JP5178872B2 - Cooler - Google Patents

Cooler Download PDF

Info

Publication number
JP5178872B2
JP5178872B2 JP2011081712A JP2011081712A JP5178872B2 JP 5178872 B2 JP5178872 B2 JP 5178872B2 JP 2011081712 A JP2011081712 A JP 2011081712A JP 2011081712 A JP2011081712 A JP 2011081712A JP 5178872 B2 JP5178872 B2 JP 5178872B2
Authority
JP
Japan
Prior art keywords
refrigerant
frame
space
cooler
cooling fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011081712A
Other languages
Japanese (ja)
Other versions
JP2012216708A (en
Inventor
尚史 大村
治之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011081712A priority Critical patent/JP5178872B2/en
Publication of JP2012216708A publication Critical patent/JP2012216708A/en
Application granted granted Critical
Publication of JP5178872B2 publication Critical patent/JP5178872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えば、半導体モジュール等の電力変換装置を冷却する冷却器に関する。   The present invention relates to a cooler that cools a power conversion device such as a semiconductor module.

電力変換装置は、発熱体である半導体モジュール等の電力変換装置を冷却器上に配置し、冷却器を通じて冷媒に熱を放出する。
近年、電動機の高出力化に伴い電力変換装置の発熱量も大きくなり、冷却器の冷却性能を大きく向上させる必要が高まってきた。
しかし、電動機は、高出力化だけでなく小型化も必要とされ、低出力で小型な電動機も存在する。
このため、電力変換装置は、使用する電動機ごとに様々に存在し、冷却器も電動機の出力に合わせて設計すると、冷却器を他の電力変換装置に転用することが難しく、大量生産できないため生産時のコストダウンを阻害していた。
A power converter arrange | positions power converters, such as a semiconductor module which is a heat generating body, on a cooler, and discharge | releases heat to a refrigerant | coolant through a cooler.
In recent years, the amount of heat generated by the power conversion device has increased with the increase in the output of the electric motor, and the need to greatly improve the cooling performance of the cooler has increased.
However, motors are required not only to have high output but also to be miniaturized, and there are also small motors with low output.
For this reason, there are various power converters for each motor to be used, and if the cooler is designed to match the output of the motor, it is difficult to divert the cooler to other power converters, and production is not possible. The cost reduction at the time was hindered.

従来の力変換装置用冷却器として、表面にディンプル等の加工を施した薄板部材で作製された多数枚の冷却フィンを空気の流れ方向に沿って所定間隔をおいて配置したものが知られている(例えば、特許文献1参照)。   As a conventional cooler for a force conversion device, a cooling device in which a large number of cooling fins made of a thin plate member whose surface is processed such as dimples is arranged at predetermined intervals along the air flow direction is known. (For example, refer to Patent Document 1).

また、従来の電力変換装置用冷却器として、複数枚の冷却フィンを隣り合う冷却フィンが相対向するように並列させて立設し、各冷却フィンの高さを並べ方向内側のものほど高く成形し、また冷却フィンには切欠き、穴が形成されたものが知られている(例えば、特許文献2参照)。   In addition, as a conventional power converter cooler, a plurality of cooling fins are arranged in parallel so that adjacent cooling fins face each other, and the height of each cooling fin is formed higher toward the inner side in the arrangement direction. In addition, a cooling fin having a notch and a hole is known (for example, see Patent Document 2).

特許第4585881号明細書Japanese Patent No. 4585881 特開2008−10820号公報JP 2008-10820 A

上記冷却器は、共に冷却フィンとして板材を加工するだけで成形されるため生産性が高く、さらに冷却フィンのピッチや冷却フィン高さを変え易く設計の自由度も高いために多機種への転用に向くが、以下に示す問題点があった。
上記特許文献1の冷却器は、冷媒として空気を想定しており、冷却フィンが空気の流れ方向に沿って配置され、空気は冷却フィンに沿って一方向に流れており、圧力損失が低いが空気に対して積極的に乱流を起こすことができず高い熱伝達率を得ることができない。
Both of the above coolers are highly productive because they are formed simply by processing the plate material as cooling fins. Furthermore, the cooling fin pitch and cooling fin height are easy to change, and the design flexibility is high, so it can be diverted to multiple models. However, there were the following problems.
The cooler of Patent Document 1 assumes air as a refrigerant, cooling fins are arranged along the air flow direction, and the air flows in one direction along the cooling fins, and the pressure loss is low. A turbulent flow cannot be positively generated with respect to air, and a high heat transfer coefficient cannot be obtained.

また、上記特許文献2の冷却器も、特許文献1のものと同様に冷媒として空気を想定し、流れ方向が定まっていない空気に対して全方位で対応させるために、冷却フィンの高さを並べ方向内側のものほど高くしており、液冷式の冷却器などの閉ざされた空間を決まった方向に冷媒が流れる冷却器には不向きである。   Further, the cooler of Patent Document 2 is assumed to be air as a refrigerant in the same manner as that of Patent Document 1, and the height of the cooling fins is set so as to correspond to air in which the flow direction is not fixed in all directions. The inner one in the arrangement direction is made higher, and is not suitable for a cooler in which a refrigerant flows in a fixed direction such as a liquid-cooled cooler.

この発明は、かかる問題点を解決することを課題とするものであって、大量生産、他機種への転用が可能であって、しかも高い冷却性能を発揮することができる冷却器を得ることを目的とする。   An object of the present invention is to solve such problems, and to obtain a cooler capable of mass production, diversion to other models, and exhibiting high cooling performance. Objective.

この発明に係る冷却器は、枠体と、この枠体の両側に設けられ、枠体と協働して冷媒を閉じる空間を形成する第1の板及び第2の板と、前記枠体に設けられ、前記冷媒を前記空間の内部に導入する冷媒流入部、及び前記空間の冷媒を外部に流出する冷媒流出部と、前記空間に並列に配置された複数の冷却フィンとを備え、
前記冷却フィンには、前記冷媒が通る連通部が形成されており、
前記冷媒流入部から前記空間内に流入した前記冷媒は、前記連通部、前記冷媒流出部を通じて外部に流出し、
前記冷却フィンは、前記連通部が複数の異なる形状で形成されており、この同一の冷却フィンは、上下または左右に180度反転して順次配置されている
The cooler according to the present invention includes a frame, a first plate and a second plate which are provided on both sides of the frame and form a space for closing the refrigerant in cooperation with the frame, and the frame. A refrigerant inflow portion for introducing the refrigerant into the space; a refrigerant outflow portion for outflowing the refrigerant in the space; and a plurality of cooling fins arranged in parallel in the space;
The cooling fin has a communication portion through which the refrigerant passes,
The refrigerant that has flowed into the space from the refrigerant inflow portion flows out through the communication portion and the refrigerant outflow portion ,
In the cooling fins, the communication portions are formed in a plurality of different shapes, and the same cooling fins are sequentially arranged 180 degrees upside down or left and right .

この発明に係る電力変換装置用冷却器によれば、冷却フィンには、冷媒が通る連通部が形成されており、冷媒流入部から空間内に流入した冷媒は、連通部、冷媒流出部を通じて外部に流出するようになっているので、冷却フィンの配置枚数を変更することで、冷却能力を変更することができ、多機種への転用が可能である。   According to the cooler for a power conversion device according to the present invention, the cooling fin is formed with a communication portion through which the refrigerant passes, and the refrigerant flowing into the space from the refrigerant inflow portion is externally passed through the communication portion and the refrigerant outflow portion. Therefore, the cooling capacity can be changed by changing the number of cooling fins arranged, and can be diverted to multiple models.

この発明の実施の形態1の電力変換装置用冷却器を示す内部上面図である。It is an internal top view which shows the cooler for power converters of Embodiment 1 of this invention. 図2(a)は図1の冷却フィンを示すA−A線に沿った矢視断面図、図2(b)は冷却フィンの変形例である。2A is a cross-sectional view taken along line AA showing the cooling fin of FIG. 1, and FIG. 2B is a modification of the cooling fin. 図1の電力変換装置用冷却器の内部の冷媒の流速分布を示す分布図である。It is a distribution map which shows the flow velocity distribution of the refrigerant | coolant inside the cooler for power converters of FIG. この発明の実施の形態2の電力変換装置用冷却器を示す内部上面図である。It is an internal top view which shows the cooler for power converters of Embodiment 2 of this invention. 図5(a)は図4の冷却フィンを示すB−B線に沿った矢視断面図、図5(b)は冷却フィンの変形例である。FIG. 5A is a cross-sectional view taken along line BB showing the cooling fin of FIG. 4, and FIG. 5B is a modification of the cooling fin. この発明の実施の形態3の電力変換装置用冷却器を示す内部上面図である。It is an internal top view which shows the cooler for power converters of Embodiment 3 of this invention. 図6の冷却フィンを示すC−C線に沿った矢視断面図である。It is arrow sectional drawing along CC line which shows the cooling fin of FIG. 図7の冷却フィンを示すD−D線に沿った矢視断面図である。It is arrow sectional drawing along the DD line which shows the cooling fin of FIG. 電力変換装置用冷却器の冷却フィンにおける撓みを示す図である。It is a figure which shows the bending in the cooling fin of the cooler for power converters.

以下、この発明の各実施の形態の電力変換装置用冷却器について図に基づいて説明するが、各図において同一、または相当部材、部位については同一符号を付して説明する。   Hereinafter, the power converter cooler according to each embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or equivalent members and parts will be described with the same reference numerals.

実施の形態1.
図1はこの発明の実施の形態1の電力変換装置用冷却器(以下、冷却器と略称する。)を示す内部上面図、図2(a)は図1の冷却フィン5を示すA−A線に沿った矢視断面図である。
この冷却器は、電力変換装置の底面と面接触した冷却器であって、アルミダイカスト製の枠体1と、この枠体1を両側に設けられ枠体1と協働して冷媒である水を閉じる空間を形成する第1の板2及び第2の板3と、この空間内に収納された複数の冷却フィン5と、先端部が枠体1の縁部の一方の側に取り付けられた冷媒流入部6と、この冷媒流入部6と並列に枠体1の縁部の他方の側に取り付けられた冷媒流出部7とを備えている。
枠体1は、冷媒流入部6及び冷媒流出部8側に複数の凹凸部が形成された嵌め込み部4を有している。この嵌め込み部4の凹部に冷却フィン5の端部が嵌着され、各冷却フィン5が互いに並列に配列されている。
Embodiment 1 FIG.
1 is an internal top view showing a power converter cooler (hereinafter abbreviated as a cooler) according to Embodiment 1 of the present invention, and FIG. 2 (a) is an AA showing cooling fins 5 of FIG. It is arrow sectional drawing along the line.
This cooler is a cooler that is in surface contact with the bottom surface of the power converter, and includes a frame 1 made of aluminum die casting, and water that is a coolant in cooperation with the frame 1 provided on both sides of the frame 1. The first plate 2 and the second plate 3 that form a space for closing, a plurality of cooling fins 5 housed in the space, and the tip portion attached to one side of the edge of the frame 1 A refrigerant inflow portion 6 and a refrigerant outflow portion 7 attached to the other side of the edge of the frame 1 in parallel with the refrigerant inflow portion 6 are provided.
The frame 1 has a fitting portion 4 in which a plurality of concave and convex portions are formed on the refrigerant inflow portion 6 and the refrigerant outflow portion 8 side. The end portions of the cooling fins 5 are fitted into the recessed portions of the fitting portions 4, and the cooling fins 5 are arranged in parallel with each other.

各冷却フィン5は、図2(a)から分かるように、上部と下部にそれぞれ冷媒の流れ方向に沿って等分間隔で連通部である切欠き部8a,8bがプレス加工により形成されている。切欠き部8a,8bは、互いに対向しないように形成されている。
なお、図2(b)に示すように、上部と下部にそれぞれ冷媒の流れ方向に沿って等分間隔で連通部である穴部11a、11bがプレス加工により形成された冷却フィン5Aであってもよい。
As can be seen from FIG. 2 (a), each cooling fin 5 is formed with notches 8a and 8b which are communicating portions at equal intervals along the refrigerant flow direction at the upper and lower portions, respectively, by pressing. . The notches 8a and 8b are formed so as not to face each other.
In addition, as shown in FIG. 2 (b), the cooling fins 5A are formed by pressing the holes 11a and 11b which are communicating portions at equal intervals along the refrigerant flow direction at the upper and lower portions, respectively. Also good.

上記冷却器は、冷媒が冷媒流入部6から枠体1の内部の往流路9に入る。この冷媒は、往流路9では、矢印イの方向に流れる一方、途中切欠き部8a,8bを通じて矢印イに対して垂直の矢印ロの方向にも分流して流れ、これらの冷媒は、復流路10で合流し、復流路10では矢印ハの方向に流れ、冷媒流出部7を通じて外部に流出する。   In the cooler, the refrigerant enters the forward flow path 9 inside the frame 1 from the refrigerant inflow portion 6. While this refrigerant flows in the direction of arrow A in the forward flow path 9, it also flows in the direction of arrow B perpendicular to arrow A through the notches 8a and 8b in the middle. They merge in the flow path 10, flow in the direction of arrow C in the return flow path 10, and flow out to the outside through the refrigerant outflow portion 7.

この実施の形態による冷却器によれば、冷却フィン5,5Aは、プレス加工により、切欠き部8a,8b、穴部11a,11bを形成することができ、冷却フィン5,5Aの生産性が高い。
また、冷却フィン5,5Aには、往流路9と復流路10とを連通した連通部である切欠き部8a,8b、穴部11a,11bが形成されているので、冷媒は、往流路9から切欠き部8a、8b、穴部11a、11bを通じて分流して復流路10に流れるので、冷媒は乱流が生じ易く、冷却器の熱伝達率が高い。
According to the cooler according to this embodiment, the cooling fins 5 and 5A can form the notches 8a and 8b and the holes 11a and 11b by press working, and the productivity of the cooling fins 5 and 5A is improved. high.
Further, the cooling fins 5 and 5A are formed with notches 8a and 8b and holes 11a and 11b, which are communication portions that connect the forward flow path 9 and the return flow path 10, so that the refrigerant Since the flow is diverted from the flow path 9 through the notches 8a and 8b and the holes 11a and 11b and flows to the return flow path 10, the refrigerant is likely to generate turbulence and the heat transfer rate of the cooler is high.

また、枠体1は、そのままで、冷却フィン5、5Aの配置枚数、切欠き部8a,8b、穴部11a,11bの寸法を変更することで冷却器の熱伝達率や圧力損失を容易に調整できるので、多機種への転用が可能となる。
また、多機種への転用が可能なため枠体1を大量生産することができ、コストが削減される。
また、各冷却フィン5,5Aは、端部を枠体1の嵌め込み部4に形成された凹部にそれぞれ嵌着されることで、枠体1に容易に位置決め、組み付けられることができ、冷却フィン5,5Aを支持する部材を設ける必要性がなく、生産性が向上するとともにコストが低減される。
In addition, the frame body 1 can be used as it is to easily reduce the heat transfer coefficient and pressure loss of the cooler by changing the number of cooling fins 5 and 5A and the dimensions of the notches 8a and 8b and the holes 11a and 11b. Because it can be adjusted, it can be diverted to multiple models.
Moreover, since it can be diverted to multiple models, the frame body 1 can be mass-produced and the cost can be reduced.
Further, each cooling fin 5, 5 </ b> A can be easily positioned and assembled to the frame body 1 by fitting the end part thereof into the recess formed in the fitting part 4 of the frame body 1. There is no need to provide a member for supporting 5 and 5A, productivity is improved and cost is reduced.

実施の形態2.
図3は図1の冷却器の内部の流速分布を示す分布図である。
この図から分かるように、往流路9から復流路10に流れる冷媒の流速は、冷媒流入部6及び冷媒流出部7から離れるに従って減少する。そのため、冷媒流入部6及び冷媒流出部7から離れるに従って、冷却器の熱伝達率は低下する。
この実施の形態2の冷却器は、この不都合を解消するためになされたものである。
Embodiment 2. FIG.
FIG. 3 is a distribution diagram showing the flow velocity distribution inside the cooler of FIG.
As can be seen from this figure, the flow rate of the refrigerant flowing from the forward flow path 9 to the return flow path 10 decreases as the distance from the refrigerant inflow portion 6 and the refrigerant outflow portion 7 increases. Therefore, the heat transfer coefficient of the cooler decreases as the distance from the refrigerant inflow portion 6 and the refrigerant outflow portion 7 increases.
The cooler of the second embodiment is made to eliminate this inconvenience.

図4はこの発明の実施の形態2の冷却器を示す内部上面図、図5(a)は図4の冷却フィンを示すB−B線に沿った矢視断面図である。
この実施の形態では、冷却フィン15の連通部である切欠き部18a,18bは、冷媒流入部6、冷媒流出部7から離れるに従って、冷媒の流れ方向に沿った幅寸法が大きく形成されている。
このようにすることで、冷媒流入部6、冷媒流出部7に近づくほど、矢印ロに示すように、往流路9から復流路10に流れる冷媒の流れ抵抗が大きくなり、冷却器の内部全体では、往流路9から復流路10に流れる冷媒の流速は均等化され、冷却性能のムラを抑えることができる。
4 is an internal top view showing a cooler according to Embodiment 2 of the present invention, and FIG. 5 (a) is a cross-sectional view taken along line BB showing the cooling fins of FIG.
In this embodiment, the cutout portions 18a and 18b, which are communication portions of the cooling fins 15, are formed so that the width dimension along the refrigerant flow direction increases as the distance from the refrigerant inflow portion 6 and the refrigerant outflow portion 7 increases. .
By doing so, the closer to the refrigerant inflow portion 6 and the refrigerant outflow portion 7, the greater the flow resistance of the refrigerant flowing from the forward flow path 9 to the return flow path 10, as indicated by the arrow B, and the inside of the cooler. As a whole, the flow rate of the refrigerant flowing from the forward flow path 9 to the return flow path 10 is equalized, and uneven cooling performance can be suppressed.

なお、図5(b)に示すように、冷媒の流れ方向に沿って径寸法が大きく形成された連通部である穴部21a,21bが上部及び下部にそれぞれプレス加工により形成された冷却フィン15Aであってもよい。
なお、他の構成は、実施の形態1の冷却器と同じである。
As shown in FIG. 5 (b), cooling fins 15A in which holes 21a and 21b, which are communication portions having large diameters along the refrigerant flow direction, are formed in the upper and lower portions by pressing. It may be.
Other configurations are the same as those of the cooler of the first embodiment.

実施の形態3.
図6はこの発明の実施の形態3の冷却器を示す内部上面図、図7は図6の冷却フィン25を示すC−C線に沿った矢視断面図、図8は図7の冷却フィンを示すD−D線に沿った矢視断面図である。
この実施の形態では、冷却フィン25は、上部と下部にそれぞれ冷媒の流れ方向に沿って大径の連通部である大穴部31aと小径の連通部である小穴部31bとが交互に形成されている。また、冷却フィン25の上部と下部とに、大穴部31aと小穴部31bとが対向して配置されている。
また、各冷却フィン25は、嵌め込み部4の凹部に、隣接した冷却フィン25に対して冷却フィン25を上下に180度反転し、または左右に180度反転して嵌着されている。
また、各冷却フィン25の上端面と第1の板2との間、各冷却フィン25の下端面と第2の板3との間は、ろう付けで溶接されている。
他の構成は、実施の形態1の冷却器と同じである。
Embodiment 3 FIG.
6 is an internal top view showing a cooler according to Embodiment 3 of the present invention, FIG. 7 is a cross-sectional view taken along the line C-C showing cooling fin 25 in FIG. 6, and FIG. 8 is a cooling fin in FIG. It is arrow sectional drawing along the DD line which shows.
In this embodiment, the cooling fin 25 has a large hole portion 31a which is a large-diameter communication portion and a small hole portion 31b which is a small-diameter communication portion alternately formed in the upper and lower portions along the refrigerant flow direction. Yes. Further, the large hole portion 31a and the small hole portion 31b are disposed so as to be opposed to the upper portion and the lower portion of the cooling fin 25, respectively.
In addition, each cooling fin 25 is fitted into the recess of the fitting portion 4 by turning the cooling fin 25 up and down 180 degrees with respect to the adjacent cooling fin 25 or turning 180 degrees left and right.
Further, the upper end surface of each cooling fin 25 and the first plate 2 and the lower end surface of each cooling fin 25 and the second plate 3 are welded by brazing.
Other configurations are the same as those of the cooler of the first embodiment.

この実施の形態の冷却器では、図8に示すように、往流路9から復流路10に流れる冷媒は、途中冷却フィン2の大穴部31aと小穴部31bとを交互に通過するので、乱流がそれだけ生じ易くなり、熱伝達率をより効果的に上げることができる。
また、一種類の冷却フィン25を上下、左右に反転して順次配置することで、冷媒に乱流を生じさせることができ、冷却フィン25を作製するために必要な金型は1つで済むために、低コストで高性能な冷却器を製作することができる。
In the cooler of this embodiment, as shown in FIG. 8, the refrigerant flowing from the forward flow path 9 to the return flow path 10 alternately passes through the large hole portion 31a and the small hole portion 31b of the cooling fin 2 on the way, The turbulent flow is more likely to occur, and the heat transfer rate can be increased more effectively.
Further, by arranging one kind of cooling fins 25 upside down, left and right and sequentially arranging them, turbulent flow can be generated in the refrigerant, and only one mold is necessary for producing the cooling fins 25. Therefore, a low-cost and high-performance cooler can be manufactured.

また、上記冷却器は、冷媒が連通部である大穴部31a、連通部である小穴部8bを通じて流れるので、冷却フィン25を通過する際に冷却フィン25は、その面に圧力を受けるため、この圧力に対する対策がなされていない場合には、図9に示すように撓みが発生する。
これに対しては、各冷却フィン25の上端面と第1の板2との間、各冷却フィン25の下端面と第2の板3との間が、ろう付けで溶接されているので、冷却フィン25の撓み変形を防止することができるとともに、第1の板2及び第2の板3と冷却フィン25とが金属結合され、第1の板2及び第2の板3と冷却フィン25との間の熱抵抗を低減することができる。
なお、実施の形態1の冷却フィン5、5A、実施の形態2の冷却フィン15、15Aについても、勿論、実施の形態3と同様に、第1の板2、第2の板3にろう付けで溶接するようにしてもよい。
In the cooler, since the refrigerant flows through the large hole portion 31a that is the communication portion and the small hole portion 8b that is the communication portion, the cooling fin 25 receives pressure on its surface when passing through the cooling fin 25. When no countermeasure is taken against pressure, bending occurs as shown in FIG.
For this, since the upper end surface of each cooling fin 25 and the first plate 2 and the lower end surface of each cooling fin 25 and the second plate 3 are welded by brazing, The bending deformation of the cooling fin 25 can be prevented, and the first plate 2 and the second plate 3 and the cooling fin 25 are metal-bonded, and the first plate 2 and the second plate 3 and the cooling fin 25 are combined. The thermal resistance between the two can be reduced.
Of course, the cooling fins 5 and 5A of the first embodiment and the cooling fins 15 and 15A of the second embodiment are brazed to the first plate 2 and the second plate 3 as in the third embodiment. You may make it weld with.

なお、上記各実施の形態では、冷媒流入部6及び冷媒流出部7を枠体1の同じ側の縁部に設けたが、冷媒流入部6及び冷媒流出部7を枠体1の対角線の部位に設けるようにしてもよい。
また、冷媒は水に限定されるものではなく、例えば空気であってもよい。
また、電力変換装置が載置され、電力変換装置の底面と面接触した電力変換装置用冷却器は、一例であり、この発明は、他の電機機器を冷却する冷却器にも適用できるのは勿論である。
また、冷却フィン5、5A,15、15A,25と、第1の板2及び第2の板3の端面との固定については、ろう材を用いることなく融接により固定するようにしてもよい。
また、冷却フィン5、5A,15、15A,25に形成された連通部の形状については、矩形状、円形は一例であり、これらの形状に限定されない。
In each of the above embodiments, the refrigerant inflow portion 6 and the refrigerant outflow portion 7 are provided at the edge on the same side of the frame 1, but the refrigerant inflow portion 6 and the refrigerant outflow portion 7 are diagonal portions of the frame 1. You may make it provide in.
Further, the refrigerant is not limited to water, and may be air, for example.
In addition, the power converter cooler on which the power converter is mounted and in surface contact with the bottom surface of the power converter is an example, and the present invention can also be applied to a cooler that cools other electrical equipment. Of course.
Further, the cooling fins 5, 5A, 15, 15A, 25 and the end surfaces of the first plate 2 and the second plate 3 may be fixed by fusion welding without using a brazing material. .
Moreover, about the shape of the communication part formed in cooling fin 5, 5A, 15, 15A, 25, a rectangular shape and a circle are examples, and are not limited to these shapes.

1 枠体、2 第1の板、3 第2の板、4 嵌め込み部、5,5A,15,15A 25 冷却フィン、6 冷媒流入部、7 冷媒流出部、8a,8b,18a,18b 切欠き部(連通部)、9 往流路、10 復流路、11a,11b,21a,21b 穴部(連通部)、31a 大穴部(連通部)、31b 小穴部(連通部)。   DESCRIPTION OF SYMBOLS 1 Frame body, 1st board, 3rd board, 4 fitting part, 5, 5A, 15, 15A 25 Cooling fin, 6 Refrigerant inflow part, 7 Refrigerant outflow part, 8a, 8b, 18a, 18b Notch Part (communication part), 9 forward flow path, 10 return flow path, 11a, 11b, 21a, 21b hole part (communication part), 31a large hole part (communication part), 31b small hole part (communication part).

Claims (7)

枠体と、
この枠体の両側に設けられ、枠体と協働して冷媒を閉じる空間を形成する第1の板及び第2の板と、
前記枠体に設けられ、前記冷媒を前記空間の内部に導入する冷媒流入部、及び前記空間の冷媒を外部に流出する冷媒流出部と、
前記空間に並列に配置された複数の冷却フィンとを備え、
前記冷却フィンには、前記冷媒が通る連通部が形成されており、
前記冷媒流入部から前記空間内に流入した前記冷媒は、前記連通部、前記冷媒流出部を通じて外部に流出し、
前記冷却フィンは、前記連通部が複数の異なる形状で形成されており、この同一の冷却フィンは、上下または左右に180度反転して順次配置されていることを特徴とする冷却器。
A frame,
A first plate and a second plate which are provided on both sides of the frame and form a space for closing the refrigerant in cooperation with the frame;
A refrigerant inflow portion that is provided in the frame and introduces the refrigerant into the space; and a refrigerant outflow portion that flows out the refrigerant in the space to the outside;
A plurality of cooling fins arranged in parallel in the space,
The cooling fin has a communication portion through which the refrigerant passes,
The refrigerant that has flowed into the space from the refrigerant inflow portion flows out through the communication portion and the refrigerant outflow portion ,
The cooling fin is characterized in that the communication portion is formed in a plurality of different shapes, and the same cooling fin is sequentially arranged by being inverted 180 degrees vertically or horizontally .
枠体と、A frame,
この枠体の両側に設けられ、枠体と協働して冷媒を閉じる空間を形成する第1の板及び第2の板と、  A first plate and a second plate which are provided on both sides of the frame and form a space for closing the refrigerant in cooperation with the frame;
前記枠体に設けられ、前記冷媒を前記空間の内部に導入する冷媒流入部、及び前記空間の冷媒を外部に流出する冷媒流出部と、  A refrigerant inflow portion that is provided in the frame and introduces the refrigerant into the space; and a refrigerant outflow portion that flows out the refrigerant in the space to the outside;
前記空間に並列に配置された複数の冷却フィンとを備え、  A plurality of cooling fins arranged in parallel in the space,
前記冷却フィンには、前記冷媒が通る連通部が形成されており、  The cooling fin has a communication portion through which the refrigerant passes,
前記冷媒流入部から前記空間内に流入した前記冷媒は、前記連通部、前記冷媒流出部を通じて外部に流出し、  The refrigerant that has flowed into the space from the refrigerant inflow portion flows out through the communication portion and the refrigerant outflow portion,
前記枠体は、複数の凹凸部が形成された嵌め込み部を有しており、この嵌め込み部の凹部に前記冷却フィンの端部が嵌着されていることを特徴とする冷却器。  The frame has a fitting portion in which a plurality of concave and convex portions are formed, and an end portion of the cooling fin is fitted into a concave portion of the fitting portion.
前記冷媒流入部及び前記冷媒流出部は、前記枠体の同じ側の縁部に設けられ、
前記空間は、内部に前記冷媒流入部に連通した往流路と、前記冷媒流出部に連通した復流路とが形成され、
各前記冷却フィンは、前記往流路と前記復流路との間に並列に配置され、
前記冷媒は、前記冷媒流入部、前記往流路、前記連通部、前記復流路、前記冷媒流出部を通じて外部に流出することを特徴とする請求項1または2に記載の冷却器。
The refrigerant inflow portion and the refrigerant outflow portion are provided at an edge portion on the same side of the frame,
The space is formed therein with a forward flow path communicating with the refrigerant inflow portion and a return flow path communicating with the refrigerant outflow portion,
Each of the cooling fins is arranged in parallel between the forward flow path and the return flow path,
The cooler according to claim 1 or 2 , wherein the refrigerant flows out through the refrigerant inflow portion, the forward flow path, the communication portion, the return flow path, and the refrigerant outflow portion.
前記連通部は、前記冷媒流入部に離れた側が近い側に比較して冷媒通過面積が大きいことを特徴とする請求項1〜3の何れか1項に記載の冷却器。 The cooler according to any one of claims 1 to 3 , wherein the communication part has a larger refrigerant passage area than a side closer to the refrigerant inflow part. 前記冷却フィンは、両端面が前記第1の板及び前記第2の板と溶接により固定されていることを特徴とする請求項1〜の何れか1項に記載の冷却器。 The cooler according to any one of claims 1 to 4 , wherein both ends of the cooling fin are fixed to the first plate and the second plate by welding. 前記冷却フィンは、平板をプレス加工して形成されていることを特徴とする請求項1〜の何れか1項に記載の冷却器。 The cooler according to any one of claims 1 to 5 , wherein the cooling fin is formed by pressing a flat plate. 前記冷却器は、電力変換装置を冷却することを特徴とする請求項1〜の何れか1項に記載の冷却器。 The said cooler cools a power converter device, The cooler of any one of Claims 1-6 characterized by the above-mentioned.
JP2011081712A 2011-04-01 2011-04-01 Cooler Expired - Fee Related JP5178872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011081712A JP5178872B2 (en) 2011-04-01 2011-04-01 Cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081712A JP5178872B2 (en) 2011-04-01 2011-04-01 Cooler

Publications (2)

Publication Number Publication Date
JP2012216708A JP2012216708A (en) 2012-11-08
JP5178872B2 true JP5178872B2 (en) 2013-04-10

Family

ID=47269206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081712A Expired - Fee Related JP5178872B2 (en) 2011-04-01 2011-04-01 Cooler

Country Status (1)

Country Link
JP (1) JP5178872B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005591A (en) * 2000-06-23 2002-01-09 Orion Mach Co Ltd Heat exchanger
JP4013883B2 (en) * 2003-10-20 2007-11-28 三菱電機株式会社 Heat exchanger
US7234514B2 (en) * 2004-08-02 2007-06-26 Asml Holding N.V. Methods and systems for compact, micro-channel laminar heat exchanging
DE102005058780A1 (en) * 2005-12-09 2007-06-14 Forschungszentrum Karlsruhe Gmbh Micro heat exchanger and the use thereof as a fluid cooler for electronic components
JP2010203694A (en) * 2009-03-04 2010-09-16 Showa Denko Kk Liquid cooling type cooling device

Also Published As

Publication number Publication date
JP2012216708A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5983565B2 (en) Cooler
CN103298317B (en) Cooler and cooling device
JP6098758B2 (en) Cooler and semiconductor device having the cooler
EP2315244B1 (en) Liquid-cooled-type cooling device
JP5343007B2 (en) Liquid cooling system
JP4766110B2 (en) Semiconductor cooling structure
JP6406348B2 (en) Cooler and semiconductor module using the same
JP4985382B2 (en) Semiconductor cooling structure
JP2009266937A (en) Stacked cooler
JP2013254787A (en) Heat exchanger and manufacturing method of the same
JP4941398B2 (en) Stacked cooler
JP2013165298A (en) Liquid cooling device
JP2011233688A (en) Semiconductor cooling device
JP5083288B2 (en) Semiconductor cooling structure
WO2020240777A1 (en) Semiconductor device
JP5498135B2 (en) heatsink
JP5178872B2 (en) Cooler
JP2012169429A (en) Heat exchanger
JP2019114682A (en) Liquid-cooled cooler
JP5540944B2 (en) Cooler
JP2012054444A (en) Connector
JP2020004766A (en) Cooler
JP5556691B2 (en) Heat exchanger
JP5251916B2 (en) Electronic equipment cooler
JP2013229461A (en) Servo amplifier including heat sink with fins having wall thickness and pitch dependent on distance from heat source

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R150 Certificate of patent or registration of utility model

Ref document number: 5178872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees