JP5181173B2 - Photoelectric storage battery and method for manufacturing optical storage electrode - Google Patents

Photoelectric storage battery and method for manufacturing optical storage electrode Download PDF

Info

Publication number
JP5181173B2
JP5181173B2 JP2007082111A JP2007082111A JP5181173B2 JP 5181173 B2 JP5181173 B2 JP 5181173B2 JP 2007082111 A JP2007082111 A JP 2007082111A JP 2007082111 A JP2007082111 A JP 2007082111A JP 5181173 B2 JP5181173 B2 JP 5181173B2
Authority
JP
Japan
Prior art keywords
electrode
polymer film
conductive polymer
storage electrode
optical storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007082111A
Other languages
Japanese (ja)
Other versions
JP2008243573A (en
Inventor
輝明 野見山
雄二 堀江
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2007082111A priority Critical patent/JP5181173B2/en
Publication of JP2008243573A publication Critical patent/JP2008243573A/en
Application granted granted Critical
Publication of JP5181173B2 publication Critical patent/JP5181173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Catalysts (AREA)

Description

本発明は、光エネルギの有効利用に好適な光蓄電池及び光蓄電電極の製造方法に関する。 The present invention relates to a light storage battery suitable for effective use of light energy and a method for manufacturing a light storage electrode .

従来、光エネルギを電気エネルギとして使用するために、光電変換を行う装置等と蓄電池とを組み合わせた光蓄電システムが提案されている。このような光蓄電システムでは、例えば、図11に示すように、電解液103が充填されたパッケージ107内に光発電電極101、対極102及び蓄電極106が挿入されている。また、対極102に負荷104が接続され、光発電電極101の接続先を、蓄電極106及び電球104から選択するスイッチ105が設けられている。蓄電の際には、スイッチ105が蓄電極106に接続され、放電の際には、スイッチ105が電球104に接続される。このような光蓄電システムは、非特許文献1に記載されている。   2. Description of the Related Art Conventionally, in order to use light energy as electric energy, an optical power storage system that combines a storage battery and a device that performs photoelectric conversion has been proposed. In such an optical power storage system, for example, as shown in FIG. 11, a photovoltaic electrode 101, a counter electrode 102, and a storage electrode 106 are inserted into a package 107 filled with an electrolytic solution 103. In addition, a load 104 is connected to the counter electrode 102, and a switch 105 for selecting a connection destination of the photovoltaic electrode 101 from the storage electrode 106 and the light bulb 104 is provided. The switch 105 is connected to the storage electrode 106 during power storage, and the switch 105 is connected to the light bulb 104 during discharge. Such an optical power storage system is described in Non-Patent Document 1.

このような光蓄電システムに対し、簡素化のために光発電及び蓄電を1つの電極が行うように構成された2電極の光蓄電池が提案されている。例えば、光蓄電及び蓄電の機能を合わせ持つ単一物質からなる電極が特許文献1及び2に記載され、光発電する物質が蓄電電極上に担持されて構成された複合電極が特許文献3に記載されている。   In order to simplify such a photovoltaic power storage system, a two-electrode photovoltaic battery configured so that one electrode performs photovoltaic power generation and storage has been proposed. For example, Patent Documents 1 and 2 describe an electrode made of a single material having both the functions of light storage and storage, and Patent Document 3 describes a composite electrode formed by supporting a material for photovoltaic power generation on the storage electrode. Has been.

しかしながら、上述の単一物質からなる電極では、蓄電に伴って半導体的性質の変化が起こり、光発電効率が低下してしまう。また、複合電極では、この欠点は克服されるが、光発電する物質が蓄電電極上に担持されただけであるため、光発電する部分と蓄電する部分との接触面積が小さく、十分な効率を得ることが困難である。   However, in the electrode made of the above-mentioned single substance, a change in semiconducting property occurs with storage, and the photovoltaic power generation efficiency is lowered. Moreover, in the composite electrode, although this drawback is overcome, since the substance for photovoltaic power generation is only carried on the storage electrode, the contact area between the photovoltaic generation portion and the storage portion is small, and sufficient efficiency is achieved. It is difficult to obtain.

特開2002−124307号公報JP 2002-124307 A 特開平10−208782号公報Japanese Patent Laid-Open No. 10-208782 特開平9−63657号公報JP-A-9-63657 T. Miyasaka et al., Appl. Phys. Lett. vol. 85, No.17, 2004, pp. 3932-3934T. Miyasaka et al., Appl. Phys. Lett. Vol. 85, No. 17, 2004, pp. 3932-3934

本発明は、蓄電性能を向上させ、また、容易に製造することができる光蓄電電極を用いた光蓄電池及び光蓄電電極の製造方法を提供することを目的とする。 An object of the present invention is to provide an optical storage battery using an optical storage electrode that can improve the storage performance and can be easily manufactured, and a method for manufacturing the optical storage electrode .

本願発明者は、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。   As a result of intensive studies to solve the above problems, the present inventor has come up with various aspects of the invention described below.

本発明に係る光蓄電池は、光蓄電電極と、対極と、前記光蓄電電極と前記対極との間に設けられた電解質と、前記光蓄電電極と前記対極との接続を切り替えるスイッチと、を有し、前記光蓄電電極は、導電性高分子膜と、前記導電性高分子膜内に分散し、光が照射されると前記電解質と前記導電性高分子膜との間に酸化還元反応を誘発する複数の光触媒粒子と、を有し、前記スイッチがOFFの状態で光が照射されると、少なくとも前記電解質から陽イオンを前記導電性高分子膜内に取り込むかもしくは前記導電性高分子膜内から陰イオンを前記電解質に放出し、その後、光が照射されていない状態で前記スイッチがONの状態にされると、少なくとも前記取り込まれた陽イオンを前記電解質に放出するかもしくは前記放出した陰イオンを前記導電性高分子膜内に取り込むことを特徴とする。The photoelectric storage battery according to the present invention includes a photoelectric storage electrode, a counter electrode, an electrolyte provided between the photoelectric storage electrode and the counter electrode, and a switch that switches connection between the photoelectric storage electrode and the counter electrode. The photo storage electrode is dispersed in the conductive polymer film and the conductive polymer film, and induces a redox reaction between the electrolyte and the conductive polymer film when irradiated with light. A plurality of photocatalyst particles, and when the light is irradiated with the switch being OFF, at least a cation is taken into the conductive polymer film from the electrolyte or in the conductive polymer film When an anion is released from the electrolyte to the electrolyte, and then the switch is turned on in a state where no light is irradiated, at least the incorporated cation is released to the electrolyte or the released anion. Before ion Characterized in that incorporated into the conductive polymer film.

本発明に係る光蓄電電極の製造方法は、前記光蓄電池が有する光蓄電電極の製造方法であって、導電性モノマーを含有する溶液と光触媒粒子とを混合する工程と、前記導電性モノマーを重合することにより、前記光触媒粒子を内包する導電性高分子膜を形成する工程と、を有することを特徴とする。 The method for producing a photo-electric storage electrode according to the present invention is a method for producing a photo-electric storage electrode of the photo-electric storage battery , comprising mixing a solution containing a conductive monomer and photocatalyst particles, and polymerizing the conductive monomer. And a step of forming a conductive polymer film including the photocatalyst particles.

本発明によれば、光触媒粒子の触媒作用により、電解質と導電性高分子膜との間に酸化還元反応が誘発されるので、蓄電効率を向上させることができる。また、室温下で製造することができ、その工程も従来のものよりも簡便なものとなる。   According to the present invention, since the redox reaction is induced between the electrolyte and the conductive polymer film by the catalytic action of the photocatalyst particles, it is possible to improve the power storage efficiency. Moreover, it can manufacture at room temperature and the process also becomes simpler than the conventional one.

以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1Aは、本発明の実施形態に光蓄電電極を示す模式図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1A is a schematic diagram showing a photo storage electrode in an embodiment of the present invention.

本実施形態に係る光蓄電電極1では、基板1c上に導電性高分子膜1aが形成され、導電性高分子膜1a中に光触媒粒子1bが分散している。また、複数の光触媒粒子1bのうちの一部は、導電性高分子膜1aの表面から外部に露出している。基板1cとしては、例えば、可撓性のある樹脂基板が挙げられる。導電性高分子膜1aとしては、例えば、ポリアニリン膜、ポリピロール膜、ポリチオフェン膜等が挙げられる。また、光触媒粒子1bとしては、例えば、TiO2粒子、CdS粒子、ZnO粒子、ZrSe粒子、WO3粒子等の酸化物及びカルコゲン化合物が挙げられる。 In the optical storage electrode 1 according to this embodiment, the conductive polymer film 1a is formed on the substrate 1c, and the photocatalyst particles 1b are dispersed in the conductive polymer film 1a. Some of the plurality of photocatalyst particles 1b are exposed to the outside from the surface of the conductive polymer film 1a. Examples of the substrate 1c include a flexible resin substrate. Examples of the conductive polymer film 1a include a polyaniline film, a polypyrrole film, and a polythiophene film. Examples of the photocatalyst particles 1b include oxides and chalcogen compounds such as TiO 2 particles, CdS particles, ZnO particles, ZrSe particles, and WO 3 particles.

図2Aは、光蓄電電極の走査型電子顕微鏡(SEM)写真を示す図であり、図2Bは、ポリアニリン膜のSEM写真を示す図であり、図2Cは、TiO2粒子のSEM写真を示す図である。図2Aに示すように、光蓄電電極では、図2Bに示すポリアニリン膜と図2Cに示すTiO2粒子とが複合化されている。 FIG. 2A is a diagram showing a scanning electron microscope (SEM) photograph of the photoelectric storage electrode, FIG. 2B is a diagram showing an SEM photograph of the polyaniline film, and FIG. 2C is a diagram showing an SEM photograph of the TiO 2 particles. It is. As shown in FIG. 2A, in the optical storage electrode, the polyaniline film shown in FIG. 2B and the TiO 2 particles shown in FIG. 2C are combined.

次に、光蓄電電極1の使用方法について説明する。図1Bは、光蓄電電極1を備えた光蓄電池の構成を示す模式図である。   Next, a method for using the optical storage electrode 1 will be described. FIG. 1B is a schematic diagram illustrating a configuration of a photovoltaic battery including the photovoltaic storage electrode 1.

この光蓄電池では、電解液3が充填されたパッケージ7内に光蓄電電極1及び対極2が挿入されている。また、光蓄電電極1にスイッチ5が接続されている。そして、スイッチ5と対極2との間に、電球等の負荷4が接続される。対極2としては、例えば炭素繊維が挙げられる。電解液3としては、例えば希硫酸が挙げられる。   In this photovoltaic battery, a photovoltaic cell 1 and a counter electrode 2 are inserted into a package 7 filled with an electrolytic solution 3. A switch 5 is connected to the optical storage electrode 1. A load 4 such as a light bulb is connected between the switch 5 and the counter electrode 2. Examples of the counter electrode 2 include carbon fibers. Examples of the electrolytic solution 3 include dilute sulfuric acid.

このように構成された光蓄電池において蓄電を行う場合には、図3Aに示すように、スイッチ5を非導通の状態にしながら、光蓄電電極1に太陽光等の光を照射する。光蓄電電極1に光が照射されると、光触媒粒子1bにおいて電子及び正孔が励起され、これらが電解液3と導電性高分子膜1aとの間に酸化還元反応を誘発する。この結果、導電性高分子膜1aを構成するポリアニリン等の高分子の主鎖に、電解液3中の水素イオン(プロトン)が取り込まれる。また、重合時に高分子の主鎖中に取り込まれた硫酸イオン等のアニオンが脱離することもある。このようにして、蓄電が行われる。   When electricity is stored in the thus configured photovoltaic battery, as shown in FIG. 3A, the photovoltaic cell 1 is irradiated with light such as sunlight while the switch 5 is in a non-conductive state. When the light storage electrode 1 is irradiated with light, electrons and holes are excited in the photocatalyst particles 1b, and these induce an oxidation-reduction reaction between the electrolytic solution 3 and the conductive polymer film 1a. As a result, hydrogen ions (protons) in the electrolytic solution 3 are taken into the main chain of a polymer such as polyaniline constituting the conductive polymer film 1a. In addition, anions such as sulfate ions incorporated into the main chain of the polymer during polymerization may be eliminated. In this way, power storage is performed.

一方、放電を行う場合には、図3Bに示すように、スイッチ5を導通の状態とする。この結果、導電性高分子膜1aに取り込まれていた水素イオン(プロトン)が電解液3中に放出されたり、硫酸イオン等のアニオンが高分子の主鎖中に取り込まれたりする。これらに伴い電流が発生する。   On the other hand, when discharging, the switch 5 is turned on as shown in FIG. 3B. As a result, hydrogen ions (protons) taken into the conductive polymer film 1a are released into the electrolytic solution 3, or anions such as sulfate ions are taken into the polymer main chain. Along with these, current is generated.

このように、本実施形態では、光発電を行う光触媒粒子1bが、蓄電を行う導電性高分子膜1a中に分散しているため、これらの間の接触面積が大きい。従って、従来の2電極の光蓄電電極と比較して、高い性能を得ることができる。   Thus, in this embodiment, since the photocatalyst particles 1b that perform photovoltaic power generation are dispersed in the conductive polymer film 1a that stores electricity, the contact area between them is large. Therefore, high performance can be obtained as compared with the conventional two-electrode optical storage electrode.

次に、光蓄電電極1を製造する方法について説明する。図4は、光蓄電電極1を製造する第1の方法を示す模式図であり、図5は、光蓄電電極1を製造する第2の方法を示す模式図である。   Next, a method for manufacturing the optical storage electrode 1 will be described. FIG. 4 is a schematic diagram showing a first method for manufacturing the optical storage electrode 1, and FIG. 5 is a schematic diagram showing a second method for manufacturing the optical storage electrode 1.

第1の方法では、先ず、基板11の表面に塩化第2鉄又は過硫酸アンモニウム等の酸化剤を塗布し、これを乾燥させることにより、酸化剤層12を形成する。次に、基板11の酸化剤層12側に筒16を密着させ、筒16の上部から光触媒粒子13を懸濁させた導電性モノマーを含有するモノマー溶液15を注ぎ、暗中に4時間〜5時間程度放置する。これにより、図4に示すように、基板11上に光触媒粒子1bが沈殿すると共に、酸化剤層12が水分を含んで重合開始剤として機能するようになる。この結果、酸化剤層12の作用により導電性モノマーが重合し、光触媒粒子13を内包する導電性高分子膜14が形成される。導電性高分子膜14が導電性高分子膜1aに相当し、光触媒粒子13が光触媒粒子1bに相当し、基板11が基板1cに相当し、これらから光蓄電電極1が構成される。   In the first method, first, an oxidizing agent such as ferric chloride or ammonium persulfate is applied to the surface of the substrate 11 and dried to form the oxidizing agent layer 12. Next, the cylinder 16 is brought into close contact with the oxidant layer 12 side of the substrate 11, and a monomer solution 15 containing a conductive monomer in which the photocatalyst particles 13 are suspended is poured from the upper part of the cylinder 16, and 4 to 5 hours in the dark. Leave to the extent. As a result, as shown in FIG. 4, the photocatalyst particles 1b are precipitated on the substrate 11, and the oxidant layer 12 contains water and functions as a polymerization initiator. As a result, the conductive monomer is polymerized by the action of the oxidant layer 12 to form the conductive polymer film 14 including the photocatalyst particles 13. The conductive polymer film 14 corresponds to the conductive polymer film 1a, the photocatalyst particles 13 correspond to the photocatalyst particles 1b, the substrate 11 corresponds to the substrate 1c, and the photo storage electrode 1 is constituted by these.

第2の方法では、先ず、導電性基板21に筒16を密着させ、筒16の上部から光触媒粒子13を懸濁させた導電性モノマーを含有するモノマー溶液15を注ぎ、暗中に4時間〜5時間程度放置する。これにより、図5に示すように、導電性基板21上に光触媒粒子1bが沈殿する。次いで、モノマー溶液15中に電極22を挿入し、電極22を負極とし、導電性基板21を正極として、これらの間に定電流を流す。この結果、光触媒粒子13を内包する導電性高分子膜14が形成される。導電性高分子膜14が導電性高分子膜1aに相当し、光触媒粒子13が光触媒粒子1bに相当し、導電性基板21が基板1cに相当し、これらから光蓄電電極1が構成される。   In the second method, first, the tube 16 is brought into close contact with the conductive substrate 21, and the monomer solution 15 containing the conductive monomer in which the photocatalyst particles 13 are suspended is poured from the upper portion of the tube 16, and the time is 4 hours to 5 hours in the dark. Leave for about hours. Thereby, as shown in FIG. 5, the photocatalyst particles 1 b are precipitated on the conductive substrate 21. Next, the electrode 22 is inserted into the monomer solution 15, the electrode 22 is used as a negative electrode, the conductive substrate 21 is used as a positive electrode, and a constant current is passed between them. As a result, a conductive polymer film 14 including the photocatalyst particles 13 is formed. The conductive polymer film 14 corresponds to the conductive polymer film 1a, the photocatalyst particles 13 correspond to the photocatalyst particles 1b, and the conductive substrate 21 corresponds to the substrate 1c.

このように、第1及び第2の方法のいずれにおいても、光蓄電電極1を室温下で製造することができる。つまり、加熱炉等を用いずとも光蓄電電極1を製造することができる。また、製造に際して大型化を阻害する要因はないので、設備さえ整えば、面積が大きい光蓄電電極1を容易に製造することが可能である。   Thus, in either of the first and second methods, the optical storage electrode 1 can be manufactured at room temperature. That is, the optical storage electrode 1 can be manufactured without using a heating furnace or the like. Moreover, since there is no factor which inhibits an enlargement in manufacture, it is possible to easily manufacture the photoelectric storage electrode 1 having a large area as long as equipment is prepared.

なお、上述の光蓄電池では、パッケージ7内に電解液3が充填されているが、図6に示すように、電解液3を用いずに、光蓄電電極1と対極2との間に固体電解質6を配置してもよい。固体電解質6としては、例えば、プロトン伝導性を有するパーフルオロスルフォン酸等のフッ素系ポリマー等を用いることができる。この場合、光蓄電池の小型化及びフィルム化が可能となる。また、固体電解質6の代わりにイオン性液体を用いてもよい。イオン性液体としては、例えば、ジメチルイミダゾリウム等のアルキルイミダゾリウム塩類等を用いることができる。   In the above-described photovoltaic battery, the electrolyte solution 3 is filled in the package 7, but as shown in FIG. 6, the solid electrolyte is interposed between the photoelectric storage electrode 1 and the counter electrode 2 without using the electrolyte solution 3. 6 may be arranged. As the solid electrolyte 6, for example, a fluorine-based polymer such as perfluorosulfonic acid having proton conductivity can be used. In this case, the photovoltaic battery can be reduced in size and film. An ionic liquid may be used instead of the solid electrolyte 6. As the ionic liquid, for example, alkylimidazolium salts such as dimethylimidazolium can be used.

ここで、本願発明者等が行った実験の結果について説明する。   Here, the results of experiments conducted by the present inventors will be described.

(第1の実験)
第1の実験では、先ず、上述の光蓄電池と同様の構成の光蓄電池を作製した。導電性高分子膜1aとしてポリアニリン膜を用い、光触媒粒子1bとしてTiO2粒子を用い、対極2として炭素繊維を用い、電解液3として希硫酸を用いた。希硫酸の濃度は、1mol/dm3とした。そして、7200秒間の光照射を行った後の放電電流を測定した。また、光照射を行わずに自己放電を生じさせた場合の自己電流を測定した。この結果を図7に示す。
(First experiment)
In the first experiment, first, an optical storage battery having the same configuration as the above-described optical storage battery was produced. A polyaniline film was used as the conductive polymer film 1a, TiO 2 particles were used as the photocatalyst particles 1b, carbon fibers were used as the counter electrode 2, and dilute sulfuric acid was used as the electrolyte 3. The concentration of dilute sulfuric acid was 1 mol / dm 3 . And the discharge current after performing light irradiation for 7200 seconds was measured. In addition, the self-current was measured when self-discharge was generated without light irradiation. The result is shown in FIG.

図7に示すように、光照射を行った場合の放電電流(○)が自己電流(●)よりも高かった。このことは、光蓄電電極により蓄電が行われたことを証明している。   As shown in FIG. 7, the discharge current (◯) in the case of light irradiation was higher than the self current (●). This proves that power storage was performed by the optical power storage electrode.

(第2の実験)
第2の実験では、第1の実験で作製した光蓄電池を用いて、光の照射時間と蓄電された電荷の量との関係を調べた。なお、蓄電された電荷の量としては、光照射を行った場合に放電された総電荷量から光照射を行わなかった場合に自己放電された総電荷量を減算して得られる電荷量を求めた。この結果を図8に示す。
(Second experiment)
In the second experiment, the relationship between the irradiation time of light and the amount of stored charge was examined using the photovoltaic battery produced in the first experiment. As the amount of stored charge, the amount of charge obtained by subtracting the total amount of self-discharged when no light irradiation was performed from the total amount of charge discharged when light irradiation was performed was obtained. It was. The result is shown in FIG.

図8に示すように、光照射時間の増加に伴って光蓄電電化量が増加した。このことは、作製した光蓄電池が正常に動作したことを証明している。   As shown in FIG. 8, the amount of photoelectric storage increased with increasing light irradiation time. This proves that the produced photovoltaic battery operated normally.

(第3の実験)
第3の実験では、第1の実験で作製した光蓄電池を用いて、導電性高分子膜1aを構成するポリアニリンに含まれる窒素原子の状態を分析した。図9に示すように、ポリアニリンに含まれる窒素原子は、結合状態が相違するイミン基窒素、アミン基窒素及びイオン化窒素の3種の状態をとり得る。第3の実験では、X線光電子分光法によりこれらの3種の状態の各比率を分析した。この結果を図10に示す。
(Third experiment)
In the third experiment, the state of nitrogen atoms contained in the polyaniline constituting the conductive polymer film 1a was analyzed using the photovoltaic battery produced in the first experiment. As shown in FIG. 9, the nitrogen atom contained in polyaniline can take three types of states, imine group nitrogen, amine group nitrogen, and ionized nitrogen, which have different bonding states. In the third experiment, each ratio of these three states was analyzed by X-ray photoelectron spectroscopy. The result is shown in FIG.

図10に示すように、側鎖に水素をもたないイミン基窒素の比率が光照射時間の増加に伴って減少した。また、イオン化窒素の減少量とアミン基窒素の増加量がほぼ等しかった。このことは、光照射時間の増加に伴って、水素イオン(プロトン)がポリアニリンの主鎖に取り込まれていることを示している。   As shown in FIG. 10, the ratio of the imine group nitrogen having no hydrogen in the side chain decreased with increasing light irradiation time. In addition, the decrease amount of ionized nitrogen and the increase amount of amine group nitrogen were almost equal. This indicates that hydrogen ions (protons) are incorporated into the main chain of polyaniline as the light irradiation time increases.

本発明の実施形態に光蓄電電極を示す模式図である。It is a schematic diagram which shows an optical storage electrode in embodiment of this invention. 光蓄電電極1を備えた光蓄電池の構成を示す模式図である。1 is a schematic diagram illustrating a configuration of a photovoltaic battery including a photovoltaic electrode 1. 光蓄電電極のSEM写真を示す図である。It is a figure which shows the SEM photograph of an optical storage electrode. ポリアニリン膜のSEM写真を示す図である。It is a figure which shows the SEM photograph of a polyaniline film | membrane. TiO2粒子のSEM写真を示す図である。Is an SEM photograph of TiO 2 particles. 蓄電時の光蓄電池を示す模式図である。It is a schematic diagram which shows the optical storage battery at the time of electrical storage. 放電時の光蓄電池を示す模式図である。It is a schematic diagram which shows the photovoltaic battery at the time of discharge. 光蓄電電極1を製造する第1の方法を示す模式図である。1 is a schematic diagram showing a first method for manufacturing a light storage electrode 1. FIG. 光蓄電電極1を製造する第2の方法を示す模式図である。FIG. 3 is a schematic diagram showing a second method for manufacturing the optical storage electrode 1. 光蓄電電極1を備えた他の光蓄電池の構成を示す模式図である。FIG. 3 is a schematic diagram showing the configuration of another photovoltaic battery provided with the photovoltaic cell 1. 第1の実験の結果を示すグラフである。It is a graph which shows the result of a 1st experiment. 第2の実験の結果を示すグラフである。It is a graph which shows the result of a 2nd experiment. ポリアニリンの構造を示す図である。It is a figure which shows the structure of polyaniline. 第3の実験の結果を示すグラフである。It is a graph which shows the result of a 3rd experiment. 従来の光蓄電システムを示す図である。It is a figure which shows the conventional optical electrical storage system.

符号の説明Explanation of symbols

1:光蓄電電極
1a:導電性高分子膜
1b:光触媒粒子
1c:基板
2:対極
3:電解液
4:負荷
5:スイッチ
6:固体電解質
7:パッケージ
11:基板
12:酸化物層
13:光触媒粒子
14:導電性高分子層
15:モノマー溶液
16:筒
21:導電性基板
22:電極
1: Photoelectric storage electrode 1a: Conductive polymer film 1b: Photocatalyst particles 1c: Substrate 2: Counter electrode 3: Electrolyte solution 4: Load 5: Switch 6: Solid electrolyte 7: Package 11: Substrate 12: Oxide layer 13: Photocatalyst Particle 14: Conductive polymer layer 15: Monomer solution 16: Tube 21: Conductive substrate 22: Electrode

Claims (2)

光蓄電電極と、
対極と、
前記光蓄電電極と前記対極との間に設けられた電解質と、
前記光蓄電電極と前記対極との接続を切り替えるスイッチと、
を有し、
前記光蓄電電極は、
導電性高分子膜と、
前記導電性高分子膜内に分散し、光が照射されると前記電解質と前記導電性高分子膜との間に酸化還元反応を誘発する複数の光触媒粒子と、
を有し、
前記スイッチがOFFの状態で光が照射されると、少なくとも前記電解質から陽イオンを前記導電性高分子膜内に取り込むかもしくは前記導電性高分子膜内から陰イオンを前記電解質に放出し、その後、光が照射されていない状態で前記スイッチがONの状態にされると、少なくとも前記取り込まれた陽イオンを前記電解質に放出するかもしくは前記放出した陰イオンを前記導電性高分子膜内に取り込むことを特徴とする光蓄電池。
A light storage electrode;
With the counter electrode,
An electrolyte provided between the photoelectric storage electrode and the counter electrode;
A switch for switching the connection between the optical storage electrode and the counter electrode;
Have
The photoelectric storage electrode is
A conductive polymer film;
A plurality of photocatalyst particles to induce a redox reaction between the conductive polymer film is dispersed in a light is irradiated to the electrolyte the conductive polymer film,
I have a,
When light is irradiated in a state where the switch is OFF, at least a cation is taken into the conductive polymer film from the electrolyte or an anion is released from the conductive polymer film to the electrolyte, and then When the switch is turned on in a state where no light is irradiated, at least the taken-in cation is released into the electrolyte or the released anion is taken into the conductive polymer film. A photovoltaic battery characterized by that.
請求項1に記載の光蓄電池が有する光蓄電電極の製造方法であって、
導電性モノマーを含有する溶液と光触媒粒子とを混合する工程と、
前記導電性モノマーを重合することにより、前記光触媒粒子を内包する導電性高分子膜を形成する工程と、
を有することを特徴とする光蓄電電極の製造方法。
It is a manufacturing method of the optical storage electrode which the optical storage battery according to claim 1 has,
Mixing a solution containing a conductive monomer and photocatalyst particles;
Forming a conductive polymer film containing the photocatalytic particles by polymerizing the conductive monomer;
The manufacturing method of the optical storage electrode characterized by having.
JP2007082111A 2007-03-27 2007-03-27 Photoelectric storage battery and method for manufacturing optical storage electrode Active JP5181173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082111A JP5181173B2 (en) 2007-03-27 2007-03-27 Photoelectric storage battery and method for manufacturing optical storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082111A JP5181173B2 (en) 2007-03-27 2007-03-27 Photoelectric storage battery and method for manufacturing optical storage electrode

Publications (2)

Publication Number Publication Date
JP2008243573A JP2008243573A (en) 2008-10-09
JP5181173B2 true JP5181173B2 (en) 2013-04-10

Family

ID=39914663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082111A Active JP5181173B2 (en) 2007-03-27 2007-03-27 Photoelectric storage battery and method for manufacturing optical storage electrode

Country Status (1)

Country Link
JP (1) JP5181173B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499323B2 (en) * 2010-03-02 2014-05-21 国立大学法人 鹿児島大学 Rocking chair type photovoltaic battery
JP6021375B2 (en) * 2012-03-26 2016-11-09 株式会社東芝 Solar cell substrate and solar cell
KR102286239B1 (en) * 2013-08-30 2021-08-06 세키스이가가쿠 고교가부시키가이샤 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell
JP6933092B2 (en) * 2017-11-06 2021-09-08 日本電気株式会社 Dye-sensitized solar cell with power storage function

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721643B2 (en) * 2004-01-21 2011-07-13 学校法人桐蔭学園 Composition for forming conductive coating, electrode for dye-sensitized photovoltaic cell using the same, and photovoltaic cell using the electrode for dye-sensitized photovoltaic cell

Also Published As

Publication number Publication date
JP2008243573A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
Wu et al. Improved electrolyte for zinc-bromine flow batteries
Chen et al. An integrated “energy wire” for both photoelectric conversion and energy storage
Park et al. Material design and engineering of next-generation flow-battery technologies
Oh et al. A metal-free and all-organic redox flow battery with polythiophene as the electroactive species
Yan et al. Photo‐assisted rechargeable metal batteries for energy conversion and storage
KR101654114B1 (en) Repeatedly chargeable and dischargeable quantum battery
KR20160143636A (en) Oxygen-vanadium redox flow battery with vanadium electrolyte having carbon particles dispersed therein
Luo et al. A high-performance oxygen electrode for Li–O 2 batteries: Mo 2 C nanoparticles grown on carbon fibers
Duan et al. Counter electrode electrocatalysts from one-dimensional coaxial alloy nanowires for efficient dye-sensitized solar cells
JP2006515458A (en) Dye-sensitized solar cell with foil electrode
Gui et al. A solar rechargeable battery based on the sodium ion storage mechanism with Fe 2 (MoO 4) 3 microspheres as anode materials
JP5181173B2 (en) Photoelectric storage battery and method for manufacturing optical storage electrode
WO2018001051A1 (en) Design method for energy storage device integrated photoelectrochomical water decomposition battery
JP6599991B2 (en) POLYMER ELECTROLYTE MEMBRANE, ELECTROCHEMICAL AND FLOW CELL CONTAINING THE SAME, METHOD FOR PRODUCING POLYMER ELECTROLYTE MEMBRANE, AND ELECTROLYTE SOLUTION FOR FLOW Batteries
Hossain et al. Evolution of vanadium redox flow battery in electrode
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
KR101664627B1 (en) Polymer electrolyte membrane and method of manufacturing the same
Rana et al. Scientific issues of zinc‐bromine flow batteries and mitigation strategies
Zhao et al. Review of methods for improving the cyclic stability of Li–air batteries by controlling cathode reactions
AU2016288963A1 (en) Electrode for redox flow battery, and redox flow battery system
JPWO2005122322A1 (en) Dye-sensitized solar cell and method for producing the same
JP2005340167A (en) Manufacturing method of optical electrode substrate of dye-sensitized solar cell, optical electrode substrate of dye-sensitized solar cell, and dye-sensitized solar cell
KR101327741B1 (en) Nanoparticles as a support for redox couple and redox flow battery including the same
JP7287347B2 (en) Laminates for fuel cells
KR101689134B1 (en) Redox Flow Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150