JP4721643B2 - Composition for forming conductive coating, electrode for dye-sensitized photovoltaic cell using the same, and photovoltaic cell using the electrode for dye-sensitized photovoltaic cell - Google Patents

Composition for forming conductive coating, electrode for dye-sensitized photovoltaic cell using the same, and photovoltaic cell using the electrode for dye-sensitized photovoltaic cell Download PDF

Info

Publication number
JP4721643B2
JP4721643B2 JP2004013711A JP2004013711A JP4721643B2 JP 4721643 B2 JP4721643 B2 JP 4721643B2 JP 2004013711 A JP2004013711 A JP 2004013711A JP 2004013711 A JP2004013711 A JP 2004013711A JP 4721643 B2 JP4721643 B2 JP 4721643B2
Authority
JP
Japan
Prior art keywords
electrode
dye
photovoltaic cell
composition
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004013711A
Other languages
Japanese (ja)
Other versions
JP2005209458A (en
Inventor
力 宮坂
賢司 松岡
光一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gakko Hojin Toin Gakuen
Original Assignee
Gakko Hojin Toin Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gakko Hojin Toin Gakuen filed Critical Gakko Hojin Toin Gakuen
Priority to JP2004013711A priority Critical patent/JP4721643B2/en
Publication of JP2005209458A publication Critical patent/JP2005209458A/en
Application granted granted Critical
Publication of JP4721643B2 publication Critical patent/JP4721643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、電極特に光電池用電極として好適に用いられる導電性被覆形成用組成物、その導電性組成物を用いた電極及びその電極を用いた光電池に関するものである。   The present invention relates to a composition for forming a conductive coating that is suitably used as an electrode, particularly as an electrode for a photovoltaic cell, an electrode using the conductive composition, and a photovoltaic cell using the electrode.

一般に、光電変換手段では、耐久性及び効率の点から、シリコンのp−n接合半導体や化合物半導体を用いる固体素子が主流となっており、高エネルギー変換効率を目指す太陽電池においても、これまで単結晶シリコン、多結晶シリコン、アモルファスシリコン、テルル化カドミウム、セレン化インジウム銅のような固体接合を利用した光電池が多数知られている。   In general, from the viewpoint of durability and efficiency, solid-state devices using silicon pn junction semiconductors or compound semiconductors are the mainstream in photoelectric conversion means, and even solar cells aiming at high energy conversion efficiency have so far been single. Many photovoltaic cells using solid junctions such as crystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and indium copper selenide are known.

しかしながら、これらの固体接合を利用する光電池は、一般にその素子製造に際し、高温を必要としたり、真空技術を用いた成膜や積層を必要とするため、ばく大なエネルギーを消費しなければならない上に、二酸化炭素の排出量が大きく、環境負荷の点で大きなリスクを有している。   However, photovoltaic cells that use these solid junctions generally require high temperatures when manufacturing their elements, and require film formation and lamination using vacuum technology, so that a great deal of energy must be consumed. , The amount of carbon dioxide emission is large, and there is a big risk in terms of environmental load.

また、民生用商品として普及させるためにコストの点で有力なアモルファスシリコン太陽電池は、太陽光に対して800nmまでの可視光を利用可能であり、しかも10%近いエネルギー変換効率を与える点でメリットがあるが、その製造に真空蒸着技術を欠かせない点で前記と同様のリスクを避けることができない。   In addition, amorphous silicon solar cells, which are promising in terms of cost in order to spread as consumer products, can use visible light up to 800 nm against sunlight, and also provide an energy conversion efficiency of nearly 10%. However, the risk similar to the above cannot be avoided in that the vacuum deposition technique is indispensable for the production.

一方、自然界のバイオマスによる光合成は、完全な環境循環型エネルギー変換システムであり、太陽光を最大1%程度の効率で変換することが知られている。このシステムは、前記のアモルファスシリコン太陽電池よりもエネルギー変換効率は低いが、環境負荷のリスクを生じることはないという利点がある。
しかしながら、このシステムは生物サイクルに依存するため、アモルファスシリコン太陽電池のように長期間にわたって安定した出力を供給することはできないという欠点がある。
On the other hand, photosynthesis by natural biomass is a complete environmental circulation type energy conversion system, and it is known to convert sunlight with an efficiency of up to about 1%. This system has the advantage that the energy conversion efficiency is lower than that of the amorphous silicon solar cell, but it does not pose a risk of environmental burden.
However, since this system depends on the biological cycle, it has a drawback that it cannot supply a stable output over a long period of time unlike an amorphous silicon solar cell.

ところで、最近に至り、色素増感半導体微粒子を用いた光電変換素子が提案され(非特許文献1、特許文献1参照)、光合成をモデルとする湿式の太陽電池として注目されている。そして、この光電変換素子においては、例えば、耐光性の優れたルテニウム錯体のような色素を用いて増感された二酸化チタン多孔質薄膜が光吸収体として用いられ、低コストという利点はあるが、酸化還元電解質溶液を用いるため、酸化還元剤の安定性低下や電解質溶液の外部リークに起因して持続性が低下するのを免れないという欠点がある。   By the way, recently, a photoelectric conversion element using dye-sensitized semiconductor fine particles has been proposed (see Non-Patent Document 1 and Patent Document 1), and has attracted attention as a wet solar cell using photosynthesis as a model. In this photoelectric conversion element, for example, a titanium dioxide porous thin film sensitized with a dye such as ruthenium complex having excellent light resistance is used as a light absorber, and there is an advantage of low cost. Since the redox electrolyte solution is used, there is a drawback that the sustainability is inevitably lowered due to a reduction in the stability of the redox agent or an external leakage of the electrolyte solution.

しかも、この光吸収体はガラス板のような硬質透明基板上に担持されているため、屈曲自在の材料として用いることができず、おのずから用途が制限されるのを免れない。これらの理由により湿式太陽電池は、環境負荷抑制及び環境循環性において大きな実現可能性をもつにもかかわらず、まだ実用化の段階に至っていない。   In addition, since this light absorber is carried on a hard transparent substrate such as a glass plate, it cannot be used as a bendable material, and the application is naturally limited. For these reasons, wet solar cells have not yet reached the stage of practical use, despite their great feasibility in terms of environmental load suppression and environmental circulation.

ところで、太陽電池のような光電池は、通常2枚の対向する電極と電解液からなるが、これまで抵抗値の低いITO−PETフィルムをこの光電池の電極材料に用いて、光電池をプラスチックフィルム化する試みがなされ、プラスチックフィルム電極上にプラスチックの軟化温度以下の温度で半導体層を担持させて電極を形成する方法が提案されている(非特許文献2参照)。   By the way, a photovoltaic cell such as a solar cell is usually composed of two opposing electrodes and an electrolytic solution. Conventionally, an ITO-PET film having a low resistance value is used as an electrode material of the photovoltaic cell, and the photovoltaic cell is made into a plastic film. Attempts have been made to propose a method of forming an electrode by supporting a semiconductor layer on a plastic film electrode at a temperature lower than the softening temperature of the plastic (see Non-Patent Document 2).

しかしながら、色素増感半導体電極の対極に使用しうるプラスチック電極は種類が限られており、これまで化学的に安定な白金のような貴金属を表面に蒸着させたプラスチックフィルムが知られているが、これはコスト面に難点があり、実用化には不適当である。   However, the types of plastic electrodes that can be used for the counter electrode of the dye-sensitized semiconductor electrode are limited, and plastic films in which a noble metal such as platinum that is chemically stable has been deposited on the surface are known so far. This has a cost disadvantage and is not suitable for practical use.

ところで、プラスチック支持体に対し、比較的低い温度で導電膜として被覆しうるものの中で、アルミニウムや銀のような金属薄膜が最も低い表面抵抗を与えることができるが、これら以外にはITO膜が知られているだけで、特に低抵抗に加えて光学的透明性を要求される場合には、専らこれが用いられ、例えば透明プラスチック支持体に、抵抗値50Ω/□以下のITO膜を担持させた電波吸収体が提案されている(特許文献2参照)。   By the way, among the plastic supports that can be coated as a conductive film at a relatively low temperature, a metal thin film such as aluminum or silver can give the lowest surface resistance. It is only known, especially when optical transparency is required in addition to low resistance, and this is used exclusively. For example, an ITO film having a resistance value of 50Ω / □ or less is supported on a transparent plastic support. A radio wave absorber has been proposed (see Patent Document 2).

このような抵抗値の低いITO膜をPETやPENのようなプラスチックフィルムに担持させた透明導電性フィルムは、電極として各種の用途に供することができるとはいえ、これらの表面抵抗値は、アルミニウムや銀のような金属薄膜と比較すると、桁違いに高く、電極材料や集電材料としては、まだ十分に満足しうるものではない。   Although the transparent conductive film in which the ITO film having such a low resistance value is supported on a plastic film such as PET or PEN can be used for various applications as an electrode, the surface resistance value thereof is aluminum. Compared with metal thin films such as silver and silver, the electrode materials and current collecting materials are still not fully satisfactory.

このITO膜表面を金属薄膜で被覆すれば、表面抵抗値を低下させることは可能であるが、このような金属薄膜を電池などの電解液と接触する用途に用いると、電気化学反応による表面酸化や腐蝕を生じるという欠点を生じるのを免れない。   If this ITO film surface is coated with a metal thin film, it is possible to reduce the surface resistance value. However, if such a metal thin film is used for contact with an electrolyte such as a battery, surface oxidation by an electrochemical reaction may occur. And suffer from the disadvantage of causing corrosion.

一方において、本来電気化学的な酸化還元反応に対する活性が低い導電性電極、例えば酸化スズや酸化インジウムスズ(ITO)を導電層とする電極は、その電極表面を炭素材料や導電性ポリマーで修飾することによって活性化されることが知られている。   On the other hand, in the case of a conductive electrode having a low activity for electrochemical redox reaction, for example, an electrode having tin oxide or indium tin oxide (ITO) as a conductive layer, the surface of the electrode is modified with a carbon material or a conductive polymer. It is known to be activated by this.

例えば、カーボンナノチューブを表面に担持した対極を用いることによって、ヨウ素酸化還元電解液を用いた色素増感太陽電池の性能が向上することが(非特許文献3参照)、また導電性ポリマーを対極の表面に被覆することによって色素増感太陽電池の光電変換特性が改善されることが(非特許文献4参照)それぞれ報告されている。   For example, the performance of a dye-sensitized solar cell using an iodine redox electrolyte can be improved by using a counter electrode having carbon nanotubes supported on the surface (see Non-Patent Document 3), and a conductive polymer can be used as a counter electrode. It has been reported that the photoelectric conversion characteristics of a dye-sensitized solar cell are improved by coating the surface (see Non-Patent Document 4).

このように、コストの高い白金電極に代わる、コストの低い炭素系電極や導電性ポリマー電極の使用可能性が高まりつつあるが、これらの電極材料を用いた電池は、電極界面の抵抗が大きいため、依然として十分に高い出力及びエネルギー効率は得られていない。これらの電極材料が白金電極に比べて性能が著しく劣るのは、導電性が低いことに加えて酸化還元反応の触媒効果が不十分なことに起因するものと思われる。   Thus, the possibility of using low-cost carbon-based electrodes and conductive polymer electrodes instead of high-cost platinum electrodes is increasing. However, batteries using these electrode materials have high resistance at the electrode interface. Still, sufficiently high power and energy efficiency have not been obtained. The reason why the performance of these electrode materials is significantly inferior to that of platinum electrodes is considered to be due to the fact that the catalytic effect of the oxidation-reduction reaction is insufficient in addition to the low conductivity.

このため、炭素系電極材料については、電極界面の抵抗を小さくし、かつ酸化還元反応の触媒効果を増大させて、白金電極に匹敵する性能をもたせることが重要な課題となっている。   For this reason, with respect to the carbon-based electrode material, it is an important issue to reduce the resistance at the electrode interface and to increase the catalytic effect of the oxidation-reduction reaction so as to have performance comparable to that of the platinum electrode.

米国特許第4927721号明細書(特許請求の範囲その他)US Pat. No. 4,927,721 (Claims and others) 特開平11−150393号公報(特許請求の範囲その他)JP-A-11-150393 (Claims and others) 「ネイチュア(Nature)」、第353巻、1991年、p.737−740“Nature”, Volume 353, 1991, p. 737-740 「ケミストリー・レターズ(Chem.Lett.)」、2002、p1250“Chemist Letters”, 2002, p1250. 「ケミストリー・レターズ(Chem.Lett.)」、2003、p28−29“Chemist Letters”, 2003, p. 28-29. 「ケミストリー・レターズ(Chem.Lett.)」、2002、p1060−1061"Chemist Letters", 2002, p1060-1061.

本発明は、前記した事情に鑑み、白金電極に匹敵する高い性能をもつ炭素系導電材料を与えるための、電極基板に対する表面密着性の優れた導電性被覆形成用組成物を提供することを目的としてなされたものである。   In view of the circumstances described above, an object of the present invention is to provide a conductive coating forming composition having excellent surface adhesion to an electrode substrate for providing a carbon-based conductive material having high performance comparable to that of a platinum electrode. It was made as.

本発明者らは、炭素系電極材料の性能を向上させるために鋭意研究を重ねた結果、所定のサイズを有する炭素材料と所定のサイズを有する金属カルコゲニドとからなる無機微粒子成分を、高分子バインダー成分とともに含有させることにより、電極性能が優れ、かつ電極基板への密着性の良好な導電性被覆を与える組成物が得られることを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive studies to improve the performance of the carbon-based electrode material, the present inventors have found that an inorganic fine particle component composed of a carbon material having a predetermined size and a metal chalcogenide having a predetermined size is used as a polymer binder. It has been found that a composition that provides a conductive coating with excellent electrode performance and good adhesion to the electrode substrate can be obtained by containing it together with the components, and the present invention has been made based on this finding.

すなわち、本発明は、色素増感型光電池用電極の導電性電極基板上に担持される導電性被覆形成用組成物であって、(A)一次粒子の球体換算平均粒子径5〜500nmである炭素材料と、(B)一次粒子の球体換算平均粒子径5〜500nmの金属カルコゲニドからなる無機微粒子成分及び(C)高分子バインダー成分を含有することを特徴とする導電性被覆形成用組成物、この組成物の薄層を導電性電極基板上に担持させたことを特徴とする色素増感型光電池用電極及びこの組成物の薄層をプラスチック電極基板上に担持させた電極と色素増感半導体電極との間に、イオン導電性電解質層を間挿させて構成した光電池を提供するものである。   That is, the present invention is a composition for forming a conductive coating carried on a conductive electrode substrate of an electrode for a dye-sensitized photovoltaic cell, and (A) the sphere-converted average particle diameter of primary particles is 5 to 500 nm. A conductive coating-forming composition comprising: a carbon material; and (B) an inorganic fine particle component comprising a metal chalcogenide having a sphere-converted average particle diameter of primary particles of 5 to 500 nm, and (C) a polymer binder component, Electrode for dye-sensitized photocell characterized in that a thin layer of this composition is supported on a conductive electrode substrate, and electrode and dye-sensitized semiconductor in which a thin layer of this composition is supported on a plastic electrode substrate The present invention provides a photovoltaic cell having an ion conductive electrolyte layer interposed between electrodes.

上記の(A)成分及び(B)成分における「一次粒子の球体換算平均粒子径」とは、微粒子成分のサイズを特定するための因子であって、各粒子を真球状粒子をそれぞれ真球状であると想定したときに、その粒子の直径に相当するサイズを意味する。そして、球状又はそれに近時の形状の微粒状黒鉛の場合は、ほぼそのx、y、z軸方向の長さの平均値を用いればよいが、カーボンナノチューブのような細長い形状の粒体の場合は以下のようにして求める。   The “sphere-converted average particle diameter of primary particles” in the above component (A) and component (B) is a factor for specifying the size of the fine particle component, and each particle has a true spherical shape. When it is assumed, it means a size corresponding to the diameter of the particle. And in the case of spherical or the shape of fine granular graphite, the average value of the lengths in the x, y and z axis directions may be used, but in the case of elongated particles such as carbon nanotubes. Is obtained as follows.

すなわち、この粒体の断面積をS、長さをlとすると、その体積のVはS・lになる。
一方、球の体積は、その直径をdとすると
V=(π/6)d3
であるから、上記の粒体の球体換算平均粒子径は、
(π/6)d3=S・l
d=[(6/π)・S・l]1/3
になる。
That is, assuming that the cross-sectional area of this granule is S and the length is l, the volume V is S · l.
On the other hand, the volume of a sphere is V = (π / 6) d 3 where d is its diameter.
Therefore, the sphere equivalent average particle diameter of the above-mentioned granules is
(Π / 6) d 3 = S · l
d = [(6 / π) · S · l] 1/3
become.

次に、本発明をさらに詳細に説明する。
本発明の(A)成分として用いられる炭素材料は、電極表面に導電性を付与して電気抵抗を低下させるとともに、イオン性電解液と接する界面で用いたときに酸化還元反応の活性を高めるためのものである。また、この炭素材料は、化学的、電気化学的に安定な性質から電極表面を保護する役割も果たしている。
Next, the present invention will be described in more detail.
The carbon material used as the component (A) of the present invention reduces the electrical resistance by imparting conductivity to the electrode surface, and increases the activity of the redox reaction when used at the interface in contact with the ionic electrolyte. belongs to. This carbon material also plays a role of protecting the electrode surface from chemically and electrochemically stable properties.

このような炭素材料としては、例えば黒鉛類(グラファイト)、カーボンブラック、コークス、カーボンファイバー、カーボンナノチューブ、フラーレンなどがある。これらは単独で用いてもよいし、また2種以上を混合して用いてもよい。上記の黒鉛類としては、天然黒鉛のほか、繊維状黒鉛、メソフェーズカーボンマイクロビーズ(MCMB)などの人工黒鉛、ポリアセンなどの難黒鉛化炭素などがある。また、カーボンブラックとしては、チャンネルブラック、ファーネスブラック、アセチレンブラック、サーマルブラック、ケッチェンブラックなどがある。   Examples of such a carbon material include graphites (graphite), carbon black, coke, carbon fiber, carbon nanotube, and fullerene. These may be used singly or in combination of two or more. Examples of the graphite include natural graphite, fibrous graphite, artificial graphite such as mesophase carbon microbeads (MCMB), and non-graphitizable carbon such as polyacene. Carbon black includes channel black, furnace black, acetylene black, thermal black, ketjen black and the like.

これらの炭素材料は微粒子の形で用いられるが、微粒子のサイズの分布は単分散であっても多分散であってもよい。またサイズの小さい一次粒子が凝集した二次粒子を形成していてもよい。ここで一次粒子とは、凝集しないで単独で存在する炭素材料の粒子もしくは凝集した炭素粒子を意味する。本発明における炭素材料の一次粒子は、その各粒子の球体換算の平均粒子径が5〜500nmであることが必要である。この炭素材料の球体換算平均粒子径の好ましい範囲は、5〜200nm、特に5〜100nmである。   These carbon materials are used in the form of fine particles, but the fine particle size distribution may be monodispersed or polydispersed. Moreover, you may form the secondary particle which the primary particle with small size aggregated. Here, the primary particle means a carbon material particle or an aggregated carbon particle which exists alone without being aggregated. The primary particle of the carbon material in the present invention needs to have an average particle diameter in terms of sphere of each particle of 5 to 500 nm. The preferable range of the sphere-converted average particle diameter of this carbon material is 5 to 200 nm, particularly 5 to 100 nm.

本発明の(A)成分として用いる炭素材料として好ましいものは、黒鉛(グラファイト)の超微粒子とカーボンナノチューブ及びそれらの混合物である。グラファイトの超微粒子は結晶性のものでも、結晶性の低いアモルファスの炭素構造を含むものであってもよい。カーボンナノチューブは単層型でも、多層型でもよい。カーボンナノチューブはその直径が1〜50nm、長さが20〜500nmのものが好ましい。また、カーボンナノチューブの構造の一部を有機化合物によって修飾したもの、構造中に金属原子やクラスターを含むのもの、あるいは各種の有機化合物や無機化合物と複合(ハイブリッド)化したものも用いることができる。   Preferred as the carbon material used as the component (A) in the present invention is graphite ultrafine particles, carbon nanotubes, and a mixture thereof. The ultrafine particles of graphite may be crystalline or may contain an amorphous carbon structure with low crystallinity. Carbon nanotubes may be single-walled or multi-walled. The carbon nanotubes preferably have a diameter of 1 to 50 nm and a length of 20 to 500 nm. In addition, carbon nanotubes that are partly modified with organic compounds, those that contain metal atoms or clusters in the structure, or those that are complex (hybrid) with various organic or inorganic compounds can be used. .

これらの炭素材料については、BET法による比表面積が、500〜10000m2/g、特に1000〜10000m2/gであることが好ましい。また、黒鉛(グラファイト)についてはBET法による比表面積が2000〜10000m2/gであることが好ましい。 About these carbon materials, it is preferable that the specific surface area by BET method is 500-10000 m < 2 > / g, especially 1000-10000 m < 2 > / g. Moreover, about graphite (graphite), it is preferable that the specific surface area by BET method is 2000-10000 m < 2 > / g.

本発明の(A)成分としては、電極材料としての活性を高める目的で、上記の炭素材料に対して、白金、パラジウムなどの触媒機能を有する金属材料を添加したり、あるいは複合化したものを用いることができる。いわゆる白金活性化炭素(白金活性化黒鉛など)を用いることができる。   As the component (A) of the present invention, for the purpose of enhancing the activity as an electrode material, a metal material having a catalytic function such as platinum or palladium is added to the above carbon material, or a composite material is added. Can be used. So-called platinum activated carbon (such as platinum activated graphite) can be used.

本発明の(B)成分として用いる金属カルコゲニドは、イオン性電解液と電極との界面における酸化還元反応又は電子や正孔の移動速度を増大し、反応を促進する。これらの金属カルコゲニドは、球形、多面体、チューブ状、多孔体など任意の形状のものでもよい。この(B)成分のサイズは、単分散であっても多分散であってもよいが、その一次粒子が、球体換算平均粒子径が5〜500nm、好ましくは5〜200nm、特に5〜100nmの範囲のナノ粒子が選ばれる。   The metal chalcogenide used as the component (B) of the present invention increases the oxidation-reduction reaction at the interface between the ionic electrolyte and the electrode, or increases the transfer rate of electrons and holes, and promotes the reaction. These metal chalcogenides may have any shape such as a sphere, a polyhedron, a tube, and a porous body. The size of the component (B) may be monodispersed or polydispersed, but the primary particles have a sphere equivalent average particle diameter of 5 to 500 nm, preferably 5 to 200 nm, particularly 5 to 100 nm. A range of nanoparticles is selected.

このような金属カルコゲニドを構成する金属元素としては、平均サイズの小さい超微粒子又はナノ粒子を形成することのできる元素が好ましく、Al、Ge、In、Sn、Bなどの典型元素、Mg、Ca、Srなどのアルカリ金属、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Ru、W、Pd、Irなどの遷移金属のほか、Ce、Nd、Sm、Euなどの元素も用いることができる。   As a metal element constituting such a metal chalcogenide, an element capable of forming ultrafine particles or nanoparticles having a small average size is preferable, and typical elements such as Al, Ge, In, Sn, and B, Mg, Ca, In addition to transition metals such as alkali metals such as Sr, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ru, W, Pd, and Ir, elements such as Ce, Nd, Sm, and Eu Can also be used.

金属カルコゲニドの中では金属酸化物、特に半導体としての性質をもつ金属酸化物が好ましい。ここで半導体とは、伝導に関わるキャリアー(n型では電子)の濃度が1014〜1020個/cm3の範囲の材料を意味する。 Among metal chalcogenides, metal oxides, particularly metal oxides having properties as a semiconductor are preferable. Here, the term “semiconductor” means a material in which the concentration of carriers involved in conduction (electrons in the n-type) is in the range of 10 14 to 10 20 / cm 3 .

このような金属酸化物半導体として、Ti、Sn、Zn、Fe、Cu、W、Zr、Sr、In、Ce、Y、La、V、Nbなどの酸化物が挙げられる。好ましい金属酸化物半導体としては、例えばTiO2、TiSrO3、ZnO、Nb23、SnO2、WO3、V25、CuO、In23などが挙げられる。本発明においては金属酸化物半導体の中でも、n型半導体を用いることが特に好ましい。この金属酸化物のn型半導体として好ましいものは、酸化チタン、酸化亜鉛、酸化スズであり、より好ましいものは酸化チタンである。 Examples of such a metal oxide semiconductor include oxides such as Ti, Sn, Zn, Fe, Cu, W, Zr, Sr, In, Ce, Y, La, V, and Nb. Preferred examples of the metal oxide semiconductor include TiO 2 , TiSrO 3 , ZnO, Nb 2 O 3 , SnO 2 , WO 3 , V 2 O 5 , CuO, and In 2 O 3 . In the present invention, it is particularly preferable to use an n-type semiconductor among metal oxide semiconductors. Preferred as the n-type semiconductor of this metal oxide are titanium oxide, zinc oxide, and tin oxide, and more preferred is titanium oxide.

本発明の(B)成分としては、金属酸化物以外の金属カルコゲニドを用いることもできる。このような金属カルコゲニドとして好ましいものは、半導体としての性質を有するものである。このような例として、Cd、Zn、Fe、Cu、Pb、Ag、Sb、In、Biの硫化物、Zn、Sn、Cd、Pbのセレン化物、Zn、Ga、In、Cd等のリン化物等が挙げられる。好ましい半導体は、CdS、CdSe、ZnS、ZnSe、SnSe、FeS2、PbS、InP、GaAs、CuInS2、CuInSe2などである。(B)成分としては、上記の金属カルコゲニドにそのほかの無機微粒子、例えば、ヨウ化銅などのハロゲン化金属を添加して用いることもできる。また上記の無機微粒子の2種以上を混合あるいは複合させて用いてもよい。 As the component (B) of the present invention, metal chalcogenides other than metal oxides can also be used. Preferred as such metal chalcogenides are those having semiconductor properties. Examples include sulfides of Cd, Zn, Fe, Cu, Pb, Ag, Sb, In, Bi, selenides of Zn, Sn, Cd, Pb, phosphides of Zn, Ga, In, Cd, etc. Is mentioned. Preferred semiconductors are CdS, CdSe, ZnS, ZnSe, SnSe, FeS 2 , PbS, InP, GaAs, CuInS 2 , CuInSe 2 and the like. As the component (B), other inorganic fine particles, for example, a metal halide such as copper iodide can be added to the metal chalcogenide. Further, two or more of the above inorganic fine particles may be mixed or combined.

本発明の(B)成分として用いる金属カルコゲニドの微粒子は、公知の方法例えばゾル−ゲル法、金属塩化物の高温加水分解法、硫酸法、塩素法、金属ハロゲン化物又は金属アルコキシドを気相中、高温で熱分解する気相合成法などにより製造することができる。
本発明における(A)成分と(B)成分の含有割合は、1:2ないし1:10の範囲が選ばれる。
The fine particles of the metal chalcogenide used as the component (B) of the present invention may be prepared by a known method such as a sol-gel method, a high temperature hydrolysis method of a metal chloride, a sulfuric acid method, a chlorine method, a metal halide or a metal alkoxide in the gas phase. It can be produced by a gas phase synthesis method that thermally decomposes at a high temperature.
In the present invention, the content ratio of the component (A) and the component (B) is selected in the range of 1: 2 to 1:10.

次に、本発明の(C)成分の高分子バインダーとしては、親水性又は疎水性の重合体や共重合体が用いられる。このようなものとしては、例えばポリフッ化ビニリデン、ポリテトラフロロエチレン、フッ化ビニリデン−六フッ化プロピレン共重合体、ポリ三フッ化塩化エチレン、アクリロニトリル−ブタジエン−スチレン共重合体、ポリエステル、ポリアミド、ポリカーボネートなどが挙げられる。   Next, as the polymer binder of the component (C) of the present invention, a hydrophilic or hydrophobic polymer or copolymer is used. Examples of such materials include polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, polytrifluoroethylene chloride, acrylonitrile-butadiene-styrene copolymer, polyester, polyamide, and polycarbonate. Etc.

そのほか、ポリ塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂などの熱可塑性樹脂や、塩化ビニル系エラストマー、ポリオレフィン系エラストマー、ポリエステル系エラストマー、スチレン系エラストマー、塩素化ポリエチレン、エチレン−エチルアクリレート共重合体、エチレン−酢酸ビニル共重合体などの熱可塑性エラストマーもしくはその架橋物や、天然ゴム、スチレンブタジエンゴム、ブチルゴム、アクリロニトリルブタジエンゴム、エチレンプロピレンゴム、クロロプレンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレンゴム、アクリルゴム、エピクロルヒドリンゴム、シリコーンゴム、フッ素ゴムなどのゴム類又はその架橋物を用いることもできる。   Besides, thermoplastic resins such as polyvinyl chloride resin, polyethylene resin, polypropylene resin, polystyrene resin, ABS resin, vinyl chloride elastomer, polyolefin elastomer, polyester elastomer, styrene elastomer, chlorinated polyethylene, ethylene-ethyl acrylate Thermoplastic elastomers such as copolymers, ethylene-vinyl acetate copolymers or cross-linked products thereof, natural rubber, styrene butadiene rubber, butyl rubber, acrylonitrile butadiene rubber, ethylene propylene rubber, chloroprene rubber, chlorosulfonated polyethylene, chlorinated polyethylene Rubbers such as rubber, acrylic rubber, epichlorohydrin rubber, silicone rubber, fluororubber, or cross-linked products thereof can also be used.

本発明における(C)成分の高分子バインダー成分としては、上記の絶縁性高分子のほかに、導電性をもつ高分子を用いることもできる。このような高分子としては、例えば、ポリアセチレン系、ポリピロール系、ポリチオフェン系、ポリフェニレン系、ポリフェニレンビニレン系の高分子が挙げられる。   As the polymer binder component of the component (C) in the present invention, a conductive polymer can be used in addition to the insulating polymer. Examples of such a polymer include polyacetylene-based, polypyrrole-based, polythiophene-based, polyphenylene-based, and polyphenylene vinylene-based polymers.

本発明においては、特に(C)成分として導電性高分子を用いるのが好ましい。そして、導電性高分子として好ましいものは、ポリチオフェンとその誘導体である。なかでもポリエチレンジオキシチオフェン(PEDOT)とその誘導体は特に好ましい。また、PEDOTを含む各種の共重合体、例えばPEDOTとポリスチレンスルホン酸との共重合体(PEDOT−PSS)は溶解性に優れるので好ましい。また、トルエンスルホン酸基をドープしたPEDOT(PEDOT−TsO)も電極活性化の効果が高い点で好ましい。   In the present invention, it is particularly preferable to use a conductive polymer as the component (C). And what is preferable as a conductive polymer is polythiophene and its derivatives. Of these, polyethylenedioxythiophene (PEDOT) and its derivatives are particularly preferable. Further, various copolymers including PEDOT, for example, a copolymer of PEDOT and polystyrene sulfonic acid (PEDOT-PSS) are preferable because of excellent solubility. In addition, PEDOT doped with a toluenesulfonic acid group (PEDOT-TsO) is also preferable because of its high electrode activation effect.

本発明の(C)成分として用いる高分子バインダーは、組成物全量の質量に基づき、5〜65質量%、好ましくは10〜50質量%の範囲内で配合される。   The polymer binder used as the component (C) of the present invention is blended in the range of 5 to 65 mass%, preferably 10 to 50 mass%, based on the mass of the total composition.

本発明の導電性被覆形成用組成物は、分散用溶媒中に分散し、塗布液の形で用いられる。この際の分散用溶媒としては、水、アルコール又はそれらの混合物が用いられるが、そのほかにプロピレンカーボネートなどのカーボネート類、プロピオニトリルなどのニトリル類、γ‐ブチロラクトン、α‐メチル‐γ‐ブチロラクトン、β‐メチル‐γ‐ブチロラクトン、γ‐バレロラクトン、3‐メチル‐γ‐バレロラクトンなどのラクトン類、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド類、ジメチルホルムアミド、ジエチルホルムアミドなどのアミド類、N‐メチルピロリドンなどのピロリドン類などを含む各種の極性有機溶媒や、ハロゲン化アルキル類、トルエンなどの芳香族類を含む非極性有機溶媒を用いることができる。この分散用溶媒には必要に応じて、分散助剤として界面活性剤を添加して用いることができる。   The conductive coating forming composition of the present invention is dispersed in a dispersing solvent and used in the form of a coating solution. In this case, water, alcohol or a mixture thereof is used as a dispersion solvent. In addition, carbonates such as propylene carbonate, nitriles such as propionitrile, γ-butyrolactone, α-methyl-γ-butyrolactone, Lactones such as β-methyl-γ-butyrolactone, γ-valerolactone, 3-methyl-γ-valerolactone, sulfoxides such as dimethyl sulfoxide and diethyl sulfoxide, amides such as dimethylformamide and diethylformamide, N-methylpyrrolidone Various polar organic solvents containing pyrrolidones such as pyrrolidones and the like, and nonpolar organic solvents containing aromatics such as alkyl halides and toluene can be used. If necessary, a surfactant may be added to the dispersing solvent as a dispersion aid.

次に、添付図面に従って、上記の導電性被覆形成用組成物を用いて製造した電極を説明する。
図1及び図2は上記導電性被覆形成用組成物を電極基板の表面に被覆して作製した電極の積層構造の例を示したものである。すなわち、ガラス、プラスチックなどの支持体1の上に電気的非抵抗の十分に小さい導電性材料の層2が形成された電極基板に、上記の導電性被覆形成用組成物の薄層が積層されている。この組成物の薄層は、(A)成分の炭素材料と(C)成分の高分子バインダーからなるマトリックス3の中に、金属カルコゲニドの微粒子4が分散された構造となっている。図1では、金属カルコゲニドは、薄層の全体に均一に分布している。また、図2では、金属カルコゲニドは、薄層の表面により多く分布している。図2の構造では、電極の表面に凹凸を生じ、表面粗さ係数(roughness factor)が高くなっている。
Next, an electrode manufactured using the composition for forming a conductive coating will be described with reference to the accompanying drawings.
FIG. 1 and FIG. 2 show an example of a laminated structure of electrodes prepared by coating the surface of the electrode substrate with the above-described conductive coating forming composition. That is, a thin layer of the composition for forming a conductive coating is laminated on an electrode substrate in which a layer 2 of a conductive material having a sufficiently small electrical non-resistance is formed on a support 1 such as glass or plastic. ing. The thin layer of this composition has a structure in which fine particles 4 of metal chalcogenide are dispersed in a matrix 3 composed of a carbon material (A) and a polymer binder (C). In FIG. 1, the metal chalcogenide is uniformly distributed throughout the thin layer. In FIG. 2, the metal chalcogenide is distributed more on the surface of the thin layer. In the structure of FIG. 2, the surface of the electrode is uneven, and the surface roughness coefficient is high.

この電極は、上記の導電性被覆形成用組成物を分散用溶媒に加えてペースト状とし、これを導電性電極基板に塗布したのち、分散用溶媒を蒸発除去することによって作製される。この際の塗布液の塗布方法としては、コーティングの方法には、塗布法、ディップコーティング法、スピンコート法、スプレー塗布法、スクリーン印刷法、インクジェット法など、汎用のコーティング法を用いることができる。   This electrode is produced by adding the conductive coating forming composition to a dispersion solvent to form a paste, applying the paste to a conductive electrode substrate, and then evaporating and removing the dispersion solvent. As a coating method of the coating liquid at this time, a general coating method such as a coating method, a dip coating method, a spin coating method, a spray coating method, a screen printing method, an ink jet method, or the like can be used as a coating method.

この塗布液については、高分子バインダー成分の濃度が0.3〜10質量%、好ましくは0.5〜5質量%、より好ましくは1〜5質量%の範囲になるように調製する。
この高分子バインダー成分は、(A)成分の炭素材料と(B)成分の金属カルコゲニドを基板上に密着性よく固定化するための接着剤としての役割を果たしている。
About this coating liquid, it prepares so that the density | concentration of a polymer binder component may be 0.3-10 mass%, Preferably it is 0.5-5 mass%, More preferably, it is the range of 1-5 mass%.
The polymer binder component serves as an adhesive for fixing the carbon material (A) and the metal chalcogenide (B) with good adhesion on the substrate.

電極基板上に担持された上記の導電性被覆形成用組成物においては、(A)成分の炭素材料が黒鉛の超微粒子、カーボンナノチューブならびにこれらの混合物から選ぶのが好ましい。また、(B)成分の無機微粒子としては金属カルコゲニド半導体、特に酸化チタンであることが好ましい。また、(C)成分の高分子バインダーは、導電性高分子物質、特にポリチオフェン誘導体が好ましく、その含有量は組成物全量の質量に基づき5〜65質量%の範囲が好ましい。   In the above-mentioned composition for forming a conductive coating supported on an electrode substrate, the carbon material of component (A) is preferably selected from ultrafine graphite particles, carbon nanotubes, and mixtures thereof. The inorganic fine particles of component (B) are preferably metal chalcogenide semiconductors, particularly titanium oxide. The polymer binder of component (C) is preferably a conductive polymer material, particularly a polythiophene derivative, and the content thereof is preferably in the range of 5 to 65% by mass based on the mass of the total composition.

電極基板上に担持される導電性組成物の薄層の表面については、プラズマ処理、コロナ放電処理、紫外線オゾン処理などの方法によって、親水化処理を含む各種の表面改質処理を施すことができる。さらに、導電性組成物の薄層に対して、各種の有機化合物、無機化合物をドープさせるか又は導電層表面に化学結合若しくは物理的、化学的に吸着させて表面改質処理を施すことができる。
また、導電性組成物の薄層には、所望に応じ通常ゴムプラスチック分野で使用されている加工助剤、滑剤、導電性付与剤、溶融粘度調節剤、可塑剤、液状ポリマー、タック剤、充填剤などの配合剤を、導電性が維持できる範囲で添加してもよい。
The surface of the thin layer of the conductive composition carried on the electrode substrate can be subjected to various surface modification treatments including hydrophilization treatment by methods such as plasma treatment, corona discharge treatment, and ultraviolet ozone treatment. . Furthermore, various organic compounds and inorganic compounds can be doped on the thin layer of the conductive composition, or the surface can be subjected to surface modification treatment by chemical bonding or physical and chemical adsorption on the surface of the conductive layer. .
In addition, the thin layer of the conductive composition is filled with processing aids, lubricants, conductivity-imparting agents, melt viscosity modifiers, plasticizers, liquid polymers, tacking agents, and fillers that are usually used in the rubber plastic field as desired. You may add compounding agents, such as an agent, in the range which can maintain electroconductivity.

電極基板上に担持された導電性組成物の薄層は、その表面粗さ係数が2以上、好ましくは5以上、さらに好ましくは20以上を有する。電極の表面粗さ係数R(roughness factor)とは電極の見かけの投影面積に対する電極材料が実際にもつ表面積の比を意味する。この比は電極材料の比表面積S(m2/g)と該電極材料の電極基板上の担持量M(g/m2)を用いて、R=SMで示される。 The thin layer of the conductive composition carried on the electrode substrate has a surface roughness coefficient of 2 or more, preferably 5 or more, more preferably 20 or more. The surface roughness factor R of the electrode means the ratio of the actual surface area of the electrode material to the projected area of the electrode. This ratio is represented by R = SM using the specific surface area S (m 2 / g) of the electrode material and the amount M (g / m 2 ) of the electrode material supported on the electrode substrate.

電極基板上に担持された導電性組成物の薄層は、その厚さが0.02〜100μm、特に0.05〜20μmであることが好ましい。
また、この導電性組成物の薄層は、その下地にある電極基板の導電層の表面を60%以上、特に80%以上の被覆率で覆っていることが特に好ましい。最も好ましいのは被覆率が実質的に100%であることである。この被覆率は、レーザー光学顕微鏡、走査型電子顕微鏡(SEM)、プローブ顕微鏡などを用いて表面の構造を観察し、炭素材料が導電膜を覆う投影面積の割合を算出する方法で求めることができる。またSEM−EDXによる表面元素分析によって炭素の元素比率を求めて被覆率を評価することもできる。
The thin layer of the conductive composition carried on the electrode substrate preferably has a thickness of 0.02 to 100 μm, particularly 0.05 to 20 μm.
Moreover, it is particularly preferable that the thin layer of the conductive composition covers the surface of the conductive layer of the underlying electrode substrate with a coverage of 60% or more, particularly 80% or more. Most preferably, the coverage is substantially 100%. This coverage can be obtained by a method of observing the surface structure using a laser optical microscope, a scanning electron microscope (SEM), a probe microscope, etc., and calculating the ratio of the projected area where the carbon material covers the conductive film. . The coverage can also be evaluated by obtaining the elemental ratio of carbon by surface elemental analysis using SEM-EDX.

さらに、基板上に形成された導電性組成物の薄層は、その面抵抗が2〜500Ω/□の範囲、特に2〜200Ω/□の範囲となることが好ましい。   Further, the thin layer of the conductive composition formed on the substrate preferably has a sheet resistance in the range of 2 to 500 Ω / □, particularly in the range of 2 to 200 Ω / □.

このようにして得られる電極は、イオン電解質を電解液として用いる電気化学セルの電極、特に電気化学セルのカソードとして用いるのに適している。このカソードとは電解液中のイオンと還元反応を行う電極であり、正極として作用する電極を意味する。   The electrode thus obtained is suitable for use as an electrode of an electrochemical cell using an ionic electrolyte as an electrolyte, particularly as a cathode of an electrochemical cell. The cathode is an electrode that performs a reduction reaction with ions in the electrolytic solution, and means an electrode that acts as a positive electrode.

この際、用いる電極基板としては、その種類には特に制限はないが、本来酸化還元活性の低い導電材料からなる電極を用いることによって、その電極活性を高めることができる。その目的、用途から、電極基板として適するものとしては、酸化スズ、酸化インジウムスズ(ITO)などの金属酸化物導電層を用いる電極、チタン、ステンレス鋼、タンタルなどを用いる金属集電体が挙げられる。このなかでも、導電材料が酸化スズ、酸化インジウムスズ(ITO)から選ばれる透明導電層からなる電極基板が最も適している。   In this case, the type of the electrode substrate to be used is not particularly limited, but the electrode activity can be enhanced by using an electrode made of a conductive material having a low oxidation-reduction activity. As an electrode substrate suitable for its purpose and application, an electrode using a metal oxide conductive layer such as tin oxide or indium tin oxide (ITO), a metal current collector using titanium, stainless steel, tantalum or the like can be mentioned. . Among these, an electrode substrate made of a transparent conductive layer whose conductive material is selected from tin oxide and indium tin oxide (ITO) is most suitable.

本発明電極の電極基板の支持体材料としては、金属、プラスチック、樹脂などが用いられ、特にその種類には制限はないが、ロールとして搬送したり、生産工程に供給する点で、フレキシブルな基板を用いることが最も好ましい。このような支持体としては、プラスチック支持体がある。   As the support material for the electrode substrate of the electrode of the present invention, metal, plastic, resin and the like are used, and there is no particular limitation on the kind thereof, but a flexible substrate in that it is transported as a roll or supplied to the production process. Most preferably, is used. Such a support is a plastic support.

プラスチック支持体は、本発明電極を色素増感型光電池などの光電変換素子や有機発光素子に用いながらこれらの光学素子のプラスチック化を行うときにも必要となる。支持体の種類としては、耐熱性、耐薬品性、加工性、そして光透過性の点で優れるものが好ましく、ガラス転移点が100℃以上、好ましくは120℃以上で、光透過率が、波長420nmにおいて50%以上、波長500nmにおいて70%以上であるプラスチックが好ましい。   The plastic support is also required when plasticizing these optical elements while using the electrode of the present invention in a photoelectric conversion element such as a dye-sensitized photovoltaic cell or an organic light emitting element. As the kind of the support, those excellent in heat resistance, chemical resistance, workability, and light transmittance are preferable, the glass transition point is 100 ° C. or higher, preferably 120 ° C. or higher, and the light transmittance is the wavelength. A plastic having 50% or more at 420 nm and 70% or more at a wavelength of 500 nm is preferable.

このようなプラスチックとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、テトラアセチルセルロース(TAC)、ポリエステルスルホン(PES)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルフォン(PSF)、ポリエーテルイミド(PEI)、ポリアセタール、透明ポリイミド系ポリマー、ポリエーテルスルホンなどがある。これらのなかでもコストの点も含めて、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN)が特に好ましい。   Examples of such plastics include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), tetraacetyl cellulose (TAC), polyester sulfone (PES), polyphenylene sulfide (PPS), polycarbonate (PC), and polyarylate (PAr). ), Polysulfone (PSF), polyetherimide (PEI), polyacetal, transparent polyimide-based polymer, polyethersulfone, and the like. Of these, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferred, including the cost.

本発明電極を構成するプラスチック支持体の厚みとしては50〜500μm、好ましくは100〜200μmである。このプラスチックフィルム電極は、その全体の厚みが50〜500μmであることが好ましい。   The plastic support constituting the electrode of the present invention has a thickness of 50 to 500 μm, preferably 100 to 200 μm. This plastic film electrode preferably has a total thickness of 50 to 500 μm.

本発明電極は、電気化学セルに用い、イオン導電性の電解質と接合して電気化学電極として用いられた場合に最も効果を発揮する。したがって、電気化学セルの電極としての用途に供するのに適している。特に、本発明電極は、イオン導電性の電解質と接合して、色素増感半導体電極と組み合わせてできる色素増感型光電池ならびに色素増感型太陽電池のような光電池の対極(カソード)として好適である。   The electrode of the present invention is most effective when used as an electrochemical electrode in an electrochemical cell and bonded to an ion conductive electrolyte. Therefore, it is suitable for use as an electrode of an electrochemical cell. In particular, the electrode of the present invention is suitable as a counter electrode (cathode) for a dye-sensitized photovoltaic cell and a photovoltaic cell such as a dye-sensitized solar cell that are combined with an ion-conductive electrolyte and combined with a dye-sensitized semiconductor electrode. is there.

本発明によると、従来の炭素系導電材料に比べ、高い導電性酸化還元反応に対する優れた触媒効果を有する導電性被覆を形成することができ、光電池の電極として用いた場合、十分に高い出力及びエネルギー効果を得ることができる。   According to the present invention, it is possible to form a conductive coating having an excellent catalytic effect on a high conductive redox reaction compared to conventional carbon-based conductive materials, and when used as an electrode of a photovoltaic cell, a sufficiently high output and Energy effect can be obtained.

次に、実施例により本発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the present invention will be described by way of examples.

一次粒子の球体換算平均粒子径が30nmの黒鉛の微粒子粉末、一次粒子の球体換算平均粒子径が25nmの二酸化チタンの結晶性ナノ粒子(昭和電工社製、ルチル含有率20%)を振動ミルで均一に混合し、混合物を300℃において空気中で20分間熱処理を行った。導電性高分子ポリチオフェン誘導体のPEDOT−PSSの水溶液に5倍量のt‐ブタノールを加えて混合し、導電性高分子の溶液を調整した。   Fine particle powder of graphite with a sphere-converted average particle diameter of primary particles of 30 nm, and crystalline nanoparticles of titanium dioxide with a sphere-converted average particle diameter of primary particles of 25 nm (made by Showa Denko KK, rutile content 20%) by a vibration mill The mixture was uniformly mixed, and the mixture was heat-treated in air at 300 ° C. for 20 minutes. A conductive polymer solution was prepared by adding 5 times the amount of t-butanol to an aqueous solution of the conductive polymer polythiophene derivative PEDOT-PSS and mixing them.

この溶液に、上記の黒鉛と二酸化チタンの混合物を加えて、自転公転式のミキサーを用いて均一に分散混合し、ペーストを調製した。このペースト中の黒鉛微粒子の含量は0.8質量%、二酸化チタン粒子の含量は4.8質量%であった。また、PEDOT−PSSの含量を0.1質量%から15質量%の範囲で変化させた。   The above mixture of graphite and titanium dioxide was added to this solution, and the mixture was uniformly dispersed and mixed using a rotating and rotating mixer to prepare a paste. The content of graphite fine particles in the paste was 0.8% by mass, and the content of titanium dioxide particles was 4.8% by mass. Moreover, the content of PEDOT-PSS was changed in the range of 0.1 mass% to 15 mass%.

次いで、二酸化チタンに代えて、無機超微粒子として、酸化アルミニウム(平均粒径:約50nm)、二酸化スズ(平均粒径:約40nm)、酸化亜鉛(平均粒径:約40nm)(いずれもシーアイ化成社製)を用いて、同様な方法で粒子を混合し、黒鉛を含むペーストを調製した。   Next, in place of titanium dioxide, as inorganic ultrafine particles, aluminum oxide (average particle size: about 50 nm), tin dioxide (average particle size: about 40 nm), zinc oxide (average particle size: about 40 nm) Were used, and the particles were mixed in the same manner to prepare a paste containing graphite.

なお、比較のために、一次粒子の球体換算平均粒子径が、約0.4μm(400nm)、約0.6μm(600nm)の黒鉛の粉末、及び一次粒子の球体換算平均粒子径が約0.3μm(300nm)、約0.6μm(600nm)の二酸化チタンを用い、同じようにしてペーストを調製した。   For comparison, the primary particles have a sphere-converted average particle size of about 0.4 μm (400 nm), a graphite powder having a particle size of about 0.6 μm (600 nm), and the primary particles have a sphere-converted average particle size of about 0.001. A paste was prepared in the same manner using titanium dioxide of 3 μm (300 nm) and about 0.6 μm (600 nm).

チューブの外径が約20nm、アスペクト比が約30の多層カーボンナノチューブを機械的に粉砕し、球体換算粒子径が約50nmのカーボンナノチューブを調製した。このナノチューブを一次粒子の球体換算平均粒子径が25nmの二酸化チタンの結晶性ナノ粒子(昭和電工社製、ルチル含有率20%)と混合し、混合物を300℃において空気中で20分間熱処理を行った。   Multi-walled carbon nanotubes having an outer diameter of about 20 nm and an aspect ratio of about 30 were mechanically pulverized to prepare carbon nanotubes having a spherical equivalent particle diameter of about 50 nm. This nanotube was mixed with crystalline nanoparticles of titanium dioxide having a sphere-converted average particle diameter of primary particles of 25 nm (Showa Denko KK, rutile content 20%), and the mixture was heat-treated at 300 ° C. in air for 20 minutes. It was.

このようにして調製した導電性高分子ポリチオフェン誘導体のPEDOT−PSSをバインダーとして含む溶液に、カーボンナノチューブと二酸化チタンの混合物を加えて、自転公転式のミキサーを用いて均一に分散混合し、高分子バインダーの含量が0.2質量%のペーストを調製した。このペースト中のカーボンナノチューブの含量は1.5質量%、二酸化チタン粒子の含量は6.0質量%であった。   To the solution containing the conductive polymer polythiophene derivative PEDOT-PSS prepared as described above as a binder, a mixture of carbon nanotubes and titanium dioxide is added and uniformly dispersed and mixed using a rotating and rotating mixer. A paste having a binder content of 0.2% by mass was prepared. The carbon nanotube content in the paste was 1.5% by mass, and the content of titanium dioxide particles was 6.0% by mass.

導電性ITO膜が片面に担持されたPETフィルム(表面抵抗15Ω/□、厚さ190μm)を電極基板に用い、基板をアセトンで洗浄後、ITO表面を紫外線オゾンクリーナーを用いて洗浄した。この電極基板のITO膜上に、上記のように調製した炭素を含む導電性組成物をドクターブレード法によって塗布し、塗布膜を60℃で20分乾燥させ、さらにホットプレート上で150℃で20分間加熱処理して、膜厚が5〜7μmの導電性固体薄層を形成した。   A PET film (surface resistance 15Ω / □, thickness 190 μm) carrying a conductive ITO film on one side was used as an electrode substrate, the substrate was washed with acetone, and then the ITO surface was washed with an ultraviolet ozone cleaner. On the ITO film of this electrode substrate, the conductive composition containing carbon prepared as described above was applied by a doctor blade method, the coated film was dried at 60 ° C. for 20 minutes, and further, 20 ° C. at 150 ° C. on a hot plate. A heat treatment was performed for 5 minutes to form a thin conductive solid layer having a thickness of 5 to 7 μm.

また、比較のために、これらの導電性薄層を担持しないITO−PETフィルム、そしてこれらの炭素を含む導電膜に代えて、真空スパッタリング法によって白金膜を厚さ100nmでITO膜上に蒸着した電極を作製した。   For comparison, instead of the ITO-PET film that does not carry these conductive thin layers and the conductive film containing carbon, a platinum film was deposited on the ITO film with a thickness of 100 nm by a vacuum sputtering method. An electrode was produced.

二酸化チタンのナノ粒子と高分子バインダーを含む粘性の市販ペースト(Solaronix社製、Nanoxide D)を、フッ素ドープ二酸化スズ(FTO)の導電膜を被覆したガラス基板(厚さ0.9mm)のFTO膜上にドクターブレード法によって塗布し、塗布膜を室温乾燥後に電気炉中で550℃で30分間焼成し、厚さが12μmの二酸化チタンの多孔膜をFTOガラス上に形成した。この二酸化チタンFTOガラス電極を、Ru錯体色素(Solaronix社製、Ru535bisTBA)の0.3mMの溶液(t‐ブタノール:アセトニトリル=1:1の混合溶媒)に40℃で30分間、撹拌下で浸漬し、色素増感を行った。このようにして作製した色素増感電極を太陽電池の作用極(アノード)とした。   FTO film of glass substrate (thickness 0.9 mm) coated with a conductive film of fluorine-doped tin dioxide (FTO) on a viscous commercial paste (Solaronix, Nanoxide D) containing titanium dioxide nanoparticles and polymer binder The coating was applied on top by a doctor blade method, and the coating film was dried at room temperature and then baked in an electric furnace at 550 ° C. for 30 minutes to form a porous titanium dioxide film having a thickness of 12 μm on FTO glass. This titanium dioxide FTO glass electrode was immersed in a 0.3 mM solution of Ru complex dye (Solaronix, Ru535bisTBA) (t-butanol: acetonitrile = 1: 1 mixed solvent) at 40 ° C. for 30 minutes with stirring. Dye sensitization was performed. The dye-sensitized electrode thus prepared was used as the working electrode (anode) of the solar cell.

次に、上記のようにして作製した炭素を含む各種の導電膜を被覆したITO−PETフィルム電極を対極(カソード)として、上記の共通の作用極(アノード)に組み合わせて、色素増感型太陽電池を製造した。この際の電解液としては、還元剤としてヨウ化リチウム0.1M、酸化剤としてヨウ素0.05M、添加剤としてジメチルプロピルイミダゾリウムイオジドを0.6M及びt‐ブチルピリヂン0.5Mを含むメトキシアセトニトリル溶液を用いた。   Next, an ITO-PET film electrode coated with various conductive films containing carbon prepared as described above is used as a counter electrode (cathode) and combined with the above common working electrode (anode), and dye-sensitized solar A battery was manufactured. In this case, the electrolyte solution is 0.1M lithium iodide as a reducing agent, 0.05M iodine as an oxidizing agent, 0.6M dimethylpropylimidazolium iodide as an additive, and methoxyacetonitrile containing 0.5M t-butylpyridine. The solution was used.

次いで、上記の色素増感作用極(アノード)及びプラスチック対極(カソード)を、セパレータ用多孔性フィルムを電極面の間に挿入しながら、厚さ50μmの熱圧着性の樹脂フィルムを介して挟み、電極間に電解液を注入した後、両電極を熱圧着によってシールした。このようにして、対極にプラスチック製のITO−PET電極基板を用いる受光面積が0.64cm2の色素増感光電池を製造した。 Next, the above dye-sensitized working electrode (anode) and the plastic counter electrode (cathode) are sandwiched through a thermocompression-bonding resin film having a thickness of 50 μm while the separator porous film is inserted between the electrode surfaces. After pouring electrolyte between the electrodes, both electrodes were sealed by thermocompression bonding. In this manner, a dye-sensitized photovoltaic cell having a light receiving area of 0.64 cm 2 using a plastic ITO-PET electrode substrate as a counter electrode was manufactured.

このようにして得た電池について、キセノン灯擬似太陽光照射システムを用いて、光量100mW/cm2の白色光の照射を行い、光電流−電圧特性を測定した。
表1に、この実施例で調製した各種の導電性組成物の内容と、その組成物を対極表面に用いて作った電池の性能を示す。表1には、電池の光電変換性能を示す光電流とエネルギー変換効率に加えて、導電性組成物を導電膜として担持したITO−PET対極における導電膜のITO表面への密着強度も示した。密着強度は粘着テープを使った耐剥離性試験によって、1(強い)、2(中程度)、3(不良)の3段階で評価した。
The battery thus obtained was irradiated with white light having a light amount of 100 mW / cm 2 using a xenon lamp simulated sunlight irradiation system, and the photocurrent-voltage characteristics were measured.
Table 1 shows the contents of various conductive compositions prepared in this example, and the performance of batteries made using the compositions on the surface of the counter electrode. Table 1 also shows the adhesion strength of the conductive film to the ITO surface in the ITO-PET counter electrode carrying the conductive composition as a conductive film, in addition to the photocurrent and energy conversion efficiency indicating the photoelectric conversion performance of the battery. The adhesion strength was evaluated in three stages of 1 (strong), 2 (medium), and 3 (poor) by a peel resistance test using an adhesive tape.

この結果から、本発明の導電性被覆形成用組成物を導電膜として担持しないITO−PETフィルム電極を対極(カソード)に用いる電池では、わずかな光電流が得られるのにすぎず、実質的に光電変換素子として機能しないことが分る。
これに対して、本発明の導電性被覆形成用組成物を担持した電池では、いずれも光電流が改善され、基本的な光電変換機能が得られた。
From this result, in the battery using the ITO-PET film electrode that does not carry the conductive coating forming composition of the present invention as a conductive film as a counter electrode (cathode), only a slight photocurrent can be obtained, and substantially. It turns out that it does not function as a photoelectric conversion element.
On the other hand, in all the batteries carrying the conductive coating forming composition of the present invention, the photocurrent was improved and a basic photoelectric conversion function was obtained.

しかし、炭素材料の平均粒径ならびに無機微粒子(金属酸化物)の平均粒径が本発明の範囲外である条件の組成物を用いた場合では、光電流が小さく、光電変換効率が比較の白金被覆ITO−PET対極のレベルに達していないか、又は導電膜のITO−PET表面への密着強度が低い結果となっている。   However, in the case of using a composition in which the average particle size of the carbon material and the average particle size of the inorganic fine particles (metal oxide) are outside the scope of the present invention, the photocurrent is small and the photoelectric conversion efficiency is comparative platinum. The level of the coated ITO-PET counter electrode has not been reached, or the adhesion strength of the conductive film to the ITO-PET surface is low.

一方、平均粒径が十分に小さい粒子からなる導電性被覆形成用組成物を用いて作製した対極では、白金被覆対極と同等以上の性能が得られている。特に、無機微粒子(金属酸化物)として二酸化チタンのナノ粒子を用いたもの、炭素材料として黒鉛の超微粒子ならびにナノチューブを用いた導電性被覆形成用組成物では、最も高い光電変換性能が得られる。   On the other hand, a counter electrode produced using a conductive coating forming composition comprising particles having a sufficiently small average particle size has performance equivalent to or better than that of a platinum-coated counter electrode. In particular, the highest photoelectric conversion performance can be obtained with a composition using titanium dioxide nanoparticles as inorganic fine particles (metal oxide) and a composition for forming a conductive coating using ultrafine particles of graphite and nanotubes as carbon materials.

Figure 0004721643
Figure 0004721643

平均粒子径が5〜500nmである炭素材料の超微粒子と金属酸化物若しくは金属カルコゲニドからなる無機材料の超微粒子、特にナノ粒子を高分子バインダー材料に分散してなる導電性被覆形成用組成物は導電性ペーストとして有用であり、電極基板上に担持して用いたときに電極表面を活性化し、特に電気化学セルにおいて高い酸化還元活性を与える電極を提供する。   A conductive coating composition comprising an ultrafine particle of a carbon material having an average particle size of 5 to 500 nm and an ultrafine particle of an inorganic material composed of a metal oxide or a metal chalcogenide, in particular, a nanoparticle dispersed in a polymer binder material, Provided is an electrode that is useful as a conductive paste, activates the surface of an electrode when used on an electrode substrate, and provides high redox activity particularly in an electrochemical cell.

本発明の導電性被覆形成用組成物を用いて得た電極の構造の1例を示す断面図。Sectional drawing which shows an example of the structure of the electrode obtained using the composition for conductive coating formation of this invention. 図1とは別の例の断面図。Sectional drawing of the example different from FIG.

符号の説明Explanation of symbols

1 支持体
2 導電膜
3 導電性薄層
4 無機微粒子
DESCRIPTION OF SYMBOLS 1 Support body 2 Conductive film 3 Conductive thin layer 4 Inorganic fine particle

Claims (18)

色素増感型光電池用電極の導電性電極基板上に担持される導電性被覆形成用組成物であって、(A)一次粒子の球体換算平均粒子径5〜500nmである炭素材料と、(B)一次粒子の球体換算平均粒子径5〜500nmの金属カルコゲニドからなる無機微粒子成分及び(C)高分子バインダー成分を含有することを特徴とする導電性被覆形成用組成物。 A composition for forming a conductive coating carried on a conductive electrode substrate of an electrode for a dye-sensitized photovoltaic cell, comprising: (A) a carbon material having a sphere-converted average particle diameter of primary particles of 5 to 500 nm; 1) A composition for forming a conductive coating, comprising an inorganic fine particle component composed of a metal chalcogenide having a sphere-converted average particle size of primary particles of 5 to 500 nm and (C) a polymer binder component. (C)成分の含有量が組成物全量の質量に基づき5〜65質量%の範囲内である請求項1記載の導電性被覆形成用組成物。   The composition for forming a conductive coating according to claim 1, wherein the content of the component (C) is in the range of 5 to 65% by mass based on the mass of the total composition. (A)成分が微粒状黒鉛又はカーボンナノチューブあるいはこれらの混合物である請求項1記載の導電性被覆形成用組成物。   The composition for forming a conductive coating according to claim 1, wherein the component (A) is finely divided graphite, carbon nanotubes, or a mixture thereof. (B)成分が金属酸化物である請求項1ないし3のいずれかに記載の導電性被覆形成用組成物。   The composition for forming a conductive coating according to any one of claims 1 to 3, wherein the component (B) is a metal oxide. 金属酸化物が半導体である請求項4記載の導電性被覆形成用組成物。   The composition for forming a conductive coating according to claim 4, wherein the metal oxide is a semiconductor. 金属酸化物が酸化チタンである請求項4又は5記載の導電性被覆形成用組成物。   The composition for forming a conductive coating according to claim 4 or 5, wherein the metal oxide is titanium oxide. (C)成分が導電性高分子である請求項1ないし6のいずれかに記載の導電性被覆形成用組成物。   The composition for forming a conductive coating according to claim 1, wherein the component (C) is a conductive polymer. 導電性高分子がポリチオフェン誘導体である請求項7記載の導電性被覆形成用組成物。   The composition for forming a conductive coating according to claim 7, wherein the conductive polymer is a polythiophene derivative. (A)一次粒子の球体換算平均粒子径5〜500nmである炭素材料と、(B)一次粒子の球体換算平均粒子径5〜500nmの金属カルコゲニドからなる無機微粒子成分及び(C)高分子バインダー成分を含有する導電性被覆形成用組成物の薄層を導電性電極基板上に担持させたことを特徴とする色素増感型光電池用電極。 (A) An inorganic fine particle component comprising a carbon material having a sphere-converted average particle diameter of primary particles of 5 to 500 nm, and (B) a metal chalcogenide having a sphere-converted average particle diameter of 5 to 500 nm of primary particles, and (C) a polymer binder component. An electrode for a dye-sensitized photovoltaic cell , wherein a thin layer of a composition for forming a conductive coating containing s is supported on a conductive electrode substrate. (C)成分の含有量が組成物全量の質量に基づき5〜65質量%の範囲内である請求項9記載の色素増感型光電池用電極。 The dye-sensitized photovoltaic cell electrode according to claim 9, wherein the content of the component (C) is in the range of 5 to 65% by mass based on the mass of the total composition. (A)成分が微粒状黒鉛又はカーボンナノチューブあるいはこれらの混合物である請求項9又は10記載の色素増感型光電池用電極。 The dye-sensitized photovoltaic cell electrode according to claim 9 or 10, wherein the component (A) is fine-grained graphite, carbon nanotube, or a mixture thereof. (B)成分が金属酸化物である請求項9ないし11のいずれかに記載の色素増感型光電池用電極。 The dye-sensitized photovoltaic cell electrode according to any one of claims 9 to 11, wherein the component (B) is a metal oxide. 金属酸化物が半導体である請求項12記載の色素増感型光電池用電極。 The dye-sensitized photovoltaic cell electrode according to claim 12, wherein the metal oxide is a semiconductor. 半導体が酸化チタンである請求項12又は13記載の色素増感型光電池用電極。 The dye-sensitized photovoltaic cell electrode according to claim 12 or 13, wherein the semiconductor is titanium oxide. (C)成分がポリチオフェン誘導体である請求項9ないし14のいずれかに記載の色素増感型光電池用電極。 The electrode for a dye-sensitized photovoltaic cell according to any one of claims 9 to 14, wherein the component (C) is a polythiophene derivative. 導電性電極基板が酸化スズ及び酸化インジウムスズ(ITO)の中から選ばれた透明導電層である請求項9ないし15のいずれかに記載の色素増感型光電池用電極。 The dye-sensitized photovoltaic cell electrode according to any one of claims 9 to 15, wherein the conductive electrode substrate is a transparent conductive layer selected from tin oxide and indium tin oxide (ITO). 導電性電極基板がプラスチックを支持体とするプラスチック電極である請求項9ないし16記載の色素増感型光電池用電極。 The electrode for a dye-sensitized photovoltaic cell according to claim 9 to 16, wherein the conductive electrode substrate is a plastic electrode having a plastic as a support. プラスチック電極と色素増感半導体電極との間に、イオン導電性電解質層を間挿させて構成された色素増感型光電池において、上記プラスチック電極として請求項17記載の色素増感型光電池用電極を用いたことを特徴とする光電池。 Between the plastic electrode and a dye-sensitized semiconductor electrode, in the fabricated dye-sensitized photovoltaic cell by interdigitated the ionic conducting electrolyte layer, a dye-sensitized photovoltaic cell electrode according to claim 17, wherein as the plastic electrode A photovoltaic cell characterized by being used.
JP2004013711A 2004-01-21 2004-01-21 Composition for forming conductive coating, electrode for dye-sensitized photovoltaic cell using the same, and photovoltaic cell using the electrode for dye-sensitized photovoltaic cell Expired - Lifetime JP4721643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004013711A JP4721643B2 (en) 2004-01-21 2004-01-21 Composition for forming conductive coating, electrode for dye-sensitized photovoltaic cell using the same, and photovoltaic cell using the electrode for dye-sensitized photovoltaic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004013711A JP4721643B2 (en) 2004-01-21 2004-01-21 Composition for forming conductive coating, electrode for dye-sensitized photovoltaic cell using the same, and photovoltaic cell using the electrode for dye-sensitized photovoltaic cell

Publications (2)

Publication Number Publication Date
JP2005209458A JP2005209458A (en) 2005-08-04
JP4721643B2 true JP4721643B2 (en) 2011-07-13

Family

ID=34899695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013711A Expired - Lifetime JP4721643B2 (en) 2004-01-21 2004-01-21 Composition for forming conductive coating, electrode for dye-sensitized photovoltaic cell using the same, and photovoltaic cell using the electrode for dye-sensitized photovoltaic cell

Country Status (1)

Country Link
JP (1) JP4721643B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4374464B2 (en) * 2004-03-10 2009-12-02 独立行政法人産業技術総合研究所 Biosensor
JP4843904B2 (en) * 2004-03-12 2011-12-21 ソニー株式会社 Photoelectric conversion element and manufacturing method thereof
JP4562467B2 (en) * 2004-09-10 2010-10-13 ペクセル・テクノロジーズ株式会社 Viscous dispersion containing semiconductor nanoparticles
US7908016B2 (en) 2007-10-19 2011-03-15 Cardiac Pacemakers, Inc. Fibrous electrode material
JP2007165193A (en) * 2005-12-15 2007-06-28 Tokyo Electron Ltd Electron emission source and manufacturing method therefor
KR100854712B1 (en) 2006-10-13 2008-08-27 한국과학기술연구원 Counter electrodes equipped carbon compound layer for dye-sensitized photovoltaic cell and method for preparing the same
JP5181173B2 (en) * 2007-03-27 2013-04-10 国立大学法人 鹿児島大学 Photoelectric storage battery and method for manufacturing optical storage electrode
WO2009051945A1 (en) * 2007-10-15 2009-04-23 Cardiac Pacemakers, Inc. Conductive composite electrode material
JP5386822B2 (en) * 2007-12-28 2014-01-15 東レ株式会社 Transparent conductive film and method for producing the same
US20130167922A1 (en) * 2010-09-27 2013-07-04 Mingjie Zhou Conducting polymer-carbon material combined counter electrode and manufacturing method thereof
JP2013093174A (en) * 2011-10-25 2013-05-16 Rohm Co Ltd Dye sensitized photoelectric conversion element and manufacturing method thereof
JP6198407B2 (en) * 2013-02-27 2017-09-20 大阪瓦斯株式会社 Paste composition for photoelectric conversion element, and electrode and photoelectric conversion element for photoelectric conversion element using the same
WO2016208243A1 (en) * 2015-06-22 2016-12-29 株式会社ユーテック Conductive material and method for producing same, conductive material aerosol and method for producing same, and contact point and method for manufacturing same
EP3499531B1 (en) * 2016-08-12 2021-02-24 Sharp Kabushiki Kaisha Dye-sensitized solar battery and method for producing same
WO2021180158A1 (en) * 2020-03-12 2021-09-16 Cabot Corporation Light color conductive coatings

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043908A (en) * 1999-06-29 2001-02-16 Inst Fuer Angewandte Photovoltaik Gmbh Photo-electrochemical cell, and manufacture of pair electrode for photo-electrochemical cell
JP2002298936A (en) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd Photoelectric conversion element and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043908A (en) * 1999-06-29 2001-02-16 Inst Fuer Angewandte Photovoltaik Gmbh Photo-electrochemical cell, and manufacture of pair electrode for photo-electrochemical cell
JP2002298936A (en) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd Photoelectric conversion element and its manufacturing method

Also Published As

Publication number Publication date
JP2005209458A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
Zeng et al. Integrated photorechargeable energy storage system: next‐generation power source driving the future
Ye et al. Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes
JP4721643B2 (en) Composition for forming conductive coating, electrode for dye-sensitized photovoltaic cell using the same, and photovoltaic cell using the electrode for dye-sensitized photovoltaic cell
EP1727167A2 (en) Photochargeable layered capacitor comprising photovoltaic electrode unit and layered capacitor unit
Dong et al. Vertically aligned carbon nanotubes/graphene hybrid electrode as a TCO-and Pt-free flexible cathode for application in solar cells
JP2005235725A (en) Dye-sensitized solar cell module
Gao et al. Effect of electropolymerization time on the performance of poly (3, 4-ethylenedioxythiophene) counter electrode for dye-sensitized solar cells
JP2004241228A (en) Plastic film electrode and photoelectric cell using it
Banerjee et al. Carbon nanomaterials in renewable energy production and storage applications
WO2018056295A1 (en) Solar cell
KR101726127B1 (en) Counter electrode with block copolymer for dye sensitized solar cell and dye sensitized solar cell comprising the same
JP2012059599A (en) Carbon based electrode and electrochemical device
Punnoose et al. Cobalt sulfide counter electrode using hydrothermal method for quantum dot-sensitized solar cells
CN101743662A (en) Photoelectric conversion element and method for manufacturing the same
JP5586489B2 (en) Electrode substrate for dye-sensitive solar cell and dye-sensitive solar cell comprising the same
JP2008066018A (en) Counter electrode, its manufacturing method, and photoelectric conversion element
JP2004221531A (en) Light chargeable laminated electric double-layered capacitor
JP2009048946A (en) Dye-sensitized photoelectric conversion element
JP5122121B2 (en) Semiconductor electrode and dye-sensitized solar cell
JP4473541B2 (en) Photochargeable secondary battery and electrochemical capacitor
JP4883559B2 (en) Photoelectric conversion electrode
JP2006164697A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
Vaghasiya et al. Role of metal oxides as photoelectrodes in dye-sensitized solar cells
Al-bahrani et al. Layer-by-layer deposition of CNT− and CNT+ hybrid films for platinum free counters electrodes of dye-sensitized-solar-cells
JP5688006B2 (en) Carbon counter electrode and dye-sensitized solar cell provided with the carbon counter electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250