JP5176289B2 - Infrared target selection device - Google Patents

Infrared target selection device Download PDF

Info

Publication number
JP5176289B2
JP5176289B2 JP2006156180A JP2006156180A JP5176289B2 JP 5176289 B2 JP5176289 B2 JP 5176289B2 JP 2006156180 A JP2006156180 A JP 2006156180A JP 2006156180 A JP2006156180 A JP 2006156180A JP 5176289 B2 JP5176289 B2 JP 5176289B2
Authority
JP
Japan
Prior art keywords
target
image
image signal
polarization
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006156180A
Other languages
Japanese (ja)
Other versions
JP2007322374A (en
Inventor
俊之 野地
恭久 玉川
貴敬 中野
健志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006156180A priority Critical patent/JP5176289B2/en
Publication of JP2007322374A publication Critical patent/JP2007322374A/en
Application granted granted Critical
Publication of JP5176289B2 publication Critical patent/JP5176289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]

Description

本発明は、赤外線画像の中から目標を選択する赤外線目標選択装置に関するものである。詳しくは、目標に向けて飛しょう体を誘導する赤外線誘導装置に用いられ、赤外線画像の中から艦船等の目標を選択する赤外線目標選択装置に関するものである。   The present invention relates to an infrared target selection device that selects a target from an infrared image. More specifically, the present invention relates to an infrared target selection device that is used in an infrared guidance device that guides a flying object toward a target and selects a target such as a ship from an infrared image.

従来、目標からの赤外光を検知して目標を選択し、選択した目標に向けて飛しょう体を誘導する赤外線誘導装置が知られている(例えば、特許文献1、2参照)。   2. Description of the Related Art Conventionally, there has been known an infrared guidance device that detects infrared light from a target, selects a target, and guides a flying object toward the selected target (see, for example, Patent Documents 1 and 2).

特開2003−84054号公報(第5頁、第1図)Japanese Patent Laid-Open No. 2003-84054 (page 5, FIG. 1) 特開昭62−259112号公報(第3頁、第1図)JP 62-259112 A (page 3, Fig. 1)

従来、赤外線で撮像した赤外線撮像画像により海上に浮かぶ船舶などの目標を抽出する際、目標とその背景とでは一般に温度差があることを利用して、所定の温度(輝度)以上の個所が目標であるとして目標を抽出する画像処理が行われていた。しかしながら、太陽光などにより背景が部分的に熱せられて目標とその背景との温度差が微小となった場合では、赤外線撮像装置で撮像した赤外線撮像画像では目標と背景とのコントラストがとれないために目標を正しく認識することができず、結果として誤った対象物を選択してしまうという課題があった。
また、目標に温度分布があるような場合は、赤外線撮像画像に映る目標の形状が実際の形状と異なるため、画像照合の結果、誤った対象物を選択してしまうという課題があった。
Conventionally, when a target such as a ship floating on the sea is extracted from an infrared image captured by infrared rays, a point where the temperature is equal to or higher than a predetermined temperature (luminance) is used by utilizing the fact that there is generally a temperature difference between the target and the background. As a result, image processing for extracting a target has been performed. However, when the background is partially heated by sunlight or the like and the temperature difference between the target and the background becomes small, the infrared image captured by the infrared imaging device cannot take the contrast between the target and the background. However, there is a problem that the target cannot be recognized correctly, and as a result, the wrong object is selected.
In addition, when the target has a temperature distribution, the target shape shown in the infrared captured image is different from the actual shape, so that there is a problem that an incorrect target object is selected as a result of the image matching.

本発明はこのような課題を解決するためになされたもので、目標とその背景との温度差が微小な場合であっても、赤外線撮像画像の中で確実に、正しい目標を選択することができる赤外線目標選択装置を得ることを目的とする。   The present invention has been made to solve such a problem, and even when the temperature difference between the target and the background is very small, it is possible to reliably select the correct target in the infrared captured image. It aims at obtaining the infrared target selection device which can be done.

上記課題を解決するため、この発明の赤外線目標選択装置は、目標と前記目標の背景から入射する赤外線を互いに直交する平面偏光に分離し、分離した前記赤外線の各々を2次元座標に配列された受光素子からなる画像センサで受光し、前記受光素子で電気信号量に変換して出力した各々の画像信号の間で前記2次元座標の同一の座標位置にある前記電気信号量の差分をとって求めた偏光差分画像信号を出力すると共に、前記2次元座標の同一の座標位置にある前記電気信号量を加算して求めた輝度画像信号を出力する偏光画像撮像装置と、抽出しようとする目標とその背景の組み合わせと、当該組み合わせにおける前記目標の偏光差分画像信号と前記背景の偏光差分画像信号とが分離可能となる閾値とが関連付けされたデータを予め記憶する閾値データベースと、抽出しようとしている目標とその背景の組み合わせに基づいて、前記閾値データベースから選択した前記閾値との比較に基づいて前記偏光差分画像信号の電気信号量を二値化した二値化画像信号を出力する二値化回路と、前記2次元座標の同一の座標位置にある、前記二値化画像信号の二値化後の値と前記輝度画像信号の前記電気信号量とを乗算して得られる画像により前記目標の候補を抽出する目標候補抽出部とを備えるようにした。
In order to solve the above-described problems, an infrared target selection device according to the present invention separates infrared rays incident from the target and the background of the target into plane polarized light orthogonal to each other, and each of the separated infrared rays is arranged in two-dimensional coordinates. A difference between the electric signal amounts at the same coordinate position of the two-dimensional coordinates is obtained between the respective image signals received by an image sensor including a light receiving element, converted into an electric signal amount by the light receiving element, and output. A polarization image pickup device that outputs the obtained polarization difference image signal and outputs the luminance image signal obtained by adding the electric signal amount at the same coordinate position of the two-dimensional coordinate; and a target to be extracted; Preliminarily store data in which the combination of the background and the threshold value that enables separation of the target polarization difference image signal and the background polarization difference image signal in the combination are associated with each other A threshold database, be extracted to have targeted based on a combination of the background, binarization image obtained by binarizing the electric signal of the polarization difference image signal based on a comparison of the thresholds selected from the threshold database A binarization circuit that outputs a signal, and a value after binarization of the binarized image signal at the same coordinate position of the two-dimensional coordinates multiplied by the electric signal amount of the luminance image signal A target candidate extraction unit that extracts the target candidates from the obtained image.

この発明の赤外線目標選択装置によれば、目標とその背景との温度差が微小である場合であっても、赤外線撮像画像の中で目標を正しく確実に選択することができる。   According to the infrared target selection device of the present invention, even if the temperature difference between the target and the background is very small, the target can be correctly and reliably selected in the infrared captured image.

実施の形態1.
本発明の実施の形態1の赤外線目標選択装置について図を参照して説明する。図1は、実施の形態1の赤外線目標選択装置1の構成を示すブロック図である。
Embodiment 1 FIG.
An infrared target selection apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of an infrared target selection device 1 according to the first embodiment.

図1において、赤外線目標選択装置1は、外部からの赤外線入力光100を受光して光電変換し、偏光差分アナログ画像データ101と輝度アナログ画像データ106とを出力する偏光画像撮像装置10と、偏光差分アナログ画像データ101をA/D(Analog/Digital)変換して偏光差分デジタル画像信号102を出力するAD変換回路11と、目標と背景との組み合わせ毎に、背景に相当する偏光差分デジタル画像信号と目標に相当する偏光差分デジタル画像信号とが分離可能となる閾値を予め設定して記憶した閾値データベース17と、この閾値を用いて偏光差分デジタル画像信号102を二値化して、二値化デジタル画像信号103を出力する二値化回路13と、輝度アナログ画像データ106をA/D変換して輝度デジタル画像信号107を出力するAD変換回路12と、二値化デジタル画像信号103と輝度デジタル画像信号107を入力して各画像の画素毎に画像処理することで目標候補の形状と輝度の情報を抽出して目標候補抽出画像104を出力する領域特徴量計測部14と、目標の形状及び輝度を示した目標情報108が予め記憶された目標形状画像データベース20と、目標候補抽出画像104と目標情報108とを照合することで目標候補抽出画像104の中から目標を選択する目標判定処理部15とを備える。   In FIG. 1, an infrared target selection device 1 receives an infrared input light 100 from the outside, performs photoelectric conversion, and outputs a polarization difference analog image data 101 and luminance analog image data 106, and a polarization For each combination of the target and the background, an AD conversion circuit 11 that performs A / D (Analog / Digital) conversion on the differential analog image data 101 and outputs a polarization difference digital image signal 102, and a polarization difference digital image signal corresponding to the background. And a threshold value database 17 in which a threshold value that can be separated from the polarization difference digital image signal corresponding to the target is set in advance and stored, and the polarization difference digital image signal 102 is binarized using the threshold value to obtain a binarized digital signal. The binarization circuit 13 that outputs the image signal 103 and the luminance analog image data 106 are A / D converted to obtain the luminance digital image signal 1. 7, the binarized digital image signal 103 and the luminance digital image signal 107 are input and image processing is performed for each pixel of each image to extract information on the shape and luminance of the target candidate. The region feature quantity measurement unit 14 that outputs the target candidate extracted image 104, the target shape image database 20 in which target information 108 indicating the target shape and luminance is stored in advance, the target candidate extracted image 104, and the target information 108 And a target determination processing unit 15 that selects a target from the target candidate extraction images 104 by collation.

図2は、偏光画像撮像装置10の構成と動作を説明する図である。偏光画像撮像装置10は、偏光子51と差分信号処理部52と加算信号処理部53と第1の赤外線画像センサ54と第2の赤外線画像センサ55を備えている。
偏光プリズムや複屈折材料を用いた干渉フィルタ等で代表される偏光子51は、目標やその背景から入射する赤外線入力光100を互いに直交した平面偏光であるP波赤外線90PとS波赤外線90Sとに分離して出力する。
複数の受光素子が2次元配列された第1の赤外線画像センサ54は、P波赤外線90Pを光電変換し、電気信号に変換した後のP波偏光画像信号100Pを出力する。ここでP波偏光画像信号100Pは、第1の赤外線画像センサ54を構成する2次元配列の受光素子の各々に対応した画素の座標位置(x、y)の情報と、その座標位置における電気信号量のデータを具える。
同様に、複数の受光素子が2次元配列された第2の赤外線画像センサ55はS波赤外線90Sを光電変換して、電気信号に変換後のS波偏光画像信号100Sを出力する。S波偏光画像信号100Sは、同様に、第2の赤外線画像センサ55を構成する2次元配列の受光素子の各々に対応する画像画素の座標位置(x、y)の情報と、その座標位置における電気信号量のデータを具えている。
また、第1の赤外線画像センサ54と第2の赤外線画像センサ55の画像センサ同士の座標軸や原点位置は、予め一致させておく。
FIG. 2 is a diagram illustrating the configuration and operation of the polarization image capturing apparatus 10. The polarization image capturing apparatus 10 includes a polarizer 51, a difference signal processing unit 52, an addition signal processing unit 53, a first infrared image sensor 54, and a second infrared image sensor 55.
A polarizer 51 typified by an interference filter using a polarizing prism or a birefringent material has a P wave infrared ray 90P and an S wave infrared ray 90S, which are plane polarized lights orthogonal to each other from the infrared input light 100 incident from the target or its background. To output.
The first infrared image sensor 54 in which a plurality of light receiving elements are two-dimensionally arranged photoelectrically converts P-wave infrared light 90P and outputs a P-wave polarized image signal 100P after being converted into an electrical signal. Here, the P-wave polarized image signal 100P is information on the coordinate position (x, y) of the pixel corresponding to each of the two-dimensional array of light receiving elements constituting the first infrared image sensor 54, and the electrical signal at that coordinate position. Contains quantity data.
Similarly, the second infrared image sensor 55 in which a plurality of light receiving elements are two-dimensionally arranged performs photoelectric conversion of the S wave infrared light 90S and outputs an S wave polarized image signal 100S after conversion into an electrical signal. Similarly, the S-wave polarized image signal 100S includes information on the coordinate position (x, y) of the image pixel corresponding to each of the light receiving elements of the two-dimensional array constituting the second infrared image sensor 55, and the coordinate position at that coordinate position. It has electrical signal data.
Further, the coordinate axes and the origin positions of the first infrared image sensor 54 and the second infrared image sensor 55 are made to coincide with each other in advance.

次に加算信号処理部53は、P波偏光画像信号100PとS波偏光画像信号100Sを入力する。加算信号処理部53は、入力したP波偏光画像信号100PとS波偏光画像信号100Sとを用いて、同一の座標位置(x、y)にある受光素子からのP波偏光画像信号100PとS波偏光画像信号100Sの電気信号量を加算する処理を、各画素単位で行い、輝度アナログ画像データ106として出力する。
輝度アナログ画像データ106は、画素の座標位置(x、y)の情報と、その座標位置における加算処理後の電気信号量のデータを具える。
Next, the addition signal processing unit 53 inputs the P wave polarization image signal 100P and the S wave polarization image signal 100S. The addition signal processing unit 53 uses the input P-wave polarization image signal 100P and the S-wave polarization image signal 100S to input the P-wave polarization image signals 100P and S from the light receiving elements at the same coordinate position (x, y). The process of adding the electric signal amount of the wave polarization image signal 100S is performed for each pixel unit and output as luminance analog image data 106.
The luminance analog image data 106 includes information on the coordinate position (x, y) of the pixel and data on the electric signal amount after the addition processing at the coordinate position.

このように加算信号処理部53は、偏光子51で一度分離して得たP波偏光画像信号100PとS波偏光画像信号100Sの電気信号量を、画素毎に加算する演算処理を行う。これにより、目標とその背景から入射した赤外線入力光100の画像の輝度情報として、輝度アナログ画像データ106を得る。   As described above, the addition signal processing unit 53 performs a calculation process of adding the electrical signal amounts of the P-wave polarization image signal 100P and the S-wave polarization image signal 100S obtained by being once separated by the polarizer 51 for each pixel. Thereby, luminance analog image data 106 is obtained as luminance information of the image of the infrared input light 100 incident from the target and the background thereof.

差分信号処理部52は、P波偏光画像信号100PとS波偏光画像信号100Sを入力する。差分信号処理部52は、入力したP波偏光画像信号100PとS波偏光画像信号100Sとを用いて、同一の座標位置(x、y)にある受光素子からのP波偏光画像信号100PとS波偏光画像信号100Sの電気信号量の差分を求める処理を、各画素単位で行い、偏光差分アナログ画像データ101として出力する。
偏光差分アナログ画像データ101は、画素の座標位置(x、y)の情報と、その座標位置における差分演算処理後のデータを具える。
The differential signal processing unit 52 receives the P-wave polarization image signal 100P and the S-wave polarization image signal 100S. The differential signal processing unit 52 uses the input P-wave polarization image signal 100P and the S-wave polarization image signal 100S to input the P-wave polarization image signals 100P and S from the light receiving elements at the same coordinate position (x, y). A process for obtaining the difference in the electrical signal amount of the wave polarization image signal 100S is performed for each pixel unit, and output as polarization difference analog image data 101.
The polarization difference analog image data 101 includes information on the coordinate position (x, y) of a pixel and data after difference calculation processing at the coordinate position.

このように差分信号処理部52は、偏光子51で一度分離して得たP波偏光画像信号100PとS波偏光画像信号100Sの電気信号量において、画素毎にその差分を求める演算処理を行う。差分をとることにより、目標とその背景から入射した赤外線入力光100の画像位置に対応した偏光度の情報として、偏光差分アナログ画像データ101を得ることができる。   As described above, the difference signal processing unit 52 performs a calculation process for obtaining the difference for each pixel in the electric signal amount of the P-wave polarized image signal 100P and the S-wave polarized image signal 100S obtained by being once separated by the polarizer 51. . By taking the difference, polarization difference analog image data 101 can be obtained as information on the degree of polarization corresponding to the image position of the infrared input light 100 incident from the target and its background.

ここで偏光度は例えば式1により示される値であり光線の偏光の程度を示す。例えば、光線の偏光がないときには偏光度Pはゼロの値となる。差分信号処理部52は上述したようにP波偏光画像信号100PとS波偏光画像信号100Sの差分を求めることにより、式(1)で示した偏光度Pに対応する数値を得ることができる。   Here, the degree of polarization is, for example, a value represented by Equation 1 and indicates the degree of polarization of light rays. For example, the degree of polarization P is zero when there is no polarization of the light beam. As described above, the difference signal processing unit 52 obtains a difference between the P-wave polarization image signal 100P and the S-wave polarization image signal 100S, thereby obtaining a numerical value corresponding to the degree of polarization P shown in Expression (1).

Figure 0005176289
Figure 0005176289

ここで、物体から放射される電磁波の偏光特性(偏光度)は、その材質、表面状態などの物理特性の違いから、一般に異なっている。例えば、電磁波として赤外線を考え、目標物体を直接の赤外線源とし、背景を太陽光線を反射する海面等とする。このような場合、目標物体からの赤外線は特定の偏光面を持たないのに対し、背景からの反射赤外線はほとんどの場合、或る方向に偏光している。このため、図2の例において、海面から入射した反射赤外線は偏光子51によってその直行する偏光成分を減衰されるため、特定の偏光面を持たない目標とのコントラストを高くとることができる。   Here, the polarization characteristics (polarization degree) of electromagnetic waves radiated from an object are generally different due to differences in physical characteristics such as the material and surface state. For example, infrared rays are considered as electromagnetic waves, the target object is a direct infrared source, and the background is the sea surface that reflects sunlight. In such a case, the infrared rays from the target object do not have a specific polarization plane, whereas the reflected infrared rays from the background are mostly polarized in a certain direction. For this reason, in the example of FIG. 2, the reflected infrared light incident from the sea surface is attenuated by the polarizer 51, so that the contrast with a target having no specific polarization plane can be made high.

このようにして、目標とその背景との温度差が微小な場合で、これらを撮像した赤外線撮像画像においてコントラストがとれないような場合であっても、目標とその背景との偏光特性(偏光度)の差を利用することにより、目標の輪郭を抽出することが可能となる。   In this way, even when the temperature difference between the target and the background is very small and the contrast is not obtained in the infrared image obtained by capturing these, the polarization characteristics (polarization degree) between the target and the background. ), The target contour can be extracted.

これより、実施の形態1の赤外線目標選択装置が、入射する赤外線の偏光特性(偏光度)の差を利用することにより目標を抽出するまでを、具体例に基づき説明する。   From here, it demonstrates based on a specific example until the infrared target selection apparatus of Embodiment 1 extracts a target by utilizing the difference of the polarization characteristic (polarization degree) of the incident infrared rays.

図3は、実施の形態1の偏光画像撮像装置10が赤外線撮像する撮像対象物を、可視光領域でみたときのイメージ図(原画像)の一例である。図3で、選択目標である船が海上に浮かんでいる。そして、船と海面との温度差は微小であるとする。この時、これらの船と海面とを通常の赤外線撮像装置で撮像した場合は、船と海面とのコントラストがとれないために、赤外線画像から船を正確に抽出することができない。   FIG. 3 is an example of an image diagram (original image) when the imaging object to be infrared-captured by the polarization image capturing apparatus 10 of the first embodiment is viewed in the visible light region. In FIG. 3, the ship that is the selection target is floating on the sea. It is assumed that the temperature difference between the ship and the sea surface is very small. At this time, when these ships and the sea surface are imaged by a normal infrared imaging device, the ship cannot be accurately extracted from the infrared image because the contrast between the ship and the sea surface cannot be obtained.

図4(a)は、上記撮像対象物である船と海面とから入射する赤外線を偏光画像撮像装置10の偏光子51で分離した後、撮像し、加算信号処理部53において加算処理して出力した輝度アナログ画像データ106をAD変換回路12でデジタル化した輝度デジタル画像信号107を示した図である。
図4(a)のように輝度デジタル画像信号107は、赤外線画像センサの各受光素子に対応した複数の画素ごとの信号量から成り立っている。図4(a)の輝度デジタル画像信号107の各画素に付された数値は、図5(a)、(b)で例示したP波偏光画像信号100PとS波偏光画像信号100Sにおいて、同一の座標位置にあるP波偏光画像信号100PとS波偏光画像信号100Sの数値とを加算した値である。先に述べたように、船と海面からの入射光の偏光度の違いにより、図5(a)、(b)のP波偏光画像信号100P、S波偏光画像信号100Sの各画素の値は異なっている。
また図4(b)は、図4(a)で示した輝度デジタル画像信号107の各画素の数値を色の濃淡で表した画像イメージ図である。
このように船と海面との温度差が微小である場合は、輝度デジタル画像信号107から得られる画像では目標と背景とのコントラストがとれないために、画像中で船(目標)を抽出することが困難である。
In FIG. 4A, infrared rays incident from the ship, which is the object to be imaged, and the sea surface are separated by the polarizer 51 of the polarization image capturing apparatus 10, and then imaged, added by the addition signal processing unit 53, and output. FIG. 6 is a diagram showing a luminance digital image signal 107 obtained by digitizing the luminance analog image data 106 obtained by the AD conversion circuit 12.
As shown in FIG. 4A, the luminance digital image signal 107 is composed of a signal amount for each of a plurality of pixels corresponding to each light receiving element of the infrared image sensor. The numerical value given to each pixel of the luminance digital image signal 107 in FIG. 4A is the same in the P-wave polarized image signal 100P and the S-wave polarized image signal 100S exemplified in FIGS. 5A and 5B. This is a value obtained by adding the numerical values of the P-wave polarized image signal 100P and the S-wave polarized image signal 100S at the coordinate position. As described above, the values of the pixels of the P-wave polarization image signal 100P and the S-wave polarization image signal 100S in FIGS. Is different.
FIG. 4B is an image image diagram in which the numerical value of each pixel of the luminance digital image signal 107 shown in FIG.
In this way, when the temperature difference between the ship and the sea surface is very small, the image obtained from the luminance digital image signal 107 cannot obtain the contrast between the target and the background, so the ship (target) is extracted from the image. Is difficult.

一方、図6(a)は、上記撮像対象物である船と海面とから入射する赤外線を偏光画像撮像装置10の偏光子51で分離した後、撮像し、差分信号処理部52において差分処理をして出力した偏光差分アナログ画像データ101をAD変換回路11でデジタル化した偏光差分デジタル画像信号102を示した図である。
図6(a)の偏光差分デジタル画像信号102の各画素の数値は、P波偏光画像信号100PとS波偏光画像信号100Sとで対応する画素同士の信号量の差分をとった差分の結果を示した値である。また図6(b)は、図6(a)で示した偏光差分デジタル画像信号102の各画素の数値を色の濃淡で表した画像イメージ図である。
On the other hand, FIG. 6A shows the infrared rays incident from the ship, which is the imaging object, and the sea surface, after being separated by the polarizer 51 of the polarization imaging device 10, and the difference signal processing unit 52 performs the difference processing. 5 is a diagram showing a polarization difference digital image signal 102 obtained by digitizing the polarization difference analog image data 101 outputted in this manner by the AD conversion circuit 11. FIG.
The numerical value of each pixel of the polarization difference digital image signal 102 in FIG. 6A is a difference result obtained by taking a difference in signal amount between corresponding pixels in the P wave polarization image signal 100P and the S wave polarization image signal 100S. It is the indicated value. FIG. 6B is an image image diagram in which the numerical value of each pixel of the polarization difference digital image signal 102 shown in FIG.

なお、背景からの反射赤外線の偏光面は事前には不明なため、回転部56により偏光子51を回転させながら目標と背景とのコントラスがとれるように、すなわち背景にあたる個所の偏光差分デジタル画像信号102の画素値が大きくなるように、偏光子51の回転角を調整してもよい。または、背景からの反射赤外線の偏光面を検出する装置を設け、その装置で検出した背景の偏光面と偏光子51の直行した偏光面のいずれかとが合うように、回転部56により偏光子51を回転させるようにしてもよい。   The polarization plane of the reflected infrared rays from the background is unknown in advance, so that the contrast between the target and the background can be obtained while rotating the polarizer 51 by the rotating unit 56, that is, the polarization difference digital image signal at the location corresponding to the background. You may adjust the rotation angle of the polarizer 51 so that the pixel value of 102 may become large. Alternatively, a device that detects the polarization plane of reflected infrared light from the background is provided, and the polarizer 51 is rotated by the rotating unit 56 so that either the background polarization plane detected by the device matches the polarization plane orthogonal to the polarizer 51 or not. You may make it rotate.

次に、二値化回路13は偏光差分デジタル画像信号102の各画素の値をを二値化する。二値化にあたり、二値化回路13は閾値データベース17にアクセスし、抽出しようとしている目標とその背景の種類に基づいて、閾値データベース17から閾値109を選択する。そして選択した閾値109との比較により、偏光差分デジタル画像信号102の各画素の値の2値化を行う。
なお、目標とその背景の種類は、例えばキーボードなどの入力部21により、選択しようとしている目標とその背景の種類に対応した番号を入力することで、予め指定することができる。
Next, the binarization circuit 13 binarizes the value of each pixel of the polarization difference digital image signal 102. In binarization, the binarization circuit 13 accesses the threshold value database 17 and selects the threshold value 109 from the threshold value database 17 based on the target to be extracted and the background type. Then, by comparing with the selected threshold 109, the value of each pixel of the polarization difference digital image signal 102 is binarized.
Note that the type of the target and its background can be designated in advance by inputting a number corresponding to the target to be selected and the type of the background using the input unit 21 such as a keyboard.

図7は、閾値データベース17の一例を示した図である。
閾値データベース17には、事前の調査によって設定された値であり、抽出しようとする目標とその背景との組み合わせの種類に対応して、二値化された画像における背景の偏光差分デジタル画像信号と目標の偏光差分デジタル画像信号とが分離可能となる閾値109が予め記憶されている。例えば、目標が船でありその背景が海である場合では、両者が分離可能となる偏光差分デジタル画像信号の閾値(図7の例では、閾値=0.6)が予め格納されている。
FIG. 7 is a diagram showing an example of the threshold database 17.
The threshold value database 17 is a value set by a prior survey, and the background polarization difference digital image signal in the binarized image corresponding to the type of combination of the target to be extracted and its background. A threshold 109 that can be separated from the target polarization difference digital image signal is stored in advance. For example, when the target is a ship and the background is the sea, a threshold value of a polarization difference digital image signal (threshold value = 0.6 in the example of FIG. 7) that can be separated is stored in advance.

このように二値化回路13は、閾値データベース17から選択された、目標とその背景の種類に対応した閾値109を選択し、この閾値109との大小比較により偏光差分デジタル画像信号102を二値化する。図8に、目標が船であり背景が海の場合(図7より閾値=0.6)において、図5(a)の偏光差分デジタル画像信号102を二値化した二値化デジタル画像信号103の例を示す。ここでは、二値化回路13は閾値109未満の値を1、閾値109以上を0として、偏光差分デジタル画像信号102の二値化を行っている。   As described above, the binarization circuit 13 selects the threshold 109 corresponding to the type of the target and the background selected from the threshold database 17, and binarizes the polarization difference digital image signal 102 by comparison with the threshold 109. Turn into. FIG. 8 shows a binarized digital image signal 103 obtained by binarizing the polarization difference digital image signal 102 of FIG. 5A when the target is a ship and the background is the sea (threshold = 0.6 from FIG. 7). An example of Here, the binarization circuit 13 binarizes the polarization difference digital image signal 102 with a value less than the threshold 109 being 1 and a threshold 109 or more being 0.

領域特徴量計測部14は、次に、二値化デジタル画像103と輝度デジタル画像信号107とを入力する。   Next, the region feature quantity measurement unit 14 inputs the binarized digital image 103 and the luminance digital image signal 107.

領域特徴量計測部14は、入力した二値化デジタル画像103と輝度デジタル画像信号107の各画素ごとの情報(数値)を、式2に従い乗算処理する。   The area feature quantity measurement unit 14 performs multiplication processing on the information (numerical values) for each pixel of the input binary digital image 103 and the luminance digital image signal 107 according to Equation 2.

Figure 0005176289
Figure 0005176289

ここで、α(i,j)は2次元の目標候補抽出画像104中の座標位置(i,j)における画素の値、β(i,j)は二値化された二値化デジタル画像103の座標位置(i,j)における画素の値、γ(i,j)は輝度デジタル画像信号107の座標位置(i,j)における画素の輝度値を示す。
式2により、β(i,j)=1の場合にはα(i,j)=γ(i,j)となり、β(i,j)=0の場合にはα(i,j)=0となる。
Here, α (i, j) is the pixel value at the coordinate position (i, j) in the two-dimensional target candidate extraction image 104, and β (i, j) is the binarized binary digital image 103. The pixel value at the coordinate position (i, j), γ (i, j) indicates the luminance value of the pixel at the coordinate position (i, j) of the luminance digital image signal 107.
According to Equation 2, α (i, j) = γ (i, j) when β (i, j) = 1, and α (i, j) = when β (i, j) = 0. 0.

図9(a)は、式2に従い処理した後の目標候補抽出画像104の一例を示した図である。
図9(b)は目標候補抽出画像104の各画素の数値を濃淡で表した図であり、選択しようとしている目標の候補が形状として抽出される。抽出された目標候補の領域内の各画素の値は、その目標候補から入射される赤外線の輝度情報を示している。
FIG. 9A is a diagram showing an example of the target candidate extraction image 104 after processing according to Equation 2.
FIG. 9B is a diagram in which the numerical values of each pixel of the target candidate extraction image 104 are represented by shading, and the target candidates to be selected are extracted as shapes. The value of each pixel in the extracted target candidate area indicates the luminance information of infrared rays incident from the target candidate.

このように、領域特徴量計測部14は、式2の乗算処理により背景領域の輝度デジタル信号を消去し、目標及びその他の対象の領域のみの輝度デジタル画像信号を残した目標候補抽出画像104を得ることができる。
領域特徴量計測部14はこのように目標の候補を抽出することから目標候補抽出部に対応する。
As described above, the region feature quantity measurement unit 14 erases the luminance digital signal of the background region by the multiplication processing of Expression 2, and obtains the target candidate extraction image 104 that leaves the luminance digital image signal of only the target and other target regions. Can be obtained.
Since the region feature quantity measurement unit 14 extracts the target candidates in this way, it corresponds to the target candidate extraction unit.

以上のように、実施の形態1の赤外線目標選択装置によれば、目標とその背景との温度差が微小である場合であっても、赤外線撮像画像の中から選択しようとする目標の候補を抽出することができる。   As described above, according to the infrared target selection device of the first embodiment, even if the temperature difference between the target and the background is very small, the target candidate to be selected from the infrared captured image is selected. Can be extracted.

次に、目標判定処理部15は、選択した目標の候補と目標画像データベース20に予め格納された目標の形状と輝度の情報からなる目標情報108とで画像の照合を行う。   Next, the target determination processing unit 15 collates the image with the selected target candidate and target information 108 including target shape and luminance information stored in advance in the target image database 20.

図10は、目標画像データベース20に格納された目標情報108の一例を示した図である。目標画像データベース20には、目標ごとに、形状(図10の黒線枠で囲まれた形状)と輝度(太黒線枠内の各画素の数値)の情報が格納されている。図10の例では船1と建物1〜3の情報が格納されている。   FIG. 10 is a diagram showing an example of the target information 108 stored in the target image database 20. The target image database 20 stores information on the shape (the shape surrounded by the black line frame in FIG. 10) and the luminance (the numerical value of each pixel in the thick black line frame) for each target. In the example of FIG. 10, information on the ship 1 and the buildings 1 to 3 is stored.

目標判定処理部15は、目標候補抽出画像104と目標情報108(ここでは、図10の船1)とを比較し、形状及び輝度に関する所定の画像照合を行うことにより、目標候補抽出画像104の中から目標を選定する(図11参照)。目標候補抽出画像104と目標情報108との画像照合は、例えば、差分総和値によるパターンマッチングであってもよいし、特徴的な形状に着目した画像照合であってもよい。また、最大輝度と最小輝度の差に基づく照合であってもよいし、例えば、高輝度点の位置やその数による画像照合であってもよい。   The target determination processing unit 15 compares the target candidate extraction image 104 with the target information 108 (here, the ship 1 in FIG. 10), and performs predetermined image matching on the shape and the brightness, thereby obtaining the target candidate extraction image 104. A target is selected from among them (see FIG. 11). The image matching between the target candidate extracted image 104 and the target information 108 may be, for example, pattern matching based on a difference sum value or image matching focusing on a characteristic shape. Further, collation based on the difference between the maximum luminance and the minimum luminance may be performed, and for example, image collation may be performed based on the position of the high luminance point and the number thereof.

目標判定処理部15は目標を選定すると、選定した目標の画像位置に基づき誘導信号105を生成し出力する。飛しょう体は、誘導信号105により機体を操舵して目標への目視線上に誘導し、飛しょう体を目標に誘導する。   When the target determination processing unit 15 selects a target, the target determination processing unit 15 generates and outputs a guidance signal 105 based on the selected target image position. The flying body steers the aircraft by the guidance signal 105 and guides it on the line of sight to the target, and guides the flying body to the target.

このように、本発明の赤外線目標選択装置は、表面特性が異なると物質が発する赤外光の偏光度が異なることに着目し、偏光度に相当する偏光差分アナログ画像データ101と、輝度アナログ画像データ106と閾値データベース17中の閾値109とを用いて目標候補を抽出し、抽出した目標候補と目標画像データベース20中の目標情報108とを比較し、所定の画像照合を行うことにより、目標を選択するようにした。   As described above, the infrared target selection device according to the present invention pays attention to the fact that the polarization degree of the infrared light emitted from the substance differs depending on the surface characteristics, and the polarization difference analog image data 101 corresponding to the polarization degree and the luminance analog image. A target candidate is extracted using the data 106 and the threshold 109 in the threshold database 17, and the target information is compared with the extracted target candidate and the target information 108 in the target image database 20, and the target is determined. It was made to choose.

これにより、目標と背景の温度差が微小であり従来の装置では目標と背景とのコントラストがとれずに目標の抽出が困難である場合であっても、目標を誤ることなく、確実に選択することができる。   As a result, even if the temperature difference between the target and the background is very small, and the conventional apparatus cannot obtain the contrast between the target and the background, it is difficult to extract the target. be able to.

なお、図7の閾値データベース、図10の目標画像データベースのデータ形式は一例であり、各データベースの目的を達すれば他の形式であってもよく、例えば立体画像を表すようなデータ形式であっても構わない。また、ここで挙げた画像の画素数やその数値についても一例を示したものである。   The data formats of the threshold database in FIG. 7 and the target image database in FIG. 10 are examples, and other formats may be used as long as the purpose of each database is achieved. It doesn't matter. An example of the number of pixels of the image and the numerical values given here is also shown.

本発明の実施の形態1による赤外線目標選択装置の構成を示すブロック図である。It is a block diagram which shows the structure of the infrared target selection apparatus by Embodiment 1 of this invention. 本発明の実施の形態1による偏光画像撮像装置の構成と動作の概略を説明する図である。It is a figure explaining the outline of a structure and operation | movement of the polarized image imaging device by Embodiment 1 of this invention. 本発明の実施の形態1による偏光画像撮像装置10が撮像する撮像対象の一例を示した図である。It is the figure which showed an example of the imaging target which the polarized image imaging device 10 by Embodiment 1 of this invention images. 本発明の実施の形態1による輝度デジタル画像信号107の一例を示した図である。It is the figure which showed an example of the luminance digital image signal 107 by Embodiment 1 of this invention. 本発明の実施の形態1によるP波偏光画像信号100P、S波偏光画像信号100Sの一例を示した図である。It is a figure showing an example of P wave polarization image signal 100P and S wave polarization image signal 100S by Embodiment 1 of the present invention. 本発明の実施の形態1による偏光差分デジタル画像信号102の一例を示した図である。It is the figure which showed an example of the polarization difference digital image signal 102 by Embodiment 1 of this invention. 本発明の実施の形態1による閾値データベースの一例を示す図である。It is a figure which shows an example of the threshold value database by Embodiment 1 of this invention. 本発明の実施の形態1による二値化デジタル画像信号103の一例を示した図である。It is the figure which showed an example of the binarized digital image signal 103 by Embodiment 1 of this invention. 本発明の実施の形態1による目標候補抽出画像104の一例を示した図である。It is the figure which showed an example of the target candidate extraction image 104 by Embodiment 1 of this invention. 本発明の実施の形態1による目標画像データベースの一例を示す図である。It is a figure which shows an example of the target image database by Embodiment 1 of this invention. 本発明の実施の形態1による目標判定処理部15が目標を抽出した結果の一例を示した図である。It is the figure which showed an example of the result as which the target determination process part 15 by Embodiment 1 of this invention extracted the target.

符号の説明Explanation of symbols

1 赤外線目標選択装置、10 偏光画像撮像装置、11、12 AD変換回路、13 二値化回路、14 領域特徴量計測部、15 目標判定処理部、16 目標形状/輝度画像データベース、17 閾値データベース、20 目標画像データベース、52 差分信号処理部、53 加算信号処理部、54 第1の赤外線画像センサ、55 第2の赤外線画像センサ、56 回転部、100 赤外線入力光、90P P波赤外線、90S S波赤外線、100 赤外線入力光、100P P波偏光画像信号、100S S波偏光画像信号、101 偏光差分アナログ画像データ、102 偏光差分デジタル画像信号、103 二値化デジタル画像信号、104 目標候補抽出画像、105 目標判定結果 106 輝度アナログ画像データ、107 輝度デジタル画像信号、108 目標情報、109 閾値   DESCRIPTION OF SYMBOLS 1 Infrared target selection apparatus, 10 Polarized image imaging device, 11, 12 AD conversion circuit, 13 Binarization circuit, 14 Area | region feature-value measurement part, 15 Target determination process part, 16 Target shape / luminance image database, 17 Threshold database, 20 Target image database, 52 Difference signal processing unit, 53 Addition signal processing unit, 54 First infrared image sensor, 55 Second infrared image sensor, 56 Rotating unit, 100 Infrared input light, 90P P wave infrared, 90S S wave Infrared, 100 Infrared input light, 100P P wave polarization image signal, 100S S wave polarization image signal, 101 Polarization difference analog image data, 102 Polarization difference digital image signal, 103 Binary digital image signal, 104 Target candidate extraction image, 105 Target determination result 106 luminance analog image data, 107 luminance digital Image signal, 108 target information, 109 threshold

Claims (2)

目標と前記目標の背景から入射する赤外線を互いに直交する平面偏光に分離し、分離した前記赤外線の各々を2次元座標に配列された受光素子からなる画像センサで受光し、前記受光素子で電気信号量に変換して出力した各々の画像信号の間で前記2次元座標の同一の座標位置にある前記電気信号量の差分をとって求めた偏光差分画像信号を出力すると共に、前記2次元座標の同一の座標位置にある前記電気信号量を加算して求めた輝度画像信号を出力する偏光画像撮像装置と、
抽出しようとする目標とその背景の組み合わせと、当該組み合わせにおける前記目標の偏光差分画像信号と前記背景の偏光差分画像信号とが分離可能となる閾値とが関連付けされたデータを予め記憶する閾値データベースと、
抽出しようとしている目標とその背景の組み合わせに基づいて、前記閾値データベースから選択した前記閾値との比較に基づいて前記偏光差分画像信号の電気信号量を二値化した二値化画像信号を出力する二値化回路と、
前記2次元座標の同一の座標位置にある、前記二値化画像信号の二値化後の値と前記輝度画像信号の前記電気信号量とを乗算して得られる画像により前記目標の候補を抽出する目標候補抽出部とを備えた赤外線目標選択装置。
Infrared rays incident from the target and the background of the target are separated into plane polarized light orthogonal to each other, and each of the separated infrared rays is received by an image sensor including light receiving elements arranged in two-dimensional coordinates, and electric signals are received by the light receiving elements. A polarization difference image signal obtained by taking a difference between the electric signal amounts at the same coordinate position of the two-dimensional coordinates between the respective image signals converted into a quantity and outputting the two-dimensional coordinates, A polarization image capturing apparatus that outputs a luminance image signal obtained by adding the electric signal amounts at the same coordinate position; and
A threshold database that stores in advance data associated with a combination of a target to be extracted and a background thereof, and a threshold at which the target polarization difference image signal and the background polarization difference image signal in the combination are separable ; ,
Based on a combination of the target to be extracted and its background, a binarized image signal obtained by binarizing the electric signal amount of the polarization difference image signal based on a comparison with the threshold selected from the threshold database is output. A binarization circuit;
The target candidate is extracted from an image obtained by multiplying the binarized value of the binarized image signal and the electric signal amount of the luminance image signal at the same coordinate position of the two-dimensional coordinates. An infrared target selection device comprising a target candidate extraction unit.
更に、目標の形状と輝度の情報である目標情報を格納した目標画像データベースと、
前記目標の候補と、前記目標画像データベース中の目標情報とを照合して、前記目標の候補の中から目標を選択する目標判定処理部とを備えた請求項1記載の赤外線目標選択装置。
Furthermore, a target image database storing target information which is information on the target shape and brightness,
The infrared target selection device according to claim 1, further comprising: a target determination processing unit that compares the target candidate with target information in the target image database and selects a target from the target candidates.
JP2006156180A 2006-06-05 2006-06-05 Infrared target selection device Active JP5176289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156180A JP5176289B2 (en) 2006-06-05 2006-06-05 Infrared target selection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156180A JP5176289B2 (en) 2006-06-05 2006-06-05 Infrared target selection device

Publications (2)

Publication Number Publication Date
JP2007322374A JP2007322374A (en) 2007-12-13
JP5176289B2 true JP5176289B2 (en) 2013-04-03

Family

ID=38855320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156180A Active JP5176289B2 (en) 2006-06-05 2006-06-05 Infrared target selection device

Country Status (1)

Country Link
JP (1) JP5176289B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297303B2 (en) * 2009-08-26 2013-09-25 株式会社東芝 Object identification device
JP5664551B2 (en) * 2009-08-27 2015-02-04 日本電気株式会社 Image target identification device, image target identification method, and image target identification program
JP2011080890A (en) * 2009-10-08 2011-04-21 Toshiba Corp Object identification device
JP5440927B2 (en) * 2009-10-19 2014-03-12 株式会社リコー Distance camera device
JP5742722B2 (en) * 2009-11-05 2015-07-01 日本電気株式会社 Image target identification device, image target identification method, and image target identification program
WO2011074413A1 (en) * 2009-12-14 2011-06-23 日本電気株式会社 Image generation apparatus, image generation method and image generation program
JP5696927B2 (en) * 2009-12-25 2015-04-08 株式会社リコー Object identification device, and moving body control device and information providing device provided with the same
JP5686281B2 (en) * 2009-12-25 2015-03-18 株式会社リコー Three-dimensional object identification device, and mobile object control device and information providing device provided with the same
JP2011150687A (en) * 2009-12-25 2011-08-04 Ricoh Co Ltd Three-dimensional object identifying apparatus, moving body control apparatus equipped with the same, and information providing apparatus
WO2011078199A1 (en) * 2009-12-25 2011-06-30 Ricoh Company, Ltd. Object identifying apparatus, moving body control apparatus, and information providing apparatus
JP5521594B2 (en) * 2010-02-05 2014-06-18 三菱電機株式会社 Guided flying vehicle device
JP5761601B2 (en) * 2010-07-01 2015-08-12 株式会社リコー Object identification device
JP5967463B2 (en) * 2010-09-16 2016-08-10 株式会社リコー Object identification device, and moving body control device and information providing device provided with the same
JP5867807B2 (en) * 2010-12-08 2016-02-24 株式会社リコー Vehicle identification device
JP6340795B2 (en) * 2013-12-27 2018-06-13 株式会社リコー Image processing apparatus, image processing system, image processing method, image processing program, and moving body control apparatus
JP6722529B2 (en) * 2016-07-05 2020-07-15 日立造船株式会社 Obstacle detection system for railway

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171223A (en) * 1981-04-14 1982-10-21 Mitsubishi Electric Corp Infrared image pickup device
JPS62259112A (en) * 1986-05-02 1987-11-11 Mitsubishi Electric Corp Detector for position of target object
JPS63143500A (en) * 1986-12-06 1988-06-15 防衛庁技術研究本部長 Discriminator for height of flight of missile
JPH0286273A (en) * 1988-09-21 1990-03-27 Mitsubishi Electric Corp Infrared-ray image pickup device
JP2848408B2 (en) * 1989-09-29 1999-01-20 マツダ株式会社 Mobile vehicle environment recognition device
JP2868252B2 (en) * 1989-11-22 1999-03-10 能美防災株式会社 Fire location detector
JPH0651921A (en) * 1992-01-14 1994-02-25 Mitsubishi Electric Corp Infrared image pickup device
JPH06121317A (en) * 1992-10-09 1994-04-28 Mitsubishi Electric Corp Picture target detector
JPH07280930A (en) * 1994-04-07 1995-10-27 Mitsubishi Electric Corp Judgment apparatus for target information
JPH07318645A (en) * 1994-05-23 1995-12-08 Mitsubishi Electric Corp Target information decision unit
JP3341664B2 (en) * 1997-12-15 2002-11-05 トヨタ自動車株式会社 Vehicle line detecting device, road line detecting method, and medium recording program
JPH11183621A (en) * 1997-12-17 1999-07-09 Mitsubishi Electric Corp Detecting apparatus for image target
JP2003084054A (en) * 2001-09-10 2003-03-19 Mitsubishi Electric Corp Discriminator for discriminating target image

Also Published As

Publication number Publication date
JP2007322374A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP5176289B2 (en) Infrared target selection device
JP2835274B2 (en) Image recognition device
JP4772839B2 (en) Image identification method and imaging apparatus
CN101834986B (en) Imaging apparatus, mobile body detecting method, mobile body detecting circuit and program
US20180075277A1 (en) Contactless fingerprint recognition method using smartphone
US6396960B1 (en) Method and apparatus of image composite processing
TW201118791A (en) System and method for obtaining camera parameters from a plurality of images, and computer program products thereof
EP2908267B1 (en) Image processing device and image processing method
US9600736B2 (en) Pose detection using depth camera
JP5822664B2 (en) Image processing apparatus, straight line detection method, and computer program
JP2013105276A (en) Image processing apparatus, line detection method, and computer program
US11875485B2 (en) Compensating for geometric distortion of images in constrained processing environments
JP5701181B2 (en) Image processing apparatus, image processing method, and computer program
RU2673015C1 (en) Methods and systems of optical recognition of image series characters
US20210201069A1 (en) Image processing system, image processing method, and program
US9924066B2 (en) Image processing apparatus, information processing method, and program
US8005262B2 (en) System and method for video object identification
Sun et al. Geometric and photometric restoration of distorted documents
JP5302511B2 (en) Two-wavelength infrared image processing device
US9773188B2 (en) Information processing apparatus, imaging apparatus, information processing system, information processing method, and program for removing unwanting objects from images
Celebi et al. Advances in low-level color image processing
KR102235018B1 (en) Apparatus for aligning multiple camera images having different resolutions and method thereof
JP6218237B2 (en) Image conversion program, apparatus and method for parallelizing photographed image
US20160205272A1 (en) Image processing apparatus, information processing method, and non-transitory computer-readable medium
CN114365189A (en) Image registration device, image generation system, image registration method, and image registration program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5176289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250