JP2010025560A - Corrosion resistance evaluating method of metal material - Google Patents
Corrosion resistance evaluating method of metal material Download PDFInfo
- Publication number
- JP2010025560A JP2010025560A JP2008183342A JP2008183342A JP2010025560A JP 2010025560 A JP2010025560 A JP 2010025560A JP 2008183342 A JP2008183342 A JP 2008183342A JP 2008183342 A JP2008183342 A JP 2008183342A JP 2010025560 A JP2010025560 A JP 2010025560A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- temperature
- corrosion
- salt
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
本発明は大気腐食環境で使用されるアルミニウムおよびアルミニウム基合金の耐食性評価方法、またこれらの金属材料に付される防錆処理の評価方法に関する。 The present invention relates to a method for evaluating the corrosion resistance of aluminum and aluminum-based alloys used in an atmospheric corrosive environment, and a method for evaluating a rust prevention treatment applied to these metal materials.
アルミニウムやアルミニウム合金は、必要に応じて陽極酸化処理,化成処理,めっき等の防錆処理をして、電子機器,家電品(冷蔵庫,エアコン,洗濯機等),通信機器,輸送機器(自動車,列車等)等に使用される。近年、防錆処理材の皮膜中に含有される6価クロムが人体の健康に悪影響を及ぼす疑いがあるという理由から、6価クロムを使用しない防錆処理が開発され実用化されている。6価クロムを使用しない新しい防錆処理を施した材料では使用実績が短く、長期間の耐食データが無い。 Aluminum and aluminum alloys are subjected to rust prevention treatment such as anodizing treatment, chemical conversion treatment, plating, etc. as necessary, and are used in electronic equipment, home appliances (refrigerators, air conditioners, washing machines, etc.), communication equipment, transportation equipment (automobiles, Used for trains). In recent years, rust prevention treatment that does not use hexavalent chromium has been developed and put into practical use because hexavalent chromium contained in the coating of the rust prevention treatment material is suspected of adversely affecting human health. New rust-proof materials that do not use hexavalent chromium have a short track record of use and no long-term corrosion resistance data.
新しい防錆処理の大気腐食環境中の耐食性を評価し、最適な処理を選択するための評価手法として、塩水噴霧試験(JIS Z2371)や、長期間の大気暴露試験等、従来より知られていた試験法が使用されている。 As an evaluation method for evaluating the corrosion resistance of the new rust prevention treatment in the atmospheric corrosive environment and selecting the optimum treatment, the salt spray test (JIS Z2371) and the long-term atmospheric exposure test have been conventionally known. Test methods are used.
塩水噴霧試験は短期間に耐食性を評価できるが、付着塩分量が大きく、湿度が高い環境下の試験であり、実際の腐食環境を再現しているわけではなく、評価結果が実環境での耐食性と異なることがある。 The salt spray test can evaluate corrosion resistance in a short period of time, but it is a test in an environment with a large amount of attached salt and high humidity, and it does not reproduce the actual corrosive environment, and the evaluation result is corrosion resistance in the actual environment. And may be different.
また、大気暴露試験は、環境が実環境そのものであり、実環境の大気腐食についての知見を得ることができるが、大気暴露試験は機器の寿命以上の長い試験期間を要する。従って、機器の設計を行うため、寿命を短期間で予測できる評価方法が必要である。 In the atmospheric exposure test, the environment is the actual environment itself, and knowledge about atmospheric corrosion in the actual environment can be obtained. However, the atmospheric exposure test requires a longer test period than the life of the equipment. Therefore, in order to design the equipment, an evaluation method capable of predicting the lifetime in a short period is necessary.
特開2004−77260号公報(特許文献1)は、塩分付着後に温度40〜60℃,相対湿度40%以下,保持時間2〜12時間の乾燥状態と、温度20〜60℃,相対湿度80〜96%,保持時間2〜12時間の湿潤状態を繰り返す試験法が提案されている。この方法は、実環境との相関性が高く、比較的短期間で耐食性を評価できる方法である。 Japanese Patent Application Laid-Open No. 2004-77260 (Patent Document 1) discloses that after adhesion of salt, the temperature is 40 to 60 ° C., the relative humidity is 40% or less, the drying state is 2 to 12 hours, the temperature is 20 to 60 ° C., and the relative humidity is 80 to 80%. A test method that repeats the wet state of 96% and holding time of 2 to 12 hours has been proposed. This method has a high correlation with the actual environment and can evaluate the corrosion resistance in a relatively short period of time.
アルミニウムおよびアルミニウム合金では表面に耐食性の良好な酸化皮膜が形成され、アルミニウムおよびアルミニウム合金の耐食性に影響を及ぼす。この酸化皮膜の、形成のされ易さは、少なくとも30℃〜60℃の温度範囲で変化する。よって、アルミニウムおよびアルミニウム合金に関しては、耐食性評価方法の温度を実環境とかけ離れた温度に設定することは、実環境と異なった腐食形態になり、耐食性の判断を誤るおそれがある。 In aluminum and aluminum alloys, an oxide film with good corrosion resistance is formed on the surface, which affects the corrosion resistance of aluminum and aluminum alloys. The ease with which this oxide film is formed varies in a temperature range of at least 30 ° C to 60 ° C. Therefore, regarding aluminum and aluminum alloys, setting the temperature of the corrosion resistance evaluation method to a temperature far from the actual environment results in a corrosion form different from that of the actual environment, and there is a risk of misjudging the corrosion resistance.
特許文献1は、この方法は表面処理鋼板を対象としており、試験温度を亜鉛が鉄に対して犠牲防食をする60℃以下としている。よって、この方法はアルミニウムやアルミニウム合金の耐食性を評価するものではない。
In
そこで、防錆処理の耐食性の優劣評価や使用環境での寿命の推定は、実環境と相関のある方法によっておこなわれなければならない。 Therefore, the evaluation of the superiority or inferiority of the corrosion resistance of the rust prevention treatment and the estimation of the lifetime in the usage environment must be performed by a method correlated with the actual environment.
本発明は、防錆処理を施したアルミニウムやアルミニウム合金の耐食性を短期間で適正に評価することを目的とする。 An object of the present invention is to appropriately evaluate the corrosion resistance of aluminum or aluminum alloy subjected to rust prevention treatment in a short period of time.
(1)本発明は、下記(A)の工程と下記(B)の工程とからなる工程を1回または複数回繰り返して金属材料の耐食性評価方法を特徴としている。
(A)塩分を付着させる工程であって、塩分として塩化物イオンを0.1〜10000mg/m2の範囲で試験片に付着させる工程。
(B)乾燥状態と湿潤状態を繰り返す工程であって、温度20℃〜60℃、相対湿度30%〜70%のうちの一定温湿度、保持時間1秒〜24時間とする乾燥状態と、温度0℃〜40℃、相対湿度80%〜98%、保持時間1秒〜24時間とする湿潤状態を行うことを1サイクルとし、このサイクルを複数回繰り返す工程。
(2)本発明は、(1)の耐食性評価方法における金属材料は、アルミニウム,アルミニウム基合金およびそれらに防錆処理を施した材料であることを特徴としている。
(3)本発明は、(1)〜(2)における耐食性評価方法をおこなう装置であることを特徴としている。
(1) The present invention is characterized by a method for evaluating the corrosion resistance of a metal material by repeating the step consisting of the following step (A) and the following step (B) once or a plurality of times.
(A) A step of adhering a salt content, and a step of adhering chloride ions as a salt content to a test piece in a range of 0.1 to 10000 mg / m 2 .
(B) A process of repeating a dry state and a wet state, wherein the temperature is 20 ° C. to 60 ° C., the relative humidity is 30% to 70%, the constant temperature and humidity, and the holding time is 1 second to 24 hours, and the temperature A process in which a wet state of 0 to 40 ° C., relative humidity of 80% to 98% and a holding time of 1 second to 24 hours is defined as one cycle, and this cycle is repeated a plurality of times.
(2) The present invention is characterized in that the metal material in the corrosion resistance evaluation method of (1) is aluminum, an aluminum-based alloy, and a material obtained by subjecting them to rust prevention treatment.
(3) The present invention is characterized by being an apparatus for performing the corrosion resistance evaluation method in (1) to (2).
本発明によれば、金属材料、特にアルミニウムやアルミニウム合金の大気腐食環境中における腐食形態を再現できる。よって、アルミニウムやアルミニウム合金に施す防錆処理の優劣を適正に評価でき、防錆処理の選定に役立つ。 ADVANTAGE OF THE INVENTION According to this invention, the corrosion form in the atmospheric corrosive environment of metal materials, especially aluminum and aluminum alloy can be reproduced. Therefore, it is possible to appropriately evaluate the superiority or inferiority of the rust prevention treatment applied to aluminum or aluminum alloy, which is useful for selecting the rust prevention treatment.
図1は本発明の工程を示す図である。本発明による耐食性評価方法は、(A)塩化物イオンを付着させる工程と、(B)湿潤と乾燥とそれらの移行を1サイクルとしてこれを複数回行う工程とからなる。 FIG. 1 shows the process of the present invention. The corrosion resistance evaluation method according to the present invention comprises (A) a step of adhering chloride ions, and (B) a step of performing this a plurality of times with one cycle consisting of wetting, drying and transfer thereof.
(A)の工程において、塩分の付着方法は特に限定されず、塩水浸漬,塩水噴霧,塩水滴下等の方法にて付着させる。使用する塩水には、人工海水や塩化ナトリウム水溶液を用いる。塩分の付着量は0.1〜10000mg/m2の範囲であって、想定される環境に応じて付着塩分量を選定する。付着塩分量を実環境よりも大きくすることにより、腐食を促進可能であるが、大きくしすぎると、実環境の結果と異なることがある。そこで、付着塩分量を2つ以上の水準に設定して試験するとなお良い。 In the step (A), the method for attaching the salt is not particularly limited, and the salt is attached by a method such as salt water immersion, salt spray, salt water dropping or the like. Artificial sea water or sodium chloride aqueous solution is used for the salt water to be used. The amount of salt attached is in the range of 0.1 to 10,000 mg / m 2 , and the amount of salt attached is selected according to the assumed environment. Corrosion can be promoted by increasing the amount of attached salt from the actual environment, but if it is too large, the result may be different from the actual environment. Therefore, it is better to set the amount of adhering salt to two or more levels for testing.
図2は、アルミニウムまたはアルミニウム合金である材料X,Y,Zの、付着塩分量と腐食の程度との関係を模式的に表した図である。付着塩分量x,y,zにおいて、腐食の程度の序列が入れ替わっている。このように、実環境とかけ離れた付着塩分量では耐食性評価の判断を誤るおそれがある。一方で、付着塩分量を2つの水準に設定して試験をすることにより、材料の耐食性の特性を調べることができる。 FIG. 2 is a diagram schematically showing the relationship between the amount of adhering salt and the degree of corrosion of materials X, Y, and Z that are aluminum or an aluminum alloy. In the amount of adhering salt x, y, z, the order of the degree of corrosion is switched. As described above, there is a possibility that the judgment of the corrosion resistance evaluation may be mistaken for the amount of adhered salt far from the actual environment. On the other hand, the corrosion resistance characteristics of the material can be examined by performing the test with the adhering salt content set at two levels.
(B)の工程において、乾燥状態は日中の高温乾燥状態を、湿潤状態は夜間の結露状態を模擬している。実環境下では、相対湿度は、露点温度を一定として温度変化に相応して変化することから、乾燥状態及び湿潤状態は露点温度一定とする。さらに、乾燥状態から湿潤状態への移行および湿潤状態から乾燥状態への移行も、露点温度一定にして行う。 In the step (B), the dry state simulates a high temperature dry state during the day, and the wet state simulates a dew condensation state at night. In an actual environment, the relative humidity changes according to the temperature change with the dew point temperature being constant. Therefore, the dew point temperature is constant in the dry state and the wet state. Further, the transition from the dry state to the wet state and the transition from the wet state to the dry state are also performed at a constant dew point temperature.
(B)の工程は、恒温恒湿槽を使用しておこなう。乾燥状態では、温度の範囲を20〜60℃とし、想定される環境の最高温度と同等の一定温度に設定する。また、大気腐食環境の乾燥期間での相対湿度は30〜70%であるため、乾燥状態では相対湿度を30〜70%の一定湿度とする。さらに、乾燥状態では、保持時間を0.01s〜2時間とする。 The step (B) is performed using a constant temperature and humidity chamber. In the dry state, the temperature range is 20 to 60 ° C., and is set to a constant temperature equivalent to the maximum temperature of the assumed environment. Moreover, since the relative humidity in the drying period of an atmospheric corrosive environment is 30 to 70%, the relative humidity is set to a constant humidity of 30 to 70% in the dry state. Further, in the dry state, the holding time is set to 0.01 s to 2 hours.
湿潤状態では、温度範囲0〜55℃のうちの一定温度に設定する。 In a wet state, it is set to a constant temperature in the temperature range of 0 to 55 ° C.
また、湿潤では、相対湿度を80〜98%の一定湿度とする。相対湿度80%以上では、海塩の主成分の1つである塩化ナトリウムが湿分を吸着して溶解し、水膜を形成する。さらに湿潤状態では、保持時間を0.01s〜2時間とする。 In addition, the humidity is set to a constant humidity of 80 to 98%. When the relative humidity is 80% or more, sodium chloride, which is one of the main components of sea salt, adsorbs and dissolves moisture to form a water film. Further, in a wet state, the holding time is set to 0.01 s to 2 hours.
図3は露点温度一定の条件を結んだ線図である。縦軸は温度を、横軸は相対湿度を表している。湿潤の温度および相対湿度は、乾燥での温湿度条件での露点温度と同一にし、誤差を±5℃以内にする。図3にて、露点温度20℃の条件を選定した場合は、例えば、乾燥状態を温度35℃、相対湿度40%RHとし、湿潤状態を温度22℃、相対湿度95%とする。 FIG. 3 is a diagram connecting the conditions of a constant dew point temperature. The vertical axis represents temperature, and the horizontal axis represents relative humidity. Wet temperature and relative humidity are the same as the dew point temperature under dry temperature and humidity conditions, and the error is within ± 5 ° C. In FIG. 3, when the dew point temperature of 20 ° C. is selected, for example, the dry state is 35 ° C. and the relative humidity is 40% RH, and the wet state is 22 ° C. and the relative humidity is 95%.
(B)の工程では、湿潤と乾燥とそれらの移行のサイクルを所定回数繰り返す。(B)の工程の後、再び(A)の工程に供する。(A)の工程では水洗して塩分を除くか、塩分を除去せずに、新たに塩分を付着させ、試験を繰り返す。 In the step (B), the cycle of wetting, drying, and their transfer is repeated a predetermined number of times. After the step (B), it is again subjected to the step (A). In the step (A), the salt is removed by washing with water, or the salt is newly attached without removing the salt, and the test is repeated.
図4は、3.5%人工海水中におけるアルミニウム合金の分極曲線を示す図である。分極曲線は、腐食電位を起点に、電圧を正の方向に走査し、その電位での電流を測定して得た。分極曲線は、30℃〜60℃の範囲で人工海水の温度を変えることにより異なった。 FIG. 4 is a diagram showing a polarization curve of an aluminum alloy in 3.5% artificial seawater. The polarization curve was obtained by scanning the voltage in the positive direction starting from the corrosion potential and measuring the current at that potential. The polarization curves differed by changing the temperature of the artificial seawater in the range of 30 ° C to 60 ° C.
30℃における分極曲線11は、液温を30℃にして測定した場合の分極曲線である。電位を正の方向に走査すると同時に、急激に電流が増加した。
The
40℃における分極曲線12は、液温を40℃にして測定した場合の分極曲線である。電流を正の方向に走査しても電流が増加しない領域である不働態領域がみられた。不働態域がみられたことは、40℃では保護性のある不働態皮膜が形成されやすいと考えられる。
A
60℃における分極曲線13は、液温を60℃にして測定した分極曲線である。60℃での不働態領域は、40℃と比較して大きかった。
The
このように、温度により不働態領域の有無や程度が異なり、耐食性も変化すると考えられる。また、腐食形態も異なると考えられる。よって、試験温度の設定は最高温度を上限として決定するのが好ましい。 Thus, it is considered that the presence or absence and degree of the passive state region vary depending on the temperature, and the corrosion resistance changes. Moreover, it is thought that the corrosion form is also different. Therefore, it is preferable to set the test temperature with the maximum temperature as an upper limit.
図5は、電気化学的な方法によりアルミニウム合金の腐食速度を測定した結果である。縦軸は腐食速度を横軸は時間を表している。腐食速度は湿潤状態で大きく、乾燥状態では小さかった。また、湿潤から乾燥へ移行する間に腐食速度が増加する現象がみられた。この現象は、乾湿繰り返しの周期が短い場合の方が周期の長い場合よりも顕著であり、試験の促進効果が大きい。 FIG. 5 shows the results of measuring the corrosion rate of an aluminum alloy by an electrochemical method. The vertical axis represents the corrosion rate and the horizontal axis represents time. The corrosion rate was large in the wet state and small in the dry state. In addition, a phenomenon was observed in which the corrosion rate increased during the transition from wet to dry. This phenomenon is more conspicuous when the cycle of drying and wetting is short than when the cycle is long, and the effect of promoting the test is large.
実施例1として、本発明の評価方法により、純アルミニウム系の材料である材料A、アルミニウムダイカスト合金である材料B、アルミニウム合金展伸材の材料Cについて耐食性を評価した。試験条件は以下のように決定した。ある塩害地域では、年間の最高気温が概ね35℃であったことから、乾燥状態の設定温度を35℃とした。さらにこの地域での一日の最低の相対湿度は概ね40%RHであったことから、乾燥の相対湿度を40%RHとした。よって、本実施例の露点温度は、およそ20℃である。この地域では、夜間に結露現象がみられることから、湿潤での相対湿度を95%RHとした。露点温度はおよそ20℃であることから湿潤状態の温度を20℃とした。 As Example 1, the corrosion resistance of the material A, which is a pure aluminum material, the material B, which is an aluminum die cast alloy, and the material C, which is an aluminum alloy wrought material, was evaluated by the evaluation method of the present invention. The test conditions were determined as follows. In a certain salt damage area, the annual maximum temperature was approximately 35 ° C., so the dry temperature was set to 35 ° C. Furthermore, since the lowest daily relative humidity in this region was approximately 40% RH, the relative humidity for drying was set to 40% RH. Therefore, the dew point temperature of this example is approximately 20 ° C. In this area, the dew condensation phenomenon is observed at night, so the relative humidity when wet is 95% RH. Since the dew point temperature is approximately 20 ° C., the wet temperature was set to 20 ° C.
図6に本実施例の温湿度サイクルを示す。乾湿繰り返し工程は、乾燥状態および湿潤状態の時間を3h、乾燥から湿潤への移行時間および湿潤から乾燥への移行時間を1hとし、周期を8hとした。塩分付着は人工海水を霧状に噴霧しておこなった。この地域の付着塩分量が1g/m2であったことから、付着塩分量は、1g/m2とした。具体的には、濃度3.5%の人工海水を30g/m2だけ付着させた。また、付着塩分量を4g/m2とした条件についてもおこなった。 FIG. 6 shows the temperature and humidity cycle of this example. In the drying / wetting repetition step, the time for the dry state and the wet state was 3 h, the time for transition from dry to wet and the time for transition from wet to dry were 1 h, and the cycle was 8 h. Adhesion of salt was performed by spraying artificial seawater in the form of a mist. Since the amount of attached salt in this region was 1 g / m 2 , the amount of attached salt was set to 1 g / m 2 . Specifically, artificial seawater having a concentration of 3.5% was attached by 30 g / m 2 . Moreover, it carried out also about the conditions which made the amount of adhesion salt into 4 g / m < 2 >.
試験片には、アルミニウムおよびアルミニウム合金の板を70×70mmの形状にしたものを使用して、片面を評価面とした。 As the test piece, an aluminum and aluminum alloy plate having a shape of 70 × 70 mm was used, and one side was used as an evaluation surface.
乾湿繰り返し工程は、1週間に2回の頻度で一時休止し、塩分付着工程をおこなった。塩分付着工程では、試験片を純水により洗浄し、再び塩分を付着し、乾湿繰り返しを再開した。これを42日間継続した。 The wet and dry repeating process was paused twice a week to perform the salt adhesion process. In the salt adhesion process, the test piece was washed with pure water, the salt was again adhered, and the drying and wetting cycle was restarted. This was continued for 42 days.
試験実施により、試験片には白色の腐食生成物からなる腐食が生成した。材料Aは、表面の金属光沢が鈍化した。また、所々に大きさが2〜5mm程度の白色の腐食生成物からなる腐食が観察された。材料Bでは、白色の腐食生成物からなる高密度で微小な腐食が観察された。材料Cでは材料Aと同様の腐食形態であった。これらは実環境での結果と一致していた。 As a result of performing the test, corrosion consisting of a white corrosion product was generated on the test piece. Material A had a dulled metallic luster on the surface. In addition, corrosion consisting of white corrosion products having a size of about 2 to 5 mm was observed in some places. In material B, high density and minute corrosion consisting of a white corrosion product was observed. In material C, the corrosion form was similar to that in material A. These agreed with the results in the real environment.
腐食が発生した領域の試験片評価面に占める割合を測定した。また、白色の腐食生成物をJIS Z2371の方法により除去した後、光学顕微鏡を使用して孔食深さを求めた。その結果、材料Bが最も腐食が進行しており、続いて、材料C,材料Aの順で腐食が進行していた。この耐食性の優劣関係は、実環境の結果と一致していた。よって、本発明により、アルミニウムおよびアルミニウム合金の大気腐食環境にける耐食性を短期間で適正に評価できた。なお、従来の促進試験法では腐食形態や材料間の耐食性の優劣が実環境の結果と異なっていた。 The ratio of the area where corrosion occurred to the test piece evaluation surface was measured. Moreover, after removing the white corrosion product by the method of JIS Z2371, the pitting corrosion depth was calculated | required using the optical microscope. As a result, the corrosion of the material B proceeded most, and the corrosion proceeded in the order of the material C and the material A. This superiority or inferiority relationship of the corrosion resistance was consistent with the result of the actual environment. Therefore, according to the present invention, the corrosion resistance of aluminum and aluminum alloys in an atmospheric corrosion environment can be properly evaluated in a short period of time. In the conventional accelerated test method, the corrosion form and the superiority or inferiority of the corrosion resistance between materials differed from the results in the actual environment.
促進率を高めるため、乾湿繰り返しの周期を短くした。図7に本実施例の温湿度サイクルを示す。温湿度条件は実施例1と同一で、乾燥および湿潤の時間は1h、乾燥から湿潤への移行時間および湿潤から乾燥への移行時間を1hとし、周期を4hとした。このように、促進率を高めた場合であっても、上記実施例1と同様にアルミニウムおよびアルミニウム合金の大気腐食環境における耐食性を適正に評価できた。 In order to increase the acceleration rate, the cycle of repeated wet and dry was shortened. FIG. 7 shows the temperature and humidity cycle of this example. The temperature and humidity conditions were the same as in Example 1, the drying and wetting time was 1 h, the transition time from drying to wetting and the transition time from wetting to drying were 1 h, and the cycle was 4 h. Thus, even when the acceleration rate was increased, the corrosion resistance of the aluminum and the aluminum alloy in the atmospheric corrosion environment could be appropriately evaluated as in Example 1.
実施例3として、本発明の評価方法により、アルミニウムダイカスト合金である材料a、材料aに陽極酸化処理を施した材料b、材料aに金属メッキをした材料c、材料aに化成処理を施した材料dについて耐食性を評価した。試験条件は以下のように決定した。ある塩害地域では、年間の最高気温が35℃であったことから、乾燥状態の設定温度を35℃とした。さらにこの地域での一日の最低の相対湿度は概ね55%RHであったことから、乾燥の相対湿度を55%RHとした。よって、本実施例の露点温度は20℃である。この地域では、夜間に結露現象がみられることから、湿潤状態での相対湿度を95%RHとした。本実施例での露点温度が20℃であることから、湿潤状態の温度を26℃とした。この地域では、夜間の結露する時間が継続する反面、昼間の相対湿度が55%になる時間は一時的である。図8に本実施例の温湿度サイクルを示す。本実施例では、湿潤の時間は1.8h、乾燥の時間を0.2hとした。乾燥から湿潤への移行時間および湿潤から乾燥への移行時間を1hとし、周期を4hとした。乾湿繰り返し工程や塩分付着工程は、実施例1と同様の手順でおこない、試験を42日間継続した。 As Example 3, according to the evaluation method of the present invention, the material a, which is an aluminum die-cast alloy, the material b obtained by anodizing the material a, the material c obtained by metal plating the material a, and the chemical conversion treatment were performed on the material a. The material d was evaluated for corrosion resistance. The test conditions were determined as follows. In a certain salt damage area, since the maximum annual temperature was 35 ° C, the set temperature of the dry state was set to 35 ° C. Furthermore, since the minimum daily relative humidity in this region was approximately 55% RH, the relative humidity for drying was set to 55% RH. Therefore, the dew point temperature of this example is 20 ° C. In this region, since dew condensation is observed at night, the relative humidity in a wet state was set to 95% RH. Since the dew point temperature in this example was 20 ° C., the wet temperature was set to 26 ° C. In this region, while the nighttime condensation time continues, the time during which the daytime relative humidity is 55% is temporary. FIG. 8 shows the temperature and humidity cycle of this example. In this example, the wet time was 1.8 h, and the dry time was 0.2 h. The transition time from dry to wet and the transition time from wet to dry was 1 h, and the period was 4 h. The wet and dry repeating process and the salt adhesion process were performed in the same procedure as in Example 1, and the test was continued for 42 days.
試験実施により、材料aでは、白色の腐食生成物からなる高密度で微小な腐食が観察された。材料bでは顕著な腐食は確認されなかった。材料cでは所々に大きさが2〜5mm程度の白色の腐食生成物からなる腐食が観察された。材料dでは、材料aほどではないが、白色の腐食生成物からなる高密度で微小な腐食が観察された。これらは実環境での結果と一致していた。なお、従来の促進試験法では腐食形態や材料間の耐食性の優劣が実環境の結果と異なっていた。 According to the test, a high density and minute corrosion made of a white corrosion product was observed in the material a. No significant corrosion was observed with material b. In the material c, corrosion consisting of white corrosion products having a size of about 2 to 5 mm was observed in some places. In material d, although not as high as material a, high density and minute corrosion of white corrosion products was observed. These agreed with the results in the real environment. In the conventional accelerated test method, the corrosion form and the superiority or inferiority of the corrosion resistance between materials differed from the results in the actual environment.
実施例1と同様の方法により腐食量を求め、その結果、材料aが最も腐食が進行しており、続いて、材料d,材料c,材料bの順で腐食が進行していた。この耐食性の優劣関係は、実環境の結果と一致していた。よって、本発明により、アルミニウムおよびアルミニウム合金の大気腐食環境にける耐食性を短期間で適正に評価できた。 The amount of corrosion was determined by the same method as in Example 1. As a result, the corrosion of the material a was the most advanced, and then the corrosion proceeded in the order of the material d, the material c, and the material b. This superiority or inferiority relationship of the corrosion resistance was consistent with the result of the actual environment. Therefore, according to the present invention, the corrosion resistance of aluminum and aluminum alloys in an atmospheric corrosion environment can be properly evaluated in a short period of time.
実施例4として、本発明の評価方法により、純アルミニウム系の材料である材料A,アルミニウムダイカスト合金である材料B,アルミニウム合金展伸材の材料Cについて耐食性を評価した。試験条件は以下のように決定した。アルミニウム合金を使用したある電気機器の使用環境は、24時間周期で乾湿を繰り返し、最高気温が60℃になる、そこで乾燥状態の設定温度を60℃とした。さらにこの地域での一日の最低の相対湿度は概ね35%RHであったことから、乾燥の相対湿度を35%RHとした。よって、本実施例の露点温度は40℃である。この環境では、夜間に結露現象がみられることから、湿潤での相対湿度を95%RHとした。実施例1とは温度範囲が大きく異なる。図9に本実施例の温湿度サイクルを示す。本実施例では、湿潤の時間は3h、乾燥の時間を3hとした。乾燥から湿潤への移行時間および湿潤から乾燥への移行時間を1hとし、周期を8hとした。乾湿繰り返し工程や塩分付着工程は、実施例1と同様の手順でおこない、試験を42日間継続した。 As Example 4, the corrosion resistance of the material A, which is a pure aluminum material, the material B, which is an aluminum die cast alloy, and the material C, which is an aluminum alloy wrought material, was evaluated by the evaluation method of the present invention. The test conditions were determined as follows. The usage environment of an electric device using an aluminum alloy was repeatedly dried and wet every 24 hours, and the maximum temperature was 60 ° C. Therefore, the dry temperature was set to 60 ° C. Furthermore, since the lowest daily relative humidity in this region was approximately 35% RH, the relative humidity for drying was set to 35% RH. Therefore, the dew point temperature of this example is 40 ° C. In this environment, a dew condensation phenomenon is observed at night, so the relative humidity at the time of humidity was set to 95% RH. The temperature range is significantly different from Example 1. FIG. 9 shows the temperature and humidity cycle of this example. In this example, the wet time was 3 hours and the dry time was 3 hours. The transition time from dry to wet and the transition time from wet to dry was 1 h, and the period was 8 h. The wet and dry repeating process and the salt adhesion process were performed in the same procedure as in Example 1, and the test was continued for 42 days.
試験実施により、試験片には白色の腐食生成物からなる腐食が生成した。材料Aは、大きさが1mm未満の微小な腐食が高密度に観察された。健全部と変色した部分との境界が明瞭であった。材料Bでは、白色の腐食生成物からなる高密度で微小な腐食が観察された。材料Cでは、所々に大きさが2〜5mm程度の白色の腐食生成物からなる腐食が観察された。これらの腐食形態や耐食性の優劣関係は実環境での結果と一致していた。なお、実施例4は、実施例1とは温度範囲が大きく異なるため、実施例1の腐食形態や材料間の耐食性の優劣関係は異なっていた。 As a result of performing the test, corrosion consisting of a white corrosion product was generated on the test piece. In the material A, minute corrosion having a size of less than 1 mm was observed at high density. The boundary between the healthy part and the discolored part was clear. In material B, high density and minute corrosion consisting of a white corrosion product was observed. In material C, corrosion consisting of white corrosion products having a size of about 2 to 5 mm was observed in some places. The superiority or inferiority relationship between these corrosion forms and corrosion resistance was consistent with the results in the actual environment. In addition, since the temperature range of Example 4 differs greatly from Example 1, the superiority or inferiority relationship of the corrosion form and the corrosion resistance between the materials of Example 1 was different.
本発明は大気腐食環境における耐食性を評価する技術に関する。 The present invention relates to a technique for evaluating corrosion resistance in an atmospheric corrosive environment.
11 30℃における分極曲線
12 40℃における分極曲線
13 60℃における分極曲線
11 Polarization curve at 30 ° C. 12 Polarization curve at 40 ° C. 13 Polarization curve at 60 ° C.
Claims (3)
前記塩分を付着させる工程は、金属材料に塩化物イオンを0.1〜10000mg/m2付着させる工程であって、前記乾燥状態で保持する工程は、温度20℃〜60℃,相対湿度30%〜70%で保持時間1秒〜24時間の条件であり、前記湿潤状態で保持する工程は、温度0℃〜55℃,相対湿度80%〜98%,保持時間1秒〜24時間の条件であることを特徴とする耐食性評価方法。 A step of attaching a salt to a metal material, a step of holding the metal material to which the salt is attached in a dry state, a step of holding the metal material held in the dry state in a wet state, and the dry state And the step of holding in the wet state a plurality of times, the corrosion resistance evaluation method for evaluating the corrosion resistance from the metal material that has undergone the step,
The step of attaching the salt content is a step of attaching 0.1 to 10,000 mg / m 2 of chloride ions to the metal material, and the step of maintaining the dry state is a temperature of 20 ° C. to 60 ° C. and a relative humidity of 30%. -70% and holding time of 1 second to 24 hours. The step of holding in the wet state is performed under the conditions of temperature 0 ° C to 55 ° C, relative humidity 80% to 98%, holding time 1 second to 24 hours. A corrosion resistance evaluation method characterized by being.
前記金属材料はアルミニウム,アルミニウム基合金であることを特徴とする耐食性評価方法。 The corrosion resistance evaluation method according to claim 1,
The method for evaluating corrosion resistance, wherein the metal material is aluminum or an aluminum-based alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008183342A JP2010025560A (en) | 2008-07-15 | 2008-07-15 | Corrosion resistance evaluating method of metal material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008183342A JP2010025560A (en) | 2008-07-15 | 2008-07-15 | Corrosion resistance evaluating method of metal material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010025560A true JP2010025560A (en) | 2010-02-04 |
Family
ID=41731553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008183342A Pending JP2010025560A (en) | 2008-07-15 | 2008-07-15 | Corrosion resistance evaluating method of metal material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010025560A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102866100A (en) * | 2012-08-29 | 2013-01-09 | 浙江吉利汽车研究院有限公司杭州分公司 | Salt mist test nut-type component placing device |
US8927289B2 (en) | 2011-12-27 | 2015-01-06 | Hitachi, Ltd. | Atmospheric corrosion test procedure and its apparatus |
CN105466844A (en) * | 2015-11-26 | 2016-04-06 | 中国航空工业集团公司沈阳飞机设计研究所 | Aluminum lithium alloy corrosion resistance evaluation method |
CN107941682A (en) * | 2017-12-14 | 2018-04-20 | 武汉科技大学 | A kind of corrosion testing apparatus and method |
CN112414931A (en) * | 2020-11-16 | 2021-02-26 | 中国南方电网有限责任公司超高压输电公司柳州局 | Test method for corrosion resistance of galvanized steel sheet under simulated environment |
CN113866081A (en) * | 2021-09-28 | 2021-12-31 | 中国第一汽车股份有限公司 | Automobile radiator corrosion test evaluation method |
EP3985380A4 (en) * | 2019-08-16 | 2022-08-17 | JFE Steel Corporation | Method for evaluating delayed fracture of metal material |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10253524A (en) * | 1997-03-11 | 1998-09-25 | Nippon Steel Corp | Accelerating test method for atmospheric corrosion-resistance |
JP2003329573A (en) * | 2002-03-08 | 2003-11-19 | Jfe Steel Kk | Method for evaluating corrosion resistance of metallic material, method for predicting corrosion life thereof, metallic material, method for designing thereof, and method for manufacturing thereof |
JP2004077260A (en) * | 2002-08-16 | 2004-03-11 | Jfe Steel Kk | Method for evaluating corrosion-resistance of steel plate used for household electric appliances and electric / electronic component of household electric appliances |
JP2005241400A (en) * | 2004-02-26 | 2005-09-08 | Jfe Steel Kk | Method of evaluating corrosion resistance of indoor used steel sheet |
JP2007139484A (en) * | 2005-11-16 | 2007-06-07 | Jfe Steel Kk | Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material |
JP2007139483A (en) * | 2005-11-16 | 2007-06-07 | Jfe Steel Kk | Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material |
JP2008070298A (en) * | 2006-09-15 | 2008-03-27 | Tokyo Electric Power Co Inc:The | Corrosion resistance testing method and evaluating method for steel material |
-
2008
- 2008-07-15 JP JP2008183342A patent/JP2010025560A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10253524A (en) * | 1997-03-11 | 1998-09-25 | Nippon Steel Corp | Accelerating test method for atmospheric corrosion-resistance |
JP2003329573A (en) * | 2002-03-08 | 2003-11-19 | Jfe Steel Kk | Method for evaluating corrosion resistance of metallic material, method for predicting corrosion life thereof, metallic material, method for designing thereof, and method for manufacturing thereof |
JP2004077260A (en) * | 2002-08-16 | 2004-03-11 | Jfe Steel Kk | Method for evaluating corrosion-resistance of steel plate used for household electric appliances and electric / electronic component of household electric appliances |
JP2005241400A (en) * | 2004-02-26 | 2005-09-08 | Jfe Steel Kk | Method of evaluating corrosion resistance of indoor used steel sheet |
JP2007139484A (en) * | 2005-11-16 | 2007-06-07 | Jfe Steel Kk | Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material |
JP2007139483A (en) * | 2005-11-16 | 2007-06-07 | Jfe Steel Kk | Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material |
JP2008070298A (en) * | 2006-09-15 | 2008-03-27 | Tokyo Electric Power Co Inc:The | Corrosion resistance testing method and evaluating method for steel material |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8927289B2 (en) | 2011-12-27 | 2015-01-06 | Hitachi, Ltd. | Atmospheric corrosion test procedure and its apparatus |
CN102866100A (en) * | 2012-08-29 | 2013-01-09 | 浙江吉利汽车研究院有限公司杭州分公司 | Salt mist test nut-type component placing device |
CN105466844A (en) * | 2015-11-26 | 2016-04-06 | 中国航空工业集团公司沈阳飞机设计研究所 | Aluminum lithium alloy corrosion resistance evaluation method |
CN107941682A (en) * | 2017-12-14 | 2018-04-20 | 武汉科技大学 | A kind of corrosion testing apparatus and method |
EP3985380A4 (en) * | 2019-08-16 | 2022-08-17 | JFE Steel Corporation | Method for evaluating delayed fracture of metal material |
CN112414931A (en) * | 2020-11-16 | 2021-02-26 | 中国南方电网有限责任公司超高压输电公司柳州局 | Test method for corrosion resistance of galvanized steel sheet under simulated environment |
CN113866081A (en) * | 2021-09-28 | 2021-12-31 | 中国第一汽车股份有限公司 | Automobile radiator corrosion test evaluation method |
CN113866081B (en) * | 2021-09-28 | 2024-04-09 | 中国第一汽车股份有限公司 | Corrosion test evaluation method for automobile radiator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010025560A (en) | Corrosion resistance evaluating method of metal material | |
Arrabal et al. | Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy | |
JP4867303B2 (en) | Method for evaluating corrosion resistance of metal material, metal material, and corrosion acceleration test apparatus for metal material | |
RU2371516C2 (en) | Hydroxy-sulphate treatment of surface | |
RU2754070C2 (en) | Method for anti-corrosion processing of metal surface with reduced etching of material | |
CN110411934B (en) | Rapid assessment and prediction method for corrosion grade of aluminum alloy | |
Maddela et al. | Influence of surface pretreatment on coating morphology and corrosion performance of cerium-based conversion coatings on AZ91D alloy | |
JP4656405B2 (en) | Surface treatment method of aluminum or its alloy | |
JP2008232895A (en) | Corrosion testing method of metallic material for ship ballast tank | |
Jang et al. | Effects of copper on the corrosion properties of low-alloy steel in an acid-chloride environment | |
JP2008070298A (en) | Corrosion resistance testing method and evaluating method for steel material | |
JP6128102B2 (en) | Method for evaluating delayed fracture characteristics of metal material and metal material | |
KR100898270B1 (en) | Method of treating surface of magnesium product | |
JP2007113994A (en) | Life evaluation method and device for aluminum | |
JP2007139483A (en) | Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material | |
JP4218280B2 (en) | Method for evaluating corrosion resistance of steel plates for home appliances and steel plates for electrical and electronic parts for home appliances | |
JP2011169918A (en) | Corrosion resistance evaluation method for metal material, metal material, and device for testing corrosion acceleration of metal material | |
TW201202480A (en) | Process for preparing and treating a substrate | |
Wang et al. | Corrosion behavior of 907 steel under thin electrolyte layers of artificial seawater | |
US20080156653A1 (en) | Cyanide-free pre-treating solution for electroplating copper coating layer on magnesium alloy surface and a pre-treating method thereof | |
JP5659982B2 (en) | Corrosion test method of corrosion resistant steel for coal ship and coal / ore combined ship hold and method of predicting the service life of ship using it | |
Shang et al. | Corrosion resistance and molecular dynamics behavior of the MAO/SAM composite coatings on magnesium alloy | |
Ping et al. | Mechanically assisted electroless barrel-plating Ni-P coatings deposited on carbon steel | |
JP3678575B2 (en) | Test method for corrosion resistance of aluminum materials | |
JPH10313728A (en) | Corrosion preventing method for marine steel structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20100325 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20110804 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110928 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111101 |