JP5177169B2 - Brick structure of coke oven furnace wall - Google Patents

Brick structure of coke oven furnace wall Download PDF

Info

Publication number
JP5177169B2
JP5177169B2 JP2010106620A JP2010106620A JP5177169B2 JP 5177169 B2 JP5177169 B2 JP 5177169B2 JP 2010106620 A JP2010106620 A JP 2010106620A JP 2010106620 A JP2010106620 A JP 2010106620A JP 5177169 B2 JP5177169 B2 JP 5177169B2
Authority
JP
Japan
Prior art keywords
brick
binder
bricks
royfer
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010106620A
Other languages
Japanese (ja)
Other versions
JP2010209345A (en
Inventor
和人 山村
道隆 境田
秀 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2010106620A priority Critical patent/JP5177169B2/en
Publication of JP2010209345A publication Critical patent/JP2010209345A/en
Application granted granted Critical
Publication of JP5177169B2 publication Critical patent/JP5177169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、コークス炉を構成している耐火物のうち、炭化室と燃焼室フリューの炉壁煉瓦において、熱亀裂を防止し、変形を抑制して炉壁の長寿命化を実現するための、炭化室とフリューの炉壁煉瓦の煉瓦積み構造に関する。   In the furnace wall bricks of the carbonization chamber and the combustion chamber flue among the refractories constituting the coke oven, the present invention prevents thermal cracking and suppresses deformation to realize a long life of the furnace wall. , Relates to brickwork structure of carbonization chamber and flue furnace wall brick.

まず、コークス炉の概要を図1により説明する。図において、1は炭化室、2は燃焼室、3は蓄熱室をそれぞれ示し、4は珪石煉瓦により構成される炭化室壁である。炭化室1は炉団方向5に数十門設置される。操業に際しては炭化室1内に石炭を装入しておき、蓄熱室3から加熱した空気またはガスを燃焼室2へ送ってそこで燃焼させ、この高温にした燃焼室2により炭化室壁4を介して炭化室1内の石炭を間接加熱し、石炭を乾留することになる。   First, an outline of a coke oven will be described with reference to FIG. In the figure, 1 is a carbonization chamber, 2 is a combustion chamber, 3 is a heat storage chamber, and 4 is a carbonization chamber wall made of silica brick. Several dozens of carbonization chambers 1 are installed in the furnace group direction 5. During operation, coal is charged into the carbonization chamber 1, air or gas heated from the heat storage chamber 3 is sent to the combustion chamber 2 and combusted there, and the high-temperature combustion chamber 2 passes through the carbonization chamber wall 4. Thus, the coal in the carbonizing chamber 1 is indirectly heated to dry-distill the coal.

図2に典型的な炉壁の煉瓦積の状態を示す。図2(a),(b)は炉壁煉瓦の平面図を示し、(a),(b)では炉壁煉瓦が炉高方向7に交互(偶数段、あるいは奇数段)に配置され、その正面図を(c)に示す。8は燃焼室フリューであり、炉長方向6に複数並ぶ。9は炭化室と燃焼室フリューとの仕切り壁であるロイファー部であり、12は燃焼室フリュー同士の仕切り壁であるビンダー部を示す。ロイファー部9は炭化室1と燃焼室フリュー8との間のロイファー煉瓦10と、ビンダー部12の煉瓦13との交差部を有するロイファー煉瓦11(形状より通常ハンマー煉瓦と呼ばれる)から成る。該交差部は図(b)の円内14のように必ずしもハンマー形状とは限らない。   FIG. 2 shows a typical brick wall state of the furnace wall. 2 (a) and 2 (b) show plan views of the furnace wall bricks. In (a) and (b), the furnace wall bricks are alternately arranged in the furnace height direction 7 (even or odd stages). A front view is shown in FIG. 8 is a combustion chamber flue, and a plurality of them are arranged in the furnace length direction 6. Reference numeral 9 denotes a Royfer portion which is a partition wall between the carbonization chamber and the combustion chamber flue, and 12 denotes a binder portion which is a partition wall between the combustion chamber flues. The Royfer unit 9 is composed of a Royfer brick 11 (usually called a hammer brick due to its shape) having an intersection of a Royfer brick 10 between the carbonization chamber 1 and the combustion chamber flue 8 and a brick 13 of the binder 12. The intersecting portion is not necessarily a hammer shape as indicated by a circle 14 in FIG.

図3は各段を構成する一般的な煉瓦積み構造の詳細図を示す。10はロイファー煉瓦、13はビンダー煉瓦、11はビンダー煉瓦13と交差部15を有するロイファー煉瓦である。煉瓦と煉瓦の合わせ面を目地と称し、通常、上下敷き目地部16、及び縦目地部17からなり、各目地には凹凸嵌合部(ダボ部)18を有し、煉瓦積み構造強度を上げるとともに、シール性を高める働きがある。また、炉壁煉瓦の上下の積み方は、図2(c)に示す通り、縦目地が炉高方向7に連続するのを避けるため、一段毎に縦目地を交互にずらせ、敷き目地は水平に連続させて積むのが一般的方法である。図2(c)中の破線はビンダー煉瓦13の位置を示す。   FIG. 3 shows a detailed view of a general brick-laying structure constituting each stage. Reference numeral 10 denotes a leufer brick, 13 a binder brick, and 11 a leufer brick having a binder brick 13 and an intersection 15. The mating surface of the bricks and bricks is called a joint, and is usually composed of upper and lower joint joints 16 and vertical joints 17, and each joint has an uneven fitting part (a dowel part) 18 to increase the brick structure strength. At the same time, it works to improve the sealing performance. In addition, as shown in FIG. 2 (c), the furnace wall bricks are stacked vertically so that the vertical joints are alternately shifted in each step in order to avoid the vertical joints continuing in the furnace height direction 7. It is a general method to pile up continuously. A broken line in FIG. 2C indicates the position of the binder brick 13.

コークス炉の炉壁については、建設時の不均一加熱および操業時の表面温度差等により誘起される熱応力、石炭乾留中の石炭膨張圧、コークス押し出し時の側圧等により発生する圧力に対し、十分な強度を有し、かつ座屈に対して十分な余裕が要求される。また、コークス炉は壁一枚を通しての間接加熱による乾留であり、燃焼室フリューと炭化室間は勿論のこと、相隣り合う燃焼室フリュー同志の気密性が重要となる。従って、コークス炉壁を構成する単体煉瓦は、これらの熱変形、外力に対して強い形状であるとともに、その煉瓦の組み合わせによる気密性、かつ良好な熱伝導性が得られることが必要である。   Regarding the wall of the coke oven, the heat stress induced by uneven heating during construction and surface temperature difference during operation, etc., coal expansion pressure during coal dry distillation, side pressure during coke extrusion, etc. It must have sufficient strength and a sufficient margin for buckling. Further, the coke oven is dry distillation by indirect heating through a single wall, and the airtightness between adjacent combustion chamber flues as well as between the combustion chamber flues and the carbonization chambers is important. Therefore, the single brick constituting the coke oven wall is required to have a shape strong against these thermal deformations and external forces, and to obtain airtightness and good thermal conductivity by the combination of the bricks.

次にコークス炉煉瓦の損傷原因を以下に説明する。コークス炉の損傷を、(1)ロイファー部炉高方向の縦貫通亀裂、(2)炉壁変形、(3)煉瓦の割れ・破孔、(4)煉瓦材質劣化その他、に分けて考える。   Next, the cause of damage to the coke oven brick will be described below. Coke oven damage is divided into (1) longitudinal through cracks in the height direction of the Royfer section, (2) deformation of the furnace wall, (3) cracking / breaking of bricks, and (4) deterioration of brick material.

まず、(1)ロイファー部炉高方向の縦貫通亀裂について説明する。図4(b)はロイファー煉瓦に見られる縦貫通亀裂の例を示す。通常、ロイファー煉瓦は(a)のように燃焼室フリュー部分に目地のある煉瓦19と目地のない煉瓦20が高さ方向に交互に積重ねられている。この状態に、操業に伴う熱負荷の繰返しが作用すると、以下のメカニズムにより、(b)に示すように、ロイファー部に目地のある煉瓦19の目地21は開き、同目地部の上下に隣接する煉瓦20に亀裂22が発生し、最終的に高さ方向に亀裂と目地開きが交互に連続発生し、貫通した亀裂となる。   First, (1) the longitudinal through crack in the direction of the height of the Royfer furnace will be described. FIG.4 (b) shows the example of the vertical penetration crack seen in a Royfer brick. Usually, as shown in (a), the Royfer bricks are formed by alternately stacking bricks 19 having joints and bricks 20 having no joints in the flue portion of the combustion chamber in the height direction. In this state, when the heat load due to the operation is repeated, the joints 21 of the bricks 19 having joints in the roy fur part are opened and adjacent to the upper and lower parts of the joint part by the following mechanism, as shown in (b). A crack 22 is generated in the brick 20, and finally cracks and joint openings are alternately generated in the height direction, resulting in a penetrating crack.

図5は、亀裂発生のメカニズムを示す。図中実線はロイファー部に目地のある煉瓦19を、図中破線はロイファー部に目地の無い煉瓦20を示す。炭化室に石炭がない状態では、燃焼室内の高温ガスからの熱伝導を受けて煉瓦全体が高温となり、長手方向の応力は通常圧縮応力23となり、ビンダー部の目地部を起点に炭化室側への迫り出し変形25を起こそうとする。その状態で炭化室に石炭が装入された場合、炭化室表面は数100℃以上の温度降下を引き起こす。この時に、炭化室表面の応力状態は引張応力24となり、目地のある段の煉瓦は目地部を中心に開き変形26を起こそうとする。   FIG. 5 shows the mechanism of crack initiation. The solid line in the figure indicates the brick 19 with joints in the loyer part, and the broken line in the figure indicates the brick 20 without joints in the loyer part. In the state where there is no coal in the carbonization chamber, the entire brick becomes high temperature due to heat conduction from the high temperature gas in the combustion chamber, and the stress in the longitudinal direction is usually compressive stress 23, starting from the joint portion of the binder portion toward the carbonization chamber side. Attempts to cause the squeeze deformation 25. When coal is charged into the carbonization chamber in this state, the carbonization chamber surface causes a temperature drop of several hundred degrees Celsius or more. At this time, the stress state on the surface of the carbonization chamber becomes a tensile stress 24, and the brick at the joint has an opening around the joint and tries to cause deformation 26.

しかしながら、該目地のある煉瓦19の上下段の煉瓦20に目地はなく、目地近傍は目地開きの影響を受けて大きな剪断力を受ける。図6は、上下段の煉瓦に発生する引張応力分布28,30と剪断応力29を示す。煉瓦表面はミクロにみれば相当に粗く、亀裂起点となり得る微細な凹凸が存在する。そのため、目地の直上、直下の煉瓦の目地近傍は上記の、引張応力に加えて大きな剪断応力を受けるため、過大となって亀裂を引き起こす。亀裂は上下方向のどこに最初に入るかは不確定だが、一箇所に入ると、前記剪断力はさらに大きくなって亀裂の入った煉瓦の次の段に伝播するため、最終的にはコークス炉の高さ方向に貫通した亀裂となる。   However, there are no joints in the upper and lower bricks 20 of the brick 19 with joints, and the vicinity of the joints is affected by the joint opening and receives a large shearing force. FIG. 6 shows tensile stress distributions 28 and 30 and shear stress 29 generated in the upper and lower bricks. The brick surface is considerably rough when viewed microscopically, and there are fine irregularities that can become crack initiation points. Therefore, the joints in the vicinity of the bricks immediately above and below the joints receive a large shear stress in addition to the above-described tensile stress. It is uncertain where the crack will enter first in the vertical direction, but once it enters one place, the shear force is further increased and propagates to the next stage of the cracked brick. It becomes a crack penetrating in the height direction.

なお、ビンダー煉瓦と交差部を有するロイファー煉瓦の近傍27は通常目地が複数あり、ロイファー煉瓦はここをピボットに変形するため、目地は閉じる傾向にあるため、目地がロイファー部にあるときのような亀裂の伝搬はあまり起きないことが実績的にも示されている。   It should be noted that the vicinity 27 of the Loyfer brick having an intersection with the binder brick usually has a plurality of joints, and the Loyfer bricks are deformed into pivots, and the joints tend to close. It has also been proven that crack propagation does not occur much.

次に(2)炉壁変形について説明する。
図7は、炉壁変形を説明する図である。図中8は燃焼室の各フリューを示し、炉長方向6に複数門並ぶ。9はロイファー煉瓦を、12はビンダー煉瓦を示す。コークス炉炉壁はコークスの押し出し(31は押し出し方位)、押詰りや、石炭乾留中の石炭膨張圧によって多大な側圧32を受ける。結果、炉壁は33のような張り出し変形を受ける。炭化室は燃焼室フリューの両側にあるため、変形は炉段方向5の33と34の方向に交互に受けることになる。煉瓦には目地が存在するが、通常ダボによって拘束を受けるため、側圧に対する剛性を保っているが、前記のような縦貫通亀裂が発生した場合、剛性が低下するため炭化室面の中央が窪むような変形を起こす。コークス押出した時に、炉壁が変形していると壁近傍のコークスの流れを阻害するため、押し出し抵抗が増加し、最悪は押し詰りが発生する。押し詰は炉の変形をさらに助長するため、側圧の増加をきたす悪循環を引き起こす。この頻度が高くなってくると炉は使用できなくなる。また、目地や亀裂部分にはカーボンが侵入し、これが蓄積していくと、残留変形量が逐次増加していくことになり、これも悪循環の一因となる。
Next, (2) furnace wall deformation will be described.
FIG. 7 is a diagram for explaining furnace wall deformation. In the figure, 8 indicates each flue of the combustion chamber, and a plurality of gates are arranged in the furnace length direction 6. Reference numeral 9 denotes a Royfer brick, and 12 denotes a binder brick. The coke oven wall receives a large lateral pressure 32 due to coke extrusion (31 is the extrusion orientation), clogging, and coal expansion pressure during coal carbonization. As a result, the furnace wall undergoes an overhanging deformation such as 33. Since the carbonization chamber is on both sides of the combustion chamber flue, the deformation is alternately received in the direction 33 and 34 in the furnace stage direction 5. Although joints exist in bricks, they are usually constrained by dowels, so they retain the rigidity against side pressure.However, when the above vertical cracks occur, the rigidity decreases and the center of the coking chamber surface is depressed. Cause unnatural deformation. If the furnace wall is deformed when coke is extruded, the flow of coke near the wall is hindered, so the extrusion resistance increases, and in the worst case, clogging occurs. The clogging further promotes the deformation of the furnace, causing a vicious circle that increases the lateral pressure. When this frequency increases, the furnace cannot be used. Moreover, as carbon penetrates into joints and cracks and accumulates, the amount of residual deformation gradually increases, which also contributes to a vicious circle.

次に(3)煉瓦の割れ・破孔について説明する。
煉瓦は通常、直方体であるが、炉壁の変形が大きくなると、煉瓦の角と角が接触することによって、図8に示すような角欠け35と称する煉瓦の割れが発生する。角欠けが生じると、変形に伴う煉瓦の回転拘束が弱まるため、結果的に炉壁の剛性低下を引き起こし、変形を助長することになる。また、押し詰りは比較的炭化室全面の影響が大きいが、局所的な集中荷重を伴う場合や、縦貫通亀裂部分や、ダボ亀裂等局所的な煉瓦損傷があった場合に、荷重が集中して破孔に至る可能性がある。
Next, (3) Brick cracks / holes will be described.
The brick is usually a rectangular parallelepiped, but when the deformation of the furnace wall increases, the brick corners come into contact with each other to cause a brick crack called a corner chip 35 as shown in FIG. When the corner chipping occurs, the rotation constraint of the brick accompanying the deformation is weakened. As a result, the rigidity of the furnace wall is lowered and the deformation is promoted. In addition, although clogging has a relatively large effect on the entire surface of the carbonization chamber, the load concentrates when there is local concentrated load, or when there is local brick damage such as longitudinal through cracks or dowel cracks. May lead to puncture.

次に(4)煉瓦材質劣化その他について説明する。煉瓦は通常珪石煉瓦が用いられるが、高温での経年的な利用により劣化を起こし、素材の持つもともとの強度が低下する。加えて、表面は常に石炭やコークスによって摩擦を受けたり、石炭装入時の高温〜低温繰返しによるスポーリングを受けるため、表面性状は次第に悪化する。これらは、亀裂の発端となったり、押し出し時の抵抗となって、変形を促進させたり、と言った前述のいろいろな損傷を助長し、悪循環の一因となってしまう。   Next, (4) brick material deterioration and others will be described. Silica brick is usually used as the brick, but it deteriorates due to its use over time at high temperatures, and the original strength of the material decreases. In addition, since the surface is always subjected to friction by coal or coke or spalling due to repeated high to low temperatures at the time of coal charging, the surface properties gradually deteriorate. These cause the above-mentioned various damages such as crack initiation, resistance during extrusion, and acceleration of deformation, and contribute to a vicious circle.

これらに対して、コークス炉を構成している耐火物のうち、炭化室と燃焼室フリューの炉壁煉瓦において、熱亀裂を防止し、変形を抑制して炉壁の長寿命化を実現するための炉壁煉瓦の煉瓦積み構造に関する技術として以下のものがある。   On the other hand, among the refractories that make up the coke oven, in the furnace wall bricks of the carbonization chamber and the combustion chamber flue, to prevent thermal cracking and to suppress deformation, to realize a longer life of the furnace wall There are the following technologies related to the brickwork structure of furnace wall bricks.

特許文献1(図17)は、小口煉瓦の配置によって、炉壁にかかる力を分散して全体の強度を上げようとするものである。しかしながら、小口煉瓦近傍に目地が集中し、煉瓦の回転拘束が弱いため、何らかの原因でロイファー煉瓦に亀裂が入った場合は全体の剛性が低下する。   Patent Document 1 (FIG. 17) attempts to increase the overall strength by dispersing the force applied to the furnace wall by arranging small bricks. However, joints are concentrated in the vicinity of the small brick and the rotation constraint of the brick is weak, so that if the Royfer brick is cracked for some reason, the overall rigidity is lowered.

特許文献2(図18)、特許文献3(図19)はともに、目的は薄壁化にあるが、基本的に炉壁の剛性を上げようとするものである。これらもやはり、小口煉瓦近傍に目地が集中し、煉瓦の回転拘束が弱いため、何らかの原因でロイファー煉瓦に亀裂が入った場合は全体の剛性が低下する。   In both Patent Document 2 (FIG. 18) and Patent Document 3 (FIG. 19), the purpose is to reduce the wall thickness, but basically it is intended to increase the rigidity of the furnace wall. In these cases, joints are concentrated in the vicinity of the small brick and the rotational constraint of the brick is weak, so that if the Royfer brick is cracked for some reason, the overall rigidity is lowered.

特許文献4(図20)は、炭化室の炉長手方向の煉瓦の変形拘束と滑り面の併用によって煉瓦の熱亀裂を防止しようとするものである。本方法では上下方向の段積みの中に滑り面を設定することになるが、煉瓦表面の状況によっては滑りが十分を起きず、結果的に目地部起点に亀裂が入る可能性が高い。   Patent document 4 (FIG. 20) is intended to prevent the brick from thermal cracking by the combined use of the deformation restraint of the brick in the longitudinal direction of the furnace of the carbonization chamber and the sliding surface. In this method, a sliding surface is set in the vertical stacking. However, depending on the condition of the brick surface, the sliding does not occur sufficiently, and as a result, there is a high possibility that the joint starts.

特許文献5(図21)は、炭化室煉瓦を多角形にして強度を上げようとするものであるが、構造的な複雑さから、特にビンダー煉瓦との結合部分に問題があり、実現は困難と思われる。   Patent Document 5 (FIG. 21) attempts to increase the strength by making the carbonization chamber bricks into a polygonal shape, but due to the structural complexity, there is a problem in the joint portion with the binder bricks in particular, which is difficult to realize. I think that the.

特許文献6(図22)は、基本的には煉瓦の種類を低減することが目的であるものの、合わせて強度アップを狙ったものであるが、ロイファー部に目地をもつ構造から亀裂発生の問題解決にはなっていない。   Patent Document 6 (FIG. 22) is basically intended to reduce the types of bricks, but also aims to increase the strength. However, the problem of cracking due to the structure having joints in the Royfer part. It is not a solution.

実用新案文献1(図23)は、ロイファー煉瓦壁厚を規定するものであるが、同煉瓦の目地位置に強度向上の工夫が見られ、また、実用新案文献2(図24)は、目的は薄壁化にあるが、基本的に炉壁の剛性を上げようとするものである。いずれも、小口煉瓦近傍に目地が集中し、煉瓦の回転拘束が弱いため、何らかの原因でロイファー煉瓦に亀裂が入った場合は全体の剛性が低下する。   Utility model document 1 (FIG. 23) defines the thickness of the Royfer brick wall, but there is a device for improving the strength at the joint position of the brick, and utility model document 2 (FIG. 24) Although it is in the form of a thin wall, it basically tries to increase the rigidity of the furnace wall. In any case, joints concentrate in the vicinity of the small brick, and the rotation constraint of the brick is weak, so that if the Royfer brick is cracked for some reason, the overall rigidity is lowered.

また、上記とは別に日本鉄鋼連盟が国家プロジェクトとして推進したSCOPE21次世代コークス製造技術開発において提示された煉瓦積み構造は、熱亀裂防止を考慮した構造設計となっている。(図25)本方式は熱亀裂に対しては好ましい方向であるが、ロイファー部の煉瓦厚みが薄く、従って、熱変形が大きく、長期にわたる表面剛性の維持に問題のある可能性がある。長寿命化を実現するためのその他の方法として、材質改善があるが、本発明とは趣旨が異なるため省略する。上記に引用した特許、実用新案文献を以下に示す。   In addition to the above, the brick structure presented in the SCOPE21 next-generation coke manufacturing technology development promoted as a national project by the Japan Iron and Steel Federation has a structural design that takes into account the prevention of thermal cracks. (FIG. 25) Although this method is a preferred direction for thermal cracking, the brick thickness of the royfer part is thin, and thus thermal deformation is large, which may cause problems in maintaining surface rigidity over a long period of time. There is material improvement as another method for realizing the long life, but it is omitted because it is different from the present invention. The patents and utility model documents cited above are shown below.

特開昭52−22761号公報JP-A-52-22761 特開昭54−157102号公報JP 54-157102 A 特開昭54−157103号公報JP 54-157103 A 特開昭58−222182号公報JP 58-222182 A 特開平7−292366号公報JP-A-7-292366 特開平9−506909号公報JP-A-9-506909 実開昭52−115651号公報Japanese Utility Model Publication No. 52-115651 実開平6−4050号公報Japanese Utility Model Publication No. 6-4050

以上述べた悪循環を断ち、長寿命なコークス炉壁を実現するためには以下のようにすればよい。
(1)熱初期亀裂の回避のため、亀裂の起点となり得る目地をロイファー部に設定しない構造とする。
(2)炉壁の剛性を長期にわたって維持できる構造とし、側圧の増加と炉壁変形の悪循環を発生させない構造とする。
(3)熱亀裂の発生を完全に止めることは難しい。従って、万一、亀裂を生じても剛性低下を起こさない構造とする。
In order to break the vicious circle described above and realize a long-life coke oven wall, the following may be performed.
(1) In order to avoid a thermal initial crack, a structure that does not set a joint that can be a starting point of the crack in the royfer portion is adopted.
(2) A structure that can maintain the rigidity of the furnace wall over a long period of time and a structure that does not generate a vicious cycle of increase in side pressure and deformation of the furnace wall.
(3) It is difficult to completely stop the occurrence of thermal cracks. Therefore, even if a crack occurs, the structure does not cause a decrease in rigidity.

従って、本発明は、上記(1)〜(3)の条件を満足することで、長寿命なコークス炉壁を実現するもので、熱初期亀裂の回避のため、亀裂の起点となり得る目地をロイファー部に設定しない構造、炉壁の剛性を長期にわたって維持し、側圧の増加と炉壁変形の悪循環を発生させない構造、また、万一熱亀裂を生じても剛性低下を起こさない構造を実現することを目的とする。   Accordingly, the present invention realizes a coke oven wall having a long life by satisfying the above conditions (1) to (3). In order to avoid thermal initial cracks, the joint that can be a starting point of cracks is reduced to Royfer. A structure that is not set in the part, maintains the rigidity of the furnace wall for a long time, does not generate a vicious cycle of increased side pressure and furnace wall deformation, and realizes a structure that does not cause a decrease in rigidity even if a thermal crack occurs. With the goal.

本発明では、炭化室と燃焼室との仕切り壁であるロイファー及び燃焼室フリュー同士の仕切り壁であるビンダーを有するコークス炉の炉壁煉瓦積み構造において、ロイファー部の一部とその両端にビンダー部の一部が一体化した煉瓦を有し、一体化した煉瓦は反対側の炭化室に面する部分にも点対称の関係で更に設置され、ビンダー部分には該一体化した煉瓦を連結する形のビンダー煉瓦配置され、前記一体化した煉瓦及び前記ビンダー煉瓦によってリング状の煉瓦ユニットを構成し、該煉瓦ユニットは燃焼室の1フリューに一つ飛び毎に設置し、その間は直方体のロイファー煉瓦で連結され、かつ、前記ロイファー煉瓦は前記ビンダー煉瓦の延長線内のみに垂直接合面である目地を有することを特徴とする。 In the present invention, in the oven wall brickwork structure of the coke oven having a binder wall is a partition wall of the stretcher wall and the combustion chamber flues between a partition wall between the carbonization chamber and the combustion chamber, at both ends thereof and a part of the stretcher wall has a brick portion of binder wall are integrated, the integral brick is installed further in relation to the opposite side of the point symmetry to a portion facing the coking chamber, the bricks in Binder moiety the integrated Binder bricks that are connected to each other are arranged, and the integrated brick and the binder brick constitute a ring-like brick unit, and the brick unit is installed on each flue of the combustion chamber one by one. In addition, the Royfer brick has a joint that is a vertical joint surface only in an extension line of the binder brick.

本発明により、熱亀裂の起点となり得る目地がロイファー部にないため、熱亀裂の発生が抑えられ、ビンダー煉瓦とロイファー煉瓦の一体化によって、炉壁剛性を大幅に向上させ、さらに熱亀裂が発生したとしても側圧に対する剛性を保つことができる。これにより、コークス炉の炉壁については、建設時の不均一加熱および操業時の表面温度差等により誘起される熱応力、石炭乾留中の石炭膨張圧、コークス押し出し時の側圧等により発生する圧力に対し、十分な強度を有しかつ座屈に対して十分な余裕ができる。また、コークス炉は壁一枚を通しての間接加熱による乾留であり、燃焼室と炭化室間は勿論のこと相隣り合う燃焼室フリュー同志の気密性が重要となる。本発明による、コークス炉壁を構成する単体煉瓦は、これらの熱変形、外力に対して強い形状であるとともに、その煉瓦の組み合わせによる気密性かつ良好な熱伝導性が得ることができる。   According to the present invention, since there is no joint in the royfer part that can be the starting point of thermal cracks, the occurrence of thermal cracks is suppressed, and the integration of the binder and royfer bricks significantly improves the furnace wall rigidity, and further thermal cracks are generated. Even if it does, the rigidity with respect to a side pressure can be maintained. As a result, for the coke oven wall, the pressure generated by thermal stress induced by uneven heating during construction and surface temperature difference during operation, coal expansion pressure during coal carbonization, side pressure during coke extrusion, etc. On the other hand, it has sufficient strength and a sufficient margin for buckling. In addition, the coke oven is dry distillation by indirect heating through a single wall, and the airtightness between adjacent combustion chamber flues as well as between the combustion chamber and the carbonization chamber is important. The single brick constituting the coke oven wall according to the present invention has a shape strong against these thermal deformations and external forces, and airtightness and good thermal conductivity can be obtained by the combination of the bricks.

一般的なコークス炉の概略を示す縦断面図である。It is a longitudinal section showing an outline of a general coke oven. 一般的なコークス炉の煉瓦積みの状況を表す図である。It is a figure showing the condition of the brickwork of a general coke oven. 一般的なコークス炉の炭化室の煉瓦積みの状況を表す図である。It is a figure showing the condition of the brickwork of the carbonization chamber of a general coke oven. 縦貫通亀裂を表す図である。It is a figure showing a vertical penetration crack. 縦貫通亀裂発生のメカニズムを表す図である。It is a figure showing the mechanism of a vertical penetration crack generation. 図5を説明する応力図である。It is a stress figure explaining FIG. 炉壁変形を現す図である。It is a figure showing a furnace wall deformation. 煉瓦角欠けを表す図である。It is a figure showing a brick corner chip. 本発明を表す図である。It is a figure showing this invention. 本発明で煉瓦高さを変えた場合を表す図である。It is a figure showing the case where brick height is changed by this invention. 図9を説明する応力分布図である。FIG. 10 is a stress distribution diagram illustrating FIG. 9. 本発明の別形態を表す図である。It is a figure showing another form of the present invention. 本発明の別形態を表す図である。It is a figure showing another form of the present invention. 従来技術の別形態を表す図である。It is a figure showing another form of a prior art. 本発明の剛性アップのメカニズムを表す図である。It is a figure showing the mechanism of rigidity improvement of this invention. 本発明の実施例を示す図である。It is a figure which shows the Example of this invention. 特許文献1の特開昭52−22761号公報を説明する図である。It is a figure explaining Unexamined-Japanese-Patent No. 52-22761 of patent document 1. FIG. 特許文献2の特開昭54−157102号公報を説明する図である。It is a figure explaining Unexamined-Japanese-Patent No. 54-157102 of patent document 2. FIG. 特許文献3の特開昭54−157103号公報を説明する図である。It is a figure explaining Unexamined-Japanese-Patent No. 54-157103 of patent document 3. FIG. 特許文献4の特開昭58−222182号公報を説明する図である。It is a figure explaining Unexamined-Japanese-Patent No. 58-222182 of patent document 4. FIG. 特許文献5の特開平7−292366号公を説明する図である。It is a figure explaining Unexamined-Japanese-Patent No. 7-292366 of patent document 5. FIG. 特許文献6の特開平9−506909号公報を説明する図である。It is a figure explaining Unexamined-Japanese-Patent No. 9-506909 of patent document 6. FIG. 実用新案文献1の実開昭52−115651号公報を説明する図である。It is a figure explaining utility model publication 52-115651 gazette of utility model literature 1. FIG. 実用新案文献2の実開平6−4050号公報を説明する図である。It is a figure explaining utility model 6-4050 gazette of the utility model literature 2. FIG. SCOPE21の炉壁構造を現す図である。It is a figure showing the furnace wall structure of SCOPE21.

以下、本発明を適用したコークス炉炉壁の煉瓦積み構造の実施の形態について図面を参照しながら詳細に説明をする。   Hereinafter, embodiments of a brick building structure of a coke oven furnace wall to which the present invention is applied will be described in detail with reference to the drawings.

図9に本発明による煉瓦、および煉瓦積みの基本構造を示す。   FIG. 9 shows the basic structure of bricks and brickwork according to the present invention.

(a)は偶数段の平面図を、(b)は奇数段の平面図を、(c)は炭化室側から見た正面図を示す。偶数段と奇数段は入れ代わっても構わない。8は燃焼室フリューを、1は炭化室の空間を示す。(a)に示すように、炭化室1に面し、燃焼室フリュー8を挟む、炉長方向のビンダー部37と38、およびロイファー部39を一体構造とする煉瓦36を考える。結果的にハンマー煉瓦は存在しない。該煉瓦は反対側の炭化室に面する部分にも点対称の関係で煉瓦40を設置するものとする。ビンダー部分には該煉瓦36,40を連結する形の煉瓦41,42を配置する。これにより、煉瓦36,40,41,42の4煉瓦によってリング状の煉瓦ユニットを構成する。該煉瓦ユニットは燃焼室の1フリューに一つ飛び毎に設置し、その間は直方体のロイファー煉瓦43で連結される。   (A) is a plan view of even-numbered stages, (b) is a plan view of odd-numbered stages, and (c) is a front view as viewed from the coking chamber side. The even and odd stages may be interchanged. 8 indicates the combustion chamber flue, and 1 indicates the space of the carbonization chamber. As shown in (a), a brick 36 facing the carbonizing chamber 1 and sandwiching the combustion chamber flue 8 and having a binder portion 37 and 38 in the furnace length direction and a royfer portion 39 as an integral structure is considered. As a result, there is no hammer brick. It is assumed that the brick 40 is installed in a point-symmetrical relationship in the portion facing the opposite carbonization chamber. Brick portions 41 and 42 that connect the bricks 36 and 40 are disposed in the binder portion. Thereby, a ring-shaped brick unit is comprised by 4 bricks of the bricks 36,40,41,42. The brick units are installed one by one in one ful of the combustion chamber, and are connected by a cuboid leufer brick 43 between them.

一般に築炉時は、人間によってハンドリングされるため、また、煉瓦製造上の限界から、高さ方向は150mm程度、煉瓦単体の重量を最大15kg程度に抑えることが要求される。本構造の煉瓦は従来に比べて重量が重たくなる。これを避けるためには高さを従来の2/3程度低くすることで対応できる。ハンドリングを補助的な重機を用いて行う場合はその限りではない。図10は煉瓦の高さを低くした例を示す。   In general, since it is handled by humans at the time of building, it is required that the height direction is about 150 mm and the weight of the brick alone is about 15 kg at the maximum because of the limitation in brick manufacturing. The brick of this structure becomes heavier than the conventional one. In order to avoid this, the height can be reduced by about 2/3 of the conventional level. However, this does not apply when handling is performed using auxiliary heavy machinery. FIG. 10 shows an example in which the height of the brick is lowered.

本構造によれば、まず、ロイファー部に目地を持たないため、本目地開きに起因する熱亀裂について避けることができる。また、ビンダー部とロイファー部が一体構造となっているため、側圧や部分的な集中負荷に対しても非常に剛性が高くなる。また、図9(a)の36,40,41,42の4煉瓦によるリング状の煉瓦ユニットは空間的にみると、図9(c),図10,図15(c)のように千鳥に配置されているため(後述)、炉壁全体としての剛性も極めて高くなる。結果的にコークス押し出しや押詰り時の側圧に対しても平面を維持することができ、変形と側圧増加の悪循環も起きにくい構造となっている。   According to this structure, first, since there is no joint in the Royfer part, it is possible to avoid thermal cracks caused by the actual joint opening. In addition, since the binder part and the royfer part have an integrated structure, the rigidity is very high even with respect to a side pressure and a partial concentrated load. In addition, the ring-like brick unit composed of four bricks 36, 40, 41, and 42 in FIG. 9A is spatially staggered as shown in FIGS. 9C, 10 and 15C. Due to the arrangement (described later), the rigidity of the entire furnace wall is extremely high. As a result, it is possible to maintain a flat surface against the side pressure at the time of coke extrusion or clogging, and a structure in which a vicious circle of deformation and increase of the side pressure hardly occurs.

図11は本発明による、ロイファー部に目地がない場合の応力状態を示す。ロイファー部に目地がある場合の応力状態は図6に示すものとなる。ロイファー部に目地がある場合は、図6に示すように、目地に接する上下の煉瓦に大きな引張応力ピークが発生し、かつ、該引張応力のピーク部分に上下煉瓦間のせん断力が重なってピークとなり、亀裂発生の可能性が高くなる。一方、目地がない場合は、図11に示すように、図6に見られるピーク引張応力は立たず、またせん断応力のピークも立たない。ロイファー煉瓦の全長にわたって引張応力が高位ではあるが、目地がある場合に比べてもピークは低い。   FIG. 11 shows a stress state in the case where there is no joint in the loyer part according to the present invention. The stress state in the case where there is a joint in the Royfer portion is as shown in FIG. When there are joints in the royfer part, as shown in FIG. 6, a large tensile stress peak occurs in the upper and lower bricks in contact with the joint, and the shear force between the upper and lower bricks overlaps with the peak part of the tensile stress. Thus, the possibility of cracking is increased. On the other hand, when there is no joint, as shown in FIG. 11, the peak tensile stress seen in FIG. 6 does not stand, and the peak of the shear stress does not stand. Although the tensile stress is high over the entire length of the Royfer brick, the peak is low as compared to the case with joints.

図12は本発明による構造の参考形態の図を示す。(a)は偶数段の平面図を(b)は奇数段の平面図を示す。偶数段と奇数段は入れ代わっても構わない。8は燃焼室フリューを、1は炭化室の空間を示す。(a)の44に示すように、炭化室1に面し、炉長方向のビンダー部45、およびロイファー部46を一体構造とする煉瓦を考える。この場合も結果的にハンマー煉瓦は存在しない。該煉瓦は反対側の炭化室1に面する部分にも点対称の関係で設置するものとする(47)。ビンダー部分には該煉瓦46,47を連結する形の煉瓦48,49を配置する。図12に示す構造の場合は全てのロイファー部が、煉瓦44によって構成される。   FIG. 12 shows a diagram of a reference embodiment of the structure according to the invention. (A) is a plan view of even stages, and (b) is a plan view of odd stages. The even and odd stages may be interchanged. 8 indicates the combustion chamber flue, and 1 indicates the space of the carbonization chamber. As shown in 44 of (a), a brick that faces the carbonization chamber 1 and has a binder portion 45 in the furnace length direction and a royfer portion 46 as an integral structure is considered. In this case, as a result, there is no hammer brick. The brick is also installed in a point-symmetrical relationship in the part facing the opposite carbonization chamber 1 (47). Bricks 48 and 49 in the form of connecting the bricks 46 and 47 are arranged in the binder portion. In the case of the structure shown in FIG. 12, all the royfer parts are constituted by bricks 44.

図13は本発明による構造のさらなる参考形態の図を示す。(a)は偶数段の平面図を(b)は奇数段の平面図を示す。偶数段と奇数段は入れ代わっても構わない。8は燃焼室フリューを、1は炭化室の空間を示す。(a)に示すように、炭化室1に面し、炉長方向のビンダー部51、およびロイファー部52を一体構造とする煉瓦50を考える。この場合も結果的にハンマー煉瓦は存在しない。該煉瓦は反対側の炭化室1に面する部分にも点対称の関係で設置するものとする(53)。ビンダー部分には該煉瓦50,53を連結する形の煉瓦が存在しないため、全体的な剛性はさらに高くなる。   FIG. 13 shows a diagram of a further reference embodiment of the structure according to the invention. (A) is a plan view of even stages, and (b) is a plan view of odd stages. The even and odd stages may be interchanged. 8 indicates the combustion chamber flue, and 1 indicates the space of the carbonization chamber. As shown in (a), consider a brick 50 that faces the carbonization chamber 1 and has a binder portion 51 and a royfer portion 52 in the furnace length direction as an integral structure. In this case, as a result, there is no hammer brick. The brick is also placed in a point-symmetric relationship on the opposite side facing the carbonization chamber 1 (53). Since there is no brick in the form of connecting the bricks 50 and 53 in the binder portion, the overall rigidity is further increased.

また、図12、図13に示す構造によれば、まず、ロイファー部に目地を持たないため、本目地開きに起因する熱亀裂について避けることができる。また、ビンダー部とロイファー部が一体構造となっているため、側圧や部分的な集中負荷に対しても非常に剛性が高くなる。ただし、図9に示すような燃焼室フリュー両側のビンダー煉瓦を含まないため、側圧や集中荷重に対して、剛性は低下する。しかしながら、炭化室の全煉瓦壁が同一構造となるため、相対的に高い強度を有する。また、煉瓦単体の重量が若干下げられ、ハンドリングし易くなる。   In addition, according to the structure shown in FIGS. 12 and 13, first, since the Royfer portion does not have joints, it is possible to avoid thermal cracks caused by actual joint opening. In addition, since the binder part and the royfer part have an integrated structure, the rigidity is very high even with respect to a side pressure and a partial concentrated load. However, since the binder bricks on both sides of the combustion chamber flue as shown in FIG. 9 are not included, the rigidity decreases with respect to the side pressure and concentrated load. However, since all the brick walls of the carbonization chamber have the same structure, they have a relatively high strength. In addition, the weight of the brick alone is slightly reduced, and handling becomes easy.

さらに図14は従来技術の参考形態の図を示す。(a)は偶数段の平面図を(b)は奇数段の平面図を示す。偶数段と奇数段は入れ代わっても構わない。8は燃焼室フリューを、1は炭化室の空間を示す。本構造は、図9(a)の39,40,41,42の4煉瓦によるリング状の煉瓦ユニットを一体化し、ロイファー部54,55、ビンダー部56,57を一体化して単体煉瓦58とするものである。強度的には最大のものとなる。ただし、重量が人がハンドリングできない程、重くなってしまうため、特別な重機によって煉瓦積みを行う必要がある。   Further, FIG. 14 shows a diagram of a reference form of the prior art. (A) is a plan view of even stages, and (b) is a plan view of odd stages. The even and odd stages may be interchanged. 8 indicates the combustion chamber flue, and 1 indicates the space of the carbonization chamber. In this structure, a ring-shaped brick unit composed of four bricks 39, 40, 41, and 42 in FIG. 9A is integrated, and the Royfer parts 54 and 55 and the binder parts 56 and 57 are integrated into a single brick 58. Is. It is the maximum in strength. However, since the weight becomes so heavy that it cannot be handled by humans, it is necessary to carry out brickwork using special heavy equipment.

本発明による構造において、図9に示す、ロイファー煉瓦とビンダー煉瓦の一部を一体化した煉瓦39,40、及び該煉瓦39,40を連結する形のビンダー煉瓦41,42からなる構造は、図15に示すように、非常に強固なリング状の煉瓦構造体59となり、該リング状の煉瓦構造体59が空間的に、ロイファー煉瓦43とともに空間的には千鳥配列されることになり、コークス炉炉壁全体として非常に剛性を高める効果をもたらす。本効果は図12、図13、図14の別形態の構造に対してもあてはまり、特に図14のリング状に一体化した構造では最大の剛性を呈する。   In the structure according to the present invention, the structure shown in FIG. 9 is made up of bricks 39 and 40 in which a part of the Binder brick and the Loyfer brick are integrated, and the binder bricks 41 and 42 in the form of connecting the bricks 39 and 40. As shown in FIG. 15, a very strong ring-shaped brick structure 59 is formed, and the ring-shaped brick structure 59 is spatially arranged in a staggered manner together with the Royfer brick 43. The entire furnace wall has the effect of greatly increasing rigidity. This effect is also applicable to the structures of the other forms shown in FIGS. 12, 13, and 14. In particular, the structure integrated in the ring shape of FIG. 14 exhibits the maximum rigidity.

図9に示す構造の煉瓦を、部分的に損壊したコークス炉の補修時に、損壊煉瓦の代替として採用した。図16に採用した寸法を示す。該構造の煉瓦の採用により、修復されたコークス煉瓦壁の変形は抑えられ、押詰りも起こらず、また、高さ方向に貫通する熱亀裂の発生もなく順調に経過しており、従来に比べて補修期間を延ばすことができた。   The brick with the structure shown in FIG. 9 was used as an alternative to the broken brick when repairing a partially damaged coke oven. FIG. 16 shows the dimensions adopted. By adopting the brick of this structure, deformation of the repaired coke brick wall is suppressed, clogging does not occur, and there is no occurrence of thermal cracks penetrating in the height direction, and it has passed smoothly. We were able to extend the repair period.

1 炭化室
2 燃焼室
3 蓄熱室
4 炭化室壁
5 炉団方向
6 炉長方向
7 炉高方向
8 燃焼室フリュー
9 ロイファー部
10 ロイファー煉瓦
11 ロイファー煉瓦とビンダー煉瓦の交差部(ハンマー煉瓦)
12 ビンダー部
13 ビンダー煉瓦
14 ロイファー煉瓦とビンダー煉瓦の交差部
15 ロイファー煉瓦とビンダー煉瓦間の縦目地部
16 上下敷き目地部
17 ロイファー煉瓦間の縦目地部
18 凹凸嵌合部(ダボ部)
19 ロイファー部に目地のある煉瓦
20 ロイファー部に目地のない煉瓦
21 目地開き部
22 亀裂部
23 圧縮応力
24 引張応力
25 炭化室への迫り出し変形
26 目地開き変形
27 ビンダー部近傍のロイファー煉瓦目地挙動
28 ロイファー部に目地のない煉瓦の炉長方向応力
29 上下段煉瓦間の剪断応力
30 ロイファー部に目地のある煉瓦の炉長方向応力
31 押し出し力とその方向
32 側圧
33 炉団方向の張り出し変形
34 炉団方向の張り出し変形(33と反対方向)
35 角欠け
36 ビンダー部37と38、およびロイファー部39を一体構造とする煉瓦
37 ビンダー部
38 ビンダー部
39 ロイファー部
40 煉瓦36と点対称で、反対側の炭化室に面する煉瓦
41 煉瓦36と40を連結するビンダー煉瓦
42 煉瓦36と40を連結するビンダー煉瓦
43 煉瓦36と36の間に設置されるロイファー煉瓦
44 ビンダー部45とロイファー部46を一体構造とする煉瓦
45 ビンダー部
46 ロイファー部
47 煉瓦44と点対称で、反対側の炭化室に面する煉瓦
48 煉瓦44と47を連結するビンダー煉瓦
49 煉瓦44と47を連結するビンダー煉瓦
50 ビンダー部51とロイファー部52を一体構造とする煉瓦
51 ビンダー部
52 ロイファー部
53 煉瓦50と点対称で、反対側の炭化室に面する煉瓦
54 ロイファー部
55 ロイファー部
56 ビンダー部
57 ビンダー部
58 煉瓦54,55,56,57を一体構造とする煉瓦
59 煉瓦39,40とこれらを連結するビンダー煉瓦41,42からなるリング構造





DESCRIPTION OF SYMBOLS 1 Carbonization chamber 2 Combustion chamber 3 Heat storage chamber 4 Carbonization chamber wall 5 Furnace direction 6 Furnace length direction 7 Furnace height direction 8 Combustion chamber flue 9 Royfer part 10 Royfer brick 11 Crossing part of Royfer brick and Binder brick (hammer brick)
12 Binder part 13 Binder brick 14 Crossing part 15 between Royfer brick and Binder brick 15 Vertical joint part 16 between Royfer brick and Binder brick Vertical joint part 17 Vertical joint part 18 between Loyfer brick
19 Brick with joints in the Royfer part 20 Brick without joints in the Royfer part 21 Joint opening part 22 Crack part 23 Compressive stress 24 Tensile stress 25 Extrusion deformation to the carbonization chamber 26 Joint opening deformation 27 Loyfer brick joint behavior near the binder part 28 Furnace length stress of bricks without joints in the Royfer part 29 Shear stress between upper and lower bricks 30 Furnace length direction stress of bricks with joints in the Royfer part 31 Extrusion force and its direction 32 Side pressure 33 Overhang deformation 34 Overhang deformation in the direction of the furnace group (opposite to 33)
35 Brick part 37 Binder part 38 Binder part 39 Royfer part 40 Brick part 41 that faces the coking chamber on the opposite side 41 Brick part 36 Binder brick 42 for connecting 40 Binder brick 43 for connecting bricks 36 and 40 Royfer brick 44 installed between the bricks 36 and 36 Brick part 45 and a brick part 45 and a loyer part 46 Binder part 46 Royfer part 47 Brick 48 point-symmetric with brick 44 and facing opposite carbonization chamber 48 Binder brick 49 connecting bricks 44 and 47 Binder brick 50 connecting bricks 44 and 47 Binder unit 51 and Bricker unit 52 51 Binder part 52 Royfer part 53 Brick 5 which is point-symmetric with brick 50 and faces the opposite carbonization chamber 4 Royfer part 55 Royfer part 56 Binder part 57 Binder part 58 Brick 59 which integrates bricks 54, 55, 56, 57 59 Brick 39, 40 and ring structure which consists of binder brick 41, 42 which connects these





Claims (1)

炭化室と燃焼室との仕切り壁であるロイファー及び燃焼室フリュー同士の仕切り壁であるビンダーを有するコークス炉の炉壁煉瓦積み構造において、
ロイファー部の一部とその両端にビンダー部の一部が一体化した煉瓦を有し、
一体化した煉瓦は反対側の炭化室に面する部分にも点対称の関係で更に設置され、
ビンダー部分には該一体化した煉瓦を連結する形のビンダー煉瓦配置され、
前記一体化した煉瓦及び前記ビンダー煉瓦によってリング状の煉瓦ユニットを構成し、
該煉瓦ユニットは燃焼室の1フリューに一つ飛び毎に設置し、
その間は直方体のロイファー煉瓦で連結され、かつ、前記ロイファー煉瓦は前記ビンダー煉瓦の延長線内のみに垂直接合面である目地を有すること
を特徴とするコークス炉炉壁の煉瓦積み構造。
In oven wall brickwork structure of the coke oven having a binder wall is a partition wall of the stretcher wall and the combustion chamber flues between a partition wall between the carbonization chamber and the combustion chamber,
It has a brick with a part of the Royfer part and a part of the binder part integrated at both ends,
The integrated brick is further installed in a point-symmetrical relationship on the part facing the opposite carbonization chamber,
Binder bricks form of connecting the bricks that said integrated is disposed in the Binder section,
A ring-shaped brick unit is constituted by the integrated brick and the binder brick,
The brick unit is installed one by one on one flue of the combustion chamber,
A brick structure of a coke oven furnace wall characterized by being connected by a cuboid royfer brick between them and having a joint that is a vertical joint surface only in the extension line of the binder brick.
JP2010106620A 2010-05-06 2010-05-06 Brick structure of coke oven furnace wall Expired - Lifetime JP5177169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106620A JP5177169B2 (en) 2010-05-06 2010-05-06 Brick structure of coke oven furnace wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106620A JP5177169B2 (en) 2010-05-06 2010-05-06 Brick structure of coke oven furnace wall

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004125708A Division JP2005307003A (en) 2004-04-21 2004-04-21 Bricklayer structure of coke oven wall

Publications (2)

Publication Number Publication Date
JP2010209345A JP2010209345A (en) 2010-09-24
JP5177169B2 true JP5177169B2 (en) 2013-04-03

Family

ID=42969825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106620A Expired - Lifetime JP5177169B2 (en) 2010-05-06 2010-05-06 Brick structure of coke oven furnace wall

Country Status (1)

Country Link
JP (1) JP5177169B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033402A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 Coke oven composing brick and bricklayer structure of coke oven
CN110982540B (en) * 2019-11-28 2021-04-23 攀钢集团攀枝花钢钒有限公司 Method for maintaining tamping coke oven with coke heat

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2416948B2 (en) * 1974-04-08 1976-05-26 PROCEDURE FOR CONSTRUCTION AND REPAIR OF COOK CHAMBER WALL
DE2430053C2 (en) * 1974-06-22 1982-10-21 Krupp-Koppers Gmbh, 4300 Essen Heating wall for horizontal coke oven batteries
DE4244547A1 (en) * 1992-12-30 1994-07-07 Lichtenberg Feuerfest Form stone for the delivery of coke oven chambers

Also Published As

Publication number Publication date
JP2010209345A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP6573837B2 (en) Coke oven combustion chamber repair method
JP5842573B2 (en) Skid post
JP5177169B2 (en) Brick structure of coke oven furnace wall
JP2005307003A (en) Bricklayer structure of coke oven wall
JP4926667B2 (en) Coke oven furnace wall brickwork structure
JP4975772B2 (en) Brick structure of coke oven furnace wall
JP4777034B2 (en) Brick structure of coke oven furnace wall
JP2020033402A (en) Coke oven composing brick and bricklayer structure of coke oven
JP2008127529A (en) Chamber type coke oven structure and method for constructing chamber type coke oven
JP5093254B2 (en) Coke oven repair method
JP5045341B2 (en) Hot transshipment method for furnace wall bricks in coke oven.
JPH07258648A (en) Structure of ceiling of coke oven
JP6543310B2 (en) Method of constructing combustion chamber adjacent to pinion wall of coke oven
JP5682441B2 (en) Brick transshipment method for coke oven carbonization chamber
JP5491327B2 (en) Furnace construction on the side wall of the kiln
JP2000313882A (en) Method of constraining non-replacing brick when replacing hot brick for coke oven wall
JP2014091764A (en) Method for repairing coke oven by partial replacement
JP2022154188A (en) Brick masonry structure of combustion chamber end part of chamber oven-type coke oven
CN104101214A (en) Furnace mouth structure of forging furnace
JP2003193059A (en) Brick for oven wall of coke oven port
JP2016017143A (en) Operation method of coke oven
JP3194386U (en) Refractory brick assembly for coke oven repair
JP6323223B2 (en) Coke oven
JP2021169581A (en) Refractory block and installation method of the same
JP2005194424A (en) Top deck structure of chamber oven type coke oven

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5177169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350