JP5180517B2 - Surface treatment method for polyimide resin and method for producing metal-clad laminate - Google Patents

Surface treatment method for polyimide resin and method for producing metal-clad laminate Download PDF

Info

Publication number
JP5180517B2
JP5180517B2 JP2007135609A JP2007135609A JP5180517B2 JP 5180517 B2 JP5180517 B2 JP 5180517B2 JP 2007135609 A JP2007135609 A JP 2007135609A JP 2007135609 A JP2007135609 A JP 2007135609A JP 5180517 B2 JP5180517 B2 JP 5180517B2
Authority
JP
Japan
Prior art keywords
layer
polyimide resin
resin layer
treatment
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007135609A
Other languages
Japanese (ja)
Other versions
JP2008291063A (en
Inventor
龍三 新田
康史 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2007135609A priority Critical patent/JP5180517B2/en
Priority to TW097114445A priority patent/TWI450918B/en
Priority to KR1020080045438A priority patent/KR101051401B1/en
Publication of JP2008291063A publication Critical patent/JP2008291063A/en
Application granted granted Critical
Publication of JP5180517B2 publication Critical patent/JP5180517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/16Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation by cathodic sputtering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/095Plasma, e.g. for treating a substrate to improve adhesion with a conductor or for cleaning holes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

本発明は、ポリイミド樹脂の表面改質方法及び表面改質されたポリイミド樹脂層の上に金属層が積層する金属張積層体の製造方法に関する。より詳しくは、プリント配線基板に適したポリイミド樹脂層の表面処理方法及び金属張積層体の製造方法に関する。   The present invention relates to a method for surface modification of a polyimide resin and a method for producing a metal-clad laminate in which a metal layer is laminated on a surface-modified polyimide resin layer. More specifically, the present invention relates to a polyimide resin layer surface treatment method suitable for a printed wiring board and a metal-clad laminate manufacturing method.

電子機器の電子回路には、絶縁材と導電材からなる積層板を回路加工したプリント配線板が使用されている。プリント配線板は、絶縁基板の表面(及び内部)に電気設計に基づく導体パターンを、導電性材料で形成固着したものであり、絶縁樹脂の種類によって、板状のリジットプリント配線板と、柔軟性に富んだフレキシブルプリント配線板とに大別される。フレキシブルプリント配線板は、常時屈曲を繰り返すような可動部では接続用必需部品となっている。また、フレキシブルプリント配線板は、電子機器内で折り曲げた状態で収納することも可能であるために、省スペース配線材料としても用いられる。フレキシブルプリント配線板の材料となるフレキシブル基板には、絶縁樹脂にはポリイミドエステルやポリイミド樹脂が多く用いられているが、使用量としては耐熱性のあるポリイミド樹脂が圧倒的に多い。一方、導電材には導電性の点から一般に銅箔が用いられている。   In an electronic circuit of an electronic device, a printed wiring board obtained by processing a laminated board made of an insulating material and a conductive material is used. A printed wiring board is made by forming and fixing a conductive pattern based on electrical design on the surface (and inside) of an insulating substrate with a conductive material. Depending on the type of insulating resin, the printed wiring board is flexible and flexible. Broadly divided into flexible printed wiring boards. The flexible printed wiring board is a necessary part for connection in a movable part that is constantly bent. In addition, since the flexible printed wiring board can be stored in a bent state in an electronic device, it is also used as a space-saving wiring material. In the flexible substrate that is a material of the flexible printed wiring board, polyimide ester or polyimide resin is often used as the insulating resin, but the amount of heat-resistant polyimide resin is overwhelmingly large. On the other hand, copper foil is generally used as the conductive material from the viewpoint of conductivity.

フレキシブル基板には、ベースフィルム層(絶縁樹脂層の主層)、接着剤層、銅箔層の3層で構成される積層板と、接着剤を使用せずに、ベースフィルム層、銅箔層の2層で構成される積層板がある。2層フレキシブル基板は、エポキシ樹脂やアクリル樹脂などの耐熱性の低い接着剤層を含まないので、信頼性が高く、回路全体の薄膜化が可能でありその使用量が増加している。一方、別の観点からすると、フレキシブル基板のベースフィルム層は、熱膨張係数が低いことがカールの発生を防止するために望まれているが、熱膨張係数が低いポリイミド樹脂は接着性が劣るため、接着剤を使用せずに全部をポリイミド樹脂とする場合は、良接着性のポリイミド樹脂層を接着面側に接着性付与層として設けることが必要であった。また、両面に銅箔層を有するフレキシブル基板も知られており、片面に銅箔層を有する片面フレキシブル基板を製造したのち、2枚のフレキシブル基板を重ね合わせて積層する方法又は片面フレキシブル基板に銅箔を重ね合わせて積層する方法などが知られている。この場合も、接着剤層を含まないフレキシブル基板が望まれている。   The flexible substrate includes a base film layer (main layer of an insulating resin layer), an adhesive layer, and a laminated board composed of a copper foil layer, and a base film layer and a copper foil layer without using an adhesive. There is a laminate composed of two layers. Since the two-layer flexible substrate does not include an adhesive layer with low heat resistance such as an epoxy resin or an acrylic resin, the two-layer flexible substrate has high reliability, and the entire circuit can be thinned, and the amount of use is increasing. On the other hand, from a different viewpoint, the base film layer of the flexible substrate is desired to have a low thermal expansion coefficient in order to prevent curling, but a polyimide resin having a low thermal expansion coefficient is inferior in adhesiveness. When using all the polyimide resin without using an adhesive, it was necessary to provide a good adhesion polyimide resin layer as an adhesion-imparting layer on the adhesive surface side. A flexible substrate having a copper foil layer on both sides is also known. After manufacturing a single-sided flexible substrate having a copper foil layer on one side, a method of stacking two flexible substrates on top of each other or copper on a single-sided flexible substrate A method of laminating and stacking foils is known. Also in this case, a flexible substrate that does not include an adhesive layer is desired.

近年、電子機器における高性能化、高機能化の要求が高まっており、それに伴って電子デバイスに使用される回路基板材料であるプリント配線板の高密度化が望まれている。プリント配線板を高密度化するためには、回路配線の幅と間隔を小さくする、すなわちファインピッチ化する必要がある。プリント配線板をファインピッチ化するためには、表面粗度の低い銅箔を使用することが望まれてきた。しかしながら、表面粗度の低い銅箔は、アンカー効果、すなわち絶縁樹脂層の銅箔表面の凸凹への食い込みが小さいため、機械的な接着強度が得られず、そのため絶縁樹脂に対する接着力が低くなるという問題があった。そこで、表面粗度の低い銅箔と絶縁樹脂との接着力を高めることが課題となっている。   In recent years, there is an increasing demand for higher performance and higher functionality in electronic devices, and accordingly, higher density of printed wiring boards, which are circuit board materials used in electronic devices, is desired. In order to increase the density of the printed wiring board, it is necessary to reduce the width and interval of the circuit wiring, that is, to increase the fine pitch. In order to make a printed wiring board fine pitch, it has been desired to use a copper foil having a low surface roughness. However, a copper foil having a low surface roughness has a small anchoring effect, that is, the biting of the insulating resin layer into the irregularities on the surface of the copper foil, so that the mechanical adhesive strength cannot be obtained, and therefore the adhesive strength to the insulating resin is low. There was a problem. Therefore, it is an issue to increase the adhesive force between the copper foil having a low surface roughness and the insulating resin.

ベースフィルム層はカールの発生防止のため、熱膨張係数の低いポリイミド樹脂層であることが望まれるが、低熱膨張性と接着性との間には相反する関係がある。そこで、接着強度を向上させるため、従来、様々なポリイミドフィルムの表面改質技術が報告されている。その一例として、プラズマ処理による表面改質方法が挙げられる。例えば、特開平5−222219号公報(特許文献1)、特開平8−12779号公報(特許文献2)、特開平11−209488号公報(特許文献3)、特開2004−51712号公報(特許文献4)、特開2006−7518号公報(特許文献5)などで具体例が開示されている。しかしながら、これらの従来技術では、表面粗度の低い銅箔とポリイミド樹脂層との接着力は満足しうるものではないというのが現状である。   The base film layer is desirably a polyimide resin layer having a low thermal expansion coefficient in order to prevent curling, but there is a conflicting relationship between low thermal expansion and adhesiveness. In order to improve the adhesive strength, various surface modification techniques for polyimide films have been reported. One example is a surface modification method by plasma treatment. For example, JP-A-5-222219 (Patent Document 1), JP-A-8-12779 (Patent Document 2), JP-A-11-209488 (Patent Document 3), JP-A-2004-51712 (Patent Document). Specific examples are disclosed in Document 4) and Japanese Patent Application Laid-Open No. 2006-7518 (Patent Document 5). However, in these conventional technologies, the adhesive force between the copper foil having a low surface roughness and the polyimide resin layer is not satisfactory.

また、コスト面で有利な湿式エッチングによる表面改質方法も注目されつつあるが、一般に、プラズマ処理のような乾式エッチングによる表面改質方法に比べて接着性向上効果が十分ではないため、この点の更なる改良が必要とされていた。このような湿式エッチングによる表面改質方法としては、例えば、特開平11−49880号公報(特許文献6)が挙げられる。特許文献6によれば、脂肪族第一級アミンを含む極性溶媒中で処理したポリイミドと金属との間にポリイミド接着剤を介して熱圧着する方法が開示されている。しかしながら、この方法は、ポリイミド接着剤層を設ける必要があり、絶縁樹脂層が厚くなるという問題があった。   In addition, a surface modification method using wet etching, which is advantageous in terms of cost, is attracting attention. However, in general, the adhesion improvement effect is not sufficient compared to a surface modification method using dry etching such as plasma treatment. There was a need for further improvements. As such a surface modification method by wet etching, for example, Japanese Patent Application Laid-Open No. 11-49880 (Patent Document 6) can be cited. According to Patent Document 6, a method of thermocompression bonding between a polyimide treated in a polar solvent containing an aliphatic primary amine and a metal via a polyimide adhesive is disclosed. However, this method has a problem that it is necessary to provide a polyimide adhesive layer, and the insulating resin layer becomes thick.

特開平5−222219号公報JP-A-5-222219 特開平8−12779号公報Japanese Patent Laid-Open No. 8-12779 特開平11−209488号公報JP-A-11-209488 特開2004−51712号公報JP 2004-51712 A 特開2006−7518号公報JP 2006-7518 A 特開平11−49880号公報JP 11-49880 A

本発明は、ポリイミド樹脂層の表面を改質して接着性を向上させることを目的とする。また、ベースフィルム層として適する低熱膨張性のポリイミド樹脂層の表面を改質して接着性を向上させ、接着性付与層となる接着性ポリイミド樹脂層又は接着剤層の省略を可能とすることを目的とする。他の目的は、極薄の接着層を有する金属張積層板の製造方法を提供すると共に、プリント基板のファインピッチ化にも応える十分な接着強度を有する金属張積層体の製造方法を提供することを目的とする。   An object of the present invention is to improve the adhesion by modifying the surface of a polyimide resin layer. In addition, the surface of a low thermal expansion polyimide resin layer suitable as a base film layer is modified to improve adhesiveness, and the adhesive polyimide resin layer or adhesive layer that becomes an adhesion-imparting layer can be omitted. Objective. Another object is to provide a method for producing a metal-clad laminate having an extremely thin adhesive layer, and a method for producing a metal-clad laminate having sufficient adhesive strength to meet the fine pitch of printed circuit boards. With the goal.

上記目的を達成するため、本発明者等が検討を行ったところ、ポリイミド樹脂層の表面を特定の処理により改質すると、ポリイミド樹脂層の厚みも殆ど変化させることもなく、金属箔との接着強度も高い、改良されたポリイミド樹脂層が得られることを見出し、本発明を完成させるに至った。   In order to achieve the above object, the present inventors have studied, and when the surface of the polyimide resin layer is modified by a specific treatment, the thickness of the polyimide resin layer is hardly changed, and adhesion to the metal foil is performed. The inventors have found that an improved polyimide resin layer having high strength can be obtained, and have completed the present invention.

すなわち、本発明は、ポリイミド樹脂層の表面側の層を下記式(1)
H2N-CH2-A-CH2-NH2 (1)
(ここで、Aはベンゼン環を有し、炭素原子と水素原子のみで構成される2価の有機基を示し、且つAに含有される炭素原子の数は2〜18である。)
で表される2つのアミノ基を官能基として有する有機処理剤で接触処理して表面接触処理層を形成する接触処理工程と、該表面接触処理層を加熱処理して、改質イミド化層を形成する改質イミド化層形成工程とを備えたことを特徴とするポリイミド樹脂層の表面処理方法である。ここで、上記加熱処理は300〜420℃で行われる。
That is, according to the present invention, the polyimide resin layer on the surface side is represented by the following formula (1).
H 2 N—CH 2 —A—CH 2 —NH 2 (1)
(Here, A represents a divalent organic group having a benzene ring and composed only of carbon atoms and hydrogen atoms , and the number of carbon atoms contained in A is 2 to 18.)
A contact treatment step in which a surface contact treatment layer is formed by contact treatment with an organic treatment agent having two amino groups represented by the functional group, and the surface contact treatment layer is heated to form a modified imidized layer. A surface treatment method for a polyimide resin layer, comprising a modified imidized layer forming step to be formed. Here, the said heat processing is performed at 300-420 degreeC.

上記製造方法において、接触処理工程の前に、プラズマ処理してプラズマ処理層面を形成するプラズマ処理工程を備えると改質効果が向上する。   In the above manufacturing method, if a plasma treatment step is performed before the contact treatment step to form a plasma treatment layer surface by plasma treatment, the modification effect is improved.

また、本発明は、上記のいずれかの方法で得られる改質イミド化層を有するポリイミド樹脂層の表面に金属箔を重ね合わせ、熱圧着する圧着工程を備えたことを特徴とする金属張積層体の製造方法である。   The present invention also includes a metal-clad laminate comprising a crimping step in which a metal foil is superimposed on the surface of a polyimide resin layer having a modified imidized layer obtained by any of the above methods and thermocompression bonded. It is a manufacturing method of a body.

ここで、金属箔が、銅箔、銅合金又はステンレス箔であること、又は、金属箔と改質イミド化層がシランカップリング剤処理層を介して熱圧着することのいずれか1以上を満足することはより優れた金属張積層体を与える。   Here, the metal foil is one of copper foil, copper alloy, or stainless steel foil, or the metal foil and the modified imidized layer are thermocompression bonded via the silane coupling agent treatment layer. Doing gives a better metal-clad laminate.

更にまた、本発明は、上記のいずれかの方法で得られる改質イミド化層を有するポリイミド樹脂層の表面に、直接又は下地金属薄膜層を介して銅を蒸着させることにより銅薄膜層を形成する銅薄膜形成工程を備えたことを特徴とする金属張積層体の製造方法である。   Furthermore, in the present invention, a copper thin film layer is formed by vapor-depositing copper directly or via a base metal thin film layer on the surface of a polyimide resin layer having a modified imidized layer obtained by any of the above methods. A method for producing a metal-clad laminate, comprising the step of forming a copper thin film.

以下、本発明のポリイミド樹脂層の表面処理方法について説明し、次に本発明の金属張積層体の製造方法について説明をするが、共通部分は同時に説明する。なお、本発明でいう「ポリイミド樹脂層」とは、「ポリイミド樹脂フィルムからなる層」及び「ポリイミド樹脂層を有する積層体のポリイミド樹脂層」の両方を含む意味を有する。したがって、ポリイミド樹脂層は、積層体のポリイミド樹脂層である場合と、ポリイミド樹脂フィルムである場合とがある。   Hereinafter, the surface treatment method of the polyimide resin layer according to the present invention will be described, and then the method for producing the metal-clad laminate according to the present invention will be described. The “polyimide resin layer” in the present invention has a meaning including both “a layer made of a polyimide resin film” and “a polyimide resin layer of a laminate having a polyimide resin layer”. Therefore, the polyimide resin layer may be a polyimide resin layer of a laminate or a polyimide resin film.

本発明で用いられるポリイミド樹脂層は特に限定されるものではなく、ポリイミド樹脂からなるフィルム(又はシート)であってもよく、銅箔、ガラス板、樹脂フィルム等の基材に積層された状態のポリイミド樹脂層であってもよい。しかし、ポリイミド樹脂層の少なくとも片面は表面層として存在する。表面層の両方がポリイミド樹脂層である場合は、その一方又は両方の面を処理することができる。本発明で得られる表面処理されたポリイミド樹脂層は、ポリイミド樹脂層として、当初のポリイミド樹脂層(未改質のポリイミド樹脂層)と改質イミド化層の少なくとも2層を有する。なお、基材に積層されたポリイミド樹脂層の場合、基材とはポリイミド樹脂層が積層される樹脂シート又は金属箔等の材料をいう。   The polyimide resin layer used in the present invention is not particularly limited, and may be a film (or sheet) made of polyimide resin, in a state of being laminated on a substrate such as a copper foil, a glass plate, or a resin film. It may be a polyimide resin layer. However, at least one surface of the polyimide resin layer exists as a surface layer. When both of the surface layers are polyimide resin layers, one or both surfaces can be treated. The surface-treated polyimide resin layer obtained in the present invention has at least two layers of an initial polyimide resin layer (unmodified polyimide resin layer) and a modified imidized layer as polyimide resin layers. In addition, in the case of the polyimide resin layer laminated | stacked on the base material, a base material means materials, such as a resin sheet or metal foil with which a polyimide resin layer is laminated | stacked.

ポリイミド樹脂層を形成するポリイミド樹脂としては、いわゆるポリイミド樹脂を含めて、ポリアミドイミド、ポリベンズイミダゾール、ポリイミドエステル、ポリエーテルイミド、ポリシロキサンイミド等の構造中にイミド基を有する耐熱性樹脂をいう。また、市販のポリイミド樹脂又はポリイミド樹脂フィルムも利用可能である。   The polyimide resin that forms the polyimide resin layer refers to a heat-resistant resin having an imide group in the structure such as polyamideimide, polybenzimidazole, polyimide ester, polyetherimide, polysiloxaneimide, including so-called polyimide resin. A commercially available polyimide resin or polyimide resin film can also be used.

ポリイミド樹脂層の中でも、低接着性であって低熱膨張性のポリイミド樹脂層に対し、本発明の方法は好適である。具体的には、熱線膨張係数が1×10-6 〜30×10-6(1/K)、好ましくは1×10-6〜25×10-6(1/K)、より好ましくは15×10-6 〜25×10-6(1/K)である低熱膨張性のポリイミド樹脂層に適用すると大きな効果が得られる。しかし、上記熱線膨張係数を超えるポリイミド樹脂層にも適用可能である。 Among the polyimide resin layers, the method of the present invention is suitable for a polyimide resin layer having low adhesion and low thermal expansion. Specifically, the thermal expansion coefficient is 1 × 10 −6 to 30 × 10 −6 (1 / K), preferably 1 × 10 −6 to 25 × 10 −6 (1 / K), more preferably 15 ×. When applied to a low thermal expansion polyimide resin layer of 10 −6 to 25 × 10 −6 (1 / K), a great effect is obtained. However, the present invention can also be applied to a polyimide resin layer that exceeds the thermal linear expansion coefficient.

ポリイミド樹脂層を構成するポリイミド樹脂としては、一般式(2)で現される構造単位を有するポリイミド樹脂が好ましい。一般式(2)において、Ar1は式(3)又は式(4)で表される4価の芳香族基を示し、Ar3は式(5)又は式(6)で表される2価の芳香族基を示し、R1は独立に炭素数1〜6の1価の炭化水素基又はアルコキシ基を示し、X及びYは独立に単結合又は炭素数1〜15の2価の炭化水素基、O、S、CO、SO2若しくはCONHから選ばれる2価の基を示し、nは独立に0〜4の整数を示す。qは構成単位の存在モル比を示し、0.1〜1.0、好ましくは0.5〜1.0の範囲である。 As a polyimide resin which comprises a polyimide resin layer, the polyimide resin which has a structural unit represented by General formula (2) is preferable. In General Formula (2), Ar 1 represents a tetravalent aromatic group represented by Formula (3) or Formula (4), and Ar 3 represents a divalent group represented by Formula (5) or Formula (6). R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and X and Y independently represent a single bond or a divalent hydrocarbon having 1 to 15 carbon atoms. A divalent group selected from the group, O, S, CO, SO 2 or CONH, and n independently represents an integer of 0 to 4; q represents the molar ratio of the constituent units, and is in the range of 0.1 to 1.0, preferably 0.5 to 1.0.

Figure 0005180517
Figure 0005180517

上記構造単位は、単独重合体中に存在しても、共重合体の構造単位として存在してもよい。構造単位を複数有する共重合体である場合は、ブロックとして存在しても、ランダムに存在してもよい。このような構造単位を有するポリイミド樹脂の中で、好適に利用できるポリイミド樹脂は非熱可塑性のポリイミド樹脂である。   The structural unit may be present in the homopolymer or may be present as a structural unit of the copolymer. In the case of a copolymer having a plurality of structural units, it may exist as a block or may exist randomly. Among the polyimide resins having such a structural unit, a polyimide resin that can be suitably used is a non-thermoplastic polyimide resin.

ポリイミド樹脂は、一般に、ジアミンと酸無水物とを反応させて製造されるので、ジアミンと酸無水物を説明することにより、ポリイミド樹脂の具体例が理解される。上記一般式(2)において、Ar3はジアミンの残基ということができ、Ar1は酸無水物の残基ということができるので、好ましいポリイミド樹脂をジアミンと酸無水物により説明する。しかし、これらの組合せによって得られるポリイミド樹脂に限定されない。 Since a polyimide resin is generally produced by reacting a diamine and an acid anhydride, a specific example of the polyimide resin can be understood by explaining the diamine and the acid anhydride. In the above general formula (2), Ar 3 can be referred to as a diamine residue, and Ar 1 can be referred to as an acid anhydride residue. Therefore, a preferred polyimide resin will be described using a diamine and an acid anhydride. However, it is not limited to the polyimide resin obtained by these combinations.

ジアミンとしては、例えば、4,4'-ジアミノジフェニルエーテル、2'-メトキシ-4,4'-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジヒドロキシ-4,4'-ジアミノビフェニル、4,4'-ジアミノベンズアニリド等が好ましく挙げられる。   Examples of the diamine include 4,4′-diaminodiphenyl ether, 2′-methoxy-4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-amino). Phenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'- Preferred examples include diaminobiphenyl and 4,4′-diaminobenzanilide.

その他、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3−アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)]ビフェニル、ビス[4-(3-アミノフェノキシ)ビフェニル、ビス[1-(4-アミノフェノキシ)]ビフェニル、ビス[1-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)]ベンゾフェノン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4'-(4-アミノフェノキシ)]ベンズアニリド、ビス[4,4'-(3-アミノフェノキシ)]ベンズアニリド、9,9-ビス[4-(4-アミノフェノキシ)フェニル]フルオレン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、2,2−ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4'-メチレンジ-o-トルイジン、4,4'-メチレンジ-2,6-キシリジン、4,4'-メチレン-2,6-ジエチルアニリン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、ベンジジン、3,3'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4''-ジアミノ-p-テルフェニル、3,3''-ジアミノ-p-テルフェニル、m-フェニレンジアミン、p-フェニレンジアミン、2,6-ジアミノピリジン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4'-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4'-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン等を挙げることができる。   Others, 2,2-bis- [4- (3-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy)] biphenyl, bis [4- (3-aminophenoxy) biphenyl, bis [1- (4-aminophenoxy)] biphenyl, bis [1- (3-aminophenoxy)] biphenyl, Bis [4- (4-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-amino Phenoxy) phenyl] ether, bis [4- (4-aminophenoxy)] benzophenone, bis [4- (3-aminophenoxy)] benzophenone, bis [4,4 '-(4-aminophenoxy)] benzanilide, bis 4,4 ′-(3-aminophenoxy)] benzanilide, 9,9-bis [4- (4-aminophenoxy) phenyl] fluorene, 9,9-bis [4- (3-aminophenoxy) phenyl] fluorene, 2,2-bis- [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis- [4- (3-aminophenoxy) phenyl] hexafluoropropane, 4,4'-methylenedi-o -Toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4, 4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiph Nylsulfone, 4,4′-diaminodiphenyl ether, 3,3-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, benzidine, 3,3′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3'-dimethoxybenzidine, 4,4 ''-diamino-p-terphenyl, 3,3 ''-diamino-p-terphenyl, m-phenylenediamine, p-phenylenediamine, 2,6-diaminopyridine 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 '-[1,4-phenylenebis (1-methylethylidene)] bisaniline, 4 '-[1,3-phenylenebis (1-methylethylidene)] bisaniline, bis (p-aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl -δ-aminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) benzene , P-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-amino-t-butyl) toluene, 2 , 4-Diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-xylylenediamine, 2,6-diaminopyridine, 2,5-diamino Examples thereof include pyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine and the like.

酸無水物としては、例えば、無水ピロメリット酸、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、3,3',4,4'-ジフェニルスルフォンテトラカルボン酸二無水物、4,4'-オキシジフタル酸無水物が好ましく挙げられる。   Examples of the acid anhydride include pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, Preferred is 4,4′-oxydiphthalic anhydride.

その他、2,2',3,3'-、2,3,3',4'-又は3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,3',3,4’-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3',3,4'-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物等が好ましく挙げられる。また、3,3'',4,4''-、2,3,3'',4''-又は2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,3,6,7−アントラセンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、2,3,5,6-シクロヘキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物等を挙げることもできる。   Others, 2,2 ', 3,3'-, 2,3,3', 4'- or 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, 2,3', 3,4 '-Biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,3 ', 3,4'-diphenyl ether tetracarboxylic dianhydride, bis (2, Preferable examples include 3-dicarboxyphenyl) ether dianhydride. Also 3,3``, 4,4 ''-, 2,3,3``, 4 ''-or 2,2 '', 3,3 ''-p-terphenyltetracarboxylic dianhydride 2,2-bis (2,3- or 3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3- or 3.4-dicarboxyphenyl) methane dianhydride, bis (2,3- Or 3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3- or 3,4-dicarboxyphenyl) ethane dianhydride, 1,2,7,8-, 1,2 , 6,7- or 1,2,9,10-phenanthrene-tetracarboxylic dianhydride, 2,3,6,7-anthracene tetracarboxylic dianhydride, 2,2-bis (3,4-di Carboxyphenyl) tetrafluoropropane dianhydride, 2,3,5,6-cyclohexane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic Acid dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6 -Tet Carboxylic dianhydride, 2,6- or 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7- (or 1,4,5,8 -) Tetrachloronaphthalene-1,4,5,8- (or 2,3,6,7-) tetracarboxylic dianhydride, 2,3,8,9-, 3,4,9,10-, 4,5,10,11- or 5,6,11,12-perylene-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3, 5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4-bis Mention may also be made of (2,3-dicarboxyphenoxy) diphenylmethane dianhydride.

ジアミン、酸無水物はそれぞれ、その1種のみを使用してもよく2種以上を併用して使用することもできる。また、上記以外のジアミン及び酸無水物を併用することもでき、この場合、上記以外のジアミン又は酸無水物の使用割合は90モル%以下、好ましくは50モル%以下とすることがよい。ジアミン及び酸無水物の種類や、2種以上のジアミン又は酸無水物を使用する場合のそれぞれのモル比を選定することにより、熱膨張性、接着性、ガラス転移点(Tg)等を制御することができる。   Each of the diamine and acid anhydride may be used alone or in combination of two or more. In addition, diamines and acid anhydrides other than those mentioned above can be used in combination. In this case, the proportion of diamines or acid anhydrides other than those mentioned above is 90 mol% or less, preferably 50 mol% or less. Controlling thermal expansion, adhesiveness, glass transition point (Tg), etc. by selecting the type of diamine and acid anhydride, and the molar ratios when using two or more diamines or acid anhydrides be able to.

ポリイミド樹脂層を製造する方法は特に限定されないが、例えば、ポリイミド樹脂の前駆体であるポリアミック酸の樹脂溶液を基材上に塗布した後に乾燥、イミド化して基材上にポリイミド樹脂層を形成せしめる方法がある。ポリアミック酸の樹脂溶液を基材上に塗布する方法としては特に制限されず、コンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。   The method of producing the polyimide resin layer is not particularly limited. For example, after applying a polyamic acid resin solution, which is a polyimide resin precursor, on the substrate, it is dried and imidized to form the polyimide resin layer on the substrate. There is a way. The method for applying the resin solution of the polyamic acid on the substrate is not particularly limited, and it can be applied with a coater such as a comma, die, knife, lip or the like.

また、乾燥、イミド化の方法も特に制限されず、例えば、80〜400℃の温度条件で1〜60分間加熱するといった熱処理が好適に採用される。このような熱処理を行うことで、ポリアミック酸の脱水閉環が進行するため、基材上にポリイミド樹脂層を形成させることができる。基材上にポリイミド樹脂層を形成させたポリイミド樹脂層はそのまま積層体として使用してもよく、剥がすなどしてフィルムとして使用してもよい。   Moreover, the method of drying and imidation is not particularly limited, and for example, heat treatment such as heating for 1 to 60 minutes at a temperature of 80 to 400 ° C. is suitably employed. By performing such heat treatment, dehydration and ring closure of the polyamic acid proceeds, so that a polyimide resin layer can be formed on the substrate. The polyimide resin layer in which the polyimide resin layer is formed on the substrate may be used as it is as a laminate, or may be used as a film after being peeled off.

ポリイミド樹脂層は、単層のみから形成されるものでも複数層からなるものでもよい。ポリイミド樹脂層を複数層とする場合、異なる構成成分からなるポリイミド樹脂層の上に他のポリイミド樹脂を順次塗布して形成することができる。ポリイミド樹脂層が3層以上からなる場合、同一の構成のポリイミド樹脂を2回以上使用してもよい。層構造が最も簡単である単層は、工業的に有利に得ることができる。また、ポリイミド樹脂層の厚みは、3〜100μm、好ましくは3〜50μmの範囲にあることがよい。   The polyimide resin layer may be a single layer or a plurality of layers. In the case where a plurality of polyimide resin layers are used, other polyimide resins can be sequentially formed on a polyimide resin layer made of different components. When the polyimide resin layer is composed of three or more layers, the polyimide resin having the same configuration may be used twice or more. A monolayer having the simplest layer structure can be advantageously obtained industrially. The polyimide resin layer has a thickness of 3 to 100 μm, preferably 3 to 50 μm.

本発明のポリイミド樹脂層の表面処理方法では、接触処理工程及び改質イミド化層形成工程を備える。   The surface treatment method for a polyimide resin layer of the present invention includes a contact treatment step and a modified imidized layer formation step.

接触処理工程において、ポリイミド樹脂層の表面側の層を上記式(1)で表される少なくとも2つのアミノ基を官能基として有する有機処理剤(以下、アミノ化合物ともいう。)で処理して改質処理層を形成する。上記式(1)において、Aは2価の有機基を示し、且つAに含有される炭素原子の数は2〜18、好ましくは2〜11、より好ましくは4〜10である。Aは炭素原子と水素原子のみで構成される2価の有機基でもよく、あるいは窒素原子、酸素原子、硫黄原子又はケイ素原子を含有する2価の有機基でもよい。本発明で使用する有機処理剤は末端メチレン基に結合するアミノ基を少なくとも2つ有する。シクロ環や芳香族環を形成する炭素に結合するアミノ基を有するが、末端メチレン基に結合するアミノ基を少なくとも2つ有しない化合物等では本発明の効果を奏しないか、少ない。   In the contact treatment step, the surface layer of the polyimide resin layer is modified with an organic treatment agent having at least two amino groups represented by the above formula (1) as functional groups (hereinafter also referred to as amino compounds). A quality treatment layer is formed. In said formula (1), A shows a bivalent organic group, and the number of the carbon atoms contained in A is 2-18, Preferably it is 2-11, More preferably, it is 4-10. A may be a divalent organic group composed of only carbon atoms and hydrogen atoms, or may be a divalent organic group containing a nitrogen atom, an oxygen atom, a sulfur atom or a silicon atom. The organic treating agent used in the present invention has at least two amino groups bonded to the terminal methylene group. A compound having an amino group bonded to carbon forming a cyclo ring or an aromatic ring, but not having at least two amino groups bonded to a terminal methylene group does not have the effect of the present invention or is few.

Aが炭素原子と水素原子のみで構成される2価の有機基である場合、2価の有機基は、直鎖、枝分れ若しくはシクロ環を含むアルキレン基又はフェニレン基であることがよい。このような2価の有機基を有するアミノ化合物の具体例としては、例えば、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、2−メチル−1,5−ジアミノペンタン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカン等のジアミノアルカン類、メタキシリレンジアミン、パラキシリレンジアミン等のキシリレンジアミン類が挙げられる。   When A is a divalent organic group composed of only a carbon atom and a hydrogen atom, the divalent organic group is preferably an alkylene group or a phenylene group containing a linear, branched or cyclo ring. Specific examples of such amino compounds having a divalent organic group include, for example, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 2-methyl-1,5-diamino. Pentane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,9-diaminononane, 1,10-diaminodecane Examples include diaminoalkanes such as 1,11-diaminoundecane and 1,12-diaminododecane, and xylylenediamines such as metaxylylenediamine and paraxylylenediamine.

Aが窒素原子、酸素原子、硫黄原子又はケイ素原子を含有する2価の有機基である場合、このような2価の有機基を有する上記アミノ化合物の具体例を挙げれば、トリス(2−アミノエチル)アミン、N,N’−ビス(2−アミノエチル)−1,3−プロパンジアミン、ビス(3−アミノプロピル)エチレンジアミン、1,4−ビス(3−アミノプロピル)ピペラジン、ジエチレントリアミン、N−メチル−2,2’−ジアミノジエチルアミン、3,3’−ジアミノジプロピルアミン、N,N−ビス(3−アミノプロピル)メチルアミン等の窒素原子を含有するアミン類、ビス(3−アミノプロピル)エーテル、1,2−ビス(2−アミノエトキシ)エタン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5.5]−ウンデカン等の酸素原子を含有するアミン類、2,2’−チオビス(エチルアミン)等の硫黄原子を有するアミン類、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン等のケイ素原子を含有するアミン類がある。   When A is a divalent organic group containing a nitrogen atom, an oxygen atom, a sulfur atom or a silicon atom, a specific example of the amino compound having such a divalent organic group is tris (2-amino Ethyl) amine, N, N′-bis (2-aminoethyl) -1,3-propanediamine, bis (3-aminopropyl) ethylenediamine, 1,4-bis (3-aminopropyl) piperazine, diethylenetriamine, N— Amines containing nitrogen atoms such as methyl-2,2′-diaminodiethylamine, 3,3′-diaminodipropylamine, N, N-bis (3-aminopropyl) methylamine, bis (3-aminopropyl) Ether, 1,2-bis (2-aminoethoxy) ethane, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5.5] -unde Amines containing oxygen atoms such as amines, amines having sulfur atoms such as 2,2′-thiobis (ethylamine), and silicon atoms such as 1,3-bis (3-aminopropyl) tetramethyldisiloxane There are amines.

上記式(1)で表されるアミノ化合物のなかでも、Aが炭素原子と水素原子のみで構成される2価の炭化水素基又は窒素原子、酸素原子若しくは硫黄原子を含有する2価の有機基であることが好ましい。これらの2価の基のなかでも、2価の炭化水素基、窒素原子を含有する2価の有機基、酸素原子を含有する2価の有機基、次いで硫黄原子を含有する2価の有機基の順に好ましい。そして、2価の炭化水素基のなかでも、ベンゼン環を含有する2価の有機基がよく、ベンゼン環を含有するアミノ化合物は金属箔との接着強度を向上する効果を得やすい。   Among the amino compounds represented by the above formula (1), A is a divalent hydrocarbon group composed of only a carbon atom and a hydrogen atom, or a divalent organic group containing a nitrogen atom, an oxygen atom or a sulfur atom. It is preferable that Among these divalent groups, a divalent hydrocarbon group, a divalent organic group containing a nitrogen atom, a divalent organic group containing an oxygen atom, and then a divalent organic group containing a sulfur atom Are preferred in this order. Among divalent hydrocarbon groups, a divalent organic group containing a benzene ring is good, and an amino compound containing a benzene ring tends to obtain an effect of improving the adhesive strength with the metal foil.

上記のアミノ化合物は単独で使用してもよく、2種以上を併用して使用することもできる。また、上記式(1)で表されるアミノ化合物以外の他のアミノ化合物を併用することもでき、この場合、上記他のアミノ化合物は90モル%以下、好ましくは50モル%以下、より好ましくは20モル%以下とすることがよい。   Said amino compound may be used independently and can also be used in combination of 2 or more type. Moreover, other amino compounds other than the amino compound represented by the above formula (1) can be used in combination. In this case, the other amino compound is 90 mol% or less, preferably 50 mol% or less, more preferably It is good to set it as 20 mol% or less.

有機処理剤は、常温で液体又は固体であることが好ましく、その沸点は100℃以上、有利には150℃以上であることが好ましい。しかし、300〜400℃以上の温度では蒸気圧を有するか、分解して蒸発することがよい。固体である場合は、溶媒に溶解する必要がある。   The organic processing agent is preferably liquid or solid at normal temperature, and the boiling point thereof is preferably 100 ° C. or higher, more preferably 150 ° C. or higher. However, at a temperature of 300 to 400 ° C. or higher, it is preferable to have a vapor pressure or to decompose and evaporate. If it is a solid, it must be dissolved in a solvent.

有機処理剤は、10〜40℃付近の常温で液体であれば、そのまま使用することも可能であるが、形成する改質処理層の厚みが均一でなくなる傾向や、有機処理剤が改質処理層上に層状に付着する量が多くなる傾向にあるので、溶媒で希釈した溶液として使用することが好ましい。溶媒としては、有機処理剤と混合するもの又は溶解するものであれば特に限定されないが、極性溶媒を使用することが有利である。極性溶媒としては、例えば、水又はメタノール、エタノール、プロパノール、ブタノール等のアルコール類、若しくはアセトン、ジメチルケトン、メチルエチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、あるいはN−メチルピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミド等の3級アミン類、ジメチルスルホキシド等が挙げられ、好ましくはN−メチルピロリドン、N,N−ジメチルアセトアミドがよい。これら1種又は2種以上併用して使用することができ、更にはキシレン、トルエンのような芳香族炭化水素の一部使用も可能である。溶媒の沸点は有機処理剤より低いこと、好ましくは200℃以下であることがよい。   The organic treatment agent can be used as it is as long as it is liquid at room temperature around 10 to 40 ° C. However, the organic treatment agent tends to become non-uniform in thickness, or the organic treatment agent is modified. Since the amount deposited on the layer tends to increase, it is preferably used as a solution diluted with a solvent. The solvent is not particularly limited as long as it can be mixed or dissolved with an organic processing agent, but it is advantageous to use a polar solvent. Examples of the polar solvent include water or alcohols such as methanol, ethanol, propanol, and butanol, ketones such as acetone, dimethyl ketone, and methyl ethyl ketone, ethers such as tetrahydrofuran, or N-methylpyrrolidone, N, N-dimethyl. Tertiary amines such as acetamide and dimethylformamide, dimethyl sulfoxide and the like can be mentioned, and N-methylpyrrolidone and N, N-dimethylacetamide are preferable. These can be used alone or in combination of two or more, and some aromatic hydrocarbons such as xylene and toluene can also be used. The boiling point of the solvent should be lower than that of the organic processing agent, and preferably 200 ° C. or lower.

有機処理剤を含む溶液の濃度は、0.0001〜5M(0.0001〜5モル/L)好ましくは0.001〜2M、より好ましくは0.01〜1Mの濃度の溶液を使用することが適当である。   The concentration of the solution containing the organic treating agent is 0.0001 to 5M (0.0001 to 5 mol / L), preferably 0.001 to 2M, more preferably 0.01 to 1M. Is appropriate.

有機処理剤で処理する方法は、ポリイミド樹脂層の表面側の層に有機処理剤又は有機処理剤の溶液が接することができる方法であれば、特に限定されず、公知の方法を利用することができるが、均一に接触させることが好ましい。例えば、浸漬法、スプレー法、刷毛塗りあるいは印刷法等を用いることができる。温度は0〜100℃、好ましくは10〜40℃の常温でよい。有利には、有機処理剤の溶液を10〜100μm程度の一定厚みに塗布することである。   The method of treating with the organic treating agent is not particularly limited as long as the organic treating agent or the solution of the organic treating agent can contact the layer on the surface side of the polyimide resin layer, and a known method can be used. Although it is possible to make it contact uniformly. For example, a dipping method, a spray method, a brush coating method or a printing method can be used. The temperature may be 0-100 ° C, preferably 10-40 ° C. Advantageously, the solution of the organic treating agent is applied to a constant thickness of about 10 to 100 μm.

ポリイミド樹脂層の表面側の層に有機処理剤又は有機処理剤溶液を接触させて表面接触処理層を形成する接触処理工程を行う。この接触処理工程では有機処理剤又は有機処理剤溶液がポリイミド樹脂層の表面層の内部に含浸して表面接触処理層が形成される。表面接触処理層の厚みは、接触時間や温度によって調整することができるが、ポリイミド樹脂層厚みの1/100〜1/10程度が好ましく、別の観点からは0.1〜5μmの範囲が好ましい。   A contact treatment step of forming a surface contact treatment layer by bringing an organic treatment agent or an organic treatment agent solution into contact with the surface layer side of the polyimide resin layer is performed. In this contact treatment step, an organic treatment agent or an organic treatment agent solution is impregnated inside the surface layer of the polyimide resin layer to form a surface contact treatment layer. The thickness of the surface contact treatment layer can be adjusted by the contact time and temperature, but is preferably about 1/100 to 1/10 of the polyimide resin layer thickness, and is preferably in the range of 0.1 to 5 μm from another viewpoint. .

次に、この表面接触処理層を加熱処理する。加熱処理は、有機処理剤とポリイミド樹脂との間に少なくとも一部の反応を生じさせてアミド基を生じさせること、そして、このアミド基がイミド化する温度に所定時間保持することにより行われる。有機処理剤の溶液を用いて接触処理工程を行う場合は、加熱処理工程の前段でこれを乾燥することが好ましい。   Next, this surface contact treatment layer is heat-treated. The heat treatment is performed by causing at least a partial reaction between the organic treating agent and the polyimide resin to form an amide group, and maintaining the temperature at which the amide group is imidized for a predetermined time. When performing a contact treatment process using the solution of an organic processing agent, it is preferable to dry this before the heat treatment process.

アミド基を生じさせるための加熱処理の条件は、温度100〜200℃で1〜60分、好ましくは120℃〜180℃で2〜20分がよい。イミド化するための加熱処理の条件は、温度130〜420℃で1〜300分、好ましくは180〜380℃で3〜30分がよい。加熱処理においては、段階的に温度を上げて行うバッチ式でもよいし、連続的に温度を上げて行う連続硬化式でもよく、その方法は限定されない。また、アミド基を生じさせるための加熱処理及びイミド化するための加熱処理は連続的又は同時に行われてもよい。   The conditions of the heat treatment for generating the amide group are 1 to 60 minutes at a temperature of 100 to 200 ° C, preferably 2 to 20 minutes at 120 to 180 ° C. The conditions for the heat treatment for imidization are 1 to 300 minutes at a temperature of 130 to 420 ° C., preferably 3 to 30 minutes at 180 to 380 ° C. In the heat treatment, a batch method in which the temperature is raised stepwise or a continuous curing method in which the temperature is continuously raised may be used, and the method is not limited. The heat treatment for generating an amide group and the heat treatment for imidization may be performed continuously or simultaneously.

100〜200℃の温度では、有機処理剤のアミノ基がポリイミド樹脂層に(特に、表面に)存在するイミド基に求核置換反応して、アミド基を生じるアミド反応が主として生じると考えられる。その際、乾燥及び過剰の有機処理剤の一部が蒸発することが並列的に行われてもよい。更に、130℃以上の温度ではアミド基の一部がイミド基となるイミド化反応が並列的に生じてもよい。このイミド化反応は、通常300〜420℃で終了する。なお、未反応の有機処理剤があればその一部はアミド反応及びイミド化反応に関与し、一部は蒸発する。したがって、この加熱処理によってポリイミド樹脂の表層部がアミド化されることにより低分子量化し、その後、それをイミドする結果、ポリイミド樹脂層の接着性が向上すると考えられる。   At a temperature of 100 to 200 ° C., it is considered that an amide reaction in which an amino group of the organic treating agent undergoes a nucleophilic substitution reaction with an imide group present in the polyimide resin layer (particularly on the surface) to generate an amide group. In that case, drying and a part of excess organic processing agent may evaporate in parallel. Furthermore, at a temperature of 130 ° C. or higher, an imidization reaction in which part of the amide group becomes an imide group may occur in parallel. This imidation reaction is usually completed at 300 to 420 ° C. In addition, if there exists an unreacted organic processing agent, a part will participate in an amide reaction and imidation reaction, and a part will evaporate. Therefore, it is thought that the adhesiveness of the polyimide resin layer is improved as a result of the surface treatment of the polyimide resin being amidated by this heat treatment to lower the molecular weight and then imidizing it.

イミド化する際、上記のように加熱によるイミド化又は触媒を利用した化学的イミド化のうちどちらも可能であり、限定されないが、上記加熱によるイミド化が不十分である場合には、触媒による化学的イミド化を併用してもよい。   When imidizing, either imidization by heating or chemical imidization using a catalyst as described above is possible, and it is not limited. However, when imidation by heating is insufficient, it depends on the catalyst. Chemical imidization may be used in combination.

本発明のポリイミド樹脂層の表面処理方法では、改質処理工程の前にプラズマ処理工程を備えてもよい。このプラズマ処理によるプラズマ処理層面を形成することによって、ポリイミド樹脂層の表面側の層を粗化させるか、又は表面側の層の化学構造を変化させることができる。これによって、該表面側の層の濡れ性が向上し、有機処理剤との親和性が高まるものと考えられる。このプラズマ処理が特に有利となる有機処理剤は、10〜40℃の常温で固体の態様を示すアミノ化合物(例えば、メタキシリレンジアミン、パラキシリレンジアミン等)が挙げられ、プラズマ処理工程を備えることで、改質イミド化層面を均一に形成することができる。   In the polyimide resin layer surface treatment method of the present invention, a plasma treatment step may be provided before the modification treatment step. By forming the plasma treatment layer surface by this plasma treatment, the surface side layer of the polyimide resin layer can be roughened or the chemical structure of the surface side layer can be changed. This is considered to improve the wettability of the surface-side layer and increase the affinity with the organic treatment agent. Examples of the organic treatment agent in which this plasma treatment is particularly advantageous include amino compounds (for example, metaxylylenediamine, paraxylylenediamine, etc.) that show a solid state at a room temperature of 10 to 40 ° C., and include a plasma treatment step. Thus, the modified imidized layer surface can be formed uniformly.

プラズマとしては、例えば大気圧方式のプラズマ処理装置を用い、真空処理室内でアルゴン、ヘリウム、窒素又はこれらの混合ガスのプラズマを生成させる。この際の処理圧力は5,000〜200,000Paの範囲内、処理温度は10〜40℃の範囲内、高周波(あるいはマイクロ波)出力は50〜400Wの範囲内とすることが好ましい。   As the plasma, for example, an atmospheric pressure type plasma processing apparatus is used, and plasma of argon, helium, nitrogen, or a mixed gas thereof is generated in a vacuum processing chamber. In this case, the processing pressure is preferably in the range of 5,000 to 200,000 Pa, the processing temperature is in the range of 10 to 40 ° C., and the high frequency (or microwave) output is preferably in the range of 50 to 400 W.

本発明の金属張積層体の製造方法は、上記のいずれかの方法によって表面処理された改質イミド化層を有するポリイミド樹脂層を用意し、ポリイミド樹脂層の表面の改質イミド化層上に金属箔を重ね合わせ、熱圧着する圧着工程を備える。   The method for producing a metal-clad laminate of the present invention is prepared by preparing a polyimide resin layer having a modified imidized layer surface-treated by any of the above methods, on the modified imidized layer on the surface of the polyimide resin layer. A crimping step of superimposing metal foils and thermocompression bonding is provided.

熱圧着する方法は特に制限されず、適宜公知の方法を採用することができる。金属箔を張り合わせる方法としては、通常のハイドロプレス、真空タイプのハイドロプレス、オートクレーブ加圧式真空プレス、連続式熱ラミネータ等を挙げることができる。金属箔を張り合わせる方法の中でも、十分なプレス圧力が得られ、残存揮発分の除去も容易に行え、更に金属箔の酸化を防止することができるという観点から真空ハイドロプレス、連続式熱ラミネータを用いることが好ましい。   The method for thermocompression bonding is not particularly limited, and a known method can be adopted as appropriate. Examples of the method of laminating the metal foil include a normal hydro press, a vacuum type hydro press, an autoclave pressurizing vacuum press, and a continuous thermal laminator. Among the methods of laminating metal foils, a vacuum hydropress and a continuous thermal laminator are used from the viewpoint that sufficient pressing pressure is obtained, residual volatiles can be easily removed, and oxidation of the metal foil can be prevented. It is preferable to use it.

また、熱圧着は、150〜450℃の範囲内に加熱しながら金属箔をプレスすることが好ましい。より好ましくは150〜400℃の範囲内である。更に、好ましくは150〜380℃の範囲内である。別の観点からはポリイミド樹脂層又は改質イミド化層のガラス転移温度以上の温度であることがよい。また、プレス圧力については、使用するプレス機の種類にもよるが、通常、1〜50MPa程度が適当である。   In thermocompression bonding, it is preferable to press the metal foil while heating in the range of 150 to 450 ° C. More preferably, it exists in the range of 150-400 degreeC. Furthermore, it is preferably in the range of 150 to 380 ° C. From another point of view, the temperature is preferably equal to or higher than the glass transition temperature of the polyimide resin layer or the modified imidized layer. The press pressure is usually about 1 to 50 MPa, although it depends on the type of press used.

金属箔としては、銅箔、銅合金箔又はステンレス箔が適する。金属箔が銅箔である例としては、フレキシブル基板用途に用いる場合が挙げられる。   As the metal foil, copper foil, copper alloy foil or stainless steel foil is suitable. An example in which the metal foil is a copper foil includes a case where the metal foil is used for a flexible substrate.

この用途に用いられる場合の銅箔の好ましい厚みは3〜50μmの範囲であり、より好ましくは5〜30μmの範囲であるが、ファインピッチの要求される用途で用いられる銅張積層板には、薄い銅箔(銅を主成分とする銅合金箔を含む)が好適に用いられ、この場合、5〜20μmの範囲が適している。また、本発明の製造方法では表面粗度が小さい銅箔を用いても樹脂層に対する優れた接着性が得られることから、特に、表面粗度が小さい銅箔を用いる場合に適している。好ましい銅箔の表面粗度は、十点平均粗さで0.1〜3μmの範囲が適している。特に、ファインピッチの要求される用途で用いられる銅箔については、表面粗度は十点平均粗さで0.1〜1.0μmが適している。   The preferred thickness of the copper foil when used in this application is in the range of 3 to 50 μm, more preferably in the range of 5 to 30 μm, but the copper-clad laminate used in applications where fine pitch is required, A thin copper foil (including a copper alloy foil containing copper as a main component) is preferably used, and in this case, a range of 5 to 20 μm is suitable. Moreover, since the adhesiveness with respect to a resin layer is acquired even if it uses a copper foil with small surface roughness in the manufacturing method of this invention, it is suitable especially when using copper foil with small surface roughness. The preferred surface roughness of the copper foil is 10-point average roughness in the range of 0.1 to 3 μm. In particular, for copper foils used in applications where fine pitch is required, the surface roughness is suitably 10-point average roughness of 0.1 to 1.0 μm.

金属箔がステンレス箔である例としては、ハードディスクドライブに搭載されているサスペンション(以下、HDDサスペンション)用途に用いる場合が挙げられる。この用途として用いられる場合のステンレス箔の好ましい厚みは10〜100μmの範囲がよく、より好ましくは15〜70μmの範囲がよく、更に好ましくは15〜50μmの範囲がよい。   As an example in which the metal foil is a stainless steel foil, there is a case where the metal foil is used for a suspension (hereinafter referred to as HDD suspension) mounted on a hard disk drive. The preferred thickness of the stainless steel foil when used for this purpose is in the range of 10 to 100 μm, more preferably in the range of 15 to 70 μm, and still more preferably in the range of 15 to 50 μm.

金属箔は、改質イミド化層と接する面にシランカップリング剤処理が施されていてもよい。シランカップリング剤は、アミノ基又はメルカプト基等の官能基を有するシランカップリング剤が好ましく、より好ましくはアミノ基を有するシランカップリング剤である。具体例としては、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)-3-アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン等が挙げられる。この中でも、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチルブチリデン)プロピルアミン及びN−フェニル−3−アミノプロピルトリメトキシシランから選択される少なくとも1種であることがよい。特に、3−アミノプロピルトリエトキシシラン及び3−アミノプロピルトリメトキシシランから選ばれる少なくとも1種が好ましい。   The metal foil may be subjected to a silane coupling agent treatment on the surface in contact with the modified imidized layer. The silane coupling agent is preferably a silane coupling agent having a functional group such as an amino group or a mercapto group, more preferably a silane coupling agent having an amino group. Specific examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyl. Examples include trimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and the like. Among these, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyl It may be at least one selected from dimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine and N-phenyl-3-aminopropyltrimethoxysilane. In particular, at least one selected from 3-aminopropyltriethoxysilane and 3-aminopropyltrimethoxysilane is preferable.

シランカップリング剤は極性溶媒の溶液として使用する。極性溶媒としては、水又は水を含有する極性有機溶媒が適する。極性有機溶媒としては、水との親和性を有する極性の液体であれば、特に限定されない。このような極性有機溶媒として、例えば、メタノール、エタノール、プロパノール、イソプロパノール、アセトン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。シランカップリング剤溶液は、0.01〜5重量%、好ましくは0.1〜2.0重量%、より好ましくは0.5〜1.0重量%濃度の溶液がよい。   The silane coupling agent is used as a polar solvent solution. As the polar solvent, water or a polar organic solvent containing water is suitable. The polar organic solvent is not particularly limited as long as it is a polar liquid having an affinity for water. Examples of such a polar organic solvent include methanol, ethanol, propanol, isopropanol, acetone, tetrahydrofuran, dimethylformamide, dimethylacetamide and the like. The silane coupling agent solution has a concentration of 0.01 to 5% by weight, preferably 0.1 to 2.0% by weight, more preferably 0.5 to 1.0% by weight.

シランカップリング剤処理は、シランカップリング剤を含む極性溶媒の溶液が接触する方法であれば、特に限定されず、公知の方法を利用することができる。例えば、浸漬法、スプレー法、刷毛塗りあるいは印刷法等を用いることができる。温度は0〜100℃、好ましくは10〜40℃付近の常温でよい。また、浸漬時間は、浸漬法を適用する場合、10秒〜1時間、好ましくは30秒〜15分間処理することが有効である。処理後、乾燥する。乾燥方法は、特に限定されず、自然乾燥、エアガンによる吹きつけ乾燥、あるいはオーブンによる乾燥等を用いることができる。乾燥条件は、極性溶媒の種類にもよるが、10〜150℃で5秒〜60分間、好ましくは25〜150℃で10秒〜30分間、更に好ましくは30〜120℃で1分〜10分間である。   The silane coupling agent treatment is not particularly limited as long as it is a method in which a solution of a polar solvent containing a silane coupling agent contacts, and a known method can be used. For example, a dipping method, a spray method, a brush coating method or a printing method can be used. The temperature may be 0 to 100 ° C., preferably 10 to 40 ° C. Moreover, as for immersion time, when applying the immersion method, it is effective to process for 10 second-1 hour, Preferably it is 30 second-15 minutes. Dry after treatment. The drying method is not particularly limited, and natural drying, spray drying with an air gun, oven drying, or the like can be used. The drying conditions depend on the type of polar solvent, but are 10 to 150 ° C. for 5 seconds to 60 minutes, preferably 25 to 150 ° C. for 10 seconds to 30 minutes, more preferably 30 to 120 ° C. for 1 minute to 10 minutes. It is.

本発明の金属張積層体の製造方法によって得られる積層体は、ポリイミド樹脂層の片面又は両面に金属箔を有する積層体である。片面に金属箔を有する積層体は、本発明のポリイミド樹脂層の表面処理方法によって得られた改質イミド化層の表面に金属箔を積層することにより得られる。表面処理ポリイミド樹脂層がガラス、樹脂フィルム等の基材に積層されている場合は、金属箔を積層する前又は積層した後に基材を剥離することがよい。基材が銅箔等の金属箔である場合は、このポリイミド樹脂層側に金属箔を積層することにより両面金属張積層体とすることができる。また、両面に金属箔を有する金属張積層体は、上記の方法の他、ポリイミドフィルムの両面に改質イミド化層を形成した後、この両面に金属箔を積層することにより得られる。更に、片面に金属箔を有する片面金属張積層体を製造したのち、少なくとも1枚の片面金属張積層体についてポリイミド樹脂層の表面側の層に上記の改質イミド化層を形成したのち、2枚の片面金属張積層体のポリイミド層を重ね合わせて熱圧着する方法によっても製造できる。   The laminate obtained by the method for producing a metal-clad laminate of the present invention is a laminate having a metal foil on one side or both sides of a polyimide resin layer. A laminate having a metal foil on one side is obtained by laminating a metal foil on the surface of a modified imidized layer obtained by the surface treatment method for a polyimide resin layer of the present invention. When the surface-treated polyimide resin layer is laminated on a substrate such as glass or a resin film, the substrate is preferably peeled before or after the metal foil is laminated. When the substrate is a metal foil such as a copper foil, a double-sided metal-clad laminate can be obtained by laminating a metal foil on the polyimide resin layer side. Moreover, after forming a modified imidation layer on both surfaces of a polyimide film other than said method, the metal-clad laminated body which has metal foil on both surfaces is obtained by laminating | stacking metal foil on this both surfaces. Further, after producing a single-sided metal-clad laminate having a metal foil on one side, the modified imidized layer is formed on the surface side of the polyimide resin layer of at least one single-sided metal-clad laminate, It can also be produced by a method in which a single-sided metal-clad laminate of polyimide layers is laminated and thermocompression bonded.

本発明の金属張積層体の第二の製造方法は、上記表面処理方法により処理された改質イミド化層を有するポリイミド樹脂層を用意し、改質イミド化層の表面に直接又は下地金属薄膜層を介して銅を蒸着させることにより銅薄膜層を形成する銅薄膜形成工程を備える。   A second method for producing a metal-clad laminate of the present invention is to prepare a polyimide resin layer having a modified imidized layer treated by the surface treatment method, and directly or on the surface of the modified imidized layer. A copper thin film forming step of forming a copper thin film layer by evaporating copper through the layer is provided.

この銅薄膜層の形成は、銅を蒸着することにより形成するが、この際、接着性をより向上させる下地金属薄膜層を改質イミド化層に設け、その上に銅薄膜層を設けてもよい。下地金属薄膜層としては、ニッケル、クロムやこれらの合金層がある。下地金属薄膜層を設ける場合、その厚みは銅薄膜層厚みの1/2以下、好ましくは1/5以下で、1〜50nm程度の厚みとすることがよい。この下地金属薄膜層も蒸着法により形成することが好ましい。   The copper thin film layer is formed by vapor-depositing copper. At this time, a base metal thin film layer for improving the adhesiveness is provided on the modified imidized layer, and a copper thin film layer is provided thereon. Good. Examples of the base metal thin film layer include nickel, chromium, and an alloy layer thereof. When the base metal thin film layer is provided, the thickness is 1/2 or less, preferably 1/5 or less of the thickness of the copper thin film layer, and is preferably about 1 to 50 nm. This underlying metal thin film layer is also preferably formed by vapor deposition.

銅薄膜層を形成するための蒸着法としては、公知の方法を採用することができる。例えば、真空蒸着法、スパッタリング法、電子ビーム蒸着法、イオンプレーティング法等を使用でき、特に、スパッタリング法が好ましい。スパッタリング法による銅薄膜層の形成条件については、例えば、アルゴンガスをスパッタガスとして使用し、圧力は好ましくは1×10-2〜1Pa、より好ましくは5×10-2〜5×10-1Paであり、スパッタ電力密度は、好ましくは1〜100Wcm-2、より好ましくは1〜50Wcm-2の条件で行う方法がよい。 As a vapor deposition method for forming the copper thin film layer, a known method can be employed. For example, a vacuum evaporation method, a sputtering method, an electron beam evaporation method, an ion plating method, or the like can be used, and the sputtering method is particularly preferable. Regarding the conditions for forming the copper thin film layer by sputtering, for example, argon gas is used as the sputtering gas, and the pressure is preferably 1 × 10 −2 to 1 Pa, more preferably 5 × 10 −2 to 5 × 10 −1 Pa. The sputtering power density is preferably 1 to 100 Wcm −2 , more preferably 1 to 50 Wcm −2 .

用いられる銅は一部に他の金属を含有する合金銅でも良い。蒸着により形成させる銅又は銅合金は好ましくは銅含有率が90質量%以上、特に好ましくは95質量%以上のものである。銅が含有し得る金属としては、クロム、ジルコニウム、ニッケル、シリコン、亜鉛、ベリリウム等を挙げることができる。また、これらの金属が2種類以上含有される銅合金薄膜であってもよい。   Copper to be used may be alloy copper partially containing other metals. The copper or copper alloy formed by vapor deposition preferably has a copper content of 90% by mass or more, particularly preferably 95% by mass or more. Examples of the metal that copper can contain include chromium, zirconium, nickel, silicon, zinc, and beryllium. Moreover, the copper alloy thin film in which these metals contain 2 or more types may be sufficient.

銅薄膜形成工程において形成される銅薄膜層の厚みは、0.001〜1.0μmの範囲であることがよく、好ましくは0.01〜0.5μm、より好ましくは0.05〜0.5μm、更に好ましくは0.1〜0.5μmである。銅薄膜層を更に厚くする場合には、無電解めっき又は電解めっきによって、厚膜にしてもよい。   The thickness of the copper thin film layer formed in the copper thin film forming step is preferably in the range of 0.001 to 1.0 μm, preferably 0.01 to 0.5 μm, more preferably 0.05 to 0.5 μm. More preferably, the thickness is 0.1 to 0.5 μm. When the copper thin film layer is further thickened, it may be thickened by electroless plating or electrolytic plating.

本発明によれば、簡便な表面処理によりポリイミド樹脂層の接着力を飛躍的に向上させることができる。ファインピッチ形成に適した低粗度銅箔においても接着力を向上させることができるため、低コストで、高密度のプリント配線板に用いられる銅張積層板の製造が可能となり、また、HDDサスペンション用途にも利用可能であるため、その工業的価値は高いものである。   According to the present invention, the adhesive force of the polyimide resin layer can be dramatically improved by a simple surface treatment. Adhesion can be improved even in low-roughness copper foils suitable for fine pitch formation, which makes it possible to manufacture copper-clad laminates used for high-density printed wiring boards at low cost, and HDD suspensions. Since it can be used for applications, its industrial value is high.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれに限定されるものではない。なお、以下の実施例において、特にことわりのない限り各種評価は下記によるものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this. In the following examples, various evaluations are based on the following unless otherwise specified.

[接着強度の測定]
接着強度の測定は、得られた金属張積層体についてプレス機を用いて幅1mmの短冊状に切断し、室温で90°、1mmピール強度を、テンシロンテスター(東洋精機製作所社製)を用いて測定した。
[Measurement of adhesive strength]
The adhesive strength was measured by cutting the obtained metal-clad laminate into a 1 mm wide strip using a press, 90 ° at room temperature, and 1 mm peel strength using a Tensilon tester (manufactured by Toyo Seiki Seisakusho). It was measured.

[線熱膨張係数の測定]
線熱膨張係数の測定は、サーモメカニカルアナライザー(セイコーインスツルメンツ(株)製)を用いて255℃まで20℃/分の速度で昇温し、その温度で10分間保持した後、更に5℃/分の一定速度で冷却した。冷却時の240℃から100℃までの平均熱膨張係数を算出し、これを線熱膨張係数とした。
[Measurement of linear thermal expansion coefficient]
The linear thermal expansion coefficient was measured using a thermomechanical analyzer (manufactured by Seiko Instruments Inc.) at a rate of 20 ° C./min up to 255 ° C., held at that temperature for 10 minutes, and then further 5 ° C./min. It was cooled at a constant speed. The average coefficient of thermal expansion from 240 ° C. to 100 ° C. during cooling was calculated and used as the linear thermal expansion coefficient.

次に、実施例に基づいて、本発明を具体的に説明する。本発明はこれに限定されないことはもちろんである。   Next, based on an Example, this invention is demonstrated concretely. Of course, the present invention is not limited to this.

作製例1
500mLのセパラブルフラスコの中において、撹拌しながら20.7gの4,4'-ジアミノ−2'−メトキシベンズアニリド(0.08モル)を343gのN,N−ジメチルアセトアミドに溶解させた。次に、その溶液を窒素気流中で28.5gの無水ピロメリット酸(0.13モル)及び10.3gの4,4'−ジアミノジフェニルエーテル(0.05モル)を加えた。その後、約3時間撹拌を続けて重合反応を行い、粘稠なポリアミック酸溶液Aを得た。この得られたポリアミック酸溶液Aを基板上に塗布し、130℃で5分間乾燥し、その後、15分かけて360℃まで昇温させてイミド化を完了させ、基板を除去してポリイミドフィルムAを得た。得られたポリイミドフィルムAの熱線膨張係数を測定したところ、23×10-6/Kであった。なお、ポリイミドフィルムAの厚みは10μmであった。
Production Example 1
In a 500 mL separable flask, 20.7 g of 4,4′-diamino-2′-methoxybenzanilide (0.08 mol) was dissolved in 343 g of N, N-dimethylacetamide with stirring. Next, 28.5 g of pyromellitic anhydride (0.13 mol) and 10.3 g of 4,4′-diaminodiphenyl ether (0.05 mol) were added to the solution in a nitrogen stream. Thereafter, stirring was continued for about 3 hours to conduct a polymerization reaction, and a viscous polyamic acid solution A was obtained. The obtained polyamic acid solution A was applied onto a substrate, dried at 130 ° C. for 5 minutes, then heated to 360 ° C. over 15 minutes to complete imidization, and the substrate was removed to obtain polyimide film A Got. It was 23 * 10 < -6 > / K when the thermal linear expansion coefficient of the obtained polyimide film A was measured. The polyimide film A had a thickness of 10 μm.

作製例2
作製例1で得られたポリイミドフィルムAをアルゴンガス7L/min、ヘリウムガス3L/min及び窒素ガス0.3L/minの混合気体が注入されている部屋に通し、常圧下で、印加圧力が3.2kV、出力200Wの電力を入力してプラズマ放電させ、30秒間、ポリイミドフィルムAの樹脂層側をプラズマ処理し、ポリイミドフィルムBを得た。
Production Example 2
The polyimide film A obtained in Production Example 1 is passed through a room in which a mixed gas of argon gas 7 L / min, helium gas 3 L / min, and nitrogen gas 0.3 L / min is injected, and the applied pressure is 3 under normal pressure. A plasma of 2 kV and an output of 200 W was input for plasma discharge, and the polyimide layer A was subjected to plasma treatment for 30 seconds to obtain a polyimide film B.

作製例3
5gの3-アミノプロピルトリメトキシシラン、500gのメタノール及び2.5gの水を混合し、2時間撹拌することで、シランカップリング剤溶液を調製した。予め水洗したステンレス箔1(新日本製鐵株式会社製 SUS304 H−TA、厚み20μm、樹脂層側の表面粗度:十点平均粗さRz0.8μm)をシランカップリング剤溶液(液温約20℃)へ30秒間浸漬した後、一旦大気中に引き上げ、余分な液を落とした。次いで圧縮空気を約15秒間吹き付けて乾燥した。その後、110℃で30分間加熱処理を行い、シランカップリング剤処理のステンレス箔3を得た。
Production Example 3
A silane coupling agent solution was prepared by mixing 5 g of 3-aminopropyltrimethoxysilane, 500 g of methanol and 2.5 g of water and stirring for 2 hours. Stainless steel foil 1 (Shin Nippon Steel Co., Ltd. SUS304 H-TA, thickness 20 μm, surface roughness on the resin layer side: 10-point average roughness Rz 0.8 μm) washed in advance with a silane coupling agent solution (liquid temperature about 20) C.) for 30 seconds and then pulled up into the atmosphere to remove excess liquid. Then, it was dried by blowing compressed air for about 15 seconds. Then, heat processing were performed for 30 minutes at 110 degreeC, and the stainless steel foil 3 of silane coupling agent processing was obtained.

作製例4
5gの3−アミノプロピルトリメトキシシラン、500gのメタノール及び2.5gの水を混合し、2時間撹拌することで、シランカップリング剤溶液を調整した。予め水洗した銅箔1(厚み18μm、樹脂層側の表面粗度:十点平均粗さRz0.8μm)をシランカップリング剤溶液(液温約20℃)へ30秒間浸漬した後、一旦大気中に引き上げ、余分な液を落とした。次いで圧縮空気を約15秒間吹き付けて乾燥した。その後、110℃で30分間加熱処理を行い、シランカップリング剤処理の銅箔4を得た。
Production Example 4
A silane coupling agent solution was prepared by mixing 5 g of 3-aminopropyltrimethoxysilane, 500 g of methanol and 2.5 g of water and stirring for 2 hours. Copper foil 1 (thickness 18 μm, resin layer surface roughness: 10-point average roughness Rz 0.8 μm) previously washed with water was immersed in a silane coupling agent solution (liquid temperature about 20 ° C.) for 30 seconds, and then once in the atmosphere Raised to, dropped excess liquid. Then, it was dried by blowing compressed air for about 15 seconds. Then, heat processing were performed for 30 minutes at 110 degreeC, and the copper foil 4 of the silane coupling agent process was obtained.

10mLのN,N−ジメチルアセトアミドに1.36gのメタキシリレンジアミン(10mmol)を溶解した有機処理剤の溶液を作製した。この溶液を作製例2で得られたポリイミドフィルムBの上に50μmの厚みで塗布し、130℃で2分間加熱し、160℃まで昇温して乾燥した後、15分かけて360℃まで昇温させてイミド化を完了し、改質イミド化層を有するポリイミドフィルムを得た。得られたポリイミドフィルムの改質イミド化層の表面にステンレス箔1を重ね合わせ、高性能高温真空プレス機で、370℃、20MPa、1分の条件でプレスを行い、金属張積層体を作製した。ポリイミドフィルムとステンレス箔の接着強度は、0.6kN/mであった。   A solution of an organic treating agent was prepared by dissolving 1.36 g of metaxylylenediamine (10 mmol) in 10 mL of N, N-dimethylacetamide. This solution was applied to the polyimide film B obtained in Preparation Example 2 to a thickness of 50 μm, heated at 130 ° C. for 2 minutes, heated to 160 ° C. and dried, and then heated to 360 ° C. over 15 minutes. The imidization was completed by heating to obtain a polyimide film having a modified imidized layer. Stainless steel foil 1 was superimposed on the surface of the modified imidized layer of the obtained polyimide film, and pressed with a high-performance high-temperature vacuum press at 370 ° C., 20 MPa for 1 minute to produce a metal-clad laminate. . The adhesive strength between the polyimide film and the stainless steel foil was 0.6 kN / m.

ステンレス箔1の代わりに、作製例3で得られたステンレス箔3を使用した以外は、実施例1と同様にして、金属張積層体を作製した。ポリイミドフィルムとステンレス箔の接着強度は、0.9kN/mであった。   A metal-clad laminate was produced in the same manner as in Example 1 except that the stainless steel foil 3 obtained in Production Example 3 was used instead of the stainless steel foil 1. The adhesive strength between the polyimide film and the stainless steel foil was 0.9 kN / m.

ステンレス箔1の代わりに、銅箔2(三井金属製NS-VLP箔、銅箔厚み9μm、樹脂層側の表面粗度:0.8μm)を使用した以外は、実施例1と同様にして、金属張積層体を作製した。ポリイミドフィルムと銅箔の接着強度は、0.9kN/mであった。   In place of the stainless steel foil 1, except that the copper foil 2 (Mitsui Metals NS-VLP foil, copper foil thickness 9 μm, resin layer surface roughness: 0.8 μm) was used, the same as in Example 1, A metal-clad laminate was produced. The adhesive strength between the polyimide film and the copper foil was 0.9 kN / m.

ステンレス箔1の代わりに、作製例4で得られた銅箔4を使用した以外は、実施例1と同様にして、金属張積層体を作製した。ポリイミドフィルムと銅箔の接着強度は、1.1kN/mであった。   A metal-clad laminate was produced in the same manner as in Example 1 except that the copper foil 4 obtained in Production Example 4 was used instead of the stainless steel foil 1. The adhesive strength between the polyimide film and the copper foil was 1.1 kN / m.

メタキシリレンジアミン1.36g(10mmol)の代わりに、パラキシリレンジアミン1.36g(10mmol)を使用した以外は、実施例1と同様にして、改質イミド化層を有するポリイミドフィルムを得て、次いで、金属張積層体を作製した。接着強度は、0.6kN/mであった。   A polyimide film having a modified imidized layer was obtained in the same manner as in Example 1 except that 1.36 g (10 mmol) of paraxylylenediamine was used instead of 1.36 g (10 mmol) of metaxylylenediamine. Subsequently, a metal-clad laminate was produced. The adhesive strength was 0.6 kN / m.

メタキシリレンジアミン1.36g(10mmol)の代わりに、パラキシリレンジアミン1.36g(10mmol)を使用し、並びにステンレス箔1の代わりに、作製例3で得られたステンレス箔3を使用した以外は、実施例1と同様にして、改質イミド化層を有するポリイミドフィルムを得て、次いで、金属張積層体を作製した。接着強度は、0.8kN/mであった。   Except for using 1.36 g (10 mmol) of paraxylylenediamine instead of 1.36 g (10 mmol) of metaxylylenediamine, and using the stainless steel foil 3 obtained in Preparation Example 3 instead of the stainless steel foil 1 Obtained a polyimide film having a modified imidized layer in the same manner as in Example 1, and then produced a metal-clad laminate. The adhesive strength was 0.8 kN / m.

メタキシリレンジアミン1.36g(10mmol)の代わりに、トリス(2−アミノエチル)アミン1.46g(10mmol)を使用し、並びにポリイミドフィルムBの代わりに、作製例1で得られたポリイミドフィルムAを使用した以外は、実施例1と同様にして、改質イミド化層を有するポリイミドフィルムを得て、次いで、金属張積層体を作製した。接着強度は、0.5kN/mであった。   Instead of 1.36 g (10 mmol) of metaxylylenediamine, 1.46 g (10 mmol) of tris (2-aminoethyl) amine is used, and polyimide film A obtained in Preparation Example 1 is used instead of polyimide film B. A polyimide film having a modified imidized layer was obtained in the same manner as in Example 1 except that a metal-clad laminate was produced. The adhesive strength was 0.5 kN / m.

メタキシリレンジアミン1.36g(10mmol)の代わりに、トリス(2−アミノエチル)アミン1.46g(10mmol)を使用した以外は、実施例1と同様にして、改質イミド化層を有するポリイミドフィルムを得て、次いで、金属張積層体を作製した。接着強度は、0.5kN/mであった。   A polyimide having a modified imidized layer in the same manner as in Example 1 except that 1.46 g (10 mmol) of tris (2-aminoethyl) amine was used instead of 1.36 g (10 mmol) of metaxylylenediamine. A film was obtained, and then a metal-clad laminate was produced. The adhesive strength was 0.5 kN / m.

メタキシリレンジアミン1.36g(10mmol)の代わりに、トリス(2−アミノエチル)アミン1.46g(10mmol)を使用し、並びにステンレス箔1の代わりに、作製例3で得られたステンレス箔3を使用した以外は、実施例1と同様にして、改質イミド化層を有するポリイミドフィルムを得て、次いで、金属張積層体を作製した。接着強度は、0.6kN/mであった。   Instead of 1.36 g (10 mmol) of metaxylylenediamine, 1.46 g (10 mmol) of tris (2-aminoethyl) amine was used, and the stainless steel foil 3 obtained in Preparation Example 3 was used instead of the stainless steel foil 1. A polyimide film having a modified imidized layer was obtained in the same manner as in Example 1 except that a metal-clad laminate was produced. The adhesive strength was 0.6 kN / m.

メタキシリレンジアミン1.36g(10mmol)の代わりに、トリス(2−アミノエチル)アミン1.46g(10mmol)を使用し、ポリイミドフィルムBの代わりに、作製例1で得られたポリイミドフィルムAを使用し、並びにステンレス箔1の代わりに、ステンレス箔3を使用した以外は、実施例1と同様にして、改質イミド化層を有するポリイミドフィルムを得て、次いで、金属張積層体を作製した。接着強度は、0.6kN/mであった。   Instead of 1.36 g (10 mmol) of metaxylylenediamine, 1.46 g (10 mmol) of tris (2-aminoethyl) amine was used, and instead of polyimide film B, polyimide film A obtained in Preparation Example 1 was used. A polyimide film having a modified imidized layer was obtained in the same manner as in Example 1 except that the stainless steel foil 3 was used instead of the stainless steel foil 1, and then a metal-clad laminate was produced. . The adhesive strength was 0.6 kN / m.

メタキシリレンジアミン1.36g(10mmol)の代わりに、ビス(3−アミノプロピル)エチレンジアミン1.46g(10mmol)を使用し、ポリイミドフィルムBの代わりに、作製例1で得られたポリイミドフィルムAを使用し、並びにステンレス箔1の代わりに、ステンレス箔3を使用した以外は、実施例1と同様にして、改質イミド化層を有するポリイミドフィルムを得て、次いで、金属張積層体を作製した。接着強度は、0.6kN/mであった。   Instead of 1.36 g (10 mmol) of metaxylylenediamine, 1.46 g (10 mmol) of bis (3-aminopropyl) ethylenediamine was used, and instead of polyimide film B, the polyimide film A obtained in Preparation Example 1 was used. A polyimide film having a modified imidized layer was obtained in the same manner as in Example 1 except that the stainless steel foil 3 was used instead of the stainless steel foil 1, and then a metal-clad laminate was produced. . The adhesive strength was 0.6 kN / m.

メタキシリレンジアミン1.36g(10mmol)の代わりに、1,3−ビス(3−アミノプロピル)テトラメチルシロキサン2.48g(10mmol)を使用し、ポリイミドフィルムBの代わりに、作製例1で得られたポリイミドフィルムAを使用し、並びにステンレス箔1の代わりに、ステンレス箔3を使用した以外は、実施例1と同様にして、改質イミド化層を有するポリイミドフィルムを得て、次いで、金属張積層体を作製した。接着強度は、0.5kN/mであった。   1.48 g (10 mmol) of 1,3-bis (3-aminopropyl) tetramethylsiloxane was used in place of 1.36 g (10 mmol) of metaxylylenediamine, and obtained in Preparation Example 1 instead of polyimide film B. The polyimide film A was used, and a polyimide film having a modified imidized layer was obtained in the same manner as in Example 1 except that the stainless steel foil 3 was used instead of the stainless steel foil 1. A stretched laminate was produced. The adhesive strength was 0.5 kN / m.

メタキシリレンジアミン1.36g(10mmol)の代わりに、1,4−ビス(3−アミノプロピル)ピペラジン2.00g(10mmol)を使用し、ポリイミドフィルムBの代わりに、作製例1で得られたポリイミドフィルムAを使用し、並びにステンレス箔1の代わりに、ステンレス箔3を使用した以外は、実施例1と同様にして、改質イミド化層を有するポリイミドフィルムを得て、次いで、金属張積層体を作製した。接着強度は、0.4kN/mであった。   Instead of 1.36 g (10 mmol) of metaxylylenediamine, 2.00 g (10 mmol) of 1,4-bis (3-aminopropyl) piperazine was used and obtained in Preparation Example 1 instead of polyimide film B. A polyimide film having a modified imidized layer was obtained in the same manner as in Example 1 except that the polyimide film A was used, and the stainless steel foil 3 was used instead of the stainless steel foil 1, and then a metal-clad laminate was obtained. The body was made. The adhesive strength was 0.4 kN / m.

10mLのN,N−ジメチルアセトアミドに1.36gのメタキシリレンジアミン(10mmol)を溶解した有機処理剤の溶液を作製し、この処理液を作製例2で得られたポリイミドフィルムBの上に50μmの厚みで塗布し、130℃で2分間加熱し、160℃まで昇温して乾燥した後、15分かけて360℃まで昇温させてイミド化を完了し、改質イミド化層を有するポリイミドフィルムを得た。得られた改質イミド化層を有するポリイミドフィルムの改質イミド化層の表面に銅原料が成膜されるように、RFマグネトロンスパッタリング装置にセットし、銅薄膜層を形成した。ポリイミドフィルムをセットした槽内は3×10-4Paまで減圧した後、アルゴンガスを導入し真空度を2×10-1Paとし、RF電源にてプラズマを発生した。このプラズマにてニッケル:クロムの合金層(比率8:2、99.9重量%、以下、ニクロム層又は第一スパッタリング層)が膜厚30nmとなるようにポリイミドフィルムへ成膜した。ニクロム層を成膜した後、同一雰囲気にて、このニクロム層上にさらにスパッタリングにより銅(99.99重量%)を0.2μm成膜して第二スパッタリング層を形成した。 A solution of an organic processing agent in which 1.36 g of metaxylylenediamine (10 mmol) was dissolved in 10 mL of N, N-dimethylacetamide was prepared, and this processing solution was applied on the polyimide film B obtained in Preparation Example 2 to a thickness of 50 μm. A polyimide having a modified imidized layer, heated at 130 ° C. for 2 minutes, heated to 160 ° C. and dried, then heated to 360 ° C. over 15 minutes to complete imidization A film was obtained. The copper thin film layer was formed by setting in an RF magnetron sputtering apparatus so that the copper raw material was formed on the surface of the modified imidized layer of the polyimide film having the obtained modified imidized layer. After the pressure inside the tank in which the polyimide film was set was reduced to 3 × 10 −4 Pa, argon gas was introduced to make the degree of vacuum 2 × 10 −1 Pa, and plasma was generated by an RF power source. With this plasma, a nickel: chromium alloy layer (ratio 8: 2, 99.9 wt%, hereinafter, a nichrome layer or a first sputtering layer) was formed on a polyimide film so as to have a film thickness of 30 nm. After forming the nichrome layer, a second sputtering layer was formed by further sputtering 0.2 μm of copper (99.99 wt%) on the nichrome layer by sputtering in the same atmosphere.

次いで、上記銅スパッタ膜(第二スパッタリング層)を電極として電解めっき浴にて8μm厚の銅めっき層を形成した。電解めっき浴としては、硫酸銅浴(硫酸銅100g/L、硫酸220g/L、塩素40mg/L、アノードは含りん銅)を使用し、電流密度2.0A/dm2にてめっき膜を形成した。めっき後には十分な蒸留水で洗浄し乾燥を行った。このようにして、ポリイミドフィルム/ニクロム層/銅スパッタ層/電解めっき銅層から構成される金属張積層体を作製した。ポリイミドフィルムと銅の接着力は、0.6kN/mであった。 Subsequently, a copper plating layer having a thickness of 8 μm was formed in an electrolytic plating bath using the copper sputtered film (second sputtering layer) as an electrode. As an electrolytic plating bath, a copper sulfate bath (copper sulfate 100 g / L, sulfuric acid 220 g / L, chlorine 40 mg / L, anode is phosphorus-containing copper) is used, and a plating film is formed at a current density of 2.0 A / dm 2 . did. After plating, it was washed with sufficient distilled water and dried. In this way, a metal-clad laminate composed of polyimide film / nichrome layer / copper sputter layer / electroplated copper layer was produced. The adhesive force between the polyimide film and copper was 0.6 kN / m.

比較例1
作製例1で作製したポリイミドフィルムAの表面にステンレス箔1を重ね合わせ、高性能高温真空プレス機で、370℃、20MPa、1分の条件でプレスを行い、金属張積層体を作製した。ポリイミドフィルムとステンレス箔の接着強度は、0.1kN/m未満であった。
Comparative Example 1
A stainless steel foil 1 was superposed on the surface of the polyimide film A produced in Production Example 1 and was pressed with a high-performance high-temperature vacuum press machine at 370 ° C., 20 MPa for 1 minute to produce a metal-clad laminate. The adhesive strength between the polyimide film and the stainless steel foil was less than 0.1 kN / m.

比較例2
作製例2で作製したポリイミドフィルムBの表面にステンレス箔1を重ね合わせ、高性能高温真空プレス機で、370℃、20MPa、1分の条件でプレスを行い、金属張積層体を作製した。ポリイミドフィルムとステンレス箔の接着強度は、0.1kN/m未満であった。
Comparative Example 2
A stainless steel foil 1 was superposed on the surface of the polyimide film B produced in Production Example 2, and was pressed with a high-performance high-temperature vacuum press machine at 370 ° C., 20 MPa for 1 minute to produce a metal-clad laminate. The adhesive strength between the polyimide film and the stainless steel foil was less than 0.1 kN / m.

比較例3
作製例1で作製したポリイミドフィルムAの表面に銅箔2を重ね合わせ、高性能高温真空プレス機で、370℃、20MPa、1分の条件でプレスを行い、金属張積層体を作製した。ポリイミドフィルムと銅箔の接着強度は、0.1kN/m未満であった。
Comparative Example 3
A copper foil 2 was placed on the surface of the polyimide film A produced in Production Example 1 and pressed with a high-performance high-temperature vacuum press machine at 370 ° C., 20 MPa for 1 minute to produce a metal-clad laminate. The adhesive strength between the polyimide film and the copper foil was less than 0.1 kN / m.

比較例4
作製例1で作製したポリイミドフィルムAの表面に作製例4で得られた銅箔4を重ね合わせ、高性能高温真空プレス機で、370℃、20MPa、1分の条件でプレスを行い、金属張積層体を作製した。接着強度は、0.1kN/m未満であった。
Comparative Example 4
The copper foil 4 obtained in Preparation Example 4 is superimposed on the surface of the polyimide film A prepared in Preparation Example 1, and is pressed with a high-performance high-temperature vacuum press machine at 370 ° C., 20 MPa, for 1 minute. A laminate was produced. The adhesive strength was less than 0.1 kN / m.

比較例5
メタキシリレンジアミン1.36g(10mmol)の代わりに、4,4’−メチレンビスシクロヘキシルアミン2.10g(10mmol)を使用した以外は、実施例1と同様にして、表面処理されたポリイミドフィルム(改質イミド化層を有するポリイミドフィルムに対応する。以下の比較例において同じ。)を得て、次いで、金属張積層体を作製した。ポリイミドフィルムとステンレス箔の接着強度は、0.2kN/mであった。
Comparative Example 5
A surface-treated polyimide film (in the same manner as in Example 1, except that 2.10 g (10 mmol) of 4,4′-methylenebiscyclohexylamine was used instead of 1.36 g (10 mmol) of metaxylylenediamine (10 mmol). Corresponding to a polyimide film having a modified imidized layer, the same in the following comparative examples) was obtained, and then a metal-clad laminate was produced. The adhesive strength between the polyimide film and the stainless steel foil was 0.2 kN / m.

比較例6
メタキシリレンジアミン1.36g(10mmol)の代わりに、1,4-ジアザビシクロ[2.2.2]オクタン1.12g(10mmol)を使用した以外は、実施例1と同様にして、表面処理されたポリイミドフィルムを得て、次いで、金属張積層体を作製した。ポリイミドフィルムとステンレス箔の接着強度は、0.2kN/mであった。
Comparative Example 6
Surface treatment was carried out in the same manner as in Example 1 except that 1.12 g (10 mmol) of 1,4-diazabicyclo [2.2.2] octane was used instead of 1.36 g (10 mmol) of metaxylylenediamine. A polyimide film was obtained, and then a metal-clad laminate was prepared. The adhesive strength between the polyimide film and the stainless steel foil was 0.2 kN / m.

比較例7
メタキシリレンジアミン1.36g(10mmol)の代わりに、1,8‐ジアザビシクロ[5.4.0]ウンデセン‐7を1.52g(10mmol)使用した以外は、実施例1と同様にして、表面処理されたポリイミドフィルムを得て、次いで、金属張積層体を作製した。ポリイミドフィルムとステンレス箔の接着強度は、0.1kN/mであった。
Comparative Example 7
In the same manner as in Example 1 except that 1.52 g (10 mmol) of 1,8-diazabicyclo [5.4.0] undecene-7 was used instead of 1.36 g (10 mmol) of metaxylylenediamine, the surface A treated polyimide film was obtained, and then a metal-clad laminate was produced. The adhesive strength between the polyimide film and the stainless steel foil was 0.1 kN / m.

比較例8
10mLのN,N−ジメチルアセトアミドに1.61gのエタノールアミン(10mmol)を溶解した有機処理剤の溶液を作製し、この処理液を作製例1で得られたポリイミドフィルムAの上に50μmの厚みで塗布し、130℃で2分間加熱し、160℃まで昇温して乾燥した後、15分かけて360℃まで昇温させて、表面処理されたポリイミドフィルムを得た。得られた表面処理したポリイミドフィルムの処理面にステンレス箔1を重ね合わせ、高性能高温真空プレス機で、370℃、20MPa、1分の条件でプレスを行い、金属張積層体を作製した。ポリイミドフィルムとステンレス箔の接着強度は、0.1kN/m未満であった。
Comparative Example 8
A solution of an organic processing agent in which 1.61 g of ethanolamine (10 mmol) was dissolved in 10 mL of N, N-dimethylacetamide was prepared, and this processing solution was formed on the polyimide film A obtained in Preparation Example 1 to a thickness of 50 μm. After heating at 130 ° C. for 2 minutes, heating to 160 ° C. and drying, the temperature was raised to 360 ° C. over 15 minutes to obtain a surface-treated polyimide film. Stainless steel foil 1 was superimposed on the treated surface of the obtained surface-treated polyimide film, and pressed with a high-performance high-temperature vacuum press machine at 370 ° C., 20 MPa, for 1 minute to produce a metal-clad laminate. The adhesive strength between the polyimide film and the stainless steel foil was less than 0.1 kN / m.

比較例9
作製例1で得られたポリイミドフィルムAの表面に銅原料が成膜されるように、RFマグネトロンスパッタリング装置にセットし、銅薄膜層を形成した。ポリイミドフィルムAをセットした槽内は3×10-4Paまで減圧した後、アルゴンガスを導入し真空度を2×10-1Paとし、RF電源にてプラズマを発生した。このプラズマにてニッケル:クロムの合金層(比率8:2、99.9重量%、ニクロム層、第一スパッタリング層)が膜厚30nmとなるようにポリイミドフィルムへ成膜した。ニクロム層を成膜した後、同一雰囲気にて、このニクロム層上にさらにスパッタリングにより銅(99.99重量%)を0.2μm成膜して第二スパッタリング層を形成した。
Comparative Example 9
A copper thin film layer was formed by setting in an RF magnetron sputtering apparatus so that a copper raw material was formed on the surface of the polyimide film A obtained in Production Example 1. The inside of the tank in which the polyimide film A was set was depressurized to 3 × 10 −4 Pa, and then argon gas was introduced to make the degree of vacuum 2 × 10 −1 Pa, and plasma was generated by an RF power source. A nickel: chromium alloy layer (ratio 8: 2, 99.9 wt%, nichrome layer, first sputtering layer) was formed on the polyimide film by this plasma so as to have a film thickness of 30 nm. After forming the nichrome layer, a second sputtering layer was formed by further sputtering 0.2 μm of copper (99.99 wt%) on the nichrome layer by sputtering in the same atmosphere.

次いで、上記銅スパッタ膜(第二スパッタリング層)を電極として電解めっき浴にて8μm厚の銅めっき層を形成した。電解めっき浴としては、硫酸銅浴(硫酸銅100g/L、硫酸220g/L、塩素40mg/L、アノードは含りん銅)を使用し、電流密度2.0A/dm2にてめっき膜を形成した。めっき後には十分な蒸留水で洗浄し乾燥を行った。このようにして、ポリイミドフィルム/ニクロム層/銅スパッタ層/電解めっき銅層から構成される金属張積層体を作製した。ポリイミドフィルムと銅の接着力は、0.1kN/m未満であった。 Subsequently, a copper plating layer having a thickness of 8 μm was formed in an electrolytic plating bath using the copper sputtered film (second sputtering layer) as an electrode. As an electrolytic plating bath, a copper sulfate bath (copper sulfate 100 g / L, sulfuric acid 220 g / L, chlorine 40 mg / L, anode is phosphorus-containing copper) is used, and a plating film is formed at a current density of 2.0 A / dm 2 . did. After plating, it was washed with sufficient distilled water and dried. In this way, a metal-clad laminate composed of polyimide film / nichrome layer / copper sputter layer / electroplated copper layer was produced. The adhesive force between the polyimide film and copper was less than 0.1 kN / m.

以上の結果をまとめて、表1に示す。なお、表中の記号は次の化合物を示す。
MXDA:メタキシリレンジアミン
PXDA:パラキシリレンジアミン
TAEA:トリス(2−アミノエチル)アミン
BAPEA:ビス(3−アミノプロピル)エチレンジアミン
BAPTS:1,3−ビス(3−アミノプロピル)テトラメチルシロキサン
BAPPy:1,4−ビス(3−アミノプロピル)ピペラジン
MBCHA:4,4’−メチレンビスシクロヘキシルアミン
DABCO:1,4−ジアザビシクロ[2.2.2]オクタン
DBU:1,8−ジアザビシクロ[5.4.0]ウンデセン−7
EA:エタノールアミン
The above results are summarized in Table 1. In addition, the symbol in a table | surface shows the following compound.
MXDA: Metaxylylenediamine
PXDA: paraxylylenediamine
TAEA: Tris (2-aminoethyl) amine
BAPEA: Bis (3-aminopropyl) ethylenediamine
BAPTS: 1,3-bis (3-aminopropyl) tetramethylsiloxane
BAPPy: 1,4-bis (3-aminopropyl) piperazine
MBCHA: 4,4'-methylenebiscyclohexylamine
DABCO: 1,4-diazabicyclo [2.2.2] octane
DBU: 1,8-diazabicyclo [5.4.0] undecene-7
EA: Ethanolamine

Figure 0005180517
Figure 0005180517

Claims (7)

ポリイミド樹脂層の表面側の層を下記式(1)
H2N-CH2-A-CH2-NH2 (1)
(式中、Aはベンゼン環を有し、炭素原子と水素原子のみで構成される2価の有機基を示し、且つAに含有される炭素原子の数は2〜18である)
で表される2つのアミノ基を官能基として有する有機処理剤で接触処理して表面接触処理層を形成する接触処理工程と、該表面接触処理層を300〜420℃で加熱処理して、改質イミド化層を形成する改質イミド化層形成工程とを備えたことを特徴とするポリイミド樹脂層の表面処理方法。
The surface layer side of the polyimide resin layer is represented by the following formula (1)
H 2 N—CH 2 —A—CH 2 —NH 2 (1)
(In the formula, A has a benzene ring, represents a divalent organic group composed of only carbon atoms and hydrogen atoms , and A contains 2 to 18 carbon atoms)
A contact treatment step in which a surface contact treatment layer is formed by contact treatment with an organic treatment agent having two amino groups represented by the functional group, and the surface contact treatment layer is heated at 300 to 420 ° C. A surface treatment method for a polyimide resin layer, comprising a modified imidized layer forming step for forming a quality imidized layer.
ポリイミド樹脂層が、ポリイミド樹脂フィルムからなる層又はポリイミド樹脂層を有する積層体のポリイミド樹脂層である請求項1に記載のポリイミド樹脂層の表面処理方法。   The surface treatment method for a polyimide resin layer according to claim 1, wherein the polyimide resin layer is a polyimide resin layer or a polyimide resin layer of a laminate having a polyimide resin layer. ポリイミド樹脂層の表面側の層をプラズマ処理してプラズマ処理層面を形成するプラズマ処理工程を、接触処理工程の前に備えたことを特徴とする請求項1又は2に記載のポリイミド樹脂層の表面処理方法。   The surface of the polyimide resin layer according to claim 1 or 2, wherein a plasma treatment step of forming a plasma treatment layer surface by plasma treatment of the surface side layer of the polyimide resin layer is provided before the contact treatment step. Processing method. 請求項1〜3のいずれかのポリイミド樹脂層の表面処理方法で表面処理して得られる改質イミド化層が形成されたポリイミド樹脂層の表面に、金属箔を重ね合わせ、熱圧着する圧着工程を備えたことを特徴とする金属張積層体の製造方法。   A pressure-bonding step in which a metal foil is superimposed on the surface of the polyimide resin layer on which a modified imidized layer obtained by surface treatment by the surface treatment method for a polyimide resin layer according to any one of claims 1 to 3 is formed and thermocompression bonded. A method for producing a metal-clad laminate, comprising: 金属箔が、銅箔、銅合金又はステンレス箔であることを特徴とする請求項4記載の金属張積層体の製造方法。   5. The method for producing a metal-clad laminate according to claim 4, wherein the metal foil is a copper foil, a copper alloy, or a stainless steel foil. 金属箔と改質イミド化が形成されたポリイミド樹脂層の表面を、シランカップリング剤処理層を介して熱圧着することを特徴とする請求項4又は5記載の金属張積層体の製造方法。   The method for producing a metal-clad laminate according to claim 4 or 5, wherein the surface of the polyimide resin layer on which the metal foil and the modified imidization are formed is thermocompression bonded through a silane coupling agent treatment layer. 請求項1〜3のいずれかのポリイミド樹脂層の表面処理方法で表面処理して得られる改質イミド化層が形成されたポリイミド樹脂層の表面に、直接又は下地金属薄膜層を介して銅を蒸着することにより銅薄膜層を形成する銅薄膜形成工程を備えたことを特徴とする金属張積層体の製造方法。   Copper is applied directly or via a base metal thin film layer to the surface of the polyimide resin layer on which the modified imidized layer obtained by surface treatment by the surface treatment method for a polyimide resin layer according to any one of claims 1 to 3 is formed. A method for producing a metal-clad laminate comprising a copper thin film forming step of forming a copper thin film layer by vapor deposition.
JP2007135609A 2007-05-22 2007-05-22 Surface treatment method for polyimide resin and method for producing metal-clad laminate Expired - Fee Related JP5180517B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007135609A JP5180517B2 (en) 2007-05-22 2007-05-22 Surface treatment method for polyimide resin and method for producing metal-clad laminate
TW097114445A TWI450918B (en) 2007-05-22 2008-04-21 Surface treatment method of polyimide resin and method for producing metal foil laminated body
KR1020080045438A KR101051401B1 (en) 2007-05-22 2008-05-16 Surface treatment method of polyimide resin and manufacturing method of metal sheet laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007135609A JP5180517B2 (en) 2007-05-22 2007-05-22 Surface treatment method for polyimide resin and method for producing metal-clad laminate

Publications (2)

Publication Number Publication Date
JP2008291063A JP2008291063A (en) 2008-12-04
JP5180517B2 true JP5180517B2 (en) 2013-04-10

Family

ID=40166146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135609A Expired - Fee Related JP5180517B2 (en) 2007-05-22 2007-05-22 Surface treatment method for polyimide resin and method for producing metal-clad laminate

Country Status (3)

Country Link
JP (1) JP5180517B2 (en)
KR (1) KR101051401B1 (en)
TW (1) TWI450918B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976269B2 (en) * 2007-12-20 2012-07-18 新日鐵化学株式会社 Method for producing polyimide resin layer having adhesive layer and method for producing metal-clad laminate
JP5206310B2 (en) * 2008-10-21 2013-06-12 東洋紡株式会社 Polyimide film and method for producing the same
JP5524475B2 (en) * 2008-11-28 2014-06-18 株式会社有沢製作所 Two-layer double-sided flexible metal laminate and its manufacturing method
JP5100894B2 (en) * 2009-12-22 2012-12-19 新日鉄住金化学株式会社 Polyimide resin, production method thereof, adhesive resin composition, coverlay film, and circuit board
JP5784993B2 (en) * 2011-06-14 2015-09-24 新日鉄住金化学株式会社 Crosslinked polyimide resin, production method thereof, adhesive resin composition, cured product thereof, coverlay film, and circuit board
KR101757023B1 (en) * 2011-06-14 2017-07-11 신닛테츠 수미킨 가가쿠 가부시키가이샤 Cross-linked polyimide resin and method for producing same, adhesive resin composition and cured product thereof, cover lay film, circuit board, heat-conductive substrate, and heat-conductive polyimide film
JP5930525B2 (en) * 2011-12-20 2016-06-08 株式会社Adeka Electroless plating pretreatment agent and electroless plating pretreatment method using the pretreatment agent
JP2015093874A (en) * 2013-11-08 2015-05-18 東洋紡株式会社 Polyimide film surface treatment method, polyimide film treated by the surface treatment method, laminate, and multilayer substrate
KR102313803B1 (en) * 2015-01-20 2021-10-15 에스케이넥실리스 주식회사 Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
KR102313800B1 (en) * 2015-01-20 2021-10-15 에스케이넥실리스 주식회사 Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
JP7116889B2 (en) * 2018-08-20 2022-08-12 東洋紡株式会社 Heat-resistant polymer film, method for producing surface-treated heat-resistant polymer film, and heat-resistant polymer film roll
US20210308987A1 (en) * 2018-08-20 2021-10-07 Toyobo Co., Ltd. Laminate, and method for producing laminate
JPWO2021187214A1 (en) * 2020-03-18 2021-09-23
CN115678080A (en) * 2022-11-16 2023-02-03 无锡高拓新材料股份有限公司 Method for preparing polyimide film with low moisture absorption rate by surface silicification treatment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059316A (en) * 1991-07-04 1993-01-19 Mitsui Toatsu Chem Inc Solution for treating polyimide resin composition and method for treating the same
JP3395158B2 (en) * 1993-11-18 2003-04-07 鐘淵化学工業株式会社 Method for manufacturing flexible metal foil-clad laminate
KR0126792B1 (en) * 1994-04-11 1998-04-01 김광호 Process for surface-treating polyimide
JP3292421B2 (en) * 1994-07-23 2002-06-17 鐘淵化学工業株式会社 Method for improving adhesion of polyimide film and polyimide film having improved adhesion
JP3355986B2 (en) * 1996-03-01 2002-12-09 宇部興産株式会社 Aromatic polyimide film and laminate
JPH1149880A (en) * 1997-08-06 1999-02-23 P I Gijutsu Kenkyusho:Kk Treatment of surface and its adhesive agent
JP2001164009A (en) * 1999-12-10 2001-06-19 Shin Etsu Chem Co Ltd Method for modifying surface of polyimide film
TW584599B (en) * 2003-07-30 2004-04-21 Pioneer Technology Engineering Metallic foil with support having a laser absorption layer and method for producing the same
JP2006015681A (en) * 2004-07-05 2006-01-19 Shin Etsu Chem Co Ltd Metallic foil-polyimide laminated flexible plate and its manufacturing process

Also Published As

Publication number Publication date
TW200904866A (en) 2009-02-01
KR101051401B1 (en) 2011-07-22
JP2008291063A (en) 2008-12-04
TWI450918B (en) 2014-09-01
KR20080102967A (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP5180517B2 (en) Surface treatment method for polyimide resin and method for producing metal-clad laminate
TWI406758B (en) Metal-coated polyimide film
JP7469383B2 (en) Metal-clad laminates and circuit boards
TWI424012B (en) Method for surface modification of polyimide resin layer and method for manufacturing sheet metal paste
TWI433879B (en) Method for surface modification of polyimide resin layer and method for manufacturing sheet metal paste
US20100203324A1 (en) Laminate of heat resistant film and metal foil, and method for production thereof
JP5042729B2 (en) Method for modifying surface of polyimide resin layer and method for producing metal-clad laminate
JP5133724B2 (en) Method for producing polyimide resin laminate and method for producing metal-clad laminate
CN110871606A (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
TWI753196B (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition and circuit substrate
JP5129111B2 (en) LAMINATE MANUFACTURING METHOD AND CIRCUIT WIRING BOARD MANUFACTURING METHOD
JP5042728B2 (en) Method for modifying surface of polyimide resin layer and method for producing metal-clad laminate
JP2008031448A (en) Manufacturing method of polyimide film and manufacturing method of laminated plate
JP5009756B2 (en) Method for producing polyimide resin layer having adhesive layer and method for producing metal tension plate
JP4976269B2 (en) Method for producing polyimide resin layer having adhesive layer and method for producing metal-clad laminate
JP2020072197A (en) Circuit board and multilayer circuit board
JP2009154447A (en) Metal-clad laminate
JP2009154446A (en) Metal-clad laminate and its manufacturing method
TW202237765A (en) Circuit board
JP2009184256A (en) Metal-clad laminate
JP2009066860A (en) Metal-clad laminate and its manufacturing method
JP2008238558A (en) Metal-cladded laminate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

LAPS Cancellation because of no payment of annual fees