JP5176927B2 - Test method for accelerated corrosion of steel in high humidity environment - Google Patents

Test method for accelerated corrosion of steel in high humidity environment Download PDF

Info

Publication number
JP5176927B2
JP5176927B2 JP2008317817A JP2008317817A JP5176927B2 JP 5176927 B2 JP5176927 B2 JP 5176927B2 JP 2008317817 A JP2008317817 A JP 2008317817A JP 2008317817 A JP2008317817 A JP 2008317817A JP 5176927 B2 JP5176927 B2 JP 5176927B2
Authority
JP
Japan
Prior art keywords
wetting
drying
salt
steel material
rust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008317817A
Other languages
Japanese (ja)
Other versions
JP2010139450A (en
Inventor
進一 三浦
勇 鹿毛
正次 村瀬
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008317817A priority Critical patent/JP5176927B2/en
Publication of JP2010139450A publication Critical patent/JP2010139450A/en
Application granted granted Critical
Publication of JP5176927B2 publication Critical patent/JP5176927B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、特に漏水部や狭空間などの高湿潤環境において、橋梁などの構造物に使用される鋼材の腐食促進試験方法に関する。   The present invention relates to a corrosion promotion test method for steel materials used for structures such as bridges, particularly in a highly humid environment such as a water leakage portion or a narrow space.

土木分野における構造用鋼材、例えば、橋梁の漏水部、狭空間などの高湿潤環境で裸使用される鋼材は、実用に耐える耐食性を得難い事が知られている。   It is known that structural steel materials in the field of civil engineering, for example, steel materials that are used barely in a highly humid environment such as a leaking portion of a bridge or a narrow space, are difficult to obtain corrosion resistance that can be practically used.

これまでに、鋼材の腐食促進試験方法は、数多く開発されてきている。従来の鋼材の腐食促進試験方法としては、塩分付着工程−乾燥工程−湿潤工程を組み合わせた腐食促進試験が行われている(例えば、特許文献1参照)。また、塩分付着工程−乾燥工程−湿潤工程に加え、さび層に蓄積した塩分を洗い流す洗浄工程を加えた腐食促進試験が行われている(例えば、特許文献2参照)。
特開2007−139484号公報 特許第3605630号公報
To date, a number of corrosion promotion test methods for steel materials have been developed. As a conventional corrosion acceleration test method for steel materials, a corrosion acceleration test in which a salt adhesion process, a drying process, and a wetting process are combined is performed (for example, see Patent Document 1). Further, in addition to the salt adhesion step-drying step-wetting step, a corrosion acceleration test is performed in which a washing step for washing away the salt accumulated in the rust layer is added (for example, see Patent Document 2).
JP 2007-139484 A Japanese Patent No. 3605630

実環境における鋼材の耐食性は、さびの組成に起因することがわかっており、乾湿繰り返し環境においては、Feの生成量が少なく、塩分が多い環境ではβ−FeOOHが多く生成することがわかっている。乾湿繰り返し環境におけるさびの生成過程は以下のようになる。まず、
Fe → Fe2+ + 2e
の反応により、2価のFeイオンが生成し、γ−FeOOHが生成する。
It is known that the corrosion resistance of steel in a real environment is caused by the composition of rust. In a dry and wet environment, the amount of Fe 3 O 4 produced is small, and in an environment where there is a lot of salt, a large amount of β-FeOOH may be produced. know. The process of generating rust in a dry and wet environment is as follows. First,
Fe → Fe 2+ + 2e
As a result of the reaction, divalent Fe ions are generated, and γ-FeOOH is generated.

ここで、湿潤工程においてγ−FeOOHの還元反応が生じ、X線的に非晶質なさびが生成し、乾燥工程において空気中のOにより、X線的に非晶質なさびからγ−FeOOHへの酸化反応が生じる。さらに、湿潤工程において、X線的に非晶質なさびからFeへの還元反応が生じる。また、2価のFeイオンから、塩分存在下、乾湿繰り返しの環境にて、β−FeOOHが生成する。β−FeOOHもγ−FeOOHと同様に、乾燥工程、湿潤工程にて、X線的に非晶質なさびとの酸化・還元サイクルが生じる。したがって、乾湿繰り返し環境では、乾燥工程の存在によりFeの生成量は少なくなる。また、十分な量の塩分が存在する場合、β−FeOOHの生成量が多くなる。 Here, the reduction reaction occurs in the gamma-FeOOH in the wet process, X-rays non-crystalline rust is generated by O 2 in the air in the drying process, X-rays to an amorphous rust γ- An oxidation reaction to FeOOH occurs. Further, in the wetting step, a reduction reaction from X-ray amorphous rust to Fe 3 O 4 occurs. In addition, β-FeOOH is generated from divalent Fe ions in an environment of repeated drying and wetting in the presence of salt. Similarly to γ-FeOOH, β-FeOOH undergoes an oxidation / reduction cycle of rust that is amorphous in X-rays in the drying step and the wetting step. Therefore, in a dry and wet environment, the amount of Fe 3 O 4 produced is reduced due to the presence of the drying process. In addition, when a sufficient amount of salt is present, the amount of β-FeOOH produced increases.

特許文献1、2では、乾燥工程と湿潤工程を繰り返すため、前記のさび生成過程により、Feの生成量は少なくなる。 In Patent Documents 1 and 2, since the drying process and the wetting process are repeated, the amount of Fe 3 O 4 generated is reduced by the rust generation process.

一方、高湿潤環境においては、Feが多く生成し、β−FeOOHの生成量が少ないことがわかっている。 On the other hand, it is known that in a highly humid environment, a large amount of Fe 3 O 4 is produced and the amount of β-FeOOH produced is small.

このように、特許文献1、2では、実際の高湿潤環境で発生するさびと組成が一致するさびは生成せず、実際の高湿潤環境を適切に模擬しているとはいえない。   As described above, Patent Documents 1 and 2 do not generate a rust having the same composition as that of a rust generated in an actual high-humidity environment, and cannot be said to appropriately simulate an actual high-humidity environment.

本発明は、上記のような事情に鑑みてなされたものであり、漏水部や狭空間などの高湿潤環境において橋梁などの構造物に使用される鋼材の耐食性を評価するに際して、実際の高湿潤環境で発生するさびと組成が一致するさびを生成させて、的確に当該鋼材の耐食性を評価することができる高湿潤環境における鋼材の腐食促進試験方法を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and when evaluating the corrosion resistance of steel materials used in structures such as bridges in a highly humid environment such as a water leakage portion or a narrow space, the actual highly wet An object of the present invention is to provide a corrosion promotion test method for a steel material in a high-humidity environment, in which rust having a composition that matches that generated in the environment is generated, and the corrosion resistance of the steel material can be accurately evaluated.

本発明者らは、上記目的を達成すべく、塩分付着工程−乾燥工程−湿潤工程−洗浄工程からなる複合サイクル試験を前提にして、高湿潤環境において鋼材に生成するさびの組成の観点から、鋭意検討をおこなった。   In order to achieve the above object, the present inventors presuppose a combined cycle test consisting of a salt adhesion step, a drying step, a wetting step, and a washing step, from the viewpoint of the composition of rust generated in a steel material in a highly humid environment, We conducted an intensive study.

その結果、湿潤率=(湿潤工程保持時間/(乾燥工程保持時間+湿潤工程保持時間)とした時に、湿潤率95%超100%以下において、実際の高湿潤環境にて生成するさびの組成と一致するさびが生成することを見出した。すなわち、さび中においてFeが10mass%以上、β−FeOOHが10mass%未満という組成である。 As a result, the composition of rust produced in an actual high-humidity environment when the wetting ratio = (wetting process holding time / (drying process holding time + wetting process holding time)) when the wetting ratio is over 95% and 100% or less. It was found that matching rust was produced, that is, a composition in which Fe 3 O 4 was 10 mass% or more and β-FeOOH was less than 10 mass% in the rust.

高湿潤環境におけるさびの生成過程は以下のようになる。   The process of generating rust in a highly humid environment is as follows.

湿潤率100%では、乾燥工程が存在しないため、β−FeOOHはほとんど生成しない。また、乾燥工程がないために、X線的に非晶質なさびからγ−FeOOHへの酸化反応がほとんど起こらず、γ−FeOOHからX線的に非晶質なさび還元反応のみが進む。さらに、湿潤工程にて、X線的に非晶質なさびからFeが生成する。従って、Feの生成量は多く、β−FeOOHの生成量は少ない。 At a wetting rate of 100%, there is no drying step, so almost no β-FeOOH is produced. Further, since there is no drying step, almost no oxidation reaction from X-ray amorphous rust to γ-FeOOH occurs, and only X-ray amorphous rust reduction reaction proceeds from γ-FeOOH. Further, Fe 3 O 4 is generated from rust that is amorphous in X-rays in the wet process. Therefore, the amount of Fe 3 O 4 produced is large and the amount of β-FeOOH produced is small.

また、湿潤率95%では、乾燥工程が存在するため、β−FeOOHは生成するが、乾燥時間が短いため、その生成量は少ない。また、γ−FeOOHおよびβ−FeOOHからX線的に非晶質なさびへの酸化・還元サイクルが生じるため、Feの生成量も少ない。 Further, when the wetting rate is 95%, β-FeOOH is generated because there is a drying step, but the amount of generation is small because the drying time is short. In addition, since an oxidation / reduction cycle from γ-FeOOH and β-FeOOH to X-ray amorphous rust occurs, the amount of Fe 3 O 4 produced is small.

本発明は、上記の知見に基づき構成されたものであり、以下のような特徴を有している。   The present invention is configured based on the above findings and has the following characteristics.

[1]下記(A)工程と下記(B)工程と下記(C)工程とからなる工程を1回以上行うことからなる鋼材の腐食促進試験方法であって、鋼材の表面に生成するさび中のFe が10mass%以上、β−FeOOHが10mass%未満であり、
下記(A)工程において、塩分付着量は0.1〜100000mg/mであり、さらに下記(B)工程において、乾燥工程及び湿潤工程は下記条件範囲内で行われることを特徴とする高湿潤環境における鋼材の腐食促進試験方法。
(A)鋼材の表面に、塩化物イオンを含む塩分を付着させる工程
(B)鋼材に対して、温度と相対湿度を変化させて設定した乾燥工程及び湿潤工程を繰り返すことを1サイクルとし、乾燥工程と湿潤工程の相対湿度および下記式で示される湿潤率が下記の条件範囲内で行われることとし、このサイクルを少なくとも1回行う工程
乾燥工程 相対湿度:40%超70%以下
湿潤工程 相対湿度:80%以上
湿潤率=(湿潤工程保持時間/(乾燥工程保持時間+湿潤工程保持時間)):95%以上100%以下
(C)鋼材の表面を、洗浄水により洗浄する工程
[1] A corrosion promotion test method for a steel material comprising performing the following step (A), the following step (B), and the following step (C) at least once, and in the rust generated on the surface of the steel material Fe 3 O 4 is 10 mass% or more, β-FeOOH is less than 10 mass%,
In the following step (A), the salt adhesion amount is 0.1 to 100,000 mg / m 2 , and in the following step (B), the drying step and the wetting step are performed within the following condition range. Test method for accelerated corrosion of steel in the environment.
(A) The process of adhering salt containing chloride ions to the surface of the steel material (B) The drying process and the wetting process set by changing the temperature and relative humidity are repeated on the steel material as one cycle, and drying is performed. The relative humidity of the process and the wet process and the wet rate represented by the following formula are performed within the following condition range, and this cycle is performed at least once. Dry process Relative humidity: More than 40% and 70% or less Wet process Relative humidity : 80% or more Wetting rate = (wet process holding time / (drying process holding time + wetting process holding time)): 95% or more and 100% or less

なお、上記[1]の(B)工程において、湿潤率100%は、乾燥工程保持時間=0の場合であり、乾燥工程は行わない。   In the step (B) of [1] above, the wetting rate of 100% is the case where the drying step holding time = 0, and the drying step is not performed.

本発明においては、高湿潤環境において構造物に使用される鋼材の耐食性を評価するに際して、実際の高湿潤環境で発生するさびと組成が一致するさびを生成させて、的確に当該鋼材の耐食性を評価することが可能になった。   In the present invention, when evaluating the corrosion resistance of a steel material used in a structure in a high-humidity environment, a rust having the same composition as that of the rust generated in the actual high-humidity environment is generated, and the corrosion resistance of the steel material is accurately determined. It became possible to evaluate.

本発明の実施形態について説明する。
図1は、本発明の一実施形態に係る高湿潤環境における鋼材の腐食促進試験方法を示すものである。この実施形態においては、高湿潤環境における鋼材の耐食性評価を行うために、図1に示すような工程を有する腐食促進試験を行う。
An embodiment of the present invention will be described.
FIG. 1 shows a corrosion promotion test method for steel in a highly humid environment according to an embodiment of the present invention. In this embodiment, in order to evaluate the corrosion resistance of a steel material in a highly humid environment, a corrosion acceleration test having a process as shown in FIG. 1 is performed.

すなわち、この腐食促進試験は、実際の環境を模擬するために、種々の環境因子を組み合わせた、下記(A)工程と下記(B)工程と下記(C)工程とからなっており、この(A)工程と(B)工程と(C)工程とからなる工程を1回以上行う。より好ましくは、(A)工程と(B)工程と(C)工程とからなる工程を複数回行う。複数回行うことで、腐食が促進され、生成するさびの重量が増加し、より精度の高い定量X線回折を行うことができる。工程順は(A)工程、(B)工程、(C)工程の順とし、(A)工程より開始し、(B)工程あるいは(C)工程で終了する。腐食促進試験後に試験片を保管する場合は、腐食の進行を抑制するという観点から、(B)工程で終了するよりも(C)工程で終了したほうが好ましい。   That is, this corrosion promotion test is composed of the following (A) process, the following (B) process, and the following (C) process in which various environmental factors are combined in order to simulate an actual environment. The process consisting of A) process, (B) process, and (C) process is performed once or more. More preferably, the process consisting of the process (A), the process (B), and the process (C) is performed a plurality of times. By performing multiple times, corrosion is promoted, the weight of the generated rust is increased, and quantitative X-ray diffraction with higher accuracy can be performed. The process order is the order of the process (A), the process (B), and the process (C), and starts from the process (A) and ends with the process (B) or the process (C). When the test piece is stored after the corrosion acceleration test, it is preferable that the test piece is finished in the step (C) rather than the step (B) from the viewpoint of suppressing the progress of the corrosion.

(A)鋼材の表面に塩化物イオンを含む塩分を付着させる工程:塩分付着工程
(B)鋼材に対して、温度と相対湿度を変化させて設定した乾燥工程及び湿潤工程を繰り返すことを1サイクルとし、かつ湿潤率が95%超100%以下であり、このサイクルを少なくとも1回行う工程:乾燥・湿潤工程
(C)鋼材の表面を、洗浄水により洗浄する工程:洗浄工程
(A) A step of attaching a salt containing chloride ions to the surface of a steel material: a salt attachment step (B) One cycle of repeating a drying step and a wetting step set by changing the temperature and relative humidity for the steel material And the wet ratio is more than 95% and 100% or less, and this cycle is performed at least once: drying / wetting step (C) The surface of the steel material is washed with washing water: the washing step

まず、(A)工程:塩分付着工程について説明する。   First, step (A): the salt adhesion step will be described.

(A)の塩分付着工程において、鋼材の表面に付着した塩化物イオンを含む塩分の付着量は、0.1〜100000mg/mとする。この範囲とすることにより田園地域や山間部などの飛来塩分量の少ない地域、並びに凍結防止剤を散布する地域などの付着塩分量の多い地域をカバーできる。 In the salt adhesion step (A), the amount of salt containing chloride ions attached to the surface of the steel material is 0.1 to 100000 mg / m 2 . By setting it as this range, it is possible to cover areas with a large amount of attached salt, such as a rural area, a mountainous area such as a mountainous area, and a region where an antifreezing agent is sprayed.

特に、田園地域や山間部など比較的飛来塩分量の少ない地域を想定する場合、塩分付着量は1〜100mg/mの範囲とし、凍結防止剤を散布する地域などの付着塩分量の多い地域を想定する場合、塩分付着量は100〜100000mg/mの範囲とすることが好ましい。 In particular, when assuming small areas with relatively airborne salt amount such as rural areas and mountainous areas, salt coating weight in the range of 1 to 100 mg / m 2, more adherent amount of salt such as areas where spraying antifreeze Area , It is preferable that the amount of adhering salt is in the range of 100 to 100,000 mg / m 2 .

なお、この実施形態においては、鋼材の表面に塩分を付着させる方法は特に限定しないが、塩水滴下が望ましい。塩水の濃度と滴下量を制御することで、付着塩分量を容易に制御することが可能である。   In this embodiment, the method of attaching salt to the surface of the steel material is not particularly limited, but salt water dripping is desirable. By controlling the concentration of salt water and the amount of dripping, the amount of attached salt can be easily controlled.

また、鋼材の表面に塩分を付着させるために使用する塩水としては、海塩または人工海塩、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、塩化ナトリウム−塩化マグネシウム混合物、塩化ナトリウム−塩化カルシウム混合物、岩塩等の水溶液を用いることができる。なお、橋梁が建設される環境では飛来海塩および凍結防止剤が鋼材の腐食に影響を及ぼすことから、使用する塩水としては海塩または人工海塩、塩化ナトリウム−塩化マグネシウム混合物、塩化ナトリウムの水溶液を用いることが好ましい。   Moreover, as salt water used for making salt adhere to the surface of steel materials, sea salt or artificial sea salt, sodium chloride, magnesium chloride, calcium chloride, sodium chloride-magnesium chloride mixture, sodium chloride-calcium chloride mixture, rock salt, etc. An aqueous solution of can be used. In the environment where the bridge is constructed, the incoming sea salt and antifreeze agent will affect the corrosion of the steel material, so the salt water used is sea salt or artificial sea salt, sodium chloride-magnesium chloride mixture, aqueous solution of sodium chloride. Is preferably used.

次いで、(B)工程:乾燥・湿潤工程について説明する。   Next, step (B): the drying / wetting step will be described.

(B)の乾燥工程及び湿潤工程は下記条件範囲内で行われる。   The drying step and the wetting step (B) are performed within the following condition range.

乾燥工程 相対湿度:40%超70%以下
湿潤工程 相対湿度:80%以上
湿潤率 95%以上100%以下
ここで、湿潤率=(湿潤工程保持時間/(乾燥工程保持時間+湿潤工程保持時間))
なお、湿潤率100%は、乾燥工程保持時間=0の場合であり、乾燥工程は行わない。
Drying process Relative humidity: Over 40% and 70% or less Wetting process Relative humidity: 80% or more Wetting rate 95% or more and 100% or less Here, wetting rate = (wetting process holding time / (drying process holding time + wetting process holding time)) )
The wetting rate of 100% is when the drying process holding time = 0, and the drying process is not performed.

上記のように、乾燥工程の相対湿度は40%超70%以下とする。橋梁の建設される環境では飛来海塩および凍結防止剤が鋼材の腐食に影響を及ぼし、その主成分は塩化ナトリウムあるいは塩化ナトリウムおよび塩化マグネシウムである。塩化ナトリウムの臨海湿度は相対湿度で約75〜78%であり75%以下で乾燥するが、塩化マグネシウムの臨海湿度は相対湿度で約30〜35%であり海塩に含まれる化学物質では最も低く乾燥しにくい。そのため、橋梁における高湿潤環境(漏水部など)を想定した場合、実環境における腐食形態を再現するためには乾燥工程の相対湿度を40%超70%以下に設定する。   As described above, the relative humidity in the drying process is more than 40% and 70% or less. In the environment where bridges are constructed, flying sea salt and anti-freezing agents affect the corrosion of steel materials, the main components of which are sodium chloride or sodium chloride and magnesium chloride. The seaside humidity of sodium chloride is about 75-78% relative humidity and dries below 75%, but the seaside humidity of magnesium chloride is about 30-35% relative humidity and is the lowest among the chemicals contained in sea salt. Hard to dry. Therefore, assuming a highly humid environment (such as a water leakage part) in a bridge, the relative humidity in the drying process is set to more than 40% and 70% or less in order to reproduce the corrosion pattern in the actual environment.

また、湿潤工程の相対湿度は80%以上とする。塩化ナトリウムの臨海湿度は相対湿度で約75〜78%である。したがって、相対湿度を80%以上にしておくと、鋼材表面に付着した飛来海塩および凍結防止剤が吸水することによって水膜が形成し、鋼材表面は湿潤状態を保つことができる。   The relative humidity in the wetting process is 80% or more. The seaside humidity of sodium chloride is about 75 to 78% relative humidity. Therefore, when the relative humidity is set to 80% or more, a water film is formed by the incoming sea salt and antifreezing agent adhering to the steel material surface absorbing water, and the steel material surface can be kept in a wet state.

実際の高湿潤環境にて生成したさびでは、Fe、γ−FeOOH、β−FeOOH、α−FeOOH、非晶質さびが観測される。特に、Feは10mass%以上含まれており、かつ、β−FeOOHは10mass%未満である。 In rust generated in an actual high-humidity environment, Fe 3 O 4 , γ-FeOOH, β-FeOOH, α-FeOOH, and amorphous rust are observed. In particular, Fe 3 O 4 is contained in an amount of 10 mass% or more, and β-FeOOH is less than 10 mass%.

この実施形態における腐食促進試験において、湿潤率95%以上の場合、生成するさびの組成は、Feが10mass%以上、β−FeOOHが10mass%未満となる。従って、この実施形態においては、湿潤率が95%以上100%以下となるようにした。 In the corrosion promotion test in this embodiment, when the wetting rate is 95% or more, the composition of rust to be generated is 10 mass% or more for Fe 3 O 4 and less than 10 mass% for β-FeOOH. Therefore, in this embodiment, the wet rate is set to be 95% or more and 100% or less.

なお、乾燥工程および湿潤工程の保持時間は、特に規定しないが、乾燥工程の保持時間が12時間以上あるいは湿潤工程の保持時間が24時間未満の場合、非晶質のさびが多く生成するため、乾燥工程の保持時間は0〜12時間、湿潤時間は24時間以上とすることが好ましい。   In addition, the holding time of the drying step and the wetting step is not particularly specified, but when the holding time of the drying step is 12 hours or more or the holding time of the wetting step is less than 24 hours, a lot of amorphous rust is generated. The holding time in the drying step is preferably 0 to 12 hours, and the wet time is preferably 24 hours or more.

乾燥工程、湿潤工程は、互いに異なる温度、相対湿度に設定される。乾燥工程から湿潤工程へ移行(又は逆方向に移行)すると、温度と相対湿度が変化する。乾燥工程から湿潤工程までの移行時間、湿潤工程から乾燥工程までの移行時間をあらかじめ設定してもよい。これは、移行時間を設定しない場合、試験装置によって乾燥工程から湿潤工程までの移行時間や、湿潤工程から乾燥工程までの移行時間に差が生じ、試験結果のばらつきが生じることがあるためである。   The drying process and the wetting process are set to different temperatures and relative humidity. When shifting from the drying process to the wetting process (or moving in the opposite direction), the temperature and relative humidity change. The transition time from the drying process to the wetting process and the transition time from the wetting process to the drying process may be set in advance. This is because when the transition time is not set, the test apparatus may cause a difference in the transition time from the drying process to the wetting process and the transition time from the wetting process to the drying process, resulting in variations in test results. .

また、実環境の環境調査を行い、その結果に基づいて腐食促進試験を行う場合などは、乾燥工程と湿潤工程は複数回繰り返しても良い。実環境の環境調査結果に基づくことで、より実環境に近い腐食促進試験を行うことが可能である。   Moreover, when conducting an environmental survey of the actual environment and conducting a corrosion acceleration test based on the result, the drying step and the wetting step may be repeated a plurality of times. Based on the results of the environmental survey in the real environment, it is possible to conduct a corrosion acceleration test closer to the real environment.

次いで、(C)工程:洗浄工程について説明する。   Next, step (C): the cleaning step will be described.

(C)の洗浄工程は、洗浄水を鋼材表面にかけることで塩分のさび層内への蓄積を防止し、以下の範囲で行われる。   The washing step (C) is performed in the following range by applying washing water to the steel surface to prevent salt from accumulating in the rust layer.

流量:0.01l/min以上100l/min未満
時間:5秒以上600秒未満
流量が0.01l/min未満であると、十分な洗浄効果が得られない。一方、100l/min以上であると、さび層の剥離が生じる。
Flow rate: 0.01 l / min or more and less than 100 l / min Time: 5 seconds or more and less than 600 seconds If the flow rate is less than 0.01 l / min, a sufficient cleaning effect cannot be obtained. On the other hand, if it is 100 l / min or more, the rust layer peels off.

また、時間が5秒未満であると、十分な洗浄効果が得られない。一方、600秒以上となると、さび層内部の鋼材イオンの溶出が生じ、かつ洗浄効果は飽和する。   If the time is less than 5 seconds, a sufficient cleaning effect cannot be obtained. On the other hand, when it becomes 600 seconds or more, elution of the steel material ions inside the rust layer occurs and the cleaning effect is saturated.

なお、上記(A)工程、(B)工程、(C)工程からなる工程および(B)工程の乾燥工程と湿潤工程は、それぞれ複数回繰り返しても良い。これは、実環境を想定した場合、塩分は鋼材表面に一定の間隔で供給されるわけではなく、その量は経時的にある程度ばらつくと考えられ、また、乾燥、湿潤過程も環境によって大きく異なると考えられるためである。より好ましくは、実環境において温湿度、付着塩分量などの調査を行い、本腐食促進試験に反映させ、より実環境に近い条件で腐食促進試験を行うことである。   The drying step and the wetting step in the step (A), the step (B), the step (C), and the step (B) may be repeated a plurality of times. This is because, assuming an actual environment, the salt content is not supplied to the steel surface at regular intervals, the amount of which is considered to vary to some extent over time, and the drying and wetting processes vary greatly depending on the environment. This is because it is considered. More preferably, the temperature / humidity, the amount of adhering salt, etc. are investigated in the actual environment, reflected in this corrosion acceleration test, and the corrosion acceleration test is performed under conditions closer to the actual environment.

本発明の実施例1を示す。なお、本発明はこれに限定されるものではない。   Example 1 of the present invention will be described. Note that the present invention is not limited to this.

まず、C:0.092mass%、Si:0.20mass%、Mn:0.70mass%、P:0.017mass%、S:0.0034mass%、Cu:0.31mass%、Cr:0.52mass%、Ni:0.17mass%のJIS−SMA相当の鋼材を溶製し、熱間圧延を施して厚さ6mmの鋼板を試作した。得られた鋼板から35mm×35mm×5mmの試験片を採取した。試験片は表面△△△仕上げに加工した。試験片は試験面が25mm×25mmとなるよう端面、裏面および表面の端から5mmの位置をテープシールした。   First, C: 0.092 mass%, Si: 0.20 mass%, Mn: 0.70 mass%, P: 0.017 mass%, S: 0.0034 mass%, Cu: 0.31 mass%, Cr: 0.52 mass% , Ni: 0.17 mass% steel material equivalent to JIS-SMA was melted and hot-rolled to produce a steel plate having a thickness of 6 mm. A test piece of 35 mm × 35 mm × 5 mm was collected from the obtained steel plate. The test piece was processed into a surface ΔΔΔ finish. The test piece was tape-sealed at a position 5 mm from the edge of the end face, the back face and the front face so that the test face was 25 mm × 25 mm.

腐食促進試験は表1に示す条件にて行った。すなわち、前記の本発明の一実施形態に基づいて行った場合を本発明例(試験No.1〜20)とし、それを外れて行った場合を比較例(試験No.21〜27)とした。   The corrosion acceleration test was performed under the conditions shown in Table 1. That is, the case where it carried out based on one embodiment of the above-mentioned present invention was made into the example of the present invention (test No. 1-20), and the case where it carried out off was made into the comparative example (test No. 21-27). .

なお、塩分付着工程では、塩水滴下および塩水噴霧を行った。塩水滴下は、人工海水溶液を週に一回試験片の表面に水膜厚さ5mmとなるよう塗布することで行った。この際、付着する塩分量は、人工海水溶液の濃度を変化させることで制御した。塩水噴霧は、塩水濃度、噴霧時間を制御することで、付着塩分量の制御を行った。   In the salt adhesion step, salt water dropping and salt water spraying were performed. The salt water dripping was performed by applying an artificial seawater solution to the surface of the test piece once a week so that the water film thickness was 5 mm. At this time, the amount of adhering salt was controlled by changing the concentration of the artificial seawater solution. In salt spray, the amount of adhering salt was controlled by controlling salt water concentration and spray time.

また、洗浄工程は、洗浄水として水道水を用い、試験片を水平面から45度の角度に保持し、試験片表面のテープシールしていない部分へ流量を調節した洗浄水をあてた。また、試験期間は12週間とした。   In the cleaning process, tap water was used as the cleaning water, the test piece was held at an angle of 45 degrees from the horizontal plane, and the cleaning water whose flow rate was adjusted was applied to the portion of the test piece surface that was not tape-sealed. The test period was 12 weeks.

そして、試験終了後、試験片表面に生成したさびを採取し、定量X線回折を行い、さび中のFe量が10mass%以上の場合を○、10mass%未満の場合を×、β−FeOOH量が10mass%未満の場合を○、10mass%以上の場合を×として評価した。その評価結果を表1に示す。 Then, after the test, the rust generated on the test piece surface was taken, subjected to quantitative X-ray diffraction, × a case where Fe 3 O 4 content in the rust is not less than 10 mass% ○, less than 10 mass%, beta The case where the amount of -FeOOH was less than 10 mass% was evaluated as ◯, and the case where it was 10 mass% or more was evaluated as x. The evaluation results are shown in Table 1.

Figure 0005176927
Figure 0005176927

表1に示すように、本発明例(試験No.1〜20)の試験条件では、試験片表面に生成するさび中のFe量が10mass%以上(○)、β−FeOOH量が10mass%未満(○)となることから、実際の高湿潤環境を再現していると考えられる。 As shown in Table 1, in the test conditions of the present invention examples (Test Nos. 1 to 20), the amount of Fe 3 O 4 in the rust generated on the surface of the test piece is 10 mass% or more (◯), and the amount of β-FeOOH is Since it is less than 10 mass% (◯), it is considered that the actual highly humid environment is reproduced.

一方、比較例(試験No.21〜27)の試験条件では、Fe量が10mass%未満(×)、β−FeOOH量が10mass%以上(×)となり、実際の高湿潤環境を再現していないことがわかる。 On the other hand, under the test conditions of the comparative example (Test Nos. 21 to 27), the amount of Fe 3 O 4 is less than 10 mass% (×), the amount of β-FeOOH is 10 mass% or more (×), and the actual high-humidity environment is reproduced. You can see that they are not.

以上のことから、本発明の有効性を確認することができた。   From the above, the effectiveness of the present invention could be confirmed.

本発明の一実施形態における耐食性評価試験の工程図である。It is process drawing of the corrosion resistance evaluation test in one Embodiment of this invention.

Claims (1)

下記(A)工程と下記(B)工程と下記(C)工程とからなる工程を1回以上行うことからなる鋼材の腐食促進試験方法であって、鋼材の表面に生成するさび中のFe が10mass%以上、β−FeOOHが10mass%未満であり、
下記(A)工程において、塩分付着量は0.1〜100000mg/mであり、さらに下記(B)工程において、乾燥工程及び湿潤工程は下記条件範囲内で行われることを特徴とする高湿潤環境における鋼材の腐食促進試験方法。
(A)鋼材の表面に、塩化物イオンを含む塩分を付着させる工程
(B)鋼材に対して、温度と相対湿度を変化させて設定した乾燥工程及び湿潤工程を繰り返すことを1サイクルとし、乾燥工程と湿潤工程の相対湿度および下記式で示される湿潤率が下記の条件範囲内で行われることとし、このサイクルを少なくとも1回行う工程
乾燥工程 相対湿度:40%超70%以下
湿潤工程 相対湿度:80%以上
湿潤率=(湿潤工程保持時間/(乾燥工程保持時間+湿潤工程保持時間)):95%以上100%以下
(C)鋼材の表面を、洗浄水により洗浄する工程
A corrosion promotion test method for a steel material comprising performing the following step (A), the following step (B) and the following step (C) at least once , and Fe 3 in rust generated on the surface of the steel material. O 4 is 10 mass% or more, β-FeOOH is less than 10 mass%,
In the following step (A), the salt adhesion amount is 0.1 to 100,000 mg / m 2 , and in the following step (B), the drying step and the wetting step are performed within the following condition range. Test method for accelerated corrosion of steel in the environment.
(A) The process of adhering salt containing chloride ions to the surface of the steel material (B) The drying process and the wetting process set by changing the temperature and relative humidity are repeated on the steel material as one cycle, and drying is performed. The relative humidity of the process and the wet process and the wet rate represented by the following formula are performed within the following condition range, and this cycle is performed at least once. Dry process Relative humidity: More than 40% and 70% or less Wet process Relative humidity : 80% or more Wetting rate = (wet process holding time / (drying process holding time + wetting process holding time)): 95% or more and 100% or less
JP2008317817A 2008-12-15 2008-12-15 Test method for accelerated corrosion of steel in high humidity environment Expired - Fee Related JP5176927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317817A JP5176927B2 (en) 2008-12-15 2008-12-15 Test method for accelerated corrosion of steel in high humidity environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317817A JP5176927B2 (en) 2008-12-15 2008-12-15 Test method for accelerated corrosion of steel in high humidity environment

Publications (2)

Publication Number Publication Date
JP2010139450A JP2010139450A (en) 2010-06-24
JP5176927B2 true JP5176927B2 (en) 2013-04-03

Family

ID=42349703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317817A Expired - Fee Related JP5176927B2 (en) 2008-12-15 2008-12-15 Test method for accelerated corrosion of steel in high humidity environment

Country Status (1)

Country Link
JP (1) JP5176927B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782661A (en) * 2017-10-27 2018-03-09 燕京啤酒(桂林漓泉)股份有限公司 Whether the labeling binder that judgement beer valve protection cap mark uses can cause the method for crown plug corrosion in shelf life

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026945A (en) * 2010-07-27 2012-02-09 Hitachi Ltd Method and device for atmospheric corrosion test of metal material for home electrical appliance
EP3985380A4 (en) 2019-08-16 2022-08-17 JFE Steel Corporation Method for evaluating delayed fracture of metal material
CN112414931A (en) * 2020-11-16 2021-02-26 中国南方电网有限责任公司超高压输电公司柳州局 Test method for corrosion resistance of galvanized steel sheet under simulated environment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3605630B2 (en) * 1999-04-26 2004-12-22 独立行政法人物質・材料研究機構 Composite cycle accelerated weathering test method for low alloy steel
JP4867303B2 (en) * 2005-11-16 2012-02-01 Jfeスチール株式会社 Method for evaluating corrosion resistance of metal material, metal material, and corrosion acceleration test apparatus for metal material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782661A (en) * 2017-10-27 2018-03-09 燕京啤酒(桂林漓泉)股份有限公司 Whether the labeling binder that judgement beer valve protection cap mark uses can cause the method for crown plug corrosion in shelf life

Also Published As

Publication number Publication date
JP2010139450A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP4867303B2 (en) Method for evaluating corrosion resistance of metal material, metal material, and corrosion acceleration test apparatus for metal material
Bastidas et al. Comparative study of three sodium phosphates as corrosion inhibitors for steel reinforcements
JP5176927B2 (en) Test method for accelerated corrosion of steel in high humidity environment
JP2011174859A (en) Method of evaluating corrosion resistance of metal material, and corrosion acceleration testing device of metal material
Ligier et al. Formation of the main atmospheric zinc end products: NaZn4Cl (OH) 6SO4· 6H2O, Zn4SO4 (OH) 6· nH2O and Zn4Cl2 (OH) 4SO4· 5H2O in [Cl−][SO42−][HCO3−][H2O2] electrolytes
JP2008070298A (en) Corrosion resistance testing method and evaluating method for steel material
JP2012026945A (en) Method and device for atmospheric corrosion test of metal material for home electrical appliance
Hamlaoui et al. Corrosion monitoring of galvanised coatings through electrochemical impedance spectroscopy
JP2008232895A (en) Corrosion testing method of metallic material for ship ballast tank
JP2010139449A (en) Corrosion acceleration test method and corrosion amount prediction method of organic coating steel material for civil engineering
JP2002059076A (en) Method for corrosion-preventive surface treatment, and steel material surface-treated for corrosion protection and its use
JP2010025560A (en) Corrosion resistance evaluating method of metal material
JP5315869B2 (en) Corrosion resistance evaluation method for metal material, metal material and corrosion acceleration test apparatus for metal material
JP2007139483A (en) Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material
JP5035450B2 (en) Method for evaluating corrosion resistance of metal materials for home appliances
JP6128102B2 (en) Method for evaluating delayed fracture characteristics of metal material and metal material
JP2005241400A (en) Method of evaluating corrosion resistance of indoor used steel sheet
JP2009069143A (en) Method for evaluating weather resistance of metallic material, metallic material, and apparatus for testing corrosion acceleration of metallic material
JP5532009B2 (en) Early rust aging weathering steel and method for producing the same
JP2011169918A5 (en) Method for evaluating corrosion resistance of metal materials for home appliances
JP4148132B2 (en) Method for evaluating corrosion resistance of steel
JP4455712B2 (en) Coated steel with atmospheric corrosion resistance
JP3605630B2 (en) Composite cycle accelerated weathering test method for low alloy steel
JP6344186B2 (en) Designable weathering steel and method for producing designable weathering steel
JP4343570B2 (en) Steel base material and base material adjustment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R150 Certificate of patent or registration of utility model

Ref document number: 5176927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees