成及び動作は図2に示した第1の実施の形態の受信局と同様である。
図15は第3の実施の形態の送信局が用いる位相シフト量テーブルの内容の具体例を表す模式図である。図15において、(a)は位相シフト量テーブルの第1例を示し、(b)は位相シフト量テーブルの第2例を示している。
第3の実施の形態では、図13に示す送信局の位相シフト量付与部23は、図15(a)又は図15(b)に示すような位相シフト量テーブルを備えている。この位相シフト量テーブルは、各々の送信回数に対応付けた複数の位相シフト量Dを保持している。図15(a)に示す第1例は、初回のシフト量に対し送信回数が増えるに従い+10%,−10%,+20%,−205とした例である。図15(b)に示す第2例は、2のべき乗とした初回のシフト量に対し、その50%に近い素数1と25%に近い素数2をおいて、送信回数が増えるにしたがって+素数1,−素数1,+素数2,−素数2とした例である。
位相シフト量付与部23は、応答信号復調部16から出力される送信回数の値に応じて、位相シフト量テーブルから1つのシフト量を取得し、この位相シフト量と初期位相制御部17で決定された初期位相とを用いて、位相シフト量付与部23において前述した数2から送信信号に与える位相シフトである位相回転量φを決定する。
つまり、送信信号に与える位相回転量φを決定する際に使用するパラメータである位相シフト量Dを、送信回数に応じて変化するように異なる値に設定するので、送信回数毎にそれぞれ異なった伝搬路の周波数特性が得られる。
なお、位相シフト量を変更する際に、サブキャリア毎など単位周波数あたりの位相シフト量を再送回数毎に切り替えるだけでなく、周波数軸上で互いに隣接するサブキャリア間での位相シフト量の差分を再送回数毎に切り替えるようなことも可能である。
図16は第3の実施の形態に係る送信局と受信局との間の無線伝搬路における周波数特性及び位相シフトの周波数特性の具体例を示すグラフである。図16において、(a)は1回目の送信時、(b)は再送による2回目の送信時のそれぞれの伝搬路の振幅を示している。
第3の実施の形態では、図16に示すように、位相シフト量が(0〜2π[rad])の間で変化する周波数の間隔(N/D)が送信回数に応じて変化するので、オフセットOSTによってノッチの位置がずれるだけでなく、同じ周波数帯域内に生じるノッチの総数も変化する。したがって、再送を実施する度に、より独立性の高い異なる無線伝搬路を用いて信号を伝送することができる。これにより、再送による合成利得が向上する。
一方、図14に示す受信局においては、初期位相・シフト量情報保存部59は制御信号復調部34から入力された送信回数の値を保存し、この送信回数の値に応じた初期位相の値及び位相シフト量Dの情報を出力する。ここで、位相シフト量Dの情報及び初期位相の情報と送信回数との対応関係を把握するために、初期位相・シフト量情報保存部59はそれらの情報を予め保持するテーブルを送信局と同様に搭載している。
初期位相・シフト量情報保存部59より出力される初期位相の値及び位相シフト量Dの情報は、チャネル推定部58に入力される。チャネル推定部58は、相手局(送信局)の各送信アンテナから送信される信号に含まれているパイロット信号に基づいてチャネル推定を実施し、初期位相・シフト量情報保存部59から受け取った初期位相の値及び位相シフト量Dの情報に基づいてチャネル推定値を算出する。算出されたチャネル推定値は復調部35に入力される。
このように、第3の実施形態によれば、CDDにより送信信号に与える位相シフトについて、送信回数に応じてオフセットを変化させるとともに、送信回数に応じて位相シフト量も変化させることで、送信回数毎にそれぞれ異なった伝搬路の周波数特性を得ることができる。この場合、再送回数毎で伝搬路周波数特性の独立性をより高めることができる。そして、CDDによる送信ダイバーシチを行いながら再送制御を行う場合に、無線伝搬路の周波数特性のノッチが発生する位置及び数を再送回数ごとに異なる値とすることができ、より独立な伝搬路を再送合成できる。これによって、再送による合成利得を大きくすることができ、SNRを改善することが可能となる。
なお、上述の各実施の形態においては、マルチキャリア信号であるOFDM信号を用いて通信する場合を想定しているが、OFDMに限らず、例えば下記の文献の(Figure 9.1.1-1)などに示されているシングルキャリア信号(SC−FDMA)を用いて通信するシステムについても、同様に本発明を提供可能である。この場合、OFDMのガードインターバルと同様にサイクリックプレフィックスを挿入することで、遅延波を周波数変動とみなすことができ、周波数軸での信号表現が可能となるので、上記実施の形態と同様に周波数軸方向に循環的な位相シフトを与えることができる。
3GPP TR 25.814 V7.1.0,"Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA)"
また、上述の各実施の形態においては、再送制御として、相手局(受信局)から通知される応答に基づき、相手局が信号の受信に失敗した場合に再送を行う例を示したが、これに限るものではない。例えば、所定時間が経過してタイムアウトした場合に自動的に再送を行ったり、予め設定された所定の回数分再送を行うなど、種々の再送制御を用いる場合においても同様に適用可能である。
また、上述の各実施の形態においては、送信局、受信局共に2つのアンテナを備える場合を想定しているが、アンテナの数については、3本、4本など、必要に応じて増やした場合においても同様に適用可能である。
また、本発明に係る無線通信装置及び再送制御方法は、例えば、携帯電話等の移動体通信サービスを提供するセルラーシステムの無線通信基地局装置、或は、無線通信移動局装置、及びこれらの無線通信装置間の通信などに適用可能であるが、これに限らず、MIMOを採用した無線通信システムにおいてCDD及び再送制御を実行するものであれば、種々の無線通信に適用できる。
以上説明した本実施の形態によれば、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、送信信号の位相シフト量に再送回数に応じた位相差(オフセット)を付加することにより、無線伝搬路の周波数特性において、1回目の送信時に得られるノッチの位置と2回目の送信時に得られるノッチの位置とをずらすことができる。これによって、再送による合成利得を比較的簡単な制御によって大幅に改善することができ、再送制御によって十分なダイバーシチ効果が得られる。
なお、本発明は上記の実施形態において示されたものに限定されるものではなく、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2006年12月28日出願の日本特許出願(特願2006-354569)に基づくものであり、その内容はここに参照として取り込まれる。
本発明は、CDDを用いた送信ダイバーシチ実行時に再送制御を行う場合に、再送による合成利得を比較的簡単な制御によって大幅に改善することが可能となる効果を有し、MIMOを採用した無線通信システムに適用可能な無線通信装置及び再送制御方法等に有用である。
本発明の第1の実施の形態で用いる送信局の主要部の構成を示すブロック図 本発明の第1の実施の形態で用いる受信局の主要部の構成を示すブロック図 第1の実施の形態に係る送信局と受信局との間の無線伝搬路における周波数特性及び位相シフトの周波数特性の具体例を示すグラフ 第1の実施の形態における送信局が送信信号にオフセットとして与える初期位相の遷移の第1例を表す模式図 図4に示す第1例の初期位相の遷移を実現するために用いる初期位相テーブルの内容の具体例を示す模式図 第1の実施の形態における送信局が送信信号にオフセットとして与える初期位相の遷移の第2例を表す模式図 図6に示す第2例の初期位相の遷移を実現するために用いる初期位相テーブルの内容の具体例を示す模式図 第1の実施の形態における送信局と受信局との間の通信に関する制御手順の具体例を示すシーケンス図 本発明の第2の実施の形態で用いる送信局の主要部の構成を示すブロック図 本発明の第2の実施の形態で用いる受信局の主要部の構成を示すブロック図 第2の実施の形態の送信局が用いるアンテナマッピングテーブルの内容の具体例を表す模式図 第2の実施の形態における送信局が2つのアンテナから送信する信号の合成ベクトルの具体例を表すベクトル図 本発明の第3の実施の形態で用いる送信局の主要部の構成を示すブロック図 本発明の第3の実施の形態で用いる受信局の主要部の構成を示すブロック図 第3の実施の形態の送信局が用いる位相シフト量テーブルの内容の具体例を表す模式図 第3の実施の形態に係る送信局と受信局との間の無線伝搬路における周波数特性及び位相シフトの周波数特性の具体例を示すグラフ 無線伝搬路における周波数特性及び位相シフトの周波数特性の具体例を示すグラフ
11 符号化部
12 レートマッチング部
13 インターリーブ部
14 変調部
15 シリアル/パラレル変換部(S/P)
16 応答信号復調部
17 初期位相制御部
18,23 位相シフト量付与部
19a,19b 逆フーリエ変換部(IFFT)
20a,20b アンテナ
21 アンテナマッピング部
31a,31b アンテナ
32a,32b フーリエ変換部(FFT)
33a,33b パラレル/シリアル変換部(P/S)
34 制御信号復調部
35 復調部
36,56,58 チャネル推定部
37 初期位相情報保存部
38 デインターリーブ部
39 レートデマッチング部
40 尤度保存部
41 尤度合成部
42 復号部
43 CRC検査部
44 応答信号出力部
57 初期位相・アンテナマッピング情報保存部
59 初期位相・シフト量情報保存部

Claims (11)

  1. 複数のアンテナを用いてMIMO(Multi Input Multi Output)による通信を行う無線通信装置であって、
    少なくとも1つのアンテナから送信する信号に対して、位相が周波数領域で循環的に変化するように、サブキャリア毎の位相を与える循環遅延ダイバーシチ処理部と、
    前記サブキャリア毎の位相に含まれる、全サブキャリアに対して一定のオフセット量を、前記信号の再送回数に応じて設定するオフセット制御部と、
    を備える無線通信装置。
  2. 請求項1に記載の無線通信装置であって、
    記オフセット制御部は、前記オフセット量として、複数の値の中から、前回の送信時におけるオフセット量との差が、前記複数の値における最大差に近い値を設定する無線通信装置。
  3. 請求項2に記載の無線通信装置であって、
    前記最大差は、πである無線通信装置。
  4. 請求項1に記載の無線通信装置であって、
    前記複数のアンテナと前記信号との対応関係を前記再送回数に応じて設定するアンテナマッピング制御部を備える無線通信装置。
  5. 請求項4に記載の無線通信装置であって、
    前記アンテナマッピング制御部は、前記信号を送信するアンテナを前記再送回数ごとに切り替える無線通信装置。
  6. 請求項1に記載の無線通信装置であって、
    隣接するサブキャリア間の位相差を、前記再送回数に応じて設定する位相シフト量制御部を備える無線通信装置。
  7. 複数のアンテナを用いてMIMO(Multi Input Multi Output)による通信を行う無線通信装置であって、
    なくとも1つのアンテナから送信された、位相が周波数領域で循環的に変化するように、サブキャリア毎の位相が与えられた信号であって、前記サブキャリア毎の位相に含まれる、全サブキャリアに対して一定のオフセット量が、前記信号の再送回数に応じて設定された前記信号を、復調する復調部を備え、
    前記復調部は、前記再送回数に応じた前記オフセット量を示す情報に基づいて、前記信号復調する無線通信装置。
  8. 請求項7に記載の無線通信装置であって、
    前記復調部は、前記複数のアンテナと前記信号との対応関係前記再送回数に応じて設定された前記信号を、前記対応関係を示す情報に基づいて復調する無線通信装置。
  9. 請求項7に記載の無線通信装置であって、
    前記復調部は、隣接するサブキャリア間の位相差が前記再送回数に応じて設定された前記信号を前記再送回数に応じた前記位相差を示す情報に基づいて復調する無線通信装置。
  10. 複数のアンテナを用いてMIMO(Multi Input Multi Output)による通信を行う無線通信装置における再送制御方法であって、
    少なくとも1つのアンテナから送信する信号に対して、位相が周波数領域で循環的に変化するように、サブキャリア毎の位相を与えるステップと、
    前記サブキャリア毎の位相に含まれる、全サブキャリアに対して一定のオフセット量を、前記信号の再送回数に応じて設定するステップと、
    を有する再送制御方法。
  11. 複数のアンテナを用いてMIMO(Multi Input Multi Output)による通信を行う無線通信システムであって、
    少なくとも1つのアンテナから送信する信号に対して、位相が周波数領域で循環的に変化するように、サブキャリア毎の位相を与える循環遅延ダイバーシチ処理部と、
    前記サブキャリア毎の位相に含まれる、全サブキャリアに対して一定のオフセット量を、前記信号の再送回数に応じて設定するオフセット制御部と、を有する送信装置と、
    前記信号を、前記再送回数に応じた前記オフセット量を示す情報に基づいて復調する復調部を有する受信装置と、
    を備える無線通信システム。
JP2008552072A 2006-12-28 2007-12-07 無線通信装置及び再送制御方法 Active JP5182884B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008552072A JP5182884B2 (ja) 2006-12-28 2007-12-07 無線通信装置及び再送制御方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006354569 2006-12-28
JP2006354569 2006-12-28
PCT/JP2007/073698 WO2008081683A1 (ja) 2006-12-28 2007-12-07 無線通信装置及び再送制御方法
JP2008552072A JP5182884B2 (ja) 2006-12-28 2007-12-07 無線通信装置及び再送制御方法

Publications (2)

Publication Number Publication Date
JPWO2008081683A1 JPWO2008081683A1 (ja) 2010-04-30
JP5182884B2 true JP5182884B2 (ja) 2013-04-17

Family

ID=39588366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008552072A Active JP5182884B2 (ja) 2006-12-28 2007-12-07 無線通信装置及び再送制御方法

Country Status (5)

Country Link
US (1) US8374276B2 (ja)
EP (1) EP2099147A1 (ja)
JP (1) JP5182884B2 (ja)
CN (1) CN101573886A (ja)
WO (1) WO2008081683A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7860465B2 (en) * 2007-05-01 2010-12-28 Research In Motion Limited Apparatus, and associated method, for providing open loop diversity in a radio communication system
KR101392446B1 (ko) * 2007-08-23 2014-05-07 삼성전자주식회사 통신 시스템에서 데이터 전송율 역정합 방법 및 장치
EP2234286B1 (en) * 2008-01-17 2016-07-20 Alcatel Lucent Method and apparatus for performing cyclic delay mapping to signals in multiple antenna transmitters
RU2485690C2 (ru) * 2008-08-05 2013-06-20 Панасоник Корпорэйшн Устройство и способ радиосвязи
US8526438B2 (en) * 2008-09-19 2013-09-03 Nippon Telegraph And Telephone Corporation Bandwidth variable communication apparatus and bandwidth variable communication method
RU2510133C2 (ru) * 2008-10-30 2014-03-20 Панасоник Корпорэйшн Устройство радиосвязи и способ радиосвязи
US8917783B2 (en) * 2008-12-03 2014-12-23 Rambus Inc. Resonance mitigation for high-speed signaling
KR20100138264A (ko) * 2009-06-24 2010-12-31 주식회사 팬택 적응형 순환 지연 다이버서티를 이용한 주파수 감쇄 보상 방법 및 그를 이용한 송신장치와 방법, 수신장치와 방법
US9706599B1 (en) 2009-07-23 2017-07-11 Marvell International Ltd. Long wireless local area network (WLAN) packets with midambles
EP2460298A2 (en) * 2009-07-29 2012-06-06 Marvell World Trade Ltd. Methods and apparatus for wlan transmission
MX2013000954A (es) * 2010-12-10 2013-03-22 Panasonic Corp Metodo de generacion de señales y aparato de generacion de señales.
JP5710991B2 (ja) * 2011-01-27 2015-04-30 京セラ株式会社 移動通信システム及び基地局
CN107612597B (zh) 2011-02-18 2021-01-05 太阳专利托管公司 信号生成方法及信号生成装置
JP5647094B2 (ja) * 2011-12-06 2014-12-24 日本電信電話株式会社 無線通信システム及び無線通信方法
RU2606558C2 (ru) * 2012-08-02 2017-01-10 Хуавэй Текнолоджиз Ко., Лтд. Способ, устройство и система повторной передачи данных
CN103888179B (zh) * 2012-12-24 2017-06-20 华为技术有限公司 一种虚拟天线映射方法及设备
CN104798426B (zh) * 2012-12-28 2019-02-19 富士通株式会社 信道信息传输方法、装置和系统
US9832059B2 (en) 2014-06-02 2017-11-28 Marvell World Trade Ltd. High efficiency orthogonal frequency division multiplexing (OFDM) physical layer (PHY)
CN106664281B (zh) 2014-06-11 2020-07-10 马维尔国际有限公司 用于在无线通信系统中填充ofdm符号的方法和装置
EP3635926B1 (en) 2017-06-09 2024-03-27 Marvell World Trade Ltd. Packets with midambles having compressed ofdm symbols
EP3685543A1 (en) 2017-09-22 2020-07-29 NXP USA, Inc. Determining number of midambles in a packet
EP3905561A4 (en) * 2018-12-25 2022-08-17 Beijing Xiaomi Mobile Software Co., Ltd. DATA TRANSMISSION METHOD AND DEVICE
JP7117533B2 (ja) * 2019-07-04 2022-08-15 サン パテント トラスト 送信装置および受信装置
US11477760B2 (en) * 2019-12-19 2022-10-18 Qualcomm Incorporated Frequency diversity techniques for single frequency networks

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015334A1 (en) * 2001-08-09 2003-02-20 Nokia Corporation Diversity transmitter and diversity transmission method
WO2003101029A1 (en) * 2002-05-29 2003-12-04 Nokia Corporation Data transmission method and system
JP2004040232A (ja) * 2002-06-28 2004-02-05 Matsushita Electric Ind Co Ltd 無線通信システム、無線送信装置、および無線受信装置
JP2004072427A (ja) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd 無線送信装置及び無線送信方法
WO2004025874A1 (ja) * 2002-09-13 2004-03-25 Matsushita Electric Industrial Co., Ltd. 無線送信装置および無線送信方法
WO2004072427A1 (en) * 2003-02-11 2004-08-26 Ren Judkins Window covering having faces of parallel threads
JP2006081013A (ja) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd 通信装置、基地局装置及び送信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627511B1 (en) * 2003-05-28 2008-02-27 Telefonaktiebolaget LM Ericsson (publ) Method and architecture for wireless communication networks using cooperative relaying
US7616698B2 (en) * 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
US7738538B1 (en) * 2005-08-01 2010-06-15 Ralink Technology Corporation Flexible and in-band signaling for nested preamble
US8040982B1 (en) * 2005-10-18 2011-10-18 Marvell International Ltd. Phase-adjusted channel estimation for frequency division multiplexed channels
JP4367422B2 (ja) * 2006-02-14 2009-11-18 ソニー株式会社 無線通信装置及び無線通信方法
KR20080040543A (ko) * 2006-11-02 2008-05-08 엘지전자 주식회사 위상천이 기반 프리코딩을 이용한 데이터 전송 방법 및이를 지원하는 송수신기
US9031122B2 (en) * 2010-01-29 2015-05-12 Qualcomm Incorporated Reducing phase errors on a communication device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015334A1 (en) * 2001-08-09 2003-02-20 Nokia Corporation Diversity transmitter and diversity transmission method
WO2003101029A1 (en) * 2002-05-29 2003-12-04 Nokia Corporation Data transmission method and system
JP2004040232A (ja) * 2002-06-28 2004-02-05 Matsushita Electric Ind Co Ltd 無線通信システム、無線送信装置、および無線受信装置
JP2004072427A (ja) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd 無線送信装置及び無線送信方法
WO2004025874A1 (ja) * 2002-09-13 2004-03-25 Matsushita Electric Industrial Co., Ltd. 無線送信装置および無線送信方法
WO2004072427A1 (en) * 2003-02-11 2004-08-26 Ren Judkins Window covering having faces of parallel threads
JP2006081013A (ja) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd 通信装置、基地局装置及び送信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6007016747; LG Electronics, Samsung, NTT-DoCoMo: 'CDD-based Precoding for E-UTRA downlink MIMO' GPP TSG RAN WG1 Meeting #47 , 20061110 *

Also Published As

Publication number Publication date
JPWO2008081683A1 (ja) 2010-04-30
CN101573886A (zh) 2009-11-04
WO2008081683A1 (ja) 2008-07-10
EP2099147A1 (en) 2009-09-09
US8374276B2 (en) 2013-02-12
US20100020893A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5182884B2 (ja) 無線通信装置及び再送制御方法
US10686512B2 (en) Adaptive transmission systems and methods
US11515969B2 (en) Methods and systems for HARQ protocols
US7782896B2 (en) Wireless communication apparatus and wireless communication method
KR100818243B1 (ko) 자동 재송 요구방식을 이용하는 멀티캐리어 통신 시스템을위한 통신 방법
JP6088574B2 (ja) 信頼性のあるアンテナ設定検出のための物理放送チャンネル(pbch)伝送
US8243673B2 (en) Radio communication apparatus, radio communication system, and radio communication method
US20040199846A1 (en) Multicarrier communication apparatus and multicarrier communication method
WO2009116247A1 (ja) 移動局装置及び基地局装置、並びに無線通信システムの通信制御方法
WO2010016183A1 (ja) 無線通信装置及び無線通信方法
US20100103044A1 (en) Radio communication system, radio communication apparatus, and radio communication method
US8654730B2 (en) Wireless communication system, base station, mobile station, base station control program, and mobile station control program
JP5195925B2 (ja) 送信装置、通信システム、通信方法
WO2006076787A1 (en) Method and system for retransmitting data packets
US20120093251A1 (en) Radio communication system, transmission apparatus, and reception apparatus
KR20090089505A (ko) 다중안테나를 이용한 데이터 전송방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5182884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250