JP2014091764A - Method for repairing coke oven by partial replacement - Google Patents

Method for repairing coke oven by partial replacement Download PDF

Info

Publication number
JP2014091764A
JP2014091764A JP2012242014A JP2012242014A JP2014091764A JP 2014091764 A JP2014091764 A JP 2014091764A JP 2012242014 A JP2012242014 A JP 2012242014A JP 2012242014 A JP2012242014 A JP 2012242014A JP 2014091764 A JP2014091764 A JP 2014091764A
Authority
JP
Japan
Prior art keywords
mortar
flue
repaired
brick
coke oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012242014A
Other languages
Japanese (ja)
Other versions
JP5991478B2 (en
Inventor
Seiji Hosohara
聖司 細原
Hisahiro Matsunaga
久宏 松永
Shunichi Kamezaki
俊一 亀崎
Takayuki Nanba
隆行 難波
Atsushi Okada
淳 岡田
Yasumasa Fukushima
康雅 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012242014A priority Critical patent/JP5991478B2/en
Publication of JP2014091764A publication Critical patent/JP2014091764A/en
Application granted granted Critical
Publication of JP5991478B2 publication Critical patent/JP5991478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for repairing a coke oven by partial replacement, in which an expansion absorption margin is made proper without using a ceramic board.SOLUTION: When bricks for forming a flue of a combustion chamber of the coke oven are repaired by replacement while leaving a ceiling part 1 as it is, the temperature of a carbonization chamber-side wall of the flue that is connected to the flue to be repaired and is not to be repaired, and the temperature of the opposed side to the wall of the flue to be repaired that is adjacent to the flue to be repaired is retained at the temperature equal to or higher than 400°C. In a horizontal-direction joint 3 of the brick to be replaced, used is mortal which has 30% or higher linear shrinkage rate under 0.1 MPa load and 100-800°C temperature range. The thickness and the number of layers of the mortar are set and the mortar is disposed so that the thickness of the mortar per one place of the joint is lower than the projection height of a convex dowel part of the brick. An amorphous refractory material having 5 MPa or higher bending strength after hardened and dried is used in a connection part of the remaining ceiling part 1 to a newly-replaced portion.

Description

本発明は、室炉式コークス炉の部分積替え補修方法に関するものである。   The present invention relates to a partial transshipment repair method for a chamber furnace type coke oven.

コークス炉は、燃焼室と炭化室とが交互に配置され、高温の燃焼室の温度を炭化室内の石炭に壁煉瓦を介して伝熱させて石炭を乾留し、コークスを製造する窯炉である。建設から30年以上使用するものもあり、不具合部分は補修しながら使用する。特に、炭化室の壁は、石炭装入時の急速な冷却やその後の昇温により熱履歴を受け、しかも石炭の装入や押出時の磨耗等で損傷する。そこで、損傷の度合いに応じて補修を実施し、延命を図っている。   The coke oven is a kiln furnace in which combustion chambers and carbonization chambers are alternately arranged, and the temperature of the high-temperature combustion chamber is transferred to the coal in the carbonization chamber through wall bricks to dry-distill the coal to produce coke. . Some have been used for more than 30 years since construction, and repaired defective parts. In particular, the wall of the carbonization chamber receives a thermal history due to rapid cooling during coal charging and subsequent temperature rise, and is damaged due to wear during coal charging and extrusion. Therefore, repairs are carried out according to the degree of damage to extend life.

この補修方法の一つとして、部分積替えという方法がある。これは損傷した壁部分の煉瓦を積替えて新しくする方法である。このとき、天井部と積替えない壁部分とが残存し、それらを400℃以上の比較的高温に保持したまま、損傷部位の壁煉瓦を積替える。天井部は残存させるので、新規積替え部分の膨張を吸収して天井部に伝えないようにする必要がある。   One of the repair methods is a method of partial transshipment. This is a method of transshipping and renewing bricks on damaged wall parts. At this time, a ceiling part and the wall part which is not transposed remain | survived, and the wall brick of a damaged part is transshipped, holding them at the comparatively high temperature of 400 degreeC or more. Since the ceiling part remains, it is necessary to absorb the expansion of the new transshipment part and not transmit it to the ceiling part.

このため例えば、特許文献1には、珪石煉瓦に加えて壁部材の一部として可縮性セラミックボードを用い、且つ目地材として珪石質モルタルとクッションモルタルとを併用する技術が開示されているが、セラミックボードを壁部分に使用する場合、一般にこの部位の煉瓦にはダボ部と呼ばれる凹凸がつけてあるため、使用が困難である。   For this reason, for example, Patent Document 1 discloses a technique in which a contractible ceramic board is used as a part of a wall member in addition to silica brick and a combination of siliceous mortar and cushion mortar is used as a joint material. When the ceramic board is used for the wall portion, it is difficult to use the brick at this portion because the brick at this portion is generally provided with unevenness called a dowel portion.

また、天井部の新旧の繋ぎ目に使用しようとしても、以下のような理由により使用が困難である。その一つは、新旧の繋ぎ目は目地厚の誤差や煉瓦の寸法誤差等によって生ずるそれまでの施工誤差が集中する部位であり、繋ぎ目の厚さは場所によって異なるため、それに合わせる加工が必要だからであり、あるいは、繋ぎ目部の高さが同じになるよう、途中で煉瓦加工や目地厚の増減が必要だからである。もう一つは、天井部の新旧の繋ぎ目の煉瓦は異形煉瓦であり、膨張が均一でない場合、回転方向に力が働いて、張出しあるいは脱落し易くなるからである。   Moreover, even if it is going to be used for the old and new joints of the ceiling, it is difficult to use for the following reasons. One of them is the site where old and new joints are concentrated on construction errors caused by joint thickness errors and brick dimensional errors. The thickness of joints varies depending on the location, so processing to match them is necessary. This is because, or it is necessary to process bricks and increase / decrease the joint thickness on the way so that the joints have the same height. The other is that the old and new joint bricks in the ceiling are deformed bricks, and if the expansion is not uniform, a force acts in the direction of rotation, making it easier to overhang or drop off.

特開平09−316456号公報JP 09-316456 A

上述のように従来の技術では、施工能率が悪かったり、張出しや脱落のリスクが大きかったりするという不都合があった。   As described above, the conventional techniques have the inconvenience that the construction efficiency is poor and the risk of overhang and dropping is large.

以上の実情に鑑み本発明は、セラミックボードを使用せずに膨張吸収代を適正化することで、施工能率を高めるとともに張出しや脱落のリスクを殆ど若しくは全くなくしたコークス炉の部分積替え補修方法を提供することを目的としている。   In view of the above circumstances, the present invention provides a partial transshipment repair method for a coke oven that enhances construction efficiency and eliminates little or no risk of overhang and dropout by optimizing the expansion absorption margin without using a ceramic board. It is intended to provide.

本発明のコークス炉の部分積替え補修方法は前記課題を解決するために、室炉式コークス炉の燃焼室の一部分のフリューを形成する煉瓦を、天井部を残したまま積替えて補修するに際し、補修するフリューに連続する補修しないで残存させるフリューの炭化室側の壁、および補修するフリューと隣り合うフリューの補修する壁と対面する壁の温度を400℃以上に保持し、積替える煉瓦の水平方向の目地に、0.1MPの荷重下で100℃から800℃までの線収縮率が30%以上あるモルタルを煉瓦の膨張吸収代として使用し、該モルタルの室温から操業温度までで想定される鉛直方向の合計収縮量が、煉瓦の室温から操業温度までで想定される鉛直方向の合計膨張量の50〜95%となるように該モルタルの厚さ及び層数を設定し、かつ目地1箇所当りの該モルタルの厚さを煉瓦の凸ダボ部の出張り高さ未満となるように設定して、該モルタルを配置し、残存天井部と新たに積む部位との接続部分に、硬化して乾燥した後の曲げ強度が5MPa以上の不定形の耐火材料を用いることを特徴とするものである。   In order to solve the above-mentioned problem, the partial transshipment repair method for a coke oven of the present invention repairs bricks forming a part of the flue of the combustion chamber of the chamber-type coke oven by transshipment and repairing them while leaving the ceiling portion. The horizontal direction of the bricks to be transposed while maintaining the temperature of the wall on the coking chamber side of the flue remaining without repairing the flue to be fixed and the wall facing the wall to be repaired adjacent to the flue to be repaired at 400 ° C or higher Mortar with a linear shrinkage of 30% or more from 100 ° C to 800 ° C under a load of 0.1MP is used as the expansion and absorption allowance of brick, and the vertical assumed from the room temperature to the operating temperature of the mortar Setting the thickness and number of layers of the mortar so that the total amount of shrinkage in the direction is 50 to 95% of the total amount of expansion in the vertical direction assumed from the room temperature to the operation temperature of the brick, and Set the thickness of the mortar per place of the ground to be less than the protruding height of the convex dowel part of the brick, place the mortar, and at the connection part between the remaining ceiling part and the newly piled part, An indeterminate refractory material having a bending strength of 5 MPa or more after being cured and dried is used.

本発明のコークス炉の部分積替え補修方法では、前記モルタルの施工位置が、天井部を形成する上下面の面積が異なる煉瓦の一段下の炉壁煉瓦より下の炉壁煉瓦積み部にあると好ましい。   In the partial transshipment repair method of the coke oven of the present invention, it is preferable that the mortar construction position is in the furnace wall brick pile part below the brick wall part one step below the brick having different areas of the upper and lower surfaces forming the ceiling part. .

また本発明のコークス炉の部分積替え補修方法では、前記モルタルの室温から操業温度までで想定される鉛直方向の合計収縮量が、煉瓦の室温から操業温度までで想定される鉛直方向の合計膨張量の50〜80%となるように、該モルタルの厚さ及び層数を設定して配置すると好ましい。   Moreover, in the partial transshipment repair method of the coke oven of the present invention, the vertical total shrinkage assumed from the room temperature to the operation temperature of the mortar is the total expansion amount assumed in the vertical direction from the room temperature to the operation temperature of the brick. The thickness and the number of layers of the mortar are preferably set so as to be 50 to 80%.

本発明のコークス炉の部分積替え補修方法によれば、セラミックボードを使用せず膨張吸収代を適正化することで、部分積替え補修の際の施工能率を高めるとともに張出しや脱落のリスクを殆ど若しくは全くなくすことができる。   According to the partial transshipment repair method of the coke oven of the present invention, by optimizing the expansion absorption allowance without using a ceramic board, the construction efficiency at the time of partial transshipment repair is improved and the risk of overhang and dropout is little or not. Can be eliminated.

室炉式コークス炉の一例としてのカールスチル式コークス炉の燃焼室のフリュー間壁部の煉瓦積み断面を示す模式図である。It is a schematic diagram which shows the brick cross section of the wall part between flues of the combustion chamber of the Carlstil type coke oven as an example of a chamber type coke oven.

本発明の室炉式コークス炉の部分積替え補修方法の一実施形態は、図1に示す室炉式コークス炉の一例としてのカールスチル式コークス炉に適用したものであり、この実施形態では、以下のようにして煉瓦の部分積替え補修を行う。ここで、図中符号1は天井部、2は燃焼室の長手方向へ並んだフリュー間を繋ぐ水平焔道、3は煉瓦間の目地、4は煉瓦の凸ダボ部、5は天井部の残存部分(図では上側)と新たに積む部位(図では下側)との接続部分に充填した不定形耐火物をそれぞれ示す。   One embodiment of the partial transshipment repair method for the chamber furnace coke oven of the present invention is applied to a Karl-Styl coke oven as an example of the chamber oven coke oven shown in FIG. In this way, partial transshipment repair of bricks is performed. Here, reference numeral 1 in the figure is a ceiling portion, 2 is a horizontal tunnel connecting flues arranged in the longitudinal direction of the combustion chamber, 3 is a joint between bricks, 4 is a convex dowel portion of the brick, and 5 is a remaining ceiling portion. The amorphous refractory filled in the connection part between the part (upper side in the figure) and the newly loaded part (lower side in the figure) is shown.

すなわち本発明者らは、天井部を残存させた部分積替えにおいて、課題を整理し検討した。不具合は大別して、積み替えるフリューに連続する補修しないで残存させるフリューの炭化室側および補修するフリュー側のフリュー間壁部の張出しと、積み替えたフリューの部分と残存部分との境界付近の壁部の張出しであった。前者については、積替え時の残存壁部の温度低下によるその奥部との温度差に起因する、昇温時の熱膨張差によるものであることを突き止めた。そして種々の検討の結果、補修するフリューに連続する補修しないで残存させるフリューの炭化室側の壁、および補修するフリューと隣り合うフリューの補修する壁と対面する壁の温度を400℃以上に保持することで、この不具合は回避できることが判明した。   That is, the present inventors arranged and examined the problems in partial transshipment in which the ceiling part was left. Failures can be broadly classified as follows: overhang of the flue carbonization chamber side of the flue that remains without being repaired continuously to the reloaded flue and the wall portion between the flues on the flue side to be repaired, and the wall near the boundary between the transferred flue portion and the remaining portion It was an overhang. The former was found to be due to the difference in thermal expansion at the time of temperature rise caused by the temperature difference from the inner part due to the temperature drop of the remaining wall at the time of transshipment. As a result of various studies, the temperature of the wall on the coking chamber side of the flue that remains without being repaired continuously to the flue to be repaired, and the temperature of the wall facing the wall to be repaired adjacent to the flue to be repaired is maintained at 400 ° C. or higher. As a result, it was found that this problem can be avoided.

一方、後者については、発明者らは先ず炉頂方向の膨張に対する最適な膨張吸収代について鋭意検討を行った。その結果、膨張吸収代が想定膨張量の50%より小さいと、炉壁煉瓦の張出しや天井部煉瓦の割れ等の頻度が大きくなることが分かった。したがって、膨張吸収代の下限は50%が適当と考えられる。一方、膨張吸収代が想定膨張量の100%以上となると、天井部からの押さえが全く効いておらず、壁部が自立しているだけの状態となり、構造物としては弱くなる。それゆえ、膨張の誤差等も勘案すると膨張吸収代の上限は95%が適当と考えられる。   On the other hand, regarding the latter, the inventors first made an intensive study on the optimum expansion absorption allowance for expansion in the furnace top direction. As a result, it was found that if the expansion absorption allowance is less than 50% of the assumed expansion, the frequency of overhanging the furnace wall bricks and cracking of the ceiling bricks increases. Therefore, 50% is considered appropriate as the lower limit of the expansion absorption allowance. On the other hand, if the expansion absorption allowance is 100% or more of the assumed expansion amount, the pressing from the ceiling portion is not effective at all, and the wall portion is merely self-supporting, and the structure becomes weak. Therefore, considering the expansion error, the upper limit of the expansion absorption margin is considered to be 95%.

更に望ましくは、設計上の膨張吸収代を50%〜80%とする。施工のし易さからモルタルの水分量は多くなる傾向にあり、水分量が多くなると収縮率が大きくなって目論見より大きな膨張吸収量となる。設計上の膨張吸収代を80%〜95%とした場合には、実際の膨張吸収量が100%を超えてしまう危険性があり、厳格な水分管理が必要となる。   More preferably, the designed expansion absorption margin is 50% to 80%. The amount of water in the mortar tends to increase due to the ease of construction, and when the amount of water increases, the shrinkage rate increases and the amount of expansion absorption is larger than expected. When the design expansion absorption allowance is 80% to 95%, there is a risk that the actual expansion absorption amount exceeds 100%, and strict moisture management is required.

次にモルタルについて検討した。前述のとおり、部分積替えは熱間で行われるため、モルタルは施工後60℃〜100℃となって水分が蒸発し、その分収縮する。したがって、昇温中の膨張を吸収するためには、100℃〜800℃の乾燥状態での収縮率が重要となる。この温度域でのモルタルの収縮率が30%より小さいと、膨張吸収代を確保することが難しくなる。なお、煉瓦積みは操業の合間に行われるため、モルタルが乾燥するまでに積むのは1段〜3段程度であり、この程度なら荷重が小さいため乾燥してもほとんど収縮しない。また、乾燥すれば、若干強度が増し、煉瓦積みの間の収縮は問題ないレベルである。   Next, mortar was examined. As described above, since the partial transshipment is performed hot, the mortar becomes 60 ° C. to 100 ° C. after the construction, and the water evaporates and shrinks accordingly. Therefore, in order to absorb the expansion during the temperature rise, the shrinkage rate in a dry state of 100 ° C. to 800 ° C. is important. If the shrinkage rate of the mortar in this temperature range is smaller than 30%, it is difficult to secure the expansion absorption allowance. In addition, since brickwork is performed between operations, it is about 1 to 3 steps to load until the mortar dries. If it is about this level, the load is small, so it hardly shrinks even when dried. Moreover, if it dries, intensity | strength will increase a little and the shrinkage | contraction between brickwork is a level which is satisfactory.

しかし、収縮率が30%以上のモルタルは、有機物を含有する等によって大きな収縮率を得るため、昇温後の強度が非常に弱く、コークス炉のように大きな構造物の場合、温度分布の不均一等が原因で膨張が不均一となり、張出し、脱落の原因となる可能性が考えられる。従って、積替えた煉瓦のうち、図1のB−B線より上部の天井部を構成する煉瓦は、一部が幅広になっている等、形状が複雑であり、不均一膨張の影響が大きく、張出しや脱落のリスクが大きい。   However, a mortar with a shrinkage rate of 30% or more obtains a large shrinkage rate due to the inclusion of organic matter, etc., so that the strength after temperature rise is very weak, and in the case of a large structure such as a coke oven, the temperature distribution is poor. There is a possibility that the expansion becomes non-uniform due to uniformity or the like, which may cause overhang and dropout. Accordingly, among the transposed bricks, the bricks constituting the ceiling portion above the line BB in FIG. 1 are complicated in shape, such as partly wide, and the influence of uneven expansion is large. The risk of overhang and dropout is great.

一方、図1のA−A線より下部の炉壁煉瓦は、上下面がほぼ同じ面積で、壁煉瓦は形状的に煉瓦の膨張吸収による目地3の収縮の際、煉瓦を回転させる力が生じ難い。また、前述のとおり、ダボがあるため、目地1箇所当りのモルタルの施工厚さが凸ダボ部4の出張り高さ未満であれば煉瓦の傾きが無視できるほど小さいことが分かった。それゆえここでは、上記モルタルの施工位置を、天井部1を形成する上下面の面積が異なる煉瓦の一段下の炉壁煉瓦より下の、図1のA−A線より下部の炉壁煉瓦積み部とする。モルタルの施工厚さを凸ダボ部4の出張り高さの2/3以下とすると、さらに好ましい。   On the other hand, the furnace wall brick below the line A-A in FIG. 1 has substantially the same upper and lower surfaces, and the wall brick has a shape that causes a force to rotate the brick when the joint 3 contracts due to the expansion absorption of the brick. hard. Further, as described above, since there is a dowel, it was found that if the construction thickness of the mortar per joint is less than the protruding height of the convex dowel portion 4, the inclination of the brick can be ignored. Therefore, here, the construction position of the mortar is defined as the furnace wall brickwork below the AA line in FIG. Part. More preferably, the construction thickness of the mortar is 2/3 or less of the protruding height of the convex dowel portion 4.

天井部の新旧の繋ぎ目は、ダボがない上、形状も複雑であり、収縮率の高いモルタルを使用するには適さない。天井部の新旧の繋ぎ目は、前述のように高さが場所により異なるため、不定形で、天井部1を支えるための強度を有する必要がある。発明者が、使用中のコークス炉煉瓦を採取し、詳細に調査したところ、曲げ強度が5MPa程度であった。従ってその繋ぎ目は、5MPa以上の曲げ強度を有する不定形耐火物5を施工することで、コークス炉煉瓦並の強度を確保できることが判明した。   The old and new joints on the ceiling have no dowels and are complex in shape and are not suitable for using mortar with a high shrinkage rate. Since the height of the old and new joints of the ceiling portion varies depending on the location as described above, it is indefinite and needs to have strength to support the ceiling portion 1. The inventor collected the coke oven brick in use and investigated it in detail, and the bending strength was about 5 MPa. Therefore, it has been found that the joint can secure the same strength as the coke oven brick by constructing the irregular refractory 5 having a bending strength of 5 MPa or more.

下記の表1は、実験室実験を行った結果であり、収縮率の高いモルタルの施工厚みを限定する効果を表している。230mm×100mm(厚さ160mm)の実際の炉壁煉瓦から切り出した、100mm×100mm(厚さ50mm)の煉瓦に15mmの高さ(H)のダボを付けたものを2枚重ね、その間に50%収縮するモルタルを表1に示す厚さ(T)で施工し、これを0.1MPaを載荷した状態で800℃まで昇温し、降温後のモルタル厚さの最大値と最小値の比を測定した。表中にはサンプル5個を測定し、モルタル厚さの最大値と最小値の比が0.95以下(最小値/最大値≦0.95)であったものの個数を示す。本実施形態の範囲内である実施例1〜3では、ほぼ全てにおいて0.95より大きいのに対し、比較例では3個以上のサンプルで煉瓦が傾いており、張出し、脱落のリスクがある。   Table 1 below shows the results of laboratory experiments, and shows the effect of limiting the construction thickness of mortar with a high shrinkage rate. Two pieces of 100 mm x 100 mm (thickness 50 mm) bricks with a dowel of 15 mm height (H) cut out from an actual furnace wall brick of 230 mm x 100 mm (thickness 160 mm), and 50 sheets in between. The mortar that shrinks in% is applied with the thickness (T) shown in Table 1, and the temperature is raised to 800 ° C. with 0.1 MPa loaded, and the ratio between the maximum value and the minimum value of the mortar thickness after the temperature is lowered. It was measured. In the table, five samples are measured, and the number of mortar thicknesses whose ratio between the maximum value and the minimum value is 0.95 or less (minimum value / maximum value ≦ 0.95) is shown. In Examples 1 to 3, which are within the scope of the present embodiment, almost all of them are larger than 0.95, whereas in the comparative example, bricks are tilted by three or more samples, and there is a risk of overhang and dropping.

Figure 2014091764
Figure 2014091764

下記の表2は、実炉での本実施形態の効果を表している。表2には、収縮するモルタルの配置量を変えた場合に、昇温から稼働3ヵ月までの間で張出しにより再補修となった窯の数、および通常は蓋をした天井部の観察孔から観察した壁部外観(◎:ほぼ平坦、○:張出し量5mm以下、△:張出し量5mmを超えて10mm以下、×:張出し量10mmを越える)を示す。なお、最上段部のプラスチック耐火物は、5MPa以上の曲げ強度を持ち、粘土状で水分が殆どないものである。また、最上段部材質を30%収縮する1〜2MPaの曲げ強度のモルタル(クッションモルタル)とした場合の結果も示す。本実施形態の範囲内である実施例1〜3では、再補修となった窯はなく、良好な結果が得られた。   Table 2 below shows the effect of this embodiment in an actual furnace. Table 2 shows the number of kilns that were re-repaired by overhanging from the temperature rise to 3 months of operation when the amount of shrinking mortar was changed, and from the observation hole in the ceiling, usually covered The observed wall portion appearance (◎: almost flat, ○: overhang amount of 5 mm or less, Δ: overhang over 5 mm and under 10 mm, x: overhang over 10 mm) is shown. The uppermost plastic refractory has a bending strength of 5 MPa or more, is clay-like, and has almost no moisture. Moreover, the result at the time of setting the mortar (cushion mortar) of the bending strength of 1-2 MPa which shrink | shrinks the uppermost-stage member material 30% is also shown. In Examples 1 to 3, which are within the scope of the present embodiment, no kiln was re-repaired, and good results were obtained.

Figure 2014091764
Figure 2014091764

なお、本発明は、上述の実施形態に限られるものでなく、特許請求の範囲の記載範囲内で適宜変更することができる。すなわち例えば上記実施形態はカールスチル式コークス炉に適用したが、本発明の部分積替え補修方法は、他の形式の室炉式コークス炉にも同様にして適用することができる。   In addition, this invention is not restricted to the above-mentioned embodiment, It can change suitably within the description range of a claim. That is, for example, the above-described embodiment is applied to a Karl-still type coke oven, but the partial transshipment repair method of the present invention can be similarly applied to other types of chamber-type coke ovens.

かくして本発明の室炉式コークス炉の部分積替え補修方法によれば、セラミックボードを使用せず膨張吸収代を適正化することで、部分積替え補修の際の施工能率を高めるとともに張出しや脱落のリスクを殆ど若しくは全くなくすことができる。   Thus, according to the partial transshipment repair method of the chamber furnace type coke oven of the present invention, the expansion absorption margin is optimized without using a ceramic board, so that the construction efficiency at the time of partial transshipment repair is improved and the risk of overhang and dropping off is increased. Can be eliminated little or no.

符号の簡単な説明Brief description of symbols

1 天井部
2 水平焔道
3 目地
4 凸ダボ部
5 不定形耐火物
DESCRIPTION OF SYMBOLS 1 Ceiling part 2 Horizontal tunnel 3 Joint 4 Convex dowel part 5 Unshaped refractory

Claims (3)

室炉式コークス炉の燃焼室の一部分のフリューを形成する煉瓦を、天井部を残したまま積替えて補修するに際し、
補修するフリューに連続する補修しないで残存させるフリューの炭化室側の壁、および補修するフリューと隣り合うフリューの補修する壁と対面する壁の温度を400℃以上に保持し、
積替える煉瓦の水平方向の目地に、0.1MPの荷重下で100℃から800℃までの線収縮率が30%以上あるモルタルを煉瓦の膨張吸収代として使用し、
該モルタルの室温から操業温度までで想定される鉛直方向の合計収縮量が、煉瓦の室温から操業温度までで想定される鉛直方向の合計膨張量の50〜95%となるように該モルタルの厚さ及び層数を設定し、
かつ目地1箇所当りの該モルタルの厚さを煉瓦の凸ダボ部の出張り高さ未満となるように設定して、該モルタルを配置し、
残存天井部と新たに積む部位との接続部分に、硬化して乾燥した後の曲げ強度が5MPa以上の不定形の耐火材料を用いることを特徴とするコークス炉の部分積替え補修方法。
When repairing bricks that form part of the flue of the combustion chamber of a chamber-type coke oven by transshipment while leaving the ceiling,
Maintain the temperature of the wall on the carbonization chamber side of the flue that remains without being repaired continuously to the flue to be repaired, and the wall facing the wall to be repaired of the flue adjacent to the flue to be repaired at 400 ° C. or higher,
Using a mortar with a linear shrinkage rate of 30% or more from 100 ° C to 800 ° C under a load of 0.1MP on the horizontal joints of the bricks to be transshipped,
The thickness of the mortar is such that the total amount of vertical shrinkage assumed from the room temperature to the operating temperature of the mortar is 50 to 95% of the total amount of vertical expansion expected from the room temperature to the operating temperature of the brick. And set the number of layers,
And the thickness of the mortar per joint is set to be less than the protruding height of the convex dowel part of the brick, and the mortar is disposed.
A method for partial transshipment repair of a coke oven, wherein an irregular refractory material having a bending strength of 5 MPa or more after being cured and dried is used for a connection portion between a remaining ceiling portion and a newly piled portion.
前記モルタルの施工位置が、天井部を形成する上下面の面積が異なる煉瓦の一段下の炉壁煉瓦より下の炉壁煉瓦積み部にあることを特徴とする、請求項1記載のコークス炉の部分積替え補修方法。   2. The coke oven according to claim 1, wherein the construction position of the mortar is located in a furnace wall brick stacking portion below a brick wall located below one step of bricks having different upper and lower surface areas forming the ceiling portion. Partial transshipment repair method. 前記モルタルの室温から操業温度までで想定される鉛直方向の合計収縮量が、煉瓦の室温から操業温度までで想定される鉛直方向の合計膨張量の50〜80%となるように、該モルタルの厚さ及び層数を設定して配置することを特徴とする、請求項1または2記載のコークス炉の部分積替え補修方法。   The total shrinkage in the vertical direction assumed from the room temperature to the operation temperature of the mortar is 50 to 80% of the total expansion amount assumed in the vertical direction from the room temperature to the operation temperature of the brick. The partial transshipment repair method for a coke oven according to claim 1 or 2, wherein the thickness and the number of layers are set and arranged.
JP2012242014A 2012-11-01 2012-11-01 Coke oven partial transshipment repair method Active JP5991478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242014A JP5991478B2 (en) 2012-11-01 2012-11-01 Coke oven partial transshipment repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242014A JP5991478B2 (en) 2012-11-01 2012-11-01 Coke oven partial transshipment repair method

Publications (2)

Publication Number Publication Date
JP2014091764A true JP2014091764A (en) 2014-05-19
JP5991478B2 JP5991478B2 (en) 2016-09-14

Family

ID=50936102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242014A Active JP5991478B2 (en) 2012-11-01 2012-11-01 Coke oven partial transshipment repair method

Country Status (1)

Country Link
JP (1) JP5991478B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038887A (en) * 2017-08-23 2019-03-14 株式会社メガテック Repair method for roof of coke oven
CN115010346A (en) * 2022-07-19 2022-09-06 中国建材国际工程集团有限公司 Cold repair method and structure of main crown of glass melting furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251649A (en) * 1997-03-17 1998-09-22 Nippon Steel Corp Method for hanging nonrepaired brick of upper part of combustion chamber of coke oven and hanging metal fitting therefor
JP2010222414A (en) * 2009-03-19 2010-10-07 Jfe Steel Corp Method for hot repair of coke oven

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251649A (en) * 1997-03-17 1998-09-22 Nippon Steel Corp Method for hanging nonrepaired brick of upper part of combustion chamber of coke oven and hanging metal fitting therefor
JP2010222414A (en) * 2009-03-19 2010-10-07 Jfe Steel Corp Method for hot repair of coke oven

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038887A (en) * 2017-08-23 2019-03-14 株式会社メガテック Repair method for roof of coke oven
CN115010346A (en) * 2022-07-19 2022-09-06 中国建材国际工程集团有限公司 Cold repair method and structure of main crown of glass melting furnace
CN115010346B (en) * 2022-07-19 2023-10-03 中国建材国际工程集团有限公司 Cold repair method and structure for glass melting furnace crown

Also Published As

Publication number Publication date
JP5991478B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP6008071B1 (en) Coke oven construction method
JP6573837B2 (en) Coke oven combustion chamber repair method
JP6674352B2 (en) Repair method of coke oven
JP2001019968A (en) Repairing method for coke oven
JP5991478B2 (en) Coke oven partial transshipment repair method
JP5867220B2 (en) How to rebuild a coke oven
CN111623636A (en) Method for heating drying kiln of melting furnace
JP6544331B2 (en) Dust removal method for coke oven heat storage chamber
CN102373063A (en) Bricklaying loading method of coke oven
JP5867221B2 (en) How to rebuild a coke oven
JP6432545B2 (en) Furnace construction method
JP6502436B2 (en) Repair method of ceiling of coke oven
JP6387715B2 (en) Coke oven operation method
JP5093254B2 (en) Coke oven repair method
JP2020070341A (en) Dismantling and constructing method of coke oven
JP5045341B2 (en) Hot transshipment method for furnace wall bricks in coke oven.
JP6524439B2 (en) Refractory block for coke oven combustion chamber and refractory block stacking structure of coke oven combustion chamber
JP6543310B2 (en) Method of constructing combustion chamber adjacent to pinion wall of coke oven
JP5682441B2 (en) Brick transshipment method for coke oven carbonization chamber
JP7259810B2 (en) Furnace construction method and spacer selection method
JP2023183345A (en) Coke oven burner piping and repairing method of deterioration of coke oven fuel duct
JP2021031581A (en) Method for repairing coke oven
JP2019038884A (en) Repair method of hearth bricks of coke oven
JPH09316456A (en) Hot relaying and repairing of sidewall of carboniuzation chamber in coke oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5991478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250