JP5180756B2 - Method for producing hollow extruded material - Google Patents

Method for producing hollow extruded material Download PDF

Info

Publication number
JP5180756B2
JP5180756B2 JP2008252491A JP2008252491A JP5180756B2 JP 5180756 B2 JP5180756 B2 JP 5180756B2 JP 2008252491 A JP2008252491 A JP 2008252491A JP 2008252491 A JP2008252491 A JP 2008252491A JP 5180756 B2 JP5180756 B2 JP 5180756B2
Authority
JP
Japan
Prior art keywords
extruded material
hollow portion
refrigerant
extruded
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008252491A
Other languages
Japanese (ja)
Other versions
JP2010082639A (en
Inventor
秀和 崎浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2008252491A priority Critical patent/JP5180756B2/en
Publication of JP2010082639A publication Critical patent/JP2010082639A/en
Application granted granted Critical
Publication of JP5180756B2 publication Critical patent/JP5180756B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Description

この発明は、金属製の中空押出材の製造方法およびその関連技術に関する。   The present invention relates to a method for producing a metal hollow extruded material and related technology.

なお、本明細書および特許請求の範囲の記載において、押出材および押出材料の進む方向を下流または下流側と称し、逆方向を上流または上流側と称する。   In the description of the present specification and claims, the direction in which the extruded material and the extruded material travel is referred to as downstream or downstream side, and the reverse direction is referred to as upstream or upstream side.

押出加工における押出材の冷却は、押出ダイスの下流側に冷却装置を配置し、空冷、水冷、ミストにより外側から冷却するのが一般的である。また一般に、Al−Cu−Mg系の2000系合金、Al−Mg−Si系の6000系合金、Al−Zn−Mg系の7000系合金といった熱処理型のアルミニウム合金押出材は、押出後に溶体化処理、焼入れ処理を行った後に時効処理を行うが、押出直後に製品を冷却するダイクエンチを行うことによって押出加工と同時に焼入れを行う方法も知られている(特許文献1、2参照)。   Generally, the extruded material in the extrusion process is cooled by disposing a cooling device on the downstream side of the extrusion die and cooling from the outside by air cooling, water cooling, or mist. In general, heat-treatable aluminum alloy extruded materials such as Al-Cu-Mg-based 2000 series alloys, Al-Mg-Si-based 6000 series alloys, and Al-Zn-Mg-based 7000 series alloys are subjected to solution treatment after extrusion. An aging treatment is performed after quenching, and a method of quenching simultaneously with extrusion by performing die quenching for cooling the product immediately after extrusion is also known (see Patent Documents 1 and 2).

また、中空押出材の冷却では、ポートホールダイスの雄型にマンドレルの先端面に冷媒吐出口を設け、この吐出口に連通してブリッジ部を経由してダイス側面に開口する冷媒用通路を穿孔し、この冷媒用通路に導入した冷媒を前記吐出口から中空部内に吐出することにより、押出材の内側から冷却する方法も提案されている(特許文献3参照)。
特開平7−132318号公報 特開2002−275603号公報 特開平8−206729号公報
Also, for cooling the hollow extruded material, a male outlet of the port hole die is provided with a refrigerant discharge port on the end surface of the mandrel, and a refrigerant passage that opens to the side surface of the die via the bridge portion communicates with the discharge port. And the method of cooling from the inner side of an extrusion material is also proposed by discharging the refrigerant | coolant introduced into this channel | path for refrigerant | coolants from the said discharge port in a hollow part (refer patent document 3).
JP-A-7-132318 JP 2002-275603 A JP-A-8-206729

しかしながら、特許文献1、2のような外側から冷却では押出材内部の冷却が遅くなるため、断面における冷却が不均一となり、ひいては押出材の内部品質が不均一になる。   However, cooling from the outside as in Patent Documents 1 and 2 slows down the inside of the extruded material, resulting in uneven cooling in the cross section, and consequently, the internal quality of the extruded material becomes non-uniform.

中空押出材では内側からの冷却が可能であり、中空押出材の外側と内側の両方から冷却することで冷却を促進することができる。しかしながら、特許文献3に記載された冷却方法では、冷媒が高温のダイスを通過する間に温度が上昇してしまうために冷却効率が悪いという問題点があった。   The hollow extruded material can be cooled from the inside, and cooling can be promoted by cooling from both the outside and inside of the hollow extruded material. However, the cooling method described in Patent Document 3 has a problem that the cooling efficiency is poor because the temperature rises while the refrigerant passes through the hot die.

本発明は、上述した技術背景に鑑み、中空押出材を内側から効率良く冷却できる中空押出材の製造方法およびその関連技術の提供を目的とする。   An object of this invention is to provide the manufacturing method of the hollow extrusion material which can cool a hollow extrusion material from the inside efficiently, and its related technique in view of the technical background mentioned above.

即ち、本発明は下記[1]〜[13]に記載の各構成を有する。   That is, this invention has each structure as described in the following [1]-[13].

[1]押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスを用い、金属を押し出しながら、押し出された押出材の中空部内の冷媒を前記マンドレルの吸引口から吸引することにより、外部の冷媒をその押出材の開口部から中空部内に引き込んで該中空部内に流通させることを特徴とする中空押出材の製造方法。   [1] Using an extrusion die having a refrigerant passage having a suction port opened on the downstream end face of the mandrel for forming the hollow portion of the extruded material, while extruding the metal, the refrigerant in the hollow portion of the extruded material is A method for producing a hollow extruded material, comprising sucking from a suction port of a mandrel to draw an external refrigerant from the opening of the extruded material into the hollow portion and circulate through the hollow portion.

[2]前記押出材を押し出しながら、該押出材に新たな冷媒引き込み用の開口部を形成する前項1に記載の中空押出材の製造方法。   [2] The method for producing a hollow extruded material as recited in the aforementioned Item 1, wherein a new refrigerant drawing opening is formed in the extruded material while extruding the extruded material.

[3]前記押出材の複数の中空部において、これらの中空部を成形するマンドレルに冷媒用通路を設けるとともに、それぞれの中空部における冷媒吸引量を独立して制御する前項1または2に記載の中空押出材の製造方法。   [3] The plurality of hollow portions of the extruded material according to the above item 1 or 2, wherein a refrigerant passage is provided in a mandrel for forming these hollow portions, and a refrigerant suction amount in each hollow portion is independently controlled. A method for producing a hollow extruded material.

[4]前記押出材の外壁の肉厚が該押出材の断面における外接円の直径の0.5%以下である前項1〜3のいずれかに記載の中空押出材の製造方法。   [4] The method for producing a hollow extruded material according to any one of the above items 1 to 3, wherein a thickness of an outer wall of the extruded material is 0.5% or less of a diameter of a circumscribed circle in a cross section of the extruded material.

[5]前記押出材は外壁に臨まない中空部を有し、その中空部を成形するマンドレルに前記冷媒用通路を設けて該中空部内に冷媒を流通させる前項1〜4のいずれかに記載の中空押出材の製造方法。   [5] The extrusion material according to any one of the above items 1 to 4, wherein the extruded material has a hollow portion that does not face the outer wall, and the refrigerant passage is provided in a mandrel that forms the hollow portion so that the refrigerant flows through the hollow portion. A method for producing a hollow extruded material.

[6]前記押出材は外壁よりも肉厚の厚い内壁を有し、その内壁に臨む中空部を成形するマンドレルに前記冷媒用通路を設けて該中空部内に冷媒を流通させる前項1〜5のいずれかに記載の中空押出材の製造方法。   [6] The extrusion material according to any one of the preceding items 1 to 5, wherein the extruded material has an inner wall that is thicker than an outer wall, and the refrigerant passage is provided in a mandrel for forming a hollow portion facing the inner wall to allow the refrigerant to flow through the hollow portion. The manufacturing method of the hollow extruded material in any one.

[7]前記前記押出材の単重が2kg/m以上である前項1〜6のいずれかに記載の中空押出材の製造方法。   [7] The method for producing a hollow extruded material as recited in any one of the aforementioned Items 1 to 6, wherein the extruded material has a unit weight of 2 kg / m or more.

[8]前記押出材は断面における外接円の直径が100mm以上である前項1〜7のいずれかに記載の中空押出材の製造方法。   [8] The method for producing a hollow extruded material according to any one of items 1 to 7, wherein a diameter of a circumscribed circle in a cross section of the extruded material is 100 mm or more.

[9]前記押出材は非対称断面形状を有する前項1〜8のいずれかに記載の中空押出材の製造方法。   [9] The method for producing a hollow extruded material according to any one of items 1 to 8, wherein the extruded material has an asymmetric cross-sectional shape.

[10]前記押出材を外側から冷却する前項1〜9のいずれかに記載の中空押出材の製造方法。   [10] The method for producing a hollow extruded material according to any one of items 1 to 9, wherein the extruded material is cooled from the outside.

[11]押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスと、
前記吸引口から冷媒用通路を介して冷媒を吸引する吸引手段と
を備えることを特徴とする押出装置。
[11] An extrusion die including a refrigerant passage having a suction port opened on a downstream end face of a mandrel for forming a hollow portion of the extruded material;
An extrusion apparatus comprising: suction means for sucking the refrigerant from the suction port via the refrigerant passage.

[12]前記押出ダイスの下流側に配置される冷媒供給手段を備える前項11に記載の押出装置。   [12] The extrusion apparatus according to [11], further including a refrigerant supply unit disposed on the downstream side of the extrusion die.

[13]押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備え、前記冷媒用通路の他端に吸引手段との接続部が形成されていることを特徴とする押出ダイス。   [13] A refrigerant passage having a suction port opened at a downstream end face of a mandrel for forming a hollow portion of the extruded material, and a connection portion with a suction means is formed at the other end of the refrigerant passage. A featured extrusion die.

上記[1]に記載の発明にかかる中空押出材の製造方法によれば、外部の冷媒を直接押出材の中空部に引き込んで中空部内を流通させることができるので、押出材を内側から効率良く冷却することができる。押出材の内側からの冷却により断面において均一な冷却がなされるので、押出材の内部品質が均一化される。また、冷却効率が高いことで急冷が可能であるから、焼入れ効果も得られる。さらに、マンドレルの吸引口から吸引された冷媒が冷媒用通路を流通することによって、ダイスの冷却も行われる。   According to the method for producing a hollow extruded material according to the invention described in [1], an external refrigerant can be directly drawn into the hollow portion of the extruded material and can be circulated in the hollow portion. Can be cooled. Since the cooling from the inside of the extruded material is uniform in the cross section, the internal quality of the extruded material is made uniform. Moreover, since quenching is possible because of high cooling efficiency, a quenching effect can also be obtained. Furthermore, the cooling of the dice is also performed by the refrigerant sucked from the suction port of the mandrel flowing through the refrigerant passage.

上記[2]に記載の発明によれば、長時間にわたって高い冷却効率を維持することができる。   According to the invention described in [2] above, high cooling efficiency can be maintained for a long time.

上記[3]に記載の発明によれば、押出材の形状に対応した精密な冷却制御が可能であり、さらに均一な冷却が可能である。   According to the invention described in [3] above, precise cooling control corresponding to the shape of the extruded material is possible, and further uniform cooling is possible.

上記[4]に記載の発明によれば、薄肉の外壁を有する押出材の製造において変形を防止することができる。   According to the invention described in [4] above, deformation can be prevented in the production of an extruded material having a thin outer wall.

上記[5][6][7][8][9]に記載の各発明によれば、外側からの冷却では効率良くかつ均一に冷却され難い形状の押出材に対して、内側からに冷却を実施して効率良くかつ均一な冷却を行うことができる。   According to the inventions described in [5], [6], [7], [8], and [9], the extruded material having a shape that is difficult to cool efficiently and uniformly by cooling from the outside is cooled from the inside. To efficiently and uniformly perform cooling.

上記[10]に記載の発明によれば、押出材の内側と外側の両方からの冷却によって冷却効率が向上し、焼入れ効果も高めることができる。また、押出材の内外での冷却速度差を小さくして冷却による押出材の曲がりや変形を抑制できる。   According to the invention described in [10] above, the cooling efficiency is improved by the cooling from both the inside and the outside of the extruded material, and the quenching effect can be enhanced. Moreover, the bending rate and the deformation | transformation of an extrusion material by cooling can be suppressed by making the cooling rate difference inside and outside an extrusion material small.

上記[11][12]に記載の各発明にかかる押出装置によれば、本発明の押出材の製造方法を実施して押出材を内側から効率良く冷却することができる。   According to the extrusion apparatus concerning each invention as described in said [11] [12], the manufacturing method of the extrusion material of this invention can be implemented, and an extrusion material can be cooled efficiently from an inner side.

上記[13]に記載の発明にかかる押出ダイスは、押出装置に組み込むことによって押出材を内側から効率良く冷却することができる。   The extrusion die according to the invention described in [13] can efficiently cool the extruded material from the inside by being incorporated in the extrusion apparatus.

本発明の方法によって製造する押出材は、少なくとも1つの中空部を有している。例えば図1に示す押出材(1)は周方向で肉厚の等しい円筒管であり、1つの中空部(2)を有している。また、図3、図5〜7に示す押出材(70)(80)(90)(100)は複数の中空部を有している。   The extruded material produced by the method of the present invention has at least one hollow part. For example, the extruded material (1) shown in FIG. 1 is a cylindrical tube having the same thickness in the circumferential direction, and has one hollow portion (2). Further, the extruded materials (70), (80), (90), and (100) shown in FIGS. 3 and 5 to 7 have a plurality of hollow portions.

以下に、本発明について、前記中空材(1)を押し出すためのポートホールダイスと、このポートホールダイスを備える押出装置を例示して図2を参照しつつ詳述する。   Hereinafter, the present invention will be described in detail with reference to FIG. 2 exemplifying a port hole die for extruding the hollow material (1) and an extrusion apparatus equipped with the port hole die.

図2に示すポートホールダイス(10)は、押出材(1)の外周面を成形する雌型(11)と内周面(2a)を成形する雄型(20)とが組み合わされてなり、前記雄型(20)が本発明の押出ダイスに対応する。   The port hole die (10) shown in FIG. 2 is a combination of a female die (11) for molding the outer peripheral surface of the extruded material (1) and a male die (20) for molding the inner peripheral surface (2a). The male mold (20) corresponds to the extrusion die of the present invention.

雌型(11)は、中央部にベアリング孔(12)を有し、ベアリング孔(12)の上流側には溶着室用凹部(13)が形成され、下流側にはリリーフ孔(14)が形成されている。   The female mold (11) has a bearing hole (12) in the center, a recess (13) for a welding chamber is formed on the upstream side of the bearing hole (12), and a relief hole (14) is formed on the downstream side. Is formed.

前記雄型(20)は、ダイス基盤(21)の中央から下流側に中空部(2)を成形するマンドレル(22)が突出し、このマンドレル(22)の周囲に押出方向に貫通する複数個のポートホール(23)を有している。隣接するポートホール(23)(23)間には前記マンドレル(22)を基端部で支持する脚部(24)が形成されている。前記マンドレル(22)の先端側の周面には押出材(1)の内周面(2a)を成形するベアリング部(25)が突設されている。   The male mold (20) has a plurality of mandrels (22) for forming the hollow portion (2) projecting from the center to the downstream side of the die base (21) and penetrating around the mandrel (22) in the extrusion direction. Has a porthole (23). A leg portion (24) for supporting the mandrel (22) at the base end portion is formed between the adjacent port holes (23) and (23). A bearing portion (25) for forming the inner peripheral surface (2a) of the extruded material (1) is projected from the peripheral surface on the front end side of the mandrel (22).

前記雄型(20)は内部に冷媒用通路(26)を有している。前記冷媒用通路(26)は一端がダイス基盤(21)の側面に開口して吸引手段(60)との接続部(27)となされ、脚部(24)を通ってダイスの軸心に達し、軸心で屈曲してマンドレル(22)の中心を通り、他端がマンドレル(22)の先端面に開口して冷媒(C)の吸引口(28)となされている。前記接続部(27)にはネジが切られ、吸引装置(60)に連通接続するためのジョント(61)が取り付けられている。冷媒用通路(26)において、吸引口(28)は通路の直径が拡大され、上流側部分(26a)よりも断面積および表面積が拡大されて、冷媒(C)の吸引を促進するとともにベアリング部(25)を効率良く冷却するための冷却促進部(29)を形成している。前記冷却促進部(29)はベアリング部(25)の内側に位置している。   The male mold (20) has a refrigerant passage (26) inside. One end of the refrigerant passage (26) opens to the side surface of the die base (21) to form a connection portion (27) to the suction means (60), and reaches the axis of the die through the leg portion (24). Then, it is bent at the axis and passes through the center of the mandrel (22), and the other end is opened at the front end surface of the mandrel (22) to serve as a suction port (28) for the refrigerant (C). The connecting portion (27) is threaded and attached with a joint (61) for communicating with the suction device (60). In the refrigerant passage (26), the suction port (28) has an enlarged passage diameter and a larger cross-sectional area and surface area than the upstream side portion (26a), thereby facilitating the suction of the refrigerant (C) and the bearing portion. A cooling promoting part (29) for efficiently cooling (25) is formed. The cooling promotion part (29) is located inside the bearing part (25).

前記雌型(11)と雄型(20)とを組み合わせると、雌型(11)のベアリング孔(12)内に雄型(20)のマンドレル(22)のベアリング部(25)が嵌り込んでこれらの間に環状の成形用間隙(符号なし)が形成され、雌型(11)の溶着室用凹部(13)の一部が雄型(20)のダイス基盤(21)の端面で塞がれてポートホール(23)に連通する溶着室を形成する。そして、各ポートホール(23)に流入した押出材料は溶着室で合流し、成形用間隙から中空材(1)として押出される。   When the female mold (11) and the male mold (20) are combined, the bearing portion (25) of the mandrel (22) of the male mold (20) is fitted into the bearing hole (12) of the female mold (11). An annular forming gap (not indicated) is formed between them, and a part of the recess (13) for the welding chamber of the female die (11) is blocked by the end face of the die base (21) of the male die (20). Thus, a welding chamber communicating with the port hole (23) is formed. Then, the extruded materials flowing into the respective port holes (23) merge in the welding chamber and are extruded as hollow materials (1) from the molding gap.

前記吸引装置(60)は、接続部(27)に連通する排出管(62)とポンプ等の吸引手段とを備え、冷媒用通路(26)を介して吸引した冷媒(C)をダイス外に排出するものとなされている。   The suction device (60) includes a discharge pipe (62) communicating with the connection portion (27) and suction means such as a pump, and the refrigerant (C) sucked through the refrigerant passage (26) is removed from the die. It is supposed to be discharged.

前記ポートホールダイス(10)を用いて金属を押し出す工程において、押出材(1)の先端は開放され、冷媒(C)としての外部の空気が先端開口部から中空部(2)内に自由に流入するものとなされている。この状態で吸引装置(60)を稼働して接続部(27)から冷媒用通路(26)内の流体を排出すると、中空部(2)内の冷媒(C)がマンドレル(22)端面の吸引口(28)から冷媒用通路(26)内に吸引され、この吸引に伴って外部の冷媒(C)が押出材(1)の先端開口部から中空部(2)内に引き込まれる。引き込まれた冷媒(C)は中空部(2)を通って吸引口(28)に吸引され、押出材(1)の先端開口部、中空部(2)、雄型(20)の吸引口(28)、冷媒用通路(26)、接続部(27)、排出管(62)を順次通過する、押出材(1)の進行方向に対して逆方向の冷媒(C)の流れが生じる。そして、冷媒(C)が中空部(2)内を流通する間に押出材(1)を内側から冷却する。   In the process of extruding metal using the port hole die (10), the tip of the extruded material (1) is opened, and external air as the refrigerant (C) is freely allowed to enter the hollow part (2) from the tip opening. It is supposed to flow in. When the suction device (60) is operated in this state and the fluid in the refrigerant passage (26) is discharged from the connecting portion (27), the refrigerant (C) in the hollow portion (2) is sucked into the end surface of the mandrel (22). The refrigerant is sucked from the opening (28) into the refrigerant passage (26), and the external refrigerant (C) is drawn into the hollow portion (2) from the front end opening of the extruded material (1). The drawn refrigerant (C) passes through the hollow portion (2) and is sucked into the suction port (28), and the tip opening of the extruded material (1), the hollow portion (2), and the suction port of the male mold (20) ( 28), the refrigerant passage (26), the connecting portion (27), and the discharge pipe (62) are sequentially passed through the refrigerant (C) in the direction opposite to the traveling direction of the extruded material (1). And while a refrigerant | coolant (C) distribute | circulates the inside of a hollow part (2), an extrusion material (1) is cooled from an inner side.

なお、図示例では押出材(1)の先端が開口し、この開口部から外部の冷媒(C)を引き込むようにしているが、チャッキング等のために押出材(1)の先端を閉じる場合は、先端近傍に冷媒引き込み用の開口部を穿設しておけば、この開口部から冷媒(C)を中空部(2)内に引き込むことができる。   In the illustrated example, the end of the extruded material (1) is opened, and the external refrigerant (C) is drawn from the opening. However, when the front end of the extruded material (1) is closed for chucking or the like. If an opening for drawing the refrigerant is provided near the tip, the refrigerant (C) can be drawn into the hollow part (2) from this opening.

本発明の冷却構造、即ち冷媒(C)を押出材(1)の開口部から引き込んで中空部(2)内を押出材(1)の進行とは逆の方向に流通させる冷却構造は、冷媒をマンドレルの先端から吐出して押出材の進行と同一方向に流通させる従来の冷却構造(特許文献3)よりも冷却効率が優れている。なぜならば、従来の冷却構造ではダイスとの熱交換によって昇温した冷媒を中空部内に吐出するのに対し、本発明の冷却構造では外部の冷媒(C)を直接中空部(2)に引き込むので、より低い温度の冷媒(C)を押出材(1)に接触させることができるからである。また、冷媒(C)がそのままの温度で押出材(1)の冷却に供されるので、温度調節した冷媒(C)を引き込ませることによって精度の高い冷却制御を行うことができる。従来の冷却構造において中空部(2)内に吐出する冷媒温度を制御しようとすれば、ダイス内での上昇分を見込んでダイスに供給する冷媒温度を制御することになるが、上昇分は押出中のダイス温度やダイス構造に影響を受けるので精度の高い冷却制御が難しい。このように、本発明の冷却構造を採用して押出材(1)を効率良く冷却することにより、断面において均一な冷却がなされるので、押出材(1)の内部品質が均一化される。   The cooling structure of the present invention, that is, the cooling structure in which the refrigerant (C) is drawn from the opening of the extruded material (1) and flows through the hollow portion (2) in the direction opposite to the progress of the extruded material (1), The cooling efficiency is superior to the conventional cooling structure (Patent Document 3) in which the water is discharged from the tip of the mandrel and flows in the same direction as the progress of the extruded material. This is because, in the conventional cooling structure, the refrigerant whose temperature is increased by heat exchange with the die is discharged into the hollow portion, whereas in the cooling structure of the present invention, the external refrigerant (C) is directly drawn into the hollow portion (2). This is because the lower temperature refrigerant (C) can be brought into contact with the extruded material (1). In addition, since the refrigerant (C) is used for cooling the extruded material (1) at the same temperature, it is possible to perform highly accurate cooling control by drawing the temperature-controlled refrigerant (C). In the conventional cooling structure, if the temperature of the refrigerant discharged into the hollow portion (2) is to be controlled, the temperature of the refrigerant supplied to the die is controlled in anticipation of the rise in the die. Highly accurate cooling control is difficult because it is affected by the inside die temperature and die structure. Thus, by adopting the cooling structure of the present invention and efficiently cooling the extruded material (1), uniform cooling is performed in the cross section, so that the internal quality of the extruded material (1) is made uniform.

また、本発明の冷却構造はおいては、冷却効率が良く、押出材(1)を急冷することが可能であるから焼入れ効果を奏することもできる。また、中空部(2)内に引き込む冷媒(C)の温度や流通量を制御することにより、焼入れを制御することができる。   In the cooling structure of the present invention, the cooling efficiency is good and the extruded material (1) can be rapidly cooled, so that a quenching effect can be achieved. Moreover, quenching can be controlled by controlling the temperature and flow rate of the refrigerant (C) drawn into the hollow portion (2).

中空部(2)内に引き込む冷媒(C)は気体、液体のいずれでも良いが、非酸化性の冷媒を推奨できる。非酸化性冷媒を用いるのは、押出材(1)の内周面(2a)を酸化させないためである。気体冷媒として、空気、窒素ガス、アルゴンガスを例示でき、液体冷媒として、水、液体窒素を例示できる。液体冷媒は中空部(2)内で気化し、気化熱によっても冷却効果が得られる。冷媒としては上に挙げた液体冷媒と気体冷媒の混合物でも良く、液体冷媒と気体冷媒の混合物の場合には冷却効果の調整が容易である。更には液体冷媒と気体冷媒の混合物の中でも気体冷媒中に液体冷媒の粒を浮揚させた混合物、いわゆるミストにしたものを用いても良い。冷媒として該ミストを用いた場合には調整した冷却効果を安定化する効果が得られる。   The refrigerant (C) drawn into the hollow portion (2) may be either a gas or a liquid, but a non-oxidizing refrigerant can be recommended. The non-oxidizing refrigerant is used in order not to oxidize the inner peripheral surface (2a) of the extruded material (1). Examples of the gaseous refrigerant include air, nitrogen gas, and argon gas, and examples of the liquid refrigerant include water and liquid nitrogen. The liquid refrigerant is vaporized in the hollow portion (2), and a cooling effect is also obtained by the heat of vaporization. The refrigerant may be a mixture of the liquid refrigerant and the gas refrigerant mentioned above. In the case of a mixture of the liquid refrigerant and the gas refrigerant, the adjustment of the cooling effect is easy. Further, among the mixture of the liquid refrigerant and the gas refrigerant, a mixture in which the particles of the liquid refrigerant are levitated in the gas refrigerant, that is, a so-called mist may be used. When the mist is used as the refrigerant, an effect of stabilizing the adjusted cooling effect can be obtained.

これらの冷媒は押出材(1)の先端側に供給手段を設けて積極的に供給すれば、冷却効果を高めることができる。具体的には、冷媒供給用ノズルを中空部(2)に向けて配置し、中空部(2)内に吐出した冷媒を吸引口(28)から吸引させる。中空材(1)の進行ともにノズルを移動させるようにすれば、押し出しながら冷媒を供給することができる。   If these refrigerants are actively supplied by providing a supply means on the front end side of the extruded material (1), the cooling effect can be enhanced. Specifically, the refrigerant supply nozzle is disposed toward the hollow portion (2), and the refrigerant discharged into the hollow portion (2) is sucked from the suction port (28). If the nozzle is moved with the progress of the hollow material (1), the refrigerant can be supplied while being pushed out.

また、冷媒として室温の空気を用いる場合は、ダイス側からの吸引によって外部の空気を中空部(2)に引き込むようにすれば格別の供給手段が無くても冷媒(空気)を引き込むことができ、冷媒の貯蔵タンクさえ必要としないので、押出装置を簡略化できる。   In addition, when room temperature air is used as the refrigerant, the refrigerant (air) can be drawn in without any special supply means if external air is drawn into the hollow part (2) by suction from the die side. Since the refrigerant storage tank is not required, the extrusion apparatus can be simplified.

いずれの場合も、所期する押出材の冷却温度に応じて、冷媒の吸引量を調節して中空部内の流通量を適宜調節する。複数の中空部を成形するための複数のマンドレルを有する雄型においては、マンドレル毎に独立した冷媒用通路を設けておけば個別に吸引量を調節でき、中空部毎に冷媒の流通量を制御することができ、ひいては中空部毎に独立した冷却制御が可能であり、押出材の形状に対応した精密な冷却制御が可能である。冷媒供給手段においても冷媒の温度や流量を調節することで冷却温度を調節することができるので、吸引側と供給側の両方を組み合わせて調節することもできる。また、複数のマンドレルの冷媒用通路に対して排出側で一括して吸引する場合であっても、中空部毎に引き込ませる冷媒の種類や温度を変えれば、中空部毎に独立した冷却制御が可能である。   In either case, according to the desired cooling temperature of the extruded material, the amount of refrigerant sucked is adjusted to appropriately adjust the flow rate in the hollow portion. In a male mold having a plurality of mandrels for forming a plurality of hollow portions, if a separate refrigerant passage is provided for each mandrel, the suction amount can be individually adjusted, and the flow rate of the refrigerant is controlled for each hollow portion. Therefore, independent cooling control is possible for each hollow portion, and precise cooling control corresponding to the shape of the extruded material is possible. Also in the refrigerant supply means, the cooling temperature can be adjusted by adjusting the temperature and flow rate of the refrigerant, so that both the suction side and the supply side can be adjusted in combination. In addition, even when the refrigerant passages of a plurality of mandrels are collectively sucked on the discharge side, independent cooling control can be performed for each hollow part by changing the type and temperature of the refrigerant to be drawn for each hollow part. Is possible.

図3、図5〜7に示すように、複数の中空部を有する押出材(70)(80)(90)(100)の製造においては、少なくとも1つの中空部が上述した冷却構造によって内側から冷却されるものであれば本発明に含まれ、本発明の冷却構造を採用する中空部の数は任意に設定できる。   As shown in FIGS. 3 and 5 to 7, in the production of the extruded material 70, 80, 90, and 100 having a plurality of hollow portions, at least one hollow portion is formed from the inside by the cooling structure described above. If it is cooled, it is included in the present invention, and the number of hollow portions that employ the cooling structure of the present invention can be arbitrarily set.

本発明は押出材の内側からの冷却を規定するものであるが、外側からの冷却を排除するものではない。冷却効率を高める上で押出材の外側からも冷却することが好ましい。冷却速度を高めることにより焼入れ効果を高めることできる。また、押出材の内側と外側の両方から冷却によって内外での冷却速度差が小さくして冷却による押出材の曲がりや変形を抑制できる。さらに、内側と外側の冷却条件の組合せることによって、より複雑で精密な冷却制御を行える。外側からの冷却方法は何ら限定されず空冷、水冷、ミスト冷却等周知の方法で適宜行えば良い。   The present invention regulates cooling from the inside of the extruded material, but does not exclude cooling from the outside. In order to increase the cooling efficiency, it is preferable to cool from the outside of the extruded material. The quenching effect can be enhanced by increasing the cooling rate. In addition, the cooling rate difference between the inside and outside is reduced by cooling from both the inside and outside of the extruded material, and bending and deformation of the extruded material due to cooling can be suppressed. Furthermore, more complex and precise cooling control can be performed by combining the inner and outer cooling conditions. The cooling method from the outside is not limited at all, and may be appropriately performed by a known method such as air cooling, water cooling, or mist cooling.

また、押出材が長くなると、中空部内の圧力損失によりダイスからの吸引効率が低下し、またダイス近傍では冷媒の温度上昇によって冷却効率が低下することがある。このような場合は、押し出しながら押出材に冷媒引き込み用の開口部を新たに形成し、その開口部から冷媒を引き込むようにすれば吸引効率を回復させ、かつ低温の冷媒をダイス近傍まで供給することができる。押し出しながら新たな開口部を形成することによって、長時間にわたって高い冷却効率を維持することができる。新たな開口部は、押出材を切断して切り離すか、あるいは押出材に穴を明けることによって形成することができる。例えば、図14Aおよび図14Bは、回転する鋸刃(110)で押出材(1)の上部にスリットの穴(111)を明ける方法を示している。鋸刃(110)を下降させ、あるいはさらにスライドさせることによって所望の長さのスリット状の穴(111)を明けることができる。また、図15Aおよび図15Bは、針またはドリル(112)を押出材(1)に刺し込んでスポット状の穴(113)を明ける方法を示している。また、冷媒供給用ノズルを用いている場合は、新たな開口部に冷媒供給用ノズルを移動させれば良い。押出材の本来の切断予定位置に合わせて切断(切り離し)位置または穴明け位置を設定すれば、無駄な端材も発生しない。   Further, when the extruded material becomes longer, the suction efficiency from the die is reduced due to the pressure loss in the hollow portion, and the cooling efficiency may be reduced near the die due to the temperature rise of the refrigerant. In such a case, an opening for drawing the refrigerant is newly formed in the extruded material while extruding, and if the refrigerant is drawn from the opening, the suction efficiency is recovered and the low-temperature refrigerant is supplied to the vicinity of the die. be able to. By forming a new opening while extruding, high cooling efficiency can be maintained for a long time. The new opening can be formed by cutting and extruding the extruded material or by drilling a hole in the extruded material. For example, FIGS. 14A and 14B show a method of making a slit hole (111) in the upper part of the extruded material (1) with a rotating saw blade (110). A slit-like hole (111) having a desired length can be formed by lowering or further sliding the saw blade (110). 15A and 15B show a method of making a spot-like hole (113) by inserting a needle or drill (112) into the extruded material (1). In addition, when the refrigerant supply nozzle is used, the refrigerant supply nozzle may be moved to a new opening. If a cutting (cutting) position or a drilling position is set in accordance with the original cutting planned position of the extruded material, no waste end material is generated.

上述したように、本発明は押出材を内側から冷却するものであるから、外側からの冷却では内部の冷却が不足する形状や内部の冷却が不均一になりやすい形状の押出材に適用した場合に顕著な効果が得られる。例えば、大型の押出材、内部を区画する内壁や厚肉の壁を有する押出材、非対称断面形状の押出材に適用することにより顕著な効果が得られる。以下に、種々の断面形状の押出材とこれらの押出材の冷却について説明する。なお、図4の押出装置において図2と同じ符号を付したものは同一機能を有するものとして説明を省略する。   As described above, since the present invention cools the extruded material from the inside, when applied to an extruded material having a shape in which the internal cooling is insufficient or the internal cooling is likely to be uneven when cooling from the outside. A remarkable effect can be obtained. For example, a remarkable effect can be obtained by applying to a large-sized extruded material, an extruded material having an inner wall or a thick wall defining the inside, or an extruded material having an asymmetric cross-sectional shape. Below, the extrusion material of various cross-sectional shapes and cooling of these extrusion materials are demonstrated. In addition, what attached | subjected the code | symbol same as FIG. 2 in the extrusion apparatus of FIG.

図3の押出材(70)は、外壁(71)よりも肉厚の厚い十字形の内壁(72)によって4つの中空部(73)が形成されている。図4は前記押出材(70)を押し出すためのポートホールダイス(75)を備えた押出装置であり、雄型(76)は各中空部(73)を成形する4つのマンドレル(77)を有し(2個のみを図示)、ダイス基盤(21)の側面に接続部(27)を有する冷媒用通路(26)は各マンドレル(77)に分岐してそれぞれの先端面に開口して吸引口(28)となされている。そして、吸引装置(60)を稼働して吸引口(28)から冷媒(C)を吸引すると、押出材(70)の先端開口部から4つの中空部(73)内に冷媒(C)が引き込まれ、4つの中空部(73)と冷媒用通路(26)を経由して排出管(62)から排出される。   In the extruded material (70) of FIG. 3, four hollow portions (73) are formed by a cross-shaped inner wall (72) that is thicker than the outer wall (71). FIG. 4 shows an extrusion apparatus provided with a port hole die (75) for extruding the extruded material (70). The male mold (76) has four mandrels (77) for forming the hollow portions (73). (Only two are shown), and the refrigerant passage (26) having the connecting portion (27) on the side surface of the die base (21) branches to each mandrel (77) and opens to the front end surface of each die. (28). When the suction device (60) is operated and the refrigerant (C) is sucked from the suction port (28), the refrigerant (C) is drawn into the four hollow portions (73) from the front end opening of the extruded material (70). Then, it is discharged from the discharge pipe (62) through the four hollow portions (73) and the refrigerant passage (26).

前記押出材(70)を外側のみから冷却すると、内壁(72)は外壁(71)からの抜熱によってしか冷却されない上に厚肉であるために冷却が遅くなる。しかし、前記中空部(73)に本発明の冷却構造を採用し、厚肉の内壁(72)に臨む中空部(73)内に冷媒(C)を流通させて内側から冷却することによって内壁(72)を効率良く冷却することができる。   When the extruded material (70) is cooled only from the outside, the inner wall (72) is cooled only by heat removal from the outer wall (71), and the cooling is slow because it is thick. However, the cooling structure of the present invention is adopted for the hollow part (73), and the inner wall (by cooling the refrigerant (C) through the hollow part (73) facing the thick inner wall (72) from the inner side ( 72) can be cooled efficiently.

なお、図4の冷媒用通路(26)は4つのマンドレル(77)に分岐させて1つの接続部(27)から吸引を行い、4つの中空部(73)に対して同じ条件で冷媒(C)を流通させているが、各マンドレル(77)で冷媒用通路を独立させて別々の接続部(排出側の開口部)を設けて吸引すれば各中空部(73)における冷媒流通を独立して制御することができる。また、各中空部(73)に引き込ませる冷媒条件を変えることによっても独立した冷却制御を行うことができる。   Note that the refrigerant passage (26) in FIG. 4 is branched into four mandrels (77) and suctioned from one connecting portion (27), and the refrigerant (C However, if each mandrel (77) has a separate refrigerant passage and is provided with a separate connection (opening on the discharge side) for suction, the refrigerant flow in each hollow portion (73) can be made independent. Can be controlled. Independent cooling control can also be performed by changing the refrigerant conditions to be drawn into the hollow portions (73).

図5の押出材(80)は、外壁(81)に臨む4つの多角形中空部(82)(82)(82)(82)と、これらの多角形中空部(82)(82)(82)(82)の中央に外壁(81)に臨まない1つの円形中空部(83)を有している。前記円形中空部(83)は円形内壁(84)に囲まれ、隣接する多角形中空部(82)(82)間の隔壁(85)は外壁(81)よりも厚肉である。かかる形状の押出材(80)を外側のみから冷却すると、隔壁(85)は外壁(81)を介した抜熱によってしか冷却されず、円形内壁(84)は外壁(81)および隔壁(85)を介した抜熱によってしか冷却されないので、これらの冷却は遅くなる。とりわけ、円形内壁(83)は外壁(81)および隔壁(85)を介した冷却となるので冷却速度が遅く、断面において冷却速度が不均一となる。前記円形中空部(83)に本発明の冷却構造を採用して円形内壁(84)を内側から直接冷却すると、円形内壁(84)の冷却速度が高められて断面における冷却速度が均一化される。また、外壁(81)に臨む4つの多角形中空部(82)は円形内壁(84)および隔壁(85)にも臨んでいるので、これらの多角形中空部(82)にも本発明の冷却構造を採用して内側から冷却すれば、円形内壁(84)、隔壁(85)および外壁(81)の冷却を促進することができる。   5 has four polygonal hollow portions (82) (82) (82) (82) facing the outer wall (81) and these polygonal hollow portions (82) (82) (82). ) (82) has one circular hollow portion (83) that does not face the outer wall (81). The circular hollow portion (83) is surrounded by the circular inner wall (84), and the partition wall (85) between the adjacent polygon hollow portions (82), (82) is thicker than the outer wall (81). When the extruded material (80) having such a shape is cooled only from the outside, the partition wall (85) is cooled only by heat removal through the outer wall (81), and the circular inner wall (84) has the outer wall (81) and the partition wall (85). These coolings are slow because they are cooled only by heat removal through the. In particular, since the circular inner wall (83) is cooled via the outer wall (81) and the partition wall (85), the cooling rate is slow, and the cooling rate is uneven in the cross section. If the circular inner wall (84) is directly cooled from the inside by adopting the cooling structure of the present invention in the circular hollow portion (83), the cooling rate of the circular inner wall (84) is increased and the cooling rate in the cross section becomes uniform. . Further, since the four polygonal hollow parts (82) facing the outer wall (81) also face the circular inner wall (84) and the partition wall (85), the cooling of the present invention is also applied to these polygonal hollow parts (82). If the structure is adopted to cool from the inside, cooling of the circular inner wall (84), the partition wall (85) and the outer wall (81) can be promoted.

図6の押出材(90)は非対称断面形状の異形断面材であり、複数の中空部(91)(92)(93)(94)は形状の異なり、外壁(95)および内壁(96)(97)(98)(99)の肉厚も異なっている。かかる断面形状の押出材(90)を外側からの冷却で均一に冷却することは困難である。前記中空部(91)(92)(93)(94)の少なくとも1つに本発明の冷却構造を採用することにより冷却が促進される。また、本発明の冷却構造を各中空部(91)(92)(93)(94)に採用し、各中空部(91)(92)(93)(94)の冷却速度を独立して調節することにより、冷却速度をより一層高めるとともに、断面における冷却速度を均一化することができる。特に非対称断面形状の押出材(90)は外側から均一に冷却することが困難であるため、各中空部(91)(92)(93)(94)に本発明の冷却構造を採用し、あるいはさらに独立して冷却制御を行う意義は大きい。   The extruded material (90) in FIG. 6 is an irregular cross-sectional material having an asymmetric cross-sectional shape. The thickness of 97) (98) (99) is also different. It is difficult to uniformly cool the extruded material (90) having such a cross-sectional shape by cooling from the outside. Cooling is promoted by employing the cooling structure of the present invention in at least one of the hollow portions (91), (92), (93), and (94). Further, the cooling structure of the present invention is adopted in each hollow part (91) (92) (93) (94), and the cooling rate of each hollow part (91) (92) (93) (94) is independently adjusted. As a result, the cooling rate can be further increased and the cooling rate in the cross section can be made uniform. In particular, since the extruded material (90) having an asymmetric cross-sectional shape is difficult to cool uniformly from the outside, the hollow structure (91) (92) (93) (94) employs the cooling structure of the present invention, or Furthermore, the significance of performing the cooling control independently is great.

また、以下の各押出材についても、本発明の冷却構造を適用する意義が大きい。   In addition, the following extruded materials have great significance in applying the cooling structure of the present invention.

まず、単量の大きい押出材および大型押出材は冷却が遅いため、内側からの冷却による冷却促進効果が大きい。   First, since a large amount of extruded material and a large-sized extruded material are slow to cool, the cooling promotion effect by cooling from the inside is large.

単量としては、2kg/m以上の押出材に適用することが好ましく、特に5kg/m以上の押出材に適用することが好ましい。   The single amount is preferably applied to an extruded material of 2 kg / m or more, and particularly preferably applied to an extruded material of 5 kg / m or more.

寸法としては、断面における外接円が100mm以上の大型押出材に適用することが好ましく、特に外接円が300mm以上の押出材に適用することが好ましい。   As dimensions, it is preferable to apply to a large extruded material having a circumscribed circle in a cross section of 100 mm or more, and particularly to an extruded material having a circumscribed circle of 300 mm or more.

一方、図7に示すような外壁(101)の肉厚の薄い押出材(100)においても、本発明の適用意義は大きい。薄肉の外壁(101)は、外側からの冷却によって外周面と内周面との温度差が大きくなると変形するおそれがある。このような場合、押出材(100)の内側から冷却して外周面と内周面との温度差を小さくすることによって変形を防止することができる。具体的には、外壁(101)の肉厚(t)が断面の外接円の直径(D)の0.5%以下、特に0.2%以下であるような薄肉の押出材(100)において、本発明の適用意義が大きい。   On the other hand, the significance of application of the present invention is also great for an extruded material (100) having a thin outer wall (101) as shown in FIG. The thin outer wall (101) may be deformed when the temperature difference between the outer peripheral surface and the inner peripheral surface increases due to cooling from the outside. In such a case, the deformation can be prevented by cooling from the inside of the extruded material (100) to reduce the temperature difference between the outer peripheral surface and the inner peripheral surface. Specifically, in the thin extruded material (100) in which the wall thickness (t) of the outer wall (101) is 0.5% or less, particularly 0.2% or less of the diameter (D) of the circumscribed circle of the cross section. The application significance of the present invention is great.

また、本発明によって製造する中空押出材の材料は金属である限り何ら限定されず、アルミニウム、銅、鉄およびこれらの合金を例示できる。   Moreover, the material of the hollow extrusion material manufactured by this invention is not limited at all as long as it is a metal, Aluminum, copper, iron, and these alloys can be illustrated.

ところで、図2に参照されるように、冷媒(C)はマンドレル(22)の先端の吸引口(28)に到達した時点においてもなお冷却能力を有しており、冷媒用通路(26)を流通する間に雄型(20)との間で熱交換を行ってダイスを冷却する効果がある。   By the way, as shown in FIG. 2, the refrigerant (C) still has the cooling ability when it reaches the suction port (28) at the tip of the mandrel (22), and the refrigerant passage (26) There is an effect of cooling the dice by exchanging heat with the male mold (20) during distribution.

冷媒用通路(26)を流通する冷媒(C)は熱交換により温度が上昇していくので、冷媒温度はベアリング部(25)に近い吸引口(28)において最も低く、接続部(27)において最も高くなる。冷媒(C)は、吸引口(28)に近いほどダイスとの温度差が大きくて熱交換効率が高く、接続部(27)に近づくほどダイスとの温度差が小さくなって熱交換効率が低下していく。このような冷媒(C)の熱交換効率の下降は雄型(20)の冷却に有利に作用する。   Since the temperature of the refrigerant (C) flowing through the refrigerant passage (26) is increased by heat exchange, the refrigerant temperature is lowest at the suction port (28) close to the bearing portion (25), and at the connection portion (27). The highest. As the refrigerant (C) is closer to the suction port (28), the temperature difference from the die is larger and the heat exchange efficiency is higher, and as the refrigerant is closer to the connection part (27), the temperature difference from the die is smaller and the heat exchange efficiency is lowered. I will do it. Such a decrease in the heat exchange efficiency of the refrigerant (C) favors the cooling of the male mold (20).

即ち、マンドレル(22)のベアリング部(25)では焼付きや摩耗を抑制するために加工熱によって上昇したダイス温度を下げることが望まれるが、ダイス基盤(21)や脚部(24)ではダイス温度が下がりすぎると材料温度が下がって押出不良の原因となる。このため、ベアリング部(25)が冷却される一方で、ダイス基盤(21)や脚部(24)は過度に冷却されないことが好ましい。冷媒(C)をマンドレル(22)の吸引口(28)からダイス基盤(21)の接続部(27)へと流通させると、吸引口(28)に近いベアリング部(25)が良く冷却される一方で、マンドレル(22)の根元、ダイス基盤(21)および脚部(24)はベアリング部(25)ほどには冷却されない。   That is, in order to suppress seizure and wear in the bearing part (25) of the mandrel (22), it is desirable to lower the die temperature that has been raised by the processing heat, but in the die base (21) and leg part (24), it is desirable to reduce the die temperature. If the temperature is too low, the material temperature will drop and cause extrusion failure. For this reason, it is preferable that the die base (21) and the leg (24) are not excessively cooled while the bearing (25) is cooled. When the refrigerant (C) is circulated from the suction port (28) of the mandrel (22) to the connection portion (27) of the die base (21), the bearing portion (25) close to the suction port (28) is well cooled. On the other hand, the root of the mandrel (22), the die base (21), and the leg (24) are not cooled as much as the bearing (25).

また、冷媒(C)が押出材(1)の中空部(2)から中空部(2)よりも断面積の小さい吸引口(28)に流入することで流速が速くなるので、ベアリング部(25)の冷却が促進される。断面積が拡大された冷却促進部(29)から上流側部分(26a)に進むと断面積はさらに小さくなって冷媒(C)は加速されるが、表面積の減少と冷媒(C)温度の上昇によって熱交換効率が低下するため、マンドレル(22)の根元やダイス基盤(21)はベアリング部(25)ほどには冷却されず、ダイス基盤(21)が過度に冷却されることによる押出不良を回避できる。   Further, since the refrigerant (C) flows from the hollow portion (2) of the extruded material (1) into the suction port (28) having a smaller cross-sectional area than the hollow portion (2), the flow velocity is increased. ) Cooling is promoted. As the cross-sectional area advances from the cooling promoting portion (29) to the upstream portion (26a), the cross-sectional area further decreases and the refrigerant (C) is accelerated, but the surface area decreases and the refrigerant (C) temperature increases. As a result, the base of the mandrel (22) and the die base (21) are not cooled as much as the bearing part (25), and the die base (21) is excessively cooled, resulting in poor extrusion. Can be avoided.

さらに、冷媒(C)とダイスとの温度差は接続部(27)の手前で最も小さくなるため、冷媒用通路(26)が設けられている脚部(24)と設けられていない脚部(24)との間の温度差も小さい。従来のダイスでは、導入口に近い脚部において冷媒温度が最も低くダイスとの温度差が最大となるので、冷媒用通路の有無による脚部の温度差が本発明よりも大きくなる。複数の脚部における温度差は、温度に影響されるダイス強度(高温変形抵抗値)の不均衡による偏肉や材料温度の不均衡の原因となる。従って、本発明で用いるダイスは複数の脚部(24)における温度差が小さいので、ダイス強度や材料温度の不均衡も小さくなる。   Further, since the temperature difference between the refrigerant (C) and the die is the smallest before the connecting portion (27), the leg portion (24) provided with the refrigerant passage (26) and the leg portion not provided ( The temperature difference from 24) is also small. In the conventional die, the temperature of the refrigerant is the lowest at the leg close to the inlet and the temperature difference from the die is the largest, so the temperature difference of the leg due to the presence or absence of the refrigerant passage is larger than in the present invention. The temperature difference between the plurality of legs causes uneven thickness due to imbalance in die strength (high temperature deformation resistance value) affected by temperature and material temperature imbalance. Accordingly, since the die used in the present invention has a small temperature difference between the plurality of legs (24), the die strength and the material temperature imbalance are also reduced.

以上の点で、本発明の冷却構造は、押出材(1)の冷却のみならず、押出ダイスの冷却においても有用である。   In view of the above, the cooling structure of the present invention is useful not only for cooling the extruded material (1) but also for cooling the extrusion die.

さらに、上述したマンドレル(22)における冷却促進部(29)は、その断面積および表面積が上流側部分(26a)よりも拡大されていることで熱交換効率が高められている。かかる構造の冷媒用通路(26)に冷媒(C)を導入すると、ベアリング部(25)を効率良く冷却する一方でマンドレル(22)の根元およびダイス基盤(21)の冷却は抑制される。   Furthermore, the cooling promotion part (29) in the mandrel (22) described above has a higher heat exchange efficiency because its cross-sectional area and surface area are larger than those of the upstream part (26a). When the refrigerant (C) is introduced into the refrigerant passage (26) having such a structure, the bearing portion (25) is efficiently cooled, while cooling the root of the mandrel (22) and the die base (21) are suppressed.

熱交換効率を高めた冷却促進部は他の構造によっても実現できる。以下に、他の冷却促進部の構造について説明する。なお、以下の図面において、図2と同一の符号は同一物を示すものとして説明を省略する。   The cooling promoting part with improved heat exchange efficiency can be realized by other structures. Below, the structure of another cooling promotion part is demonstrated. In the following drawings, the same reference numerals as those in FIG.

図8Aおよび図8Bに示す冷却促進部(30)は、冷媒用通路(26)の直径を上流側部分(26a)よりも拡大するとともに、壁面からマンドレル(22)の軸心に向かって多数のフィンを(31)を突設したものである。冷却促進部(30)に入った冷媒(C)は隣接するフィン(31)間にまで入り込んで熱交換し、多数のフィン(31)により表面積が飛躍的に拡大されたことで高い熱交換効率が達成される。なお、図示例では拡径した冷媒用通路(26)にフィン(31)を設けているが、拡径することなくフィンを設けることできる。拡径することなくフィンを設けた場合でも、表面積拡大による熱交換効率の向上分が断面積減少による熱交換効率の低下分を上回れば、上流側部分よりも熱交換効率を高めることができる。   The cooling promotion part (30) shown in FIG. 8A and FIG. 8B expands the diameter of the refrigerant passage (26) more than the upstream part (26a), and increases the number from the wall surface toward the axis of the mandrel (22). (31) is a projecting fin. The refrigerant (C) that has entered the cooling promotion part (30) enters between the adjacent fins (31) to exchange heat, and the surface area has been greatly expanded by the large number of fins (31), resulting in high heat exchange efficiency. Is achieved. In the illustrated example, the fin (31) is provided in the refrigerant passage (26) whose diameter has been expanded, but the fin can be provided without being expanded in diameter. Even when the fins are provided without increasing the diameter, the heat exchange efficiency can be increased more than the upstream portion if the improvement in the heat exchange efficiency due to the surface area increase exceeds the decrease in the heat exchange efficiency due to the reduction in the cross-sectional area.

図9Aおよび図9Bの冷却促進部(32)(34)もまた、冷媒用通路(26)の表面積を拡大したものである。図9Aの冷却促進部(32)は、フィン(31)の替わりに断面三角形の凸部(33)を設けたものである。前記冷却促進部(30)よりも表面積の拡大率が小さいので熱交換効率の向上率も小さいが、薄板状のフィン(31)よりも加工が容易である。このように冷媒通路内に凹凸を設ければ表面積を拡大することができる。図9Bの冷却促進部(34)は冷媒用通路内に格子(35)を設けて表面積を拡大したものである。   The cooling promotion portions (32) and (34) shown in FIGS. 9A and 9B also have an enlarged surface area of the refrigerant passage (26). The cooling promotion part (32) in FIG. 9A is provided with a convex part (33) having a triangular cross section instead of the fin (31). Since the expansion ratio of the surface area is smaller than that of the cooling promotion part (30), the improvement rate of the heat exchange efficiency is also small, but the processing is easier than the thin plate-like fins (31). In this way, the surface area can be increased by providing irregularities in the refrigerant passage. The cooling promotion part (34) in FIG. 9B is obtained by providing a lattice (35) in the refrigerant passage to enlarge the surface area.

上述したフィン(31)、凸部(33)および格子(35)は、例えば形彫放電加工によって成形することができる。また、フィン(31)等はマンドレル(22)と一体に成形して良いし、別部材で製作して冷媒用通路(26)内に取り付けても良い。別部材として取り付ける場合は、フィン等のみを別部材として製作して取り付けても良いし、環体の内部に前記フィン等を一体に成形したものを別部材とし、これを冷媒用通路(26)内に嵌め込むこともできる。   The above-described fins (31), protrusions (33), and lattices (35) can be formed by, for example, sculpting electric discharge machining. Further, the fin (31) and the like may be formed integrally with the mandrel (22), or may be manufactured as a separate member and attached in the refrigerant passage (26). In the case of attaching as a separate member, only the fin or the like may be manufactured and attached as a separate member, or the one in which the fin or the like is integrally formed inside the ring is used as a separate member, and this is used as the refrigerant passage (26). It can also be fitted inside.

図10の冷却促進部(36)は、冷媒用通路(26)の直径をテーパー状に拡大することにより断面積および表面積を拡大したものである。   The cooling promoting portion (36) in FIG. 10 is obtained by enlarging the cross-sectional area and the surface area by enlarging the diameter of the refrigerant passage (26) in a tapered shape.

以上は、冷媒用通路の断面形状の変更によって冷却促進部を形成したものであるが、ダイス素材よりも熱伝導率の良い素材を用いて冷却促進部を形成することもできる。   Although the cooling promotion part is formed by changing the cross-sectional shape of the refrigerant passage as described above, the cooling promotion part can also be formed using a material having better thermal conductivity than the die material.

図11に示す冷却促進部(38)は、図2と同様に冷媒用通路(26)の直径を拡大し、広げたスペースにダイス素材よりも熱伝導率の良い素材からなる筒状の冷却促進部材(39)を密着状態に嵌め込んだものである。通路の断面形状が同一であっても、冷却促進部材(39)を取り付けたことでダイス素材で構成された上流側部分(26a)よりも熱交換効率を高めることができる。   The cooling promotion part (38) shown in FIG. 11 expands the diameter of the refrigerant passage (26) in the same manner as in FIG. 2, and has a cylindrical cooling promotion made of a material having better thermal conductivity than the die material in the expanded space. The member (39) is fitted in a close contact state. Even if the cross-sectional shapes of the passages are the same, the heat exchange efficiency can be increased more than the upstream portion (26a) made of the die material by attaching the cooling promotion member (39).

熱交換効率に差を設けるのは、ベアリング部の温度を上流側部分よりも下げることが目的であるから、ベアリング部の内側と上流側部分とで熱交換効率に高低差を設ければ目的は達成される。図12Aおよび図12Bは、冷媒用通路(26)において、内壁面にベアリング部(25)の上流側にダイス素材よりも熱伝導率の低い材料からなる筒状の冷却抑制部材(40)を取付けて上流側部分(26a)の熱交換効率を低下させて冷却抑制部とし、これによりベアリング部(25)の内側における熱交換効率を上流側部分(26a)よりも相対的に高めた構造を示している。なお、前記冷却抑制部材(40)は、図12Aのように冷媒用通路(26)の壁面から突出するように取り付けても良いし、図12Bのように取付け部分の通路径を拡大して冷却抑制部材(40)と壁面が同一高さになるようにしても良い。   The purpose of providing a difference in the heat exchange efficiency is to lower the temperature of the bearing part than the upstream part, so the purpose is to provide a difference in the heat exchange efficiency between the inside and the upstream part of the bearing part. Achieved. 12A and 12B, in the refrigerant passage (26), a cylindrical cooling suppression member (40) made of a material having a lower thermal conductivity than the die material is attached to the inner wall surface on the upstream side of the bearing portion (25). In this way, the heat exchange efficiency of the upstream part (26a) is lowered to form a cooling suppression part, thereby showing a structure in which the heat exchange efficiency inside the bearing part (25) is relatively higher than that of the upstream part (26a). ing. The cooling suppression member (40) may be attached so as to protrude from the wall surface of the refrigerant passage (26) as shown in FIG. 12A, or the passage diameter of the attachment portion is enlarged as shown in FIG. The suppressing member (40) and the wall surface may have the same height.

押出用ダイスの素材としては、SKD61、SKT4、SKD4、SKD5、SKD7、SKD8、SKD11、SKD12等のダイス鋼が用いられる。これらのダイス鋼のなかで、20℃における熱伝導率は、SKD61が30.6W/(m・K)、SKT4が36W/(m・K)、SKD11が29W/(m・K)であり、他のダイス鋼の熱伝導率も同程度である。上述したように熱伝導率の異なる素材を用いて熱交換効率に高低差を付ける場合、ダイス鋼よりも熱伝導率の良い素材として銅やアルミニウムを例示でき、ダイス鋼よりも熱伝導率の悪い素材としてセラミック材料やステンレス材料を例示できる。これらの材料の20℃における熱伝導率は、銅が401W/(m・K)、アルミニウムが236W/(m・K)ジルコニア系のセラミックが2W/(m・K)、SUS304が16W/(m・K)である。   As a raw material for the extrusion die, die steel such as SKD61, SKT4, SKD4, SKD5, SKD7, SKD8, SKD11, SKD12, or the like is used. Among these die steels, the thermal conductivity at 20 ° C. is 30.6 W / (m · K) for SKD61, 36 W / (m · K) for SKT4, and 29 W / (m · K) for SKD11. Other die steels have the same thermal conductivity. As described above, when materials with different thermal conductivities are used to make a difference in heat exchange efficiency, copper and aluminum can be exemplified as materials having better thermal conductivity than die steel, and thermal conductivity is worse than die steel. Examples of the material include ceramic materials and stainless steel materials. The thermal conductivity at 20 ° C. of these materials is 401 W / (m · K) for copper, 236 W / (m · K) for aluminum, 2 W / (m · K) for zirconia-based ceramics, and 16 W / (m for SUS304.・ K).

また、前記冷却促進部の熱交換効率をさらに高くする手段として、冷媒用通路の吸入口の一部を塞ぐ方法がある。図13Aおよび図13Bは、図8Aおよび図8Bのフィン付の冷却促進部(30)の中心部に吸引口(28)側からピン(50)を打ち込んだものである。各フィン(31)の先端で形成される円柱形空間にピン(50)の脚部(51)が挿入されて該円柱形空間を塞ぎ、かつ径大の頭部(52)が吸引口(28)の一部を塞いでいる。吸引口(28)の一部を塞いで押出材(1)の中空部(2)と吸引口(28)の開口面積との差を拡大すると、冷媒(C)の流速が速くなって冷却促進部における熱交換効率を高めることができる。しかも、冷却促進部(30)の断面積や表面積の拡大による熱交換効率向上効果も損なわれないので、両方の熱交換効率向上効果を享受できる。また、吸引口(28)の中心部を塞いで周縁から冷媒(C)を導入すると、冷媒(C)が各フィン(31)の付け根まで均等に行き渡るので効率良く熱交換がなされる。このように、冷却促進部(30)の吸引口(28)の一部を塞ぐことによって冷媒(C)の流れを強制的に変更し、冷媒(C)が円柱形空間を通り抜けること(図8A参照)を妨げることによってフィン(31)による熱交換を活用できる。   Further, as a means for further increasing the heat exchange efficiency of the cooling promoting part, there is a method of closing a part of the inlet of the refrigerant passage. 13A and 13B show a pin (50) driven from the suction port (28) side into the center of the finned cooling promotion portion (30) of FIGS. 8A and 8B. The leg (51) of the pin (50) is inserted into a cylindrical space formed at the tip of each fin (31) to close the cylindrical space, and the large-diameter head (52) is a suction port (28 ) Is partly blocked. If the difference between the hollow area (2) of the extruded material (1) and the opening area of the suction port (28) is increased by blocking a part of the suction port (28), the flow rate of the refrigerant (C) increases and cooling is accelerated. The heat exchange efficiency in the part can be increased. And since the heat exchange efficiency improvement effect by expansion of the cross-sectional area and surface area of a cooling promotion part (30) is not impaired, both heat exchange efficiency improvement effects can be enjoyed. Further, when the refrigerant (C) is introduced from the periphery by closing the central portion of the suction port (28), the refrigerant (C) is evenly distributed to the roots of the fins (31), so that heat exchange is performed efficiently. In this manner, the flow of the refrigerant (C) is forcibly changed by closing a part of the suction port (28) of the cooling promotion part (30), and the refrigerant (C) passes through the cylindrical space (FIG. 8A). The heat exchange by the fins (31) can be utilized by hindering (see).

上述した熱交換効率に差を設けるための種々の構造は複数種を組み合わせることもできる。例えば、ダイス素材よりも熱伝導率の良い素材で別途フィン等を製作し、または環の内部にフィン等を突設した部材を製作し、これらを拡径した冷媒用通路に取付けた場合は、フィンによる表面積拡大効果と素材の熱伝導率差による効果の両方を得て熱交換効率を高めることができる。また、ベアリング部の内側に冷却促進部を設けるとともに、上流側部分に冷却抑制部を設けて、熱交換効率の高低差を拡大することもできる。ベアリング部の内側と上流側部分との熱交換効率の差は、所期するベアリング部の冷却温度および上流側部分との温度差に応じて適宜設定する。   Various structures for providing a difference in the heat exchange efficiency described above can be combined. For example, if fins etc. are manufactured separately with a material having better thermal conductivity than the die material, or a member with fins protruding from the inside of the ring is manufactured, and these are attached to the expanded refrigerant passage, The heat exchange efficiency can be enhanced by obtaining both the surface area expansion effect by the fins and the effect by the difference in thermal conductivity of the material. Moreover, while providing a cooling promotion part inside a bearing part, a cooling suppression part can be provided in an upstream part, and the height difference of heat exchange efficiency can also be expanded. The difference in heat exchange efficiency between the inside and the upstream portion of the bearing portion is set as appropriate according to the expected cooling temperature of the bearing portion and the temperature difference with the upstream portion.

さらに、ダイスの冷媒用通路の断面形状が、ベアリング部の内側とその上流側部分とで同一である場合も本発明に含まれる。冷媒用通路を流通する冷媒は、上流側に進むに従って冷媒温度が上昇し冷媒とダイスとの温度差が小さくなるので、自ずとベアリング部の内側よりも上流側部分が冷却されにくくなるためである。   Furthermore, the present invention includes a case where the cross-sectional shape of the coolant passage of the die is the same on the inner side of the bearing portion and the upstream portion thereof. This is because the temperature of the refrigerant flowing through the refrigerant passage increases as it goes upstream, and the temperature difference between the refrigerant and the die becomes smaller, so that the upstream portion is naturally less likely to be cooled than the inside of the bearing portion.

図2および図4に参照されるように、冷媒用通路(26)はダイス基盤(21)の側面とマンドレル(22)の下流側端面とに開口部を有し、L字形に曲がって両方の開口部に通じている。このような通路はL字形に切削する必要はなく、ダイス基盤(21)の側面の開口部(接続部)(27)から脚部(24)を通ってマンドレル(2)の中心に向かう第1通路と、マンドレル(22)の中心を押出方向に貫通して吸入口(28)に通じる第2通路とを穿設し、第2通路の上流側開口部を閉塞すればL字形通路となる。閉塞方法は、ボルト止め、棒状閉塞部材の溶接や焼嵌め等により適宜行えば良い。また、接続部(27)に通じる第2通路は必ずしも脚部(24)を貫いて設けることに限定されず、ダイス基盤(21)の上流側端面とダイスの上流側に配置するプレート(図示省略)との合わせ面に臨む位置に形成することもでき、ダイス基盤の側面に開口させることができる。   As shown in FIGS. 2 and 4, the refrigerant passage (26) has openings in the side surface of the die base (21) and the downstream end surface of the mandrel (22), and is bent in an L-shape. It leads to the opening. Such a passage does not need to be cut into an L-shape, and is the first from the opening (connecting portion) (27) on the side surface of the die base (21) to the center of the mandrel (2) through the leg portion (24). If a passage and a second passage that penetrates the center of the mandrel (22) in the extruding direction and communicates with the suction port (28) are formed and the upstream opening of the second passage is closed, an L-shaped passage is formed. The closing method may be appropriately performed by bolting, welding of a rod-like closing member, shrink fitting, or the like. Further, the second passage leading to the connecting portion (27) is not necessarily limited to being provided through the leg portion (24), but a plate (not shown) disposed on the upstream end face of the die base (21) and the upstream side of the die. ) And a position facing the mating surface, and can be opened on the side surface of the die base.

本発明の冷却構造を中空押出材の製造に適用して押出材を効率良くかつ均一に冷却することにより、品質の良い中空押出材を製造できる。   By applying the cooling structure of the present invention to the production of a hollow extruded material and cooling the extruded material efficiently and uniformly, a high quality hollow extruded material can be produced.

本発明の押出材の製造方法によって製造する押出材の一例を示す断面図である。It is sectional drawing which shows an example of the extrusion material manufactured with the manufacturing method of the extrusion material of this invention. 本発明の押出材の製造方法を実施して図1の押出材を製造する押出装置、および製造方法を示す断面図である。It is sectional drawing which implements the manufacturing method of the extrusion material of this invention, the extrusion apparatus which manufactures the extrusion material of FIG. 1, and a manufacturing method. 本発明の押出材の製造方法によって製造する押出材の他の例を示す断面図である。It is sectional drawing which shows the other example of the extrusion material manufactured with the manufacturing method of the extrusion material of this invention. 本発明の押出材の製造方法を実施して図3の押出材を製造する押出装置、および製造方法を示す断面図である。It is sectional drawing which implements the manufacturing method of the extrusion material of this invention, the extrusion apparatus which manufactures the extrusion material of FIG. 3, and a manufacturing method. 本発明の押出材の製造方法に適した押出材の断面図である。It is sectional drawing of the extrusion material suitable for the manufacturing method of the extrusion material of this invention. 本発明の押出材の製造方法に適した他の押出材の断面図である。It is sectional drawing of the other extrusion material suitable for the manufacturing method of the extrusion material of this invention. 本発明の押出材の製造方法に適したさらに他の押出材の断面図である。It is sectional drawing of the other extruded material suitable for the manufacturing method of the extruded material of this invention. 押出装置における押出ダイスの他の実施形態の要部を示す断面図である。It is sectional drawing which shows the principal part of other embodiment of the extrusion die in an extrusion apparatus. 図8Aの押出ダイスを下流側から見た側面図である。It is the side view which looked at the extrusion die of Drawing 8A from the downstream. 図8Aの押出ダイスの変形例を示す側面図である。It is a side view which shows the modification of the extrusion die of FIG. 8A. 図8Aの押出ダイスの他の変形例を示す側面図である。It is a side view which shows the other modification of the extrusion die of FIG. 8A. 押出ダイスのさらに他の実施形態の要部を示す断面図である。It is sectional drawing which shows the principal part of further another embodiment of an extrusion die. 押出ダイスのさらに他の実施形態の要部を示す断面図である。It is sectional drawing which shows the principal part of further another embodiment of an extrusion die. 押出ダイスのさらに他の実施形態の要部を示す断面図である。It is sectional drawing which shows the principal part of further another embodiment of an extrusion die. 図12Aの押出ダイスの変形例を示す断面図である。It is sectional drawing which shows the modification of the extrusion die of FIG. 12A. 押出ダイスのさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of an extrusion die. 図13Aの押出ダイスを下流側から見た側面図である。It is the side view which looked at the extrusion die of Drawing 13A from the lower stream side. 押出材にスリット状の穴を明ける方法を示す斜視図である。It is a perspective view which shows the method of making a slit-shaped hole in an extrusion material. 押出材にスリット状の穴を明ける方法を示す断面図である。It is sectional drawing which shows the method of making a slit-shaped hole in an extrusion material. 押出材にスポット状の穴を明ける方法を示す斜視図である。It is a perspective view which shows the method of making a spot-shaped hole in an extrusion material. 押出材にスポット状の穴を明ける方法を示す断面図である。It is sectional drawing which shows the method of making a spot-like hole in an extrusion material.

符号の説明Explanation of symbols

1、70、80、90、100…押出材
2、73、82、83、91、92、93、94…中空部
10、75…ポートホールダイス
20、76…雄型(押出ダイス)
21…ダイス基盤
22,77…マンドレル
25…ベアリング部
26…冷媒用通路
26a…上流側部分
27…接続部
28…吸引口
29,30,32,34,36,38…冷却促進部
39…冷却促進部材
40…冷却抑制部材(冷却抑制部)
60…吸引装置(吸引手段)
71、81、95、101…外壁
72、97、98、99…内壁
85…隔壁(内壁)
84…円形内壁(内壁)
C…冷媒
1, 70, 80, 90, 100 ... extruded material
2, 73, 82, 83, 91, 92, 93, 94 ... hollow part
10, 75 ... porthole dice
20, 76… Male (extrusion die)
21 ... Dice base
22,77… Mandrel
25… Bearing part
26 ... Refrigerant passage
26a… Upstream part
27… Connection
28… Suction port
29,30,32,34,36,38… Cooling promotion part
39… Cooling promotion member
40 ... Cooling suppression member (cooling suppression part)
60… Suction device (suction means)
71, 81, 95, 101 ... outer wall
72, 97, 98, 99 ... inner wall
85 ... Bulkhead (inner wall)
84… Round inner wall (inner wall)
C: Refrigerant

Claims (10)

押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスを用い、金属を押し出しながら、押し出された押出材の中空部内の冷媒を前記マンドレルの吸引口から吸引することにより、外部の冷媒をその押出材の開口部から中空部内に引き込んで該中空部内に流通させる中空押出材の製造方法であって、
前記押出材を押し出しながら、該押出材に新たな冷媒引き込み用の開口部を形成する中空押出材の製造方法。
Using an extrusion die provided with a refrigerant passage having a suction opening at the downstream end face of the mandrel for forming the hollow portion of the extruded material, the refrigerant in the extruded hollow portion of the extruded material is sucked into the hollow portion of the extruded material while the metal is extruded. A method for producing a hollow extruded material, in which an external refrigerant is drawn into the hollow portion from the opening of the extruded material and circulated in the hollow portion by sucking from the mouth,
Method for producing a while extruding the extruded material, the empty extruded material in that to form an opening for attracting new refrigerant to the extrusion material.
押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスを用い、金属を押し出しながら、押し出された押出材の中空部内の冷媒を前記マンドレルの吸引口から吸引することにより、外部の冷媒をその押出材の開口部から中空部内に引き込んで該中空部内に流通させる中空押出材の製造方法であって、
前記押出材の複数の中空部において、これらの中空部を成形するマンドレルに冷媒用通路を設けるとともに、それぞれの中空部における冷媒吸引量を独立して制御する中空押出材の製造方法。
Using an extrusion die provided with a refrigerant passage having a suction opening at the downstream end face of the mandrel for forming the hollow portion of the extruded material, the refrigerant in the extruded hollow portion of the extruded material is sucked into the hollow portion of the extruded material while the metal is extruded. A method for producing a hollow extruded material, in which an external refrigerant is drawn into the hollow portion from the opening of the extruded material and circulated in the hollow portion by sucking from the mouth,
A plurality of hollow portions of the extruded material, provided with a coolant passage on the mandrel for molding these hollow portion, the manufacturing method of the air-extruded material within you independently control the refrigerant suction amount in each of the hollow portion.
押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスを用い、金属を押し出しながら、押し出された押出材の中空部内の冷媒を前記マンドレルの吸引口から吸引することにより、外部の冷媒をその押出材の開口部から中空部内に引き込んで該中空部内に流通させる中空押出材の製造方法であって、
前記押出材の外壁の肉厚が該押出材の断面における外接円の直径の0.5%以下である中空押出材の製造方法。
Using an extrusion die provided with a refrigerant passage having a suction opening at the downstream end face of the mandrel for forming the hollow portion of the extruded material, the refrigerant in the extruded hollow portion of the extruded material is sucked into the hollow portion of the extruded material while the metal is extruded. A method for producing a hollow extruded material, in which an external refrigerant is drawn into the hollow portion from the opening of the extruded material and circulated in the hollow portion by sucking from the mouth,
Method for producing air-extruded material in the thickness of the outer wall of the extruded material is Ru der than 0.5% of the diameter of the circumscribed circle of the cross section of the pressing design.
押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスを用い、金属を押し出しながら、押し出された押出材の中空部内の冷媒を前記マンドレルの吸引口から吸引することにより、外部の冷媒をその押出材の開口部から中空部内に引き込んで該中空部内に流通させる中空押出材の製造方法であって、
前記押出材は外壁に臨まない中空部を有し、その中空部を成形するマンドレルに前記冷媒用通路を設けて該中空部内に冷媒を流通させる中空押出材の製造方法。
Using an extrusion die provided with a refrigerant passage having a suction opening at the downstream end face of the mandrel for forming the hollow portion of the extruded material, the refrigerant in the extruded hollow portion of the extruded material is sucked into the hollow portion of the extruded material while the metal is extruded. A method for producing a hollow extruded material, in which an external refrigerant is drawn into the hollow portion from the opening of the extruded material and circulated in the hollow portion by sucking from the mouth,
The extruded material has a hollow portion not facing the outer wall, the production method of the air-extruded material in which Ru was circulated refrigerant in the hollow portion is provided the coolant passage in the mandrel shaping the hollow portion.
押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスを用い、金属を押し出しながら、押し出された押出材の中空部内の冷媒を前記マンドレルの吸引口から吸引することにより、外部の冷媒をその押出材の開口部から中空部内に引き込んで該中空部内に流通させる中空押出材の製造方法であって、
前記押出材は外壁よりも肉厚の厚い内壁を有し、その内壁に臨む中空部を成形するマンドレルに前記冷媒用通路を設けて該中空部内に冷媒を流通させる中空押出材の製造方法。
Using an extrusion die provided with a refrigerant passage having a suction opening at the downstream end face of the mandrel for forming the hollow portion of the extruded material, the refrigerant in the extruded hollow portion of the extruded material is sucked into the hollow portion of the extruded material while the metal is extruded. A method for producing a hollow extruded material, in which an external refrigerant is drawn into the hollow portion from the opening of the extruded material and circulated in the hollow portion by sucking from the mouth,
The extruded material has a thick inner wall of the thicker than the outer wall, the production method of the air-extruded material in which Ru was circulated refrigerant hollow portion is provided the coolant passage in the mandrel for molding the hollow portion facing the inner wall .
押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスを用い、金属を押し出しながら、押し出された押出材の中空部内の冷媒を前記マンドレルの吸引口から吸引することにより、外部の冷媒をその押出材の開口部から中空部内に引き込んで該中空部内に流通させる中空押出材の製造方法であって、
前記前記押出材の単重が2kg/m以上である中空押出材の製造方法。
Using an extrusion die provided with a refrigerant passage having a suction opening at the downstream end face of the mandrel for forming the hollow portion of the extruded material, the refrigerant in the extruded hollow portion of the extruded material is sucked into the hollow portion of the extruded material while the metal is extruded. A method for producing a hollow extruded material, in which an external refrigerant is drawn into the hollow portion from the opening of the extruded material and circulated in the hollow portion by sucking from the mouth,
Method for producing a single heavy empty extruded material in Ru der least 2 kg / m of the said extruded material.
押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスを用い、金属を押し出しながら、押し出された押出材の中空部内の冷媒を前記マンドレルの吸引口から吸引することにより、外部の冷媒をその押出材の開口部から中空部内に引き込んで該中空部内に流通させる中空押出材の製造方法であって、
前記押出材は断面における外接円の直径が100mm以上である中空押出材の製造方法。
Using an extrusion die provided with a refrigerant passage having a suction opening at the downstream end face of the mandrel for forming the hollow portion of the extruded material, the refrigerant in the extruded hollow portion of the extruded material is sucked into the hollow portion of the extruded material while the metal is extruded. A method for producing a hollow extruded material, in which an external refrigerant is drawn into the hollow portion from the opening of the extruded material and circulated in the hollow portion by sucking from the mouth,
Method for producing the extruded material empty extruded material in the diameter of the circumscribed circle of the cross section Ru der least 100 mm.
押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスを用い、金属を押し出しながら、押し出された押出材の中空部内の冷媒を前記マンドレルの吸引口から吸引することにより、外部の冷媒をその押出材の開口部から中空部内に引き込んで該中空部内に流通させる中空押出材の製造方法であって、
前記押出材は非対称断面形状を有する中空押出材の製造方法。
Using an extrusion die provided with a refrigerant passage having a suction opening at the downstream end face of the mandrel for forming the hollow portion of the extruded material, the refrigerant in the extruded hollow portion of the extruded material is sucked into the hollow portion of the extruded material while the metal is extruded. A method for producing a hollow extruded material, in which an external refrigerant is drawn into the hollow portion from the opening of the extruded material and circulated in the hollow portion by sucking from the mouth,
Method for producing air-extruded material in the extrusion material that have a asymmetrical cross-sectional shape.
押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスを用い、金属を押し出しながら、押し出された押出材の中空部内の冷媒を前記マンドレルの吸引口から吸引することにより、外部の冷媒をその押出材の開口部から中空部内に引き込んで該中空部内に流通させる中空押出材の製造方法であって、
前記押出材を外側から冷却する中空押出材の製造方法。
Using an extrusion die provided with a refrigerant passage having a suction opening at the downstream end face of the mandrel for forming the hollow portion of the extruded material, the refrigerant in the extruded hollow portion of the extruded material is sucked into the hollow portion of the extruded material while the metal is extruded. A method for producing a hollow extruded material, in which an external refrigerant is drawn into the hollow portion from the opening of the extruded material and circulated in the hollow portion by sucking from the mouth,
Method for producing air-extruded material within you cool the extruded material from the outside.
押出材の中空部を成形するマンドレルの下流側端面に、吸引口が開口する冷媒用通路を備える押出ダイスと、
前記吸引口から冷媒用通路を介して冷媒を吸引する吸引手段と、
前記押出ダイスの下流側に配置される冷媒供給手段とを備える押出装置。
An extrusion die provided with a refrigerant passage having a suction opening at a downstream end face of a mandrel for forming a hollow portion of the extruded material;
Suction means for sucking refrigerant from the suction port via the refrigerant passage;
Push out device Ru and a coolant supply means which is disposed downstream of the extrusion die.
JP2008252491A 2008-09-30 2008-09-30 Method for producing hollow extruded material Expired - Fee Related JP5180756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252491A JP5180756B2 (en) 2008-09-30 2008-09-30 Method for producing hollow extruded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252491A JP5180756B2 (en) 2008-09-30 2008-09-30 Method for producing hollow extruded material

Publications (2)

Publication Number Publication Date
JP2010082639A JP2010082639A (en) 2010-04-15
JP5180756B2 true JP5180756B2 (en) 2013-04-10

Family

ID=42247119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252491A Expired - Fee Related JP5180756B2 (en) 2008-09-30 2008-09-30 Method for producing hollow extruded material

Country Status (1)

Country Link
JP (1) JP5180756B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107755449A (en) * 2017-11-02 2018-03-06 安徽盛达前亮铝业有限公司 A kind of extruding die for aluminum shaped material
CN115255061B (en) * 2022-07-19 2023-03-21 山东大学 Production process of aluminum alloy ultrahigh-strength bent section

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949089B2 (en) * 1978-12-06 1984-11-30 日本酸素株式会社 Aluminum alloy extrusion molding method
JPS5935297Y2 (en) * 1981-03-05 1984-09-29 宇部興産株式会社 Cooling device inside extruded hollow material
JPS59130625A (en) * 1981-11-04 1984-07-27 Showa Alum Corp Production of hollow extruded shape made of aluminum for vacuum
JP2801199B2 (en) * 1988-03-23 1998-09-21 古河電気工業株式会社 Continuous extruder for composite filaments
JPH0481218A (en) * 1990-07-19 1992-03-13 Showa Alum Corp Method for cooling aluminium material to be extruded and formed
JPH08206729A (en) * 1995-01-31 1996-08-13 Showa Alum Corp Extruding equipment
BE1010052A3 (en) * 1996-03-01 1997-12-02 Fotij Dimitri Light metal rim ring and method for manufacturing the same.

Also Published As

Publication number Publication date
JP2010082639A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP4216540B2 (en) Method for enhancing heat transfer inside a cooling passage with a turbulator
TWI430856B (en) Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
JP7075400B2 (en) Methods and equipment for creating channels on workpieces
EP2561205B1 (en) Piston upper part of an assembled or welded piston with extended cooling spaces
JP5180756B2 (en) Method for producing hollow extruded material
US20090229807A1 (en) Evaporator tube with optimized undercuts on the groove base
BRPI0617225A2 (en) apparatus and method for high-pressure cast aluminum extrusion
CN114231825A (en) High-carbon high-alloy steel product and preparation method thereof
JP5180719B2 (en) Extrusion apparatus and extruded material manufacturing method
JP2010017747A (en) Extrusion die and method of manufacturing extrusion material
CN103302128B (en) Method for processing high-multiple sunflower heat radiator aluminum section
BR102017015433A2 (en) SYSTEM FOR PRODUCTION OF AN IRON COMPONENT BY CONTINUOUS FOUNDRY
CN105643915A (en) Heat shrink tube expanding mould
CN105298649B (en) A kind of gaseous film control pore structure for gas-turbine unit thin-walled hot-end component
KR100955491B1 (en) Cooling apparatus and method for indirect extrusion device
JP3616616B2 (en) Bore pin for cylinder block casting
JP2010099727A (en) Method for manufacturing hollow extruded material
JP6397032B2 (en) Perforated mandrel with improved service life for producing seamless pipes
JP2007083254A (en) Wire rod, its manufacturing method and its manufacturing apparatus for producing the same
JP2005103603A (en) Apparatus and method for manufacturing pipe with grooved inner surface
CN106624186B (en) A kind of chamfer processing method
JP4757603B2 (en) Horizontal continuous casting method and horizontal continuous casting apparatus
ITBO20070361A1 (en) PLASMA TORCH DEVICE AND METHOD TO REALIZE THE ELECTRODE
RU2353463C2 (en) Method of metal direct casting
CN216540758U (en) Take hollow stick casting frock of aluminum alloy of graphite ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R150 Certificate of patent or registration of utility model

Ref document number: 5180756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees