JP4148132B2 - Method for evaluating corrosion resistance of steel - Google Patents

Method for evaluating corrosion resistance of steel Download PDF

Info

Publication number
JP4148132B2
JP4148132B2 JP2003422165A JP2003422165A JP4148132B2 JP 4148132 B2 JP4148132 B2 JP 4148132B2 JP 2003422165 A JP2003422165 A JP 2003422165A JP 2003422165 A JP2003422165 A JP 2003422165A JP 4148132 B2 JP4148132 B2 JP 4148132B2
Authority
JP
Japan
Prior art keywords
corrosion
test
solution
concentration
mgcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003422165A
Other languages
Japanese (ja)
Other versions
JP2005181102A (en
Inventor
幹之 市場
大輔 水野
栄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003422165A priority Critical patent/JP4148132B2/en
Publication of JP2005181102A publication Critical patent/JP2005181102A/en
Application granted granted Critical
Publication of JP4148132B2 publication Critical patent/JP4148132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、鋼材または亜鉛を含む表面処理を施した鋼材のMg塩を使用した耐食性評価方法に関するものである。   The present invention relates to a corrosion resistance evaluation method using Mg salt of steel material or steel material subjected to surface treatment containing zinc.

車体の腐食損失の社会問題化から、各自動車会社は車体防錆の向上に社会問題への対応として取り組み、現在では車体防錆保証(腐食による孔あき)は10年以上と長寿命化している。これらの防錆保証は融雪剤散布地域での車体の腐食実態調査や、実際の腐食と相関のある車体外観の促進腐食試験法の開発に基づく防錆材料の最適化により達成されたものである。   Due to the social problem of car body corrosion loss, each automobile company is working to improve car body rust prevention as a response to social problems, and now car body rust prevention guarantee (perforation due to corrosion) has been extended to more than 10 years. . These rust prevention guarantees were achieved by optimizing rust preventive materials based on the investigation of car body corrosion in areas where snow melting agents were applied and the development of accelerated corrosion test methods for car body appearance that correlate with actual corrosion. .

車体外観の促進腐食試験法として以下が開示、報告されている。   The following is disclosed and reported as an accelerated corrosion test method for vehicle body appearance.

塩水噴霧試験(以下SST)で知られる5%のNaClを35℃で連続噴霧する方法は、自動車の車体用塗装鋼板の耐食性評価法としても適用されている(例えば、非特許文献1参照。)。この方法は、亜鉛めっき鋼板に比較して冷延鋼板に対して良好な評価結果を与えることから、最近ではより実環境に近い評価結果が得られる各種複合サイクル試験法が開示されている。   The method of continuously spraying 5% NaCl at 35 ° C., which is known in the salt spray test (hereinafter referred to as SST), is also applied as a method for evaluating the corrosion resistance of painted steel sheets for automobile bodies (see, for example, Non-Patent Document 1). . Since this method gives a better evaluation result for a cold-rolled steel plate than a galvanized steel plate, various combined cycle test methods that can obtain an evaluation result closer to the actual environment have been disclosed recently.

日本自動車工業規格協会で規格化された車体外面腐食試験法の試験条件は、塩化物として5%の食塩水を2時間の塩水噴霧により付着させるものである(例えば、非特許文献2参照。)。この試験法では濡れ時間(湿潤時間と塩水噴霧時間の合計時間)を全試験時間の50%の試験時間とすることを実環境との相関性と促進率の両立の重要条件としている。乾燥工程は60℃、湿潤工程は50℃で試験を行い、沖縄暴露に代表される海洋環境を模擬した試験法である。   The test conditions of the vehicle body outer surface corrosion test method standardized by the Japan Automobile Manufacturers Association are those in which 5% of saline is applied as chloride by spraying with salt water for 2 hours (see, for example, Non-Patent Document 2). . In this test method, setting the wetting time (the total time of the wetting time and the salt water spraying time) to be 50% of the total testing time is an important condition for achieving both the correlation with the actual environment and the acceleration rate. This is a test method that simulates the marine environment typified by exposure to Okinawa by testing at 60 ° C for the drying process and 50 ° C for the wet process.

SAE(Society of Automotive Engineers)で規格化された車体外面腐食試験法としての試験条件は、融雪剤による腐食を想定しておりNaClとCaCl2の混合溶液を用いている(例えば、非特許文献3参照。)。この試験法は、乾燥工程は60℃、湿潤工程は50℃で試験を行い、北米市場で融雪剤を散布している塩害地域での車体外観腐食を模擬した試験法である。 Test conditions as a vehicle body outer surface corrosion test method standardized by SAE (Society of Automotive Engineers) assume corrosion by a snow melting agent and use a mixed solution of NaCl and CaCl 2 (for example, Non-Patent Document 3). reference.). This test method is a test method that simulates car body appearance corrosion in a salt damage area where a snow melting agent is sprayed in the North American market, with the drying process conducted at 60 ° C. and the wet process conducted at 50 ° C.

ちなみに、北米、欧州、日本で使用されている融雪剤は、主として岩塩、食塩などNaClを主成分とするものか、CaCl2を主成分とするものである、少量ではあるが、有機系の融雪剤も使用されている。 By the way, the snow melting agents used in North America, Europe, and Japan are mainly composed of NaCl such as rock salt and salt, or CaCl 2 as the main component. Agents are also used.

車体外観の腐食や鋼板を対象としたものではないが、MgCl2を用いた促進腐食試験法として海岸地域で使用するステンレス鋼構造体を想定した耐食性評価法が報告されている(例えば、非特許文献4参照。)。ステンレスの孔食は相対湿度が50%以下の低い条件で発生するが、この方法は、NaClに比較して飽和蒸気圧の小さいMgCl2やCaCl2を噴霧塩に使用することにより、ステンレスの腐食が促進・再現されることを見出したものである。 Corrosion resistance evaluation method assuming stainless steel structure used in coastal areas has been reported as an accelerated corrosion test method using MgCl 2 although it is not intended for corrosion of the car body appearance or steel plate (for example, non-patent Reference 4). Pitting corrosion of stainless steel occurs under conditions where the relative humidity is less than 50%, but this method uses corrosion of stainless steel by using MgCl 2 or CaCl 2, which has a lower saturated vapor pressure than NaCl, as spray salt. Has been found to be promoted and reproduced.

車体外観の腐食や鋼板を対象としたものではないが、酸性溶液とMgCl2を用いた促進腐食試験法として建材用途に国内酸性雨地域に対する耐食性評価法が報告されている(例えば、非特許文献5参照。)。この方法は、豪雪地帯で知られる日本海側の酸性雨飛来地域を想定したもので、ASTM D 1141に示される人工海水が使用されている。NaCl4.088g/L、CaCl20.193g/Lに対してMgCl20.867g/Lとなっている。また、酸成分の比率は硝酸イオン/硫酸イオンは0.2程度である。
JIS Z 2371 JASO M610 自動車技術会:「自動車部品外観腐食試験法」, JASO M610-92(1992). H. E. Townsend: Corrosion Prevention, SP-1265, SAE, 53(1997). 武藤 他:材料と環境、42, 714(1990). ISO TC156資料
Corrosion resistance evaluation method for domestic acid rain areas has been reported as an accelerated corrosion test method using acidic solution and MgCl 2 (for example, non-patent literature). 5). This method assumes an acid rain flying area on the Japan Sea side, which is known in heavy snowfall areas, and artificial seawater shown in ASTM D 1141 is used. MgCl 2 is 0.867 g / L against NaCl 4.088 g / L and CaCl 2 0.193 g / L. The ratio of the acid component is about 0.2 for nitrate ions / sulfate ions.
JIS Z 2371 JASO M610 Automotive Engineering Society: `` Automobile parts appearance corrosion test method '', JASO M610-92 (1992). HE Townsend: Corrosion Prevention, SP-1265, SAE, 53 (1997). Muto et al .: Materials and the environment, 42, 714 (1990). ISO TC156 document

しかしながら、上記した従来技術には次のような問題がある。   However, the above prior art has the following problems.

最近、岩塩系などの融雪剤の過剰散布に伴う生態系の破壊に対する環境意識の高まりから、中国でMgを主成分とする環境対応融雪剤が登場し、日本および中国で使用され始めた。融雪剤散布は車体外観の腐食に大きな影響を与えることは公知であるが、これらは従来使用されてきた岩塩(NaCl系)やCaCl2系の融雪剤散布地域での知見であってMgを主成分とする融雪剤散布が車体防錆鋼板の腐食について与える影響については何ら明らかにされていない。このため、Mg系融雪剤散布地域を想定した寒冷地域を走行する自動車の最適な車体用防錆鋼板を選定・開発するために必要な促進腐食試験がないという問題があった。 Recently, environmentally-friendly snow-melting agents based on Mg have emerged in China and started to be used in Japan and China due to the growing environmental awareness of ecosystem destruction caused by excessive application of snow-melting agents such as rock salt. It is well known that spraying snow melting agent has a significant effect on the corrosion of the exterior of the car body. However, these are knowledge of rock salt (NaCl-based) and CaCl 2- based snow melting agent spraying areas that have been used in the past. The effect of spraying the snow melting agent as a component on the corrosion of the car body rust-proof steel sheet is not clarified at all. For this reason, there has been a problem that there is no accelerated corrosion test necessary for selecting and developing an optimum car body rust-proof steel sheet for automobiles running in cold regions assuming a region where Mg-based snow melting agent is applied.

したがって本発明の目的は、Mg系融雪剤散布地域を想定した寒冷地域を走行する自動車の車体用鋼板の耐食性評価方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for evaluating corrosion resistance of a steel plate for automobile bodies that runs in a cold region assuming a region where an Mg-based snow melting agent is dispersed.

本発明者等は、Mg系融雪剤の主成分であるMgCl2の腐食に与える影響を、従来の融雪剤の主成分であるNaCl、CaCl2と比較調査を行った。 The present inventors conducted a comparative investigation on the influence of MgCl 2 , which is the main component of Mg-based snow melting agent, on the corrosion of NaCl, CaCl 2 which is the main component of conventional snow melting agent.

各々の塩化物種に対して単独の塩化物種について濃度を0.5重量%、pHを3.0に調製した溶液による腐食試験を実施した。溶液組成以外の腐食試験条件は、後述する促進腐食試験の基本条件(A)である。その腐食外観を図2に示す。試験材は、自動車用溶融化亜鉛めっき鋼板GI50(めっき付着量、片面当り50g/m2)である。MgCl2溶液を用いた試験条件は、従来から融雪剤に主成分として使用されてきたCaCl2、NaCl溶液を用いた試験条件に比較して、腐食外観が大きく異なることが判った。すなわち、CaCl2、NaCl溶液を用いた試験条件では赤錆が発生したのに対し、MgCl2溶液を用いた試験条件では赤錆が発生せず、実環境でも腐食挙動が大きく異なることが予想されることが判った。 For each chloride species, a corrosion test was performed with a single chloride species having a concentration of 0.5% by weight and a pH of 3.0. The corrosion test conditions other than the solution composition are basic conditions (A) for the accelerated corrosion test described later. The corrosion appearance is shown in FIG. The test material is a galvanized steel sheet GI50 for automobiles (amount of plating, 50 g / m 2 per side). The test conditions using the MgCl 2 solution were found to differ greatly in corrosion appearance compared to the test conditions using the CaCl 2 and NaCl solutions that have been conventionally used as the main component in snow melting agents. That is, red rust was generated under the test conditions using CaCl 2 and NaCl solutions, whereas red rust was not generated under the test conditions using MgCl 2 solution, and it is expected that the corrosion behavior will be greatly different in the actual environment. I understood.

実環境ではMgCl2以外にも環境からの成分が混入して腐食環境が形成される。つぎに、本発明者等はMg系融雪剤散布状況についての調査を実施した。 In the actual environment, in addition to MgCl 2 , components from the environment are mixed to form a corrosive environment. Next, the present inventors conducted an investigation on the state of Mg-based snow melting agent application.

Mg系融雪剤の散布が本格化したのは2001年以降であり、車体の腐食実態調査からは長期データの欠如によりMg系融雪剤散布の影響を定量化することは難しかった。散布地域は極東の都市部に限られ、郊外では岩塩などのNaCl系や一部CaCl2系の融雪剤が散布されていることから、鋼板が暴露される環境としてはNaCl、CaCl2およびMgCl2溶液の混合環境になることが判った。これらの塩化物は、車体で腐食が厳しい部位である鋼板の合わせ部に付着した塩化物からも検出された。また、過去10年間の降雨のpHを調査した結果、塩害が想定される都市部では降雨の酸性化が進んでいることが判明した。 It was difficult to quantify the effects of Mg-based snow melting agent spraying since 2001, since the long-term data was missing from the actual corrosion survey of the car body. Spraying area is limited to urban Far East, NaCl from the NaCl-based and some CaCl 2 based snow melting agent, such as rock salt in the suburbs is sprayed, as an environment in which the steel sheet is exposed, CaCl 2 and MgCl 2 It turned out that it became the mixed environment of a solution. These chlorides were also detected from chlorides adhering to the mating part of the steel plate, which is a severely corroded part of the vehicle body. In addition, as a result of investigating the pH of rainfall over the past 10 years, it was found that acidification of rainfall is progressing in urban areas where salt damage is assumed.

次に、Mg系融雪剤が散布されている地域の温湿度変化から乾燥および湿潤サイクル条件を絞込み、MgCl2、NaCl、CaCl2の配合比率およびpHを変えた各種溶液を試験材に付着させ促進腐食試験を行った。Mg系融雪剤が散布されている地域で実車に付着する塩化物濃度を分析し、各種溶液の濃度の基準とした。試験材には車体用鋼板として用いられる各種亜鉛系めっき鋼板および冷延鋼板を使用した。促進腐食試験に供した試験片は、後述する図1に示すような、基本的に車体用鋼板において最も腐食が厳しい合わせ部を模擬した隙間を付与した形状の試験材を使用した。 Next, the drying and wetting cycle conditions are narrowed down from the temperature and humidity changes in the area where the Mg-based snow melting agent is sprayed, and various solutions with different MgCl 2 , NaCl, and CaCl 2 mixing ratios and pH are attached to the test material for acceleration. A corrosion test was performed. Chloride concentration adhering to the actual vehicle was analyzed in the area where Mg-based snow melting agent was sprayed, and used as a standard for the concentration of various solutions. Various zinc-based plated steel sheets and cold-rolled steel sheets used as vehicle steel sheets were used as test materials. As a test piece subjected to the accelerated corrosion test, a test material having a shape provided with a gap simulating a joint portion having the most severe corrosion in a steel plate for vehicle bodies as shown in FIG.

その結果、実環境で実車体に飛散するMgCl2濃度では、各種鋼板の腐食の様相が従来公知の知見や公知の促進腐食試験による結果と全く異なる傾向を示すことが明らかとなった。従来、MgCl2はNaClに比較して飽和水蒸気圧が高く、低い露点温度で濡れるため、腐食を促進するとされていた。しかし、車体環境を模擬した促進腐食試験では、NaClおよびCaCl2環境に比較してMgCl2環境では亜鉛系めっき鋼板の腐食が抑制される傾向を示した。一方、冷延鋼板ではMgCl2により促進されることが見出された。このMgCl2の効果は、NaCl濃度とCaCl2濃度の総和に対してMgCl2が1/3以上の濃度で存在する場合に発現することが判った。 As a result, it has been clarified that, with the MgCl 2 concentration scattered in the actual vehicle in the actual environment, the corrosion aspects of the various steel sheets tend to be completely different from the results of the conventionally known knowledge and the results of the known accelerated corrosion test. Conventionally, MgCl 2 has a higher saturated water vapor pressure than NaCl and wets at a low dew point temperature, and therefore has been supposed to promote corrosion. However, in the accelerated corrosion test simulating the vehicle body environment, the corrosion of the zinc-based plated steel sheet showed a tendency to be suppressed in the MgCl 2 environment compared to the NaCl and CaCl 2 environments. On the other hand, it was found that cold-rolled steel sheets are promoted by MgCl 2 . The effect of this MgCl 2 was found to be expressed when present in a concentration of MgCl 2 is 1/3 or more with respect to the total sum of the NaCl concentration and CaCl 2 concentrations.

このような調査結果に基づき、本発明者等は、MgCl2環境の腐食を発現する車体外観腐食の促進腐食試験を確立した。本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。 Based on such investigation results, the present inventors established an accelerated corrosion test for vehicle body appearance corrosion that develops corrosion in the MgCl 2 environment. The present invention has been made based on such findings, and the features thereof are as follows.

(1)下記(A)の工程と下記(B)の工程とからなる工程を複数回繰り返して耐食性を評価することを特徴とする鋼材または亜鉛を含む表面処理を施した鋼材のMg塩を使用した耐食性評価方法。
(A)少なくともNaCl、硫酸イオン、MgCl2を含む溶液で、且つその溶液のpHがpH3.0〜5.0、且つ溶液中の塩化物の総濃度が0.1〜2.0重量%、且つそのNaCl濃度がMgCl2濃度の3倍以下である溶液を鋼材表面に、処理時間が1〜15分の範囲内で付着させることを特徴とする工程。
(B)相対湿度10〜50%で3〜12時間の乾燥工程と、相対湿度80〜98%で2〜8時間の湿潤工程からなり、温度範囲を10〜60℃且つ乾燥工程温度≧湿潤工程温度として、乾燥工程時間に含まれる湿潤工程から乾燥工程への移行時間を20〜60分に設定した乾燥工程と湿潤工程を1サイクルとし、このサイクルを1乃至複数回行う工程。
(1) Use of Mg salt of steel material or surface-treated steel material containing zinc characterized in that corrosion resistance is evaluated by repeating the process consisting of the following process (A) and the following process (B) multiple times. Corrosion resistance evaluation method.
(A) A solution containing at least NaCl, sulfate ions, MgCl 2 , and the pH of the solution is pH 3.0 to 5.0, and the total concentration of chloride in the solution is 0.1 to 2.0% by weight, and step, characterized in that the NaCl concentration of the solution is less than 3 times the MgCl 2 concentration steel material surface, the processing time is deposited in the range of 1 to 15 minutes.
(B) It consists of a drying step of 3 to 12 hours at a relative humidity of 10 to 50% and a wetting step of 2 to 8 hours at a relative humidity of 80 to 98%, and the temperature range is 10 to 60 ° C. and the drying step temperature ≧ wetting step A step in which the drying step and the wetting step in which the transition time from the wetting step to the drying step included in the drying step time is set to 20 to 60 minutes is set as one cycle, and this cycle is performed one or more times.

(2)下記(A)の工程と下記(B)の工程とからなる工程を複数回繰り返して耐食性を評価することを特徴とする鋼材または亜鉛を含む表面処理を施した鋼材のMg塩を使用した耐食性評価方法。
(A)少なくともCaCl2、NaCl、硫酸イオン、MgCl2を含む溶液で、且つその溶液のpHがpH3.0〜5.0、且つ溶液中の塩化物の総濃度が0.1〜2.0重量%、且つそのNaCl濃度とCaCl2濃度の総和がMgCl2濃度の3倍以下である溶液を鋼材表面に、処理時間が1〜15分の範囲内で付着させることを特徴とする工程。
(B)相対湿度10〜50%で3〜12時間の乾燥工程と、相対湿度80〜98%で2〜8時間の湿潤工程からなり、温度範囲を10〜60℃且つ乾燥工程温度≧湿潤工程温度として、乾燥工程時間に含まれる湿潤工程から乾燥工程への移行時間を20〜60分に設定した乾燥工程と湿潤工程を1サイクルとし、このサイクルを1乃至複数回行う工程。
(2) Use of Mg salt of steel material or zinc-treated steel material characterized by evaluating corrosion resistance by repeating the process consisting of the following process (A) and the following process (B) multiple times Corrosion resistance evaluation method.
(A) A solution containing at least CaCl 2 , NaCl, sulfate ions, MgCl 2 , the pH of the solution is pH 3.0 to 5.0, and the total concentration of chloride in the solution is 0.1 to 2.0. A process characterized by adhering a solution having a total weight of NaCl concentration and CaCl 2 concentration of not more than 3 times the MgCl 2 concentration to the steel surface within a range of 1 to 15 minutes.
(B) It consists of a drying step of 3 to 12 hours at a relative humidity of 10 to 50% and a wetting step of 2 to 8 hours at a relative humidity of 80 to 98%, and the temperature range is 10 to 60 ° C. and the drying step temperature ≧ wetting step A step in which the drying step and the wetting step in which the transition time from the wetting step to the drying step included in the drying step time is set to 20 to 60 minutes is set as one cycle, and this cycle is performed one or more times.

本発明によれば、MgCl2環境の腐食を発現する鋼材の耐食性評価方法が確立でき、最適コストの防錆鋼材の開発や選択が可能となる。 According to the present invention, it is possible to establish a method for evaluating the corrosion resistance of a steel material that exhibits corrosion in the MgCl 2 environment, and it becomes possible to develop and select a rust-proof steel material having an optimum cost.

以下の説明においては、鋼材のうち特に鋼板または表面処理を施した鋼板を対象にするが、本発明の適用はこれに限られるものではない。Mg系融雪剤散布地域を想定した鋼板または亜鉛を含む表面処理を施した鋼板の耐食性評価方法は、溶液組成および溶液付着、乾燥工程および湿潤工程とからなる。ここで、まず溶液組成および溶液付着から説明する。   In the following description, among steel materials, a steel plate or a steel plate subjected to surface treatment is particularly targeted, but the application of the present invention is not limited to this. A corrosion resistance evaluation method for a steel sheet assuming a Mg-based snow melting agent application area or a steel sheet subjected to a surface treatment containing zinc includes a solution composition, a solution adhesion, a drying process, and a wetting process. Here, the solution composition and solution adhesion will be described first.

鋼板の表面への付着溶液は、酸性雨を模擬すために酸性とする。降雨が大気中の炭酸ガスと平衡するpHはpH5.6である。pH5.0を超える溶液では酸性化による腐食促進効果が明瞭でないため、試験溶液のpHの上限はpH5.0とする。また、Mg系融雪剤が使用される極東地域での降雨の酸性度はpH3.0より低くなることは殆どないことから溶液pHの下限はpH3.0とした。つまり試験溶液のpHは3.0〜5.0とする。   The solution attached to the surface of the steel sheet is made acidic to simulate acid rain. The pH at which rainfall equilibrates with carbon dioxide in the atmosphere is pH 5.6. Since the corrosion promotion effect by acidification is not clear in a solution exceeding pH 5.0, the upper limit of the pH of the test solution is set to pH 5.0. Moreover, since the acidity of the rainfall in the Far East region where the Mg-based snow melting agent is used is hardly lower than pH 3.0, the lower limit of the solution pH was set to pH 3.0. That is, the pH of the test solution is 3.0 to 5.0.

Mg系融雪剤が使用される極東地域では石炭燃料からのSOxに由来し、その降雨には硫酸イオンが含まれる。また、自動車が走行する実環境では排気ガスに含まれる窒素酸化物に由来して降雨中には硝酸イオンが含まれる。本発明者等の調査では、Mg系融雪剤が散布される極東の自動車走行地域では、石炭系の燃料が特に多く使用され、硝酸イオン/硫酸イオンの濃度比率は1/8以下であった。したがって、試験溶液中に硝酸を添加する場合の濃度は硫酸イオンの濃度の1/8以下とする。硫酸イオンは硫酸、硝酸イオンは硝酸として供給することができる。これらの酸を塩化物溶液に混合しpH3.0〜pH5.0の所定の溶液に調製する。   In the Far East region, where Mg-based snow melting agents are used, SOx from coal fuel is used, and the precipitation contains sulfate ions. Further, in an actual environment in which an automobile travels, nitrate ions are included in rainfall due to nitrogen oxides contained in exhaust gas. In the investigation by the present inventors, coal-based fuels were used particularly frequently in the far east automobile traveling area where the Mg-based snow melting agent was sprayed, and the concentration ratio of nitrate ion / sulfate ion was 1/8 or less. Therefore, the concentration when nitric acid is added to the test solution is 1/8 or less of the concentration of sulfate ions. Sulfate ions can be supplied as sulfuric acid and nitrate ions as nitric acid. These acids are mixed with a chloride solution to prepare a predetermined solution having a pH of 3.0 to 5.0.

溶液に必須となる塩化物種は、環境対応融雪剤の主成分であるMgCl2、および岩塩や飛来海塩として混入するNaClが必須である。また、MgCl2系融雪剤にはCaCl2が含まれる場合もあったが、調査の範囲ではその濃度は50重量%以下であった。試験溶液中にCaCl2が混入してもかまわないがMgCl2濃度を超えないものとする。融雪剤が散布された路面から採取した溶液の塩化物濃度は約0.08〜2重量%であった。NaClでは試験溶液中の濃度が高くなると、亜鉛系めっきの腐食が実環境から乖離することが知られている。また、0.1重量%より小さいと腐食の促進率が著しく小さく促進試験法として実用的ではなくなる。よって、試験溶液中の総塩化物濃度の範囲は0.1〜2重量%とする。 The chloride species essential for the solution are MgCl 2 , which is the main component of the environmental snow melting agent, and NaCl mixed as rock salt and flying sea salt. Further, the MgCl 2 snow melting agent sometimes contained CaCl 2, but the concentration was 50% by weight or less in the range of the investigation. CaCl 2 may be mixed into the test solution, but the MgCl 2 concentration should not be exceeded. The chloride concentration of the solution collected from the road surface sprayed with the snow melting agent was about 0.08 to 2% by weight. It is known that the corrosion of zinc plating deviates from the actual environment when the concentration of NaCl in the test solution increases. On the other hand, if it is less than 0.1% by weight, the corrosion acceleration rate is remarkably small and it is not practical as an accelerated test method. Therefore, the range of the total chloride concentration in the test solution is 0.1 to 2% by weight.

CaCl2、NaClおよびMgCl2の各塩化物濃度の比率であるが、CaCl2とNaClは、車体で厳しい腐食環境となる鋼板合わせ部を模擬した試験体において、冷延鋼板および亜鉛を含む表面処理鋼板に対してともに同傾向の腐食挙動を示した。これらの知見に基づきMgCl2が亜鉛めっきの腐食抑制効果を発現する濃度として、CaCl2とNaClを等価に扱い、NaCl濃度+CaCl2濃度≦3×MgCl2濃度となる範囲に溶液を調製することが必要である。 CaCl 2 , NaCl and MgCl 2 are the ratios of chloride concentrations. CaCl 2 and NaCl are surface treatments that include cold-rolled steel and zinc in a specimen that simulates a steel plate joint that creates a severe corrosive environment in the car body. The corrosion behavior of the same tendency was shown for both steel sheets. Based on these findings, MgCl 2 should treat CaCl 2 and NaCl equivalently as the concentration at which the corrosion inhibition effect of galvanizing is expressed, and prepare a solution in the range of NaCl concentration + CaCl 2 concentration ≤ 3 x MgCl 2 concentration. is required.

鋼板への溶液処理時間は、1分より短いと試験片の隙間部などへの溶液の充填が不十分となり、また、15分を超えると溶液中での電気化学セルによりめっき層の溶解が支配的になる。鋼板への溶液処理時間は1〜15分で付着させる。付着方法としては、付着誤差の大きい噴霧方式ではなく浸漬またはシャワー方式が好ましい。溶液付着後の工程は、付着した塩化物などを試験材表面に固定するために乾燥工程とする。溶液付着に要する時間は、試験サイクル上は乾燥工程の時間に含める。   When the solution treatment time on the steel sheet is shorter than 1 minute, the gap in the test piece is not sufficiently filled with the solution, and when it exceeds 15 minutes, dissolution of the plating layer is controlled by the electrochemical cell in the solution. Become. The solution treatment time for the steel sheet is 1 to 15 minutes. As an adhesion method, an immersion or shower method is preferable instead of a spray method with a large adhesion error. The process after the solution adhesion is a drying process in order to fix the adhered chloride or the like on the surface of the test material. The time required for solution attachment is included in the time of the drying process in the test cycle.

次に、乾燥工程および湿潤工程について説明する。   Next, the drying process and the wetting process will be described.

乾湿繰り返し工程の温度範囲は、溶液の凍結回避や促進性を考慮し低温側を10℃以上とし、更に、夏場の実環境での温度上限、試験材取り扱い時の安全性や樹脂系治具の形状安定性の観点から温度の上限を60℃以下とする。乾燥および湿潤工程の温度については、実環境を考慮し、乾燥工程温度≧湿潤工程温度とする。   The temperature range of the wet and dry repetitive process is 10 ° C or higher on the low temperature side in consideration of avoidance and acceleration of solution freezing. Furthermore, the upper temperature limit in the real environment in summer, safety when handling test materials, and resin-based jigs From the viewpoint of shape stability, the upper limit of the temperature is set to 60 ° C. or less. Regarding the temperature of the drying and wetting process, the actual environment is taken into consideration, and the drying process temperature ≧ the wetting process temperature.

湿潤工程から乾燥工程への移行では、乾燥による溶液濃化に伴い実環境の乾湿繰り返しに対応した腐食が進行する。湿潤から乾燥工程への移行時間が20分未満では、溶液濃化に起因した腐食に寄与する時間が短く実環境に即した腐食の促進率が劣る。また、60分を超えて移行時間を長くしても腐食の促進に寄与しない。湿潤工程から乾燥工程への移行時間は20〜60分に設定することが望ましい。なお、湿潤工程から乾燥工程への移行時間は乾燥工程の時間に含める。   In the transition from the wet process to the dry process, the corrosion corresponding to the repeated dry and wet conditions in the actual environment proceeds with the concentration of the solution by drying. When the transition time from the wetting to the drying process is less than 20 minutes, the time for contributing to the corrosion due to the concentration of the solution is short and the acceleration rate of corrosion in accordance with the actual environment is inferior. Further, even if the transition time is increased beyond 60 minutes, it does not contribute to the promotion of corrosion. The transition time from the wet process to the dry process is preferably set to 20 to 60 minutes. The transition time from the wet process to the dry process is included in the time of the dry process.

溶液付着後、乾燥工程と湿潤工程を1サイクルとし、このサイクルを1乃至複数回行うことにより付着溶液による腐食反応を効率的に進めることができる。1回の溶液付着に対して必要以上に乾湿工程を繰り返しても溶液付着による腐食反応の促進は検出されない。1回当りの溶液付着に対する乾湿繰り返しサイクル数は12回以下にすることが望ましい。溶液の付着時間は試験サイクルを構築する際、乾燥時間に組み込むものとする。   After the solution adhesion, the drying step and the wetting step are set as one cycle, and the corrosion reaction by the adhesion solution can be efficiently advanced by performing this cycle one or more times. Even if the drying / wetting process is repeated more than necessary for one solution adhesion, the acceleration of the corrosion reaction due to the solution adhesion is not detected. It is desirable that the number of repeated wet and dry cycles per solution adhesion is 12 or less. The solution deposition time shall be incorporated into the drying time when building the test cycle.

乾燥工程の相対湿度としては、実環境との対応から10〜50%の範囲とする。相対湿度10%未満では、本発明条件を遂行するために試験装置にかかる負荷が著しく大きく安定しない。相対湿度50%超えでは、間隙部が全く乾燥せず濡れ状態に保たれ実環境とは異なる水溶液中の腐食が急速に進行する。隙間形状を有する試験材の隙間内部の水分量が定常状態となるには乾燥工程において3時間以上必要である。また、水分が乾燥状態として定常に達した状態で長時間保持しても腐食は殆ど進行しないため、乾燥工程は12時間以下とする。つまり、乾燥工程は3〜12時間の範囲内とする。なお、乾燥工程から湿潤工程への移行時間は湿潤工程の時間に含める。   The relative humidity in the drying process is set to a range of 10 to 50% from the correspondence with the actual environment. If the relative humidity is less than 10%, the load applied to the test apparatus in order to perform the conditions of the present invention is extremely large and unstable. When the relative humidity exceeds 50%, the gap is not dried at all and is kept wet, and corrosion in an aqueous solution different from the actual environment proceeds rapidly. It takes 3 hours or more in the drying process for the moisture content inside the gap of the test material having the gap shape to be in a steady state. Further, since the corrosion hardly proceeds even if the moisture is kept in a dry state in a steady state for a long time, the drying process is set to 12 hours or less. That is, the drying step is within a range of 3 to 12 hours. The transition time from the drying process to the wetting process is included in the time of the wetting process.

湿潤工程の相対湿度としては、確実に濡れが得られる環境として80〜98%の範囲とする。また、隙間形状を有する試験材の隙間内部の水分量が濡れ状態となるには2時間以上必要である。また、隙間内部が濡れ状態で長時間保持する腐食が水溶液腐食と同様にガルバニックセルとして進行するため湿潤工程は8時間以下とする。つまり、湿潤工程は2〜8時間の範囲内とする。   The relative humidity in the wetting process is in the range of 80 to 98% as an environment where wetting can be reliably obtained. In addition, it takes two hours or more for the moisture content inside the gap of the test material having the gap shape to become wet. In addition, since the corrosion that is retained for a long time while the inside of the gap is wet proceeds as a galvanic cell in the same manner as aqueous solution corrosion, the wetting step is set to 8 hours or less. That is, the wetting step is in the range of 2 to 8 hours.

本発明となる促進腐食試験を自動制御装置等の装置を用いずに全て手動で行う場合、土日休日などの作業が難しい期間は、終日乾燥工程としてもかまわない。   When the accelerated corrosion test according to the present invention is all performed manually without using an automatic control device or the like, the drying process may be performed throughout the day when work such as weekends and holidays is difficult.

各種試験材に合わせ部相当となる間隙部を付与し、塩分付着工程、湿潤工程、乾燥工程からなる促進腐食試験に供した。また、一部試験材については塗装後、クロスカットなどの初期損傷を導入し促進腐食試験に供した。促進腐食試験条件は、使用する塩化物溶液の種類、濃度、乾湿繰り返し条件を変化させた。試験後、各試験材の腐食程度を測定し、実環境と対応した既存の促進腐食試験法と比較した。   A gap portion corresponding to a matching portion was imparted to various test materials and subjected to an accelerated corrosion test including a salt adhesion step, a wetting step, and a drying step. In addition, some of the test materials were subjected to accelerated corrosion tests after painting and initial damage such as crosscutting was introduced. The accelerated corrosion test conditions were changed in the kind, concentration, and repeated wet and dry conditions of the chloride solution used. After the test, the corrosion degree of each test material was measured and compared with the existing accelerated corrosion test method corresponding to the actual environment.

試験に用いた供試材の板厚は0.8mmである。供試材として自動車用電気めっき亜鉛鋼板EG20(めっき付着量、片面当り20g/m2)、EG50(めっき付着量、片面当り50g/m2)、自動車用電気めっき亜鉛・ニッケル合金鋼板Zn-Ni(めっき付着量、片面当り20g/m2)、自動車用溶融化亜鉛めっき鋼板GI50(めっき付着量、片面当り50g/m2)および冷延鋼板(CRS)を用いた。 The plate thickness of the test material used for the test is 0.8 mm. Electroplated galvanized steel sheet for automobiles EG20 (plating coverage, 20 g / m 2 per side), EG50 (plating coverage, 50 g / m 2 per side), electroplated zinc / nickel alloy steel sheet for automobiles Zn-Ni (Amount of plating, 20 g / m 2 per side), galvanized steel sheet GI50 for automobiles (amount of plating, 50 g / m 2 per side) and cold-rolled steel (CRS) were used.

図1は試験片の構成図で(a)は正面図、(b)は平面図である。試験片の構成は、試験材1を150mm×70mmに切断し、試験材1の端面および裏面をシールテープ2によりシールし、厚さ5mmのアクリル板3によりボルト・ナット6を用いて試験材1を挟んで隙間部4を形成する。隙間部4は、試験材表面とアクリル板3との間に厚さ50μmのポリテトラフルオロエチレンスペーサー5を用いて隙間間隔50μmに形成される。試験対象表面は必要に応じて、リン酸塩系の化成処理および20μm厚さのカチオン電着塗装を施した。   FIG. 1 is a configuration diagram of a test piece, (a) is a front view, and (b) is a plan view. The configuration of the test piece is that the test material 1 is cut into 150 mm × 70 mm, the end surface and the back surface of the test material 1 are sealed with a sealing tape 2, and the test plate 1 is formed using bolts and nuts 6 with an acrylic plate 3 having a thickness of 5 mm. The gap 4 is formed with the gap in between. The gap 4 is formed between the test material surface and the acrylic plate 3 with a gap of 50 μm using a polytetrafluoroethylene spacer 5 having a thickness of 50 μm. The surface to be tested was subjected to a phosphate chemical conversion treatment and a 20 μm-thick cationic electrodeposition coating as necessary.

作成した試験片は、各種条件で促進腐食試験を行い腐食状態の評価を実施した。試験材の腐食状態の評価は、アクリル板を通しての目視による赤錆発生時間の評価、および試験期間完了後に腐食生成物を除去して鋼板の最大腐食深さをマイクロメーターで実測評価して行った。   The prepared specimens were subjected to an accelerated corrosion test under various conditions to evaluate the corrosion state. Evaluation of the corrosion state of the test material was performed by evaluating the red rust occurrence time by visual observation through the acrylic plate, and removing the corrosion product after the completion of the test period, and actually measuring and evaluating the maximum corrosion depth of the steel plate with a micrometer.

促進腐食試験の基本条件を表1および表2に示す。ここで、表1に記載の基本条件を基本促進試験条件Aとし、表2に記載の基本条件を基本促進試験条件Bと称する。   Tables 1 and 2 show the basic conditions of the accelerated corrosion test. Here, the basic conditions described in Table 1 are referred to as basic acceleration test conditions A, and the basic conditions described in Table 2 are referred to as basic acceleration test conditions B.

以下に、上記試験片を用いて、各種条件で促進腐食試験を行い腐食状態の評価を行った実施例を詳細に説明する。   Below, the Example which performed the accelerated corrosion test on various conditions and evaluated the corrosion state using the said test piece is described in detail.

溶液組成などの各種条件を実環境の調査に基づき構成した基本条件Bにおいて、塩化物種を変更した場合の腐食量を表3に示す。   Table 3 shows the amount of corrosion when the chloride species are changed under the basic condition B in which various conditions such as the solution composition are configured based on the investigation of the actual environment.

試験材は、電気めっき亜鉛鋼板EG20、EG50および冷延鋼板(CRS)である。塩化物濃度は、基本条件Bの溶液組成を基本として当該塩化物濃度を各々0.8重量%と変更している。本発明となるMgCl2を0.8重量%とした試験条件1では、従来から融雪剤に主成分として使用されてきたCaCl2、NaClを0.8重量%とした比較条件1および2に対して、EG20およびEG50では腐食量が減り、冷延鋼板(CRS)では腐食量が増えて、試験材によって腐食の傾向が大きく異なることが判った。 The test materials are electroplated galvanized steel sheets EG20 and EG50 and cold rolled steel sheets (CRS). The chloride concentration is changed to 0.8% by weight based on the solution composition of the basic condition B. In test condition 1 in which MgCl 2 is 0.8% by weight according to the present invention, compared to comparative conditions 1 and 2 in which CaCl 2 and NaCl were conventionally used as the main component in a snow melting agent at 0.8% by weight. Thus, it was found that the amount of corrosion decreased with EG20 and EG50, and the amount of corrosion increased with cold-rolled steel sheets (CRS), and the corrosion tendency varied greatly depending on the test material.

主成分がCaCl2およびNaClである従来の融雪剤散布地域を想定した促進腐食試験であるSAEJ2334を用いた各種材料の腐食試験結果との相関性の比較を表3右欄に示す。 The right column of Table 3 shows a comparison of the correlations with the corrosion test results of various materials using SAEJ2334, which is an accelerated corrosion test assuming a conventional snow melting agent application area where the main components are CaCl 2 and NaCl.

2はSAEJ2334での各種材料の腐食との相関を上式で示したものである。式中、nは比較対象とする各試験材水準数を、また、x、yは、SAE J2334による各試験材の腐食量および表3における本発明条件および比較条件で得られた各試験材の腐食量を示す。 R 2 represents the correlation with the corrosion of various materials in SAEJ2334 by the above formula. In the formula, n is the number of test material levels to be compared, and x and y are the corrosion amounts of the test materials according to SAE J2334 and the test materials obtained under the present invention conditions and comparative conditions in Table 3. Indicates the amount of corrosion.

Zn/CRS腐食比率は、実環境で最も腐食する冷延鋼板の腐食量に対する亜鉛めっき鋼板(EG20)の腐食比率について、SAE J2334で得られた比率を100としたときの、表3の各試験条件で得られた比率を示している。   The Zn / CRS corrosion ratio is as shown in Table 3 for the corrosion ratio of galvanized steel sheet (EG20) to the corrosion amount of the cold-rolled steel sheet that corrodes most in the actual environment, where the ratio obtained by SAE J2334 is 100. The ratio obtained under the conditions is shown.

従来融雪剤に主成分として使用されてきたCaCl2、NaCl溶液を用いた比較条件1および2は、R2が0.95以上、Zn/CRS腐食比率が70%以上と共に高く、SAEJ2334と腐食の傾向が一致している。一方、本発明となるMgCl2溶液を用いた試験条件1は、R2が0.6以下、Zn/CRS腐食比率が10%以下と共に低く、SAEJ2334と腐食の傾向が乖離している。 Comparative conditions 1 and 2 using CaCl 2 and NaCl solutions that have been used as main components in snow melting agents in the past have a high R 2 of 0.95 and Zn / CRS corrosion ratio of 70% or more. The trend is consistent. On the other hand, in test condition 1 using the MgCl 2 solution according to the present invention, R 2 is 0.6 or less and the Zn / CRS corrosion ratio is 10% or less and the corrosion tendency is different from SAEJ2334.

従って、MgCl2融雪剤を使用した腐食環境対する促進腐食試験には、本発明によるMgCl2溶液を用いた試験条件が必要であることが判った。 Therefore, it has been found that the accelerated corrosion test for the corrosive environment using the MgCl 2 snow melting agent requires the test conditions using the MgCl 2 solution according to the present invention.

実施例1の表3に示した本発明条件1と比較条件1および2を、2種類の亜鉛めっき鋼板に適用して実施した腐食試験の腐食試験後外観写真を図3に示す。試験材は、電気亜鉛めっき鋼板EG20および電気めっき亜鉛・ニッケル合金鋼板Zn-Niである。Niの亜鉛に対する含有率は約10%である。   FIG. 3 shows an appearance photograph after the corrosion test of the corrosion test performed by applying the present invention condition 1 and comparative conditions 1 and 2 shown in Table 3 of Example 1 to two types of galvanized steel sheets. The test materials are electrogalvanized steel sheet EG20 and electroplated zinc / nickel alloy steel sheet Zn-Ni. The content of Ni with respect to zinc is about 10%.

図3より、表3に示した本発明となるMgCl2溶液を用いた本発明条件1では、EG20が優れる傾向を示すが、従来から融雪剤に主成分として使用されてきたCaCl2、NaCl溶液を用いた比較条件1および2ではZn-Niが優れる傾向を示し、亜鉛系表面処理鋼板においても組成の違いなどに応じて本発明と従来の評価方法では異なる結果が得られることが判った。 As shown in FIG. 3, EG20 tends to be excellent in the present invention condition 1 using the MgCl 2 solution according to the present invention shown in Table 3, but the CaCl 2 and NaCl solutions that have been conventionally used as the main component in the snow melting agent. In Comparative Conditions 1 and 2 using No. 1, Zn-Ni tended to be excellent, and it was found that different results were obtained between the present invention and the conventional evaluation method depending on the difference in the composition of the zinc-based surface-treated steel sheet.

基本条件BにおいてMgCl2とNaCl+CaCl2の塩化物濃度比率を総濃度0.5重量%で変化させた場合の腐食量変化を図4に示す。試験材には自動車用電気めっき亜鉛鋼板EG20を用いた。NaCl濃度とCaCl2濃度の総和が、本発明条件となるMgCl2濃度の3倍以下になると、腐食の傾向が変りMgCl2の影響が発現することが判った。 FIG. 4 shows the change in corrosion amount when the chloride concentration ratio of MgCl 2 and NaCl + CaCl 2 is changed at a basic concentration B of 0.5% by weight. An electroplated galvanized steel sheet EG20 for automobiles was used as a test material. It was found that when the sum of the NaCl concentration and the CaCl 2 concentration is 3 times or less of the MgCl 2 concentration which is the condition of the present invention, the tendency of corrosion changes and the influence of MgCl 2 appears.

試験材の浸漬時間を変更した場合の、試験材間隙部への試験溶液の浸透率と、試験材からの亜鉛の溶出量を表4に示す。浸透率は、浸漬後サンプルを引き上げた時のアクリル板を通して目視により観察される間隙部の濡れ面積を評価した。亜鉛の溶出量は、試験溶液100cc中に溶出した亜鉛イオンの濃度をICP法で測定した。溶液への試験材の浸漬時間が1分未満では試験材間隙部に充分に溶液が浸透しない。また、試験材の浸漬時間が15分を超えると試験材間隙部からの亜鉛の溶出が水溶液中での亜鉛と鉄のガルバニックな腐食により加速され、実環境とは異なる機構での劣化が進む。溶液中での電気化学セルによりめっき層の溶解が支配的になり浸漬時間としては本発明の条件となる1〜15分が望ましいことが判った。   Table 4 shows the penetration rate of the test solution into the test material gap and the zinc elution amount from the test material when the immersion time of the test material was changed. The penetration rate evaluated the wet area of the gap | interval part visually observed through an acrylic board when a sample was pulled up after immersion. The zinc elution amount was determined by measuring the concentration of zinc ions eluted in 100 cc of the test solution by the ICP method. When the immersion time of the test material in the solution is less than 1 minute, the solution does not sufficiently penetrate into the test material gap. Further, when the immersion time of the test material exceeds 15 minutes, elution of zinc from the gap between the test materials is accelerated by galvanic corrosion of zinc and iron in the aqueous solution, and deterioration by a mechanism different from the actual environment proceeds. It was found that the dissolution of the plating layer is dominant due to the electrochemical cell in the solution, and the immersion time is preferably 1 to 15 minutes which is the condition of the present invention.

融雪剤散布路面に滞留している溶液を採取し、Clイオン濃度、Mgイオン濃度およびNaイオン濃度を測定した結果を表5に示す。実環境に即した総塩化物濃度は2重量%以下であることが判った。   Table 5 shows the results of collecting the solution staying on the snow melting agent spraying surface and measuring the Cl ion concentration, the Mg ion concentration, and the Na ion concentration. It was found that the total chloride concentration in accordance with the actual environment was 2% by weight or less.

基本条件Bにおいて浸漬溶液の総塩化物濃度を変化させた場合の、腐食量変化を表6に示す。総塩化物濃度が0.1重量%未満では腐食の進行が著しく遅く促進腐食試験として適用が難しいことが判った。   Table 6 shows changes in the corrosion amount when the total chloride concentration of the immersion solution is changed under the basic condition B. It was found that when the total chloride concentration is less than 0.1% by weight, the progress of corrosion is extremely slow and it is difficult to apply as an accelerated corrosion test.

基本条件Bにおいて各種試験条件を変えた試験結果を表7に示す。   Table 7 shows test results obtained by changing various test conditions in the basic condition B.

相関性については、Zn/CRS比率が40%以下を合格:○とした。40%超え、およびアクリル面を通して試験対象部の目視観察を行い、試験実施に難点を有する条件を不可:×とした。   Regarding the correlation, a Zn / CRS ratio of 40% or less was determined to be acceptable. The condition of the test object was visually observed through the acrylic surface exceeding 40%, and the conditions having difficulties in carrying out the test were determined as x.

試験材は、自動車用電気めっき亜鉛鋼板EG20、EG50および冷延鋼板(CRS)を、図1に示すアクリル板を使用して合わせ部を模擬した試験片に調製し試験に供した。間隙は50μmである。   As test materials, electroplated galvanized steel sheets EG20 and EG50 for automobiles and cold rolled steel sheets (CRS) were prepared into test pieces simulating mating portions using an acrylic plate shown in FIG. The gap is 50 μm.

試験条件が、本発明範囲にある試験条件1〜3は良好な結果が得られている。   Test conditions 1 to 3 in which the test conditions are within the scope of the present invention have obtained good results.

比較条件1は、乾燥時間が3時間より短く、乾燥時相対湿度が50%を超えて高いため間隙部が乾燥工程で乾燥しない。また、湿潤時の温度範囲が10℃未満であるので装置の温度変動により間隙部などの溶液が試験期間中に部分的に凍結していた。   In comparative condition 1, the drying time is shorter than 3 hours, and the relative humidity during drying is higher than 50%, so the gap is not dried in the drying process. Further, since the temperature range when wet was less than 10 ° C., the solution such as the gap portion was partially frozen during the test period due to the temperature fluctuation of the apparatus.

比較条件2は、乾燥時相対湿度が10%未満のため試験条件を乾燥工程の試験時間内で制御できなかった。また、湿潤工程の相対湿度が80%未満で、湿潤時間が2時間未満であるので湿潤工程で試験材の間隙部で濡れ状態が得られなかった。   In comparative condition 2, since the relative humidity during drying was less than 10%, the test conditions could not be controlled within the test time of the drying process. Further, since the relative humidity in the wetting process was less than 80% and the wetting time was less than 2 hours, a wet state could not be obtained in the gap portion of the test material in the wetting process.

比較条件3は、腐食反応に寄与しない乾燥時間が12時間を超えて長く、また、溶液濃縮により腐食が進行する湿潤から乾燥工程の移行時間が20分未満と短いため、腐食が進行せず腐食促進試験として意味をなさない。また、試験温度が60℃を超えて高いと、高温時に試験機のトラブルなどが発生しサンプルを取り扱う場合の作業性が難しく、更に応力付与部での樹脂製品の変形が著しく試験の信頼性が低下する。試験温度は60℃以下が望ましい。   Comparative condition 3 is that the drying time that does not contribute to the corrosion reaction is longer than 12 hours, and the transition time from the wet state where the corrosion proceeds due to solution concentration to the drying process is as short as less than 20 minutes. Does not make sense as an accelerated test. Also, if the test temperature is higher than 60 ° C, troubles of the testing machine occur at high temperatures, making it difficult to work with the sample, and the deformation of the resin product at the stress-applying part is remarkably reliable. descend. The test temperature is desirably 60 ° C. or lower.

比較条件4は、湿潤から乾燥工程への移行時間が60分を超えて長くした場合で、腐食促進の効果は飽和し、更に試験結果のバラツキが大きくなる傾向を示した。湿潤から乾燥工程への移行時間は60分以下であることが望ましい。   Comparative condition 4 was a case where the transition time from the wet process to the dry process was longer than 60 minutes, and the effect of accelerating the corrosion was saturated, and the variation of the test results tended to increase. The transition time from the wet process to the dry process is desirably 60 minutes or less.

比較条件5は、1回当りの溶液付着に対する乾湿繰り返しサイクル数を12回を超えて長くした場合であるが、腐食促進の効果は飽和している。   Comparative condition 5 is a case where the number of repeated wet and dry cycles per solution adhesion is longer than 12 times, but the effect of promoting corrosion is saturated.

基本条件Bに対して電着塗装を施した試験材について各種試験条件を変えた試験結果を表8に示す。試験材は20g/m2の亜鉛を付着した未加工の平板形状の表面処理鋼板である。リン酸塩系の化成処理(3g/m2)を施した後、厚さ20μmの電着塗装を施した。電着塗装面にはカッターにより地鉄に達するカット部(初期損傷)を導入した。評価はアクリル板を通してカット部からの塗膜の最大膨れ幅を測定した。試験法の適性として、亜鉛めっき鋼板の膨れ幅が塗装冷延鋼板より小さい場合を合格:○、亜鉛めっき鋼板の膨れ幅が塗装冷延鋼板より大きい場合を不合格:×とした。 Table 8 shows the test results obtained by changing various test conditions for the test material electrodeposited with respect to the basic condition B. The test material is an unprocessed flat plate-shaped surface-treated steel plate to which 20 g / m 2 of zinc is adhered. After a phosphate chemical conversion treatment (3 g / m 2 ), electrodeposition coating with a thickness of 20 μm was applied. A cut part (initial damage) that reaches the ground iron by a cutter was introduced on the electrodeposited surface. Evaluation measured the maximum swelling width of the coating film from a cut part through an acrylic board. As the suitability of the test method, the case where the swollen width of the galvanized steel sheet was smaller than the coated cold-rolled steel sheet was accepted: ◯, and the case where the swollen width of the galvanized steel sheet was larger than the painted cold-rolled steel sheet was rejected: x.

試験条件が、本発明範囲にある試験条件4および5は良好な結果が得られている。   Test conditions 4 and 5 in which the test conditions are within the scope of the present invention have obtained good results.

比較条件6は、湿潤工程の相対湿度が98%を超えて高く、更に湿潤時間も8時間を超えて長いため、水溶液中でのガルバニックな腐食反応により塗膜損傷部から塗装下部の腐食が促進される。亜鉛めっき鋼板と冷延鋼板の腐食が適性ではなくなる。   In comparative condition 6, the relative humidity in the wetting process is higher than 98%, and the wetting time is longer than 8 hours. Therefore, corrosion from the damaged part of the coating to the bottom of the coating is accelerated by the galvanic corrosion reaction in the aqueous solution. Is done. Corrosion of galvanized steel sheet and cold-rolled steel sheet is not suitable.

試験片の構成図で(a)は正面図、(b)は平面図を示すIn the block diagram of the test piece, (a) is a front view and (b) is a plan view. MgCl2、NaCl、CaCl2各々の塩化物種の濃度を0.5重量%としたときの腐食試験後外観写真(溶液組成以外の腐食試験条件は基本条件A)Appearance photograph after corrosion test when the concentration of chloride species of MgCl 2 , NaCl, and CaCl 2 is 0.5 wt% (corrosion test conditions other than solution composition are basic condition A) 2種類の亜鉛めっき鋼板に適用して実施した腐食試験の腐食試験後外観写真(表3に示す試験条件)Appearance photograph after corrosion test of corrosion test applied to two types of galvanized steel sheets (Test conditions shown in Table 3) MgCl2とNaCl+CaCl2の塩化物濃度比率と腐食量との関係を示すグラフA graph showing the relationship between the chloride concentration ratio of MgCl 2 and NaCl + CaCl 2 and the amount of corrosion

符号の説明Explanation of symbols

1 試験材
2 シールテープ
3 アクリル板
4 隙間部
5 ポリテトラフルオロエチレンスペーサー
1 Test Material 2 Sealing Tape 3 Acrylic Plate 4 Gap 5 Polytetrafluoroethylene Spacer

Claims (2)

下記(A)の工程と下記(B)の工程とからなる工程を複数回繰り返して耐食性を評価することを特徴とする鋼材または亜鉛を含む表面処理を施した鋼材のMg塩を使用した耐食性評価方法。
(A)少なくともNaCl、硫酸イオン、MgCl2を含む溶液で、且つその溶液のpHがpH3.0〜5.0、且つ溶液中の塩化物の総濃度が0.1〜2.0重量%、且つそのNaCl濃度がMgCl2濃度の3倍以下である溶液を鋼材表面に、処理時間が1〜15分の範囲内で付着させることを特徴とする工程。
(B)相対湿度10〜50%で3〜12時間の乾燥工程と、相対湿度80〜98%で2〜8時間の湿潤工程からなり、温度範囲を10〜60℃且つ乾燥工程温度≧湿潤工程温度として、乾燥工程時間に含まれる湿潤工程から乾燥工程への移行時間を20〜60分に設定した乾燥工程と湿潤工程を1サイクルとし、このサイクルを1乃至複数回行う工程。
Corrosion resistance evaluation using Mg salt of steel or surface treated steel containing zinc characterized by evaluating the corrosion resistance by repeating the process consisting of the following step (A) and the following step (B) multiple times Method.
(A) A solution containing at least NaCl, sulfate ions, MgCl 2 , and the pH of the solution is pH 3.0 to 5.0, and the total concentration of chloride in the solution is 0.1 to 2.0% by weight, and step, characterized in that the NaCl concentration of the solution is less than 3 times the MgCl 2 concentration steel material surface, the processing time is deposited in the range of 1 to 15 minutes.
(B) It consists of a drying step of 3 to 12 hours at a relative humidity of 10 to 50% and a wetting step of 2 to 8 hours at a relative humidity of 80 to 98%, and the temperature range is 10 to 60 ° C. and the drying step temperature ≧ wetting step A step in which the drying step and the wetting step in which the transition time from the wetting step to the drying step included in the drying step time is set to 20 to 60 minutes is set as one cycle, and this cycle is performed one or more times.
下記(A)の工程と下記(B)の工程とからなる工程を複数回繰り返して耐食性を評価することを特徴とする鋼材または亜鉛を含む表面処理を施した鋼材のMg塩を使用した耐食性評価方法。
(A)少なくともCaCl2、NaCl、硫酸イオン、MgCl2を含む溶液で、且つその溶液のpHがpH3.0〜5.0、且つ溶液中の塩化物の総濃度が0.1〜2.0重量%、且つそのNaCl濃度とCaCl2濃度の総和がMgCl2濃度の3倍以下である溶液を鋼材表面に、処理時間が1〜15分の範囲内で付着させることを特徴とする工程。
(B)相対湿度10〜50%で3〜12時間の乾燥工程と、相対湿度80〜98%で2〜8時間の湿潤工程からなり、温度範囲を10〜60℃且つ乾燥工程温度≧湿潤工程温度として、乾燥工程時間に含まれる湿潤工程から乾燥工程への移行時間を20〜60分に設定した乾燥工程と湿潤工程を1サイクルとし、このサイクルを1乃至複数回行う工程。
Corrosion resistance evaluation using Mg salt of steel or surface treated steel containing zinc characterized by evaluating the corrosion resistance by repeating the process consisting of the following step (A) and the following step (B) multiple times Method.
(A) A solution containing at least CaCl 2 , NaCl, sulfate ions, MgCl 2 , the pH of the solution is pH 3.0 to 5.0, and the total concentration of chloride in the solution is 0.1 to 2.0. A process characterized by adhering a solution having a total weight of NaCl concentration and CaCl 2 concentration of not more than 3 times the MgCl 2 concentration to the steel surface within a range of 1 to 15 minutes.
(B) It consists of a drying step of 3 to 12 hours at a relative humidity of 10 to 50% and a wetting step of 2 to 8 hours at a relative humidity of 80 to 98%, and the temperature range is 10 to 60 ° C. and the drying step temperature ≧ wetting step A step in which the drying step and the wetting step in which the transition time from the wetting step to the drying step included in the drying step time is set to 20 to 60 minutes is set as one cycle, and this cycle is performed one or more times.
JP2003422165A 2003-12-19 2003-12-19 Method for evaluating corrosion resistance of steel Expired - Fee Related JP4148132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422165A JP4148132B2 (en) 2003-12-19 2003-12-19 Method for evaluating corrosion resistance of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422165A JP4148132B2 (en) 2003-12-19 2003-12-19 Method for evaluating corrosion resistance of steel

Publications (2)

Publication Number Publication Date
JP2005181102A JP2005181102A (en) 2005-07-07
JP4148132B2 true JP4148132B2 (en) 2008-09-10

Family

ID=34783122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422165A Expired - Fee Related JP4148132B2 (en) 2003-12-19 2003-12-19 Method for evaluating corrosion resistance of steel

Country Status (1)

Country Link
JP (1) JP4148132B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070298A (en) * 2006-09-15 2008-03-27 Tokyo Electric Power Co Inc:The Corrosion resistance testing method and evaluating method for steel material
JP4788606B2 (en) * 2007-01-16 2011-10-05 Jfeスチール株式会社 Method for evaluating corrosion resistance of surface-treated metals
JP2011064678A (en) * 2009-08-19 2011-03-31 Jfe Steel Corp Vessel ballast tank corrosion testing method
JP5630032B2 (en) * 2010-02-25 2014-11-26 Jfeスチール株式会社 Corrosion resistance evaluation method for metal materials for automobile steel plate mating parts and corrosion promotion test equipment for metal materials
RU2448338C1 (en) * 2010-11-15 2012-04-20 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Testing method of automobile steel sheets for resistance to atmospheric corrosion
JP6713972B2 (en) * 2017-09-29 2020-06-24 日本電信電話株式会社 Test solution for accelerated corrosion test
MX2022001995A (en) * 2019-08-16 2022-03-17 Jfe Steel Corp Method for evaluating delayed fracture of metal material.
CN112414931A (en) * 2020-11-16 2021-02-26 中国南方电网有限责任公司超高压输电公司柳州局 Test method for corrosion resistance of galvanized steel sheet under simulated environment

Also Published As

Publication number Publication date
JP2005181102A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
CN100494452C (en) Corrosion resistance excellent steel for ship
Blekkenhorst et al. Development of high strength low alloy steels for marine applications: Part 1: Results of long term exposure tests on commercially available and experimental steels
JP4767887B2 (en) Corrosion test method for metallic materials for ship ballast tanks
Ligier et al. Formation of the main atmospheric zinc end products: NaZn4Cl (OH) 6SO4· 6H2O, Zn4SO4 (OH) 6· nH2O and Zn4Cl2 (OH) 4SO4· 5H2O in [Cl−][SO42−][HCO3−][H2O2] electrolytes
Megahed et al. Polyamide coating as a potential protective layer against corrosion of iron artifacts
JP4148132B2 (en) Method for evaluating corrosion resistance of steel
WO2019186940A1 (en) Evaluation method of hydrogen embrittlement characteristics
JP4746583B2 (en) Corrosion resistance evaluation method for coated steel materials and composite corrosion resistance evaluation method for coated steel materials
JPH04506233A (en) Method for forming zinc phosphate film containing manganese and magnesium
Boelen et al. A literature survey on the development of an accelerated laboratory test method for atmospheric corrosion of precoated steel products
Zhang Corrosion of zinc and zinc alloys
Brunoro et al. Corrosion evaluation of artificially aged 6 wt-% tin bronze
EP0172806A1 (en) Alkaline resistance phosphate conversion coatings
Appleman Painting over soluble salts: a perspective
Hospadaruk et al. Paint failure, steel surface quality and accelerated corrosion testing
JP4343570B2 (en) Steel base material and base material adjustment method
Lambert et al. Accelerated corrosion tests of precoated sheet steels for automobiles
WO2019186898A1 (en) Method for evaluating hydrogen embrittlement characteristics
Chenoll Mora Analysis of metallic coatings based in zinc-aluminium-magnesium alloys, in terms of performance and long-term corrosion. Case study: Electrical cable trays selection in project design
Colvin et al. Filiform corrosion of aluminum auto body sheet in accelerated and outdoor environments
Townsend Status of a cooperative effort by the automotive and steel industries to develop a standard accelerated corrosion test
US20230074839A1 (en) Method for evaluating delayed fracture of metal material
Johnson Corrosion failure from water-soluble contaminants on abrasives
JP7056313B2 (en) Evaluation method of hydrogen embrittlement characteristics
US20230075942A1 (en) Method for evaluating delayed fracture of metal material

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4148132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees