JP5176232B2 - MICROSTRUCTURE AND METHOD FOR PRODUCING MICROHELICAL STRUCTURE - Google Patents

MICROSTRUCTURE AND METHOD FOR PRODUCING MICROHELICAL STRUCTURE Download PDF

Info

Publication number
JP5176232B2
JP5176232B2 JP2008067365A JP2008067365A JP5176232B2 JP 5176232 B2 JP5176232 B2 JP 5176232B2 JP 2008067365 A JP2008067365 A JP 2008067365A JP 2008067365 A JP2008067365 A JP 2008067365A JP 5176232 B2 JP5176232 B2 JP 5176232B2
Authority
JP
Japan
Prior art keywords
conduit
piece
spiral
shape
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008067365A
Other languages
Japanese (ja)
Other versions
JP2009221149A (en
Inventor
智一 彌田
香織 鎌田
厚 山田
幸一 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2008067365A priority Critical patent/JP5176232B2/en
Publication of JP2009221149A publication Critical patent/JP2009221149A/en
Application granted granted Critical
Publication of JP5176232B2 publication Critical patent/JP5176232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、維管束植物から、環状、螺旋状、梯子状または網目状形状を有する導管二次壁を分離して微小構造体を製造する方法に係り、特に、螺旋状形状を有する導管二次壁(螺旋紋と称する)を分離して電磁波吸収材等に応用可能な微小螺旋構造体を製造する方法に関するものである。   The present invention relates to a method of manufacturing a microstructure by separating a secondary tube wall having an annular shape, a spiral shape, a ladder shape, or a mesh shape from a vascular plant, and more particularly, a secondary tube having a helical shape. The present invention relates to a method of manufacturing a micro spiral structure that can be applied to an electromagnetic wave absorber or the like by separating a wall (referred to as a spiral pattern).

天然素材である植物を適宜処理して工業的に利用可能な材料を取り出しあるいは改質する従来法として、以下のような技術が知られている。   The following techniques are known as conventional methods for appropriately treating a plant that is a natural material to extract or modify industrially usable materials.

例えば、特開2005−027534号公報には、葉部を加熱してその組成を軟化させた後、液状の葉肉部と固形状の葉柄部および葉脈部とに固液分離して、例えば葉肉部に含まれるビタミンKを濃縮する技術が開示されている。また、特開平03−123701号公報には、強アルカリ処理に引き続く超音波処理により植物の葉脈を分離する技術が開示されている。尚、得られた葉脈はシート材等に貼着されて化粧材等に利用される。   For example, in Japanese Patent Application Laid-Open No. 2005-027534, a leaf portion is heated to soften its composition and then separated into a liquid mesophyll portion, a solid petiole portion and a vein portion, for example, a mesophyll portion. Has disclosed a technique for concentrating vitamin K contained in the food. Japanese Patent Laid-Open No. 03-123701 discloses a technique for separating plant veins by ultrasonic treatment subsequent to strong alkali treatment. In addition, the obtained leaf vein is affixed on a sheet material or the like and used for a cosmetic material or the like.

また、特開2002−339281号公報には、草本植物からパルプ原料となる葉鞘繊維を微生物処理により分離する技術が開示され、同様に、実開平02−106401号公報には、強アルカリ処理に引き続く微生物処理により、植物の葉脈を分離する技術が開示されている。   Japanese Patent Application Laid-Open No. 2002-339281 discloses a technique for separating leaf sheath fibers, which are pulp raw materials, from herbaceous plants by microbial treatment. A technique for separating a leaf vein of a plant by microbial treatment is disclosed.

また、特開平08−127502号公報には、細胞間解離性酵素を用いて維管束組織の結合力を低下させた後、所望の形状に整形して装飾品、工芸品等を製造する技術が開示され、特開平03−123702号公報には、強アルカリ処理に引き続く分解酵素処理により、植物の葉脈を分離する技術が開示されている。   Japanese Patent Application Laid-Open No. 08-127502 discloses a technique for manufacturing decorative articles, crafts, etc. after reducing the binding force of vascular tissue using an intercellular dissociating enzyme. Japanese Patent Laid-Open No. 03-123702 discloses a technique for separating plant veins by a decomposing enzyme treatment subsequent to a strong alkali treatment.

また、特開2006−328610号公報と特開2005−264395号公報には、ポリアニリン被膜による導電化処理により導電性繊維を製造する方法が開示され、特表2003−527126号公報には、金または銀イオンを葉脈へ導入し、金または銀粒子を含有するタバコおよびタバコフィルターを製造する方法が開示されている。   JP 2006-328610 A and JP 2005-264395 A disclose methods for producing conductive fibers by conducting treatment with a polyaniline coating, and JP 2003-527126 A discloses gold or gold. A method of producing tobacco and tobacco filters containing gold or silver particles by introducing silver ions into the veins is disclosed.

更に、特開平07−148711号公報には、維管束への無機材質導入により木材改良を行う技術が開示されており、特開2004−173536号公報には、葉面散布による植物組織内への栄養物質、薬物等の物質導入方法が開示されている。   Furthermore, Japanese Patent Application Laid-Open No. 07-148711 discloses a technique for improving wood by introducing an inorganic material into a vascular bundle, and Japanese Patent Application Laid-Open No. 2004-173536 discloses a technique for applying it to a plant tissue by foliar spraying. Methods for introducing substances such as nutrient substances and drugs are disclosed.

このように、天然素材である植物を処理して工業的に利用可能な材料を取り出したり、改質する従来法は多数存在する。   As described above, there are many conventional methods for treating a plant, which is a natural material, to extract or modify an industrially usable material.

しかし、維管束植物から、環状、螺旋状、梯子状または網目状形状を有する導管二次壁(特に、螺旋紋)を効率的に取り出す方法や、取り出された螺旋紋(すなわち、螺旋状形状を有する導管二次壁)に表面処理して電磁波吸収材等に応用可能な微小螺旋構造体を製造する方法等については、先行技術に開示がない。   However, a method for efficiently removing a secondary pipe wall (in particular, a spiral pattern) having an annular, spiral, ladder, or mesh shape from a vascular plant, or removing the extracted spiral pattern (ie, a spiral shape). There is no disclosure in the prior art regarding a method for producing a micro-helical structure that can be applied to an electromagnetic wave absorbing material or the like by surface treatment on the secondary wall of the conduit).

尚、導管一次壁の内側に螺旋状に肥厚化して形成された導管二次壁が上記螺旋紋である。同様に、環状の導管二次壁を環紋、梯子状の導管二次壁を階紋、網目状の導管二次壁を網紋若しくは孔紋と称する。   In addition, the conduit secondary wall formed by thickening spirally inside the conduit primary wall is the spiral pattern. Similarly, an annular conduit secondary wall is referred to as a ring pattern, a ladder-shaped conduit secondary wall is referred to as a floor pattern, and a mesh-shaped conduit secondary wall is referred to as a mesh pattern or a hole pattern.

そして、上記導管一次壁や他の維管束組織がセルロース、ヘミセルロース、およびペクチンやタンパク質と多量の水分を主成分とするのに対し、上記導管二次壁ではリグニンが蓄積しかつ相対的にペクチンやタンパク質および水分の含量が減少しており、導管一次壁や他の維管束組織よりも安定強固な組成となっている。   And while the primary wall of the conduit and other vascular tissues are mainly composed of cellulose, hemicellulose, pectin and protein and a large amount of water, the secondary wall of the conduit accumulates lignin and relatively pectin and It has a reduced protein and water content and a more stable and stronger composition than the primary wall of the conduit and other vascular tissues.

このため、特開平03−123701号公報、実開平02−106401号公報、特開平03−123702号公報等に開示された葉脈の分離手法、例えばアルカリ性の薬液を用いて周囲組織を溶解させながら、上記環紋、螺旋紋、階紋、網紋、孔紋の溶解を遅延させて部分的に残存させることは可能である。   For this reason, the vein separation method disclosed in Japanese Patent Laid-Open No. 03-123701, Japanese Utility Model Laid-Open No. 02-106401, Japanese Patent Laid-Open No. 03-123702, etc., for example, while dissolving the surrounding tissue using an alkaline chemical solution, It is possible to partially leave the ring pattern, spiral pattern, floor pattern, net pattern, and hole pattern delayed by dissolution.

しかしながら、周囲組織の完全な除去を優先すると上記環紋、螺旋紋、階紋、網紋、孔紋の溶解が顕著となり、上記環紋、螺旋紋、階紋、網紋、孔紋の完全なる残存を優先すると周囲組織の除去は不完全なものとなる。また、上記各形状の導管二次壁の中でも特に螺旋紋の微細な螺旋形状(直径、ピッチを含む)を、薬液の化学的作用や薬液処理時に併用される熱、機械力等の作用により変形させることなく残存させることは極めて困難である。   However, if priority is given to the complete removal of surrounding tissue, dissolution of the ring pattern, spiral pattern, floor pattern, net pattern, and hole pattern becomes significant, and the ring pattern, spiral pattern, floor pattern, net pattern, net pattern, and hole pattern become complete. If priority is given to remaining, the removal of surrounding tissue will be incomplete. In addition, among the secondary walls of the above-mentioned shapes, especially the fine spiral shape (including diameter and pitch) of the spiral pattern is deformed by the chemical action of chemicals and the effects of heat, mechanical force, etc. used in the chemical treatment. It is extremely difficult to leave them without causing them.

また、取り出された導管二次壁は細くて軟質であり容易に変形してしまうため、その微細な形状を保持したまま切断し、所望の長さの導管二次壁片とすることも極めて困難である。更に、上記導管二次壁片を相互に凝集させることなく改質処理を行うことや、全ての導管二次壁片の軸を一定方向に揃えて着磁、分極、化学的極性化(疎水/親水化等)等の配向処理を行うことも極めて困難である。
特開2005−027534号公報(段落0004) 特開平03−123701号公報(特許請求の範囲) 特開2002−339281号公報(要約) 実開平02−106401号公報(実用新案登録請求の範囲) 特開平08−127502号公報(特許請求の範囲、段落0001) 特開平03−123702号公報(特許請求の範囲) 特開2006−328610号公報(特許請求の範囲) 特開2005−264395号公報(特許請求の範囲) 特表2003−527126号公報(特許請求の範囲) 特開平07−148711号公報(要約) 特開2004−173536号公報(特許請求の範囲)
Also, since the extracted secondary wall of the conduit is thin and soft and easily deforms, it is extremely difficult to cut the secondary wall of the desired length while maintaining its fine shape. It is. Furthermore, the above-mentioned conduit secondary wall pieces can be modified without agglomerating each other, and the axes of all the secondary wall pieces can be aligned, aligned, polarized, chemically polarized (hydrophobic / It is also extremely difficult to perform alignment treatment such as hydrophilization.
JP 2005-027534 A (paragraph 0004) Japanese Patent Laid-Open No. 03-123701 (Claims) JP 2002-339281 A (summary) Japanese Utility Model Publication No. 02-106401 (Utility Model Registration Request) Japanese Patent Application Laid-Open No. 08-127502 (Claims, paragraph 0001) Japanese Patent Laid-Open No. 03-123702 (Claims) JP 2006-328610 A (Claims) JP 2005-264395 A (Claims) Japanese translation of PCT publication No. 2003-527126 (Claims) JP 07-148711 A (summary) JP 2004-173536 A (Claims)

本発明はこのような問題点に着目してなされたもので、その課題とするところは、維管束植物から、環状、螺旋状、梯子状または網目状形状を有する導管二次壁片をその微細形状を維持しつつ効率的に取り出すことが可能で、同時に、各種の表面処理、配向処理が施された微小構造体並びに微小螺旋構造体の製造方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that a secondary wall piece of a pipe having an annular shape, a spiral shape, a ladder shape, or a mesh shape is obtained from a vascular plant. An object of the present invention is to provide a microstructure that has been subjected to various surface treatments and orientation treatments, and a method for manufacturing a microspiral structure that can be efficiently removed while maintaining the shape.

すなわち、請求項1に係る発明は、
維管束植物から、環状、螺旋状、梯子状または網目状形状を有する微小構造体を製造する方法を前提とし、
維管束植物の葉部、茎部若しくは根部を所望の厚さに切断してスライス片を得る第一工程と、上記スライス片の切断面に露出した導管開口から導管内に薬液を導入し、導管内面において環状、螺旋状、梯子状または網目状形状を有する導管二次壁を少なくとも部分的に改質させる第二工程と、上記スライス片の不要部位を除去して改質された導管二次壁片を取り出す第三工程とを具備することを特徴とし、
請求項2に係る発明は、
維管束植物から螺旋状形状を有する微小螺旋構造体を製造する方法を前提とし、
維管束植物の葉部、茎部若しくは根部を所望の厚さに切断してスライス片を得る第一工程と、上記スライス片の切断面に露出した導管開口から導管内に薬液を導入し、導管内面において螺旋状形状を有する導管二次壁(以下、螺旋紋と称する)を少なくとも部分的に改質させる第二工程と、上記スライス片の不要部位を除去して改質された螺旋紋片を取り出す第三工程とを具備することを特徴とする。
That is, the invention according to claim 1
From a vascular plant, on the premise of a method for producing a microstructure having a ring shape, a spiral shape, a ladder shape or a mesh shape,
A first step of cutting a leaf part, stem part or root part of a vascular plant to a desired thickness to obtain a slice piece, and introducing a drug solution into the conduit from a conduit opening exposed on the cut surface of the slice piece, A second step of at least partially modifying the conduit secondary wall having an annular, spiral, ladder-like or mesh-like shape on the inner surface; and a conduit secondary wall modified by removing unnecessary portions of the sliced piece. And a third step of taking out the piece,
The invention according to claim 2
On the premise of a method for producing a micro helical structure having a spiral shape from a vascular plant,
A first step of cutting a leaf part, stem part or root part of a vascular plant to a desired thickness to obtain a slice piece, and introducing a drug solution into the conduit from a conduit opening exposed on the cut surface of the slice piece, A second step of at least partially modifying a conduit secondary wall (hereinafter referred to as a spiral pattern) having a spiral shape on the inner surface, and removing a modified spiral pattern piece by removing unnecessary portions of the slice piece. And a third step of taking out.

次に、請求項3〜8に係る発明は、請求項2に記載の発明に係る微小螺旋構造体の製造方法を前提とし、
請求項3に係る発明は、
上記スライス片を得る第一工程において、維管束植物の葉部、茎部若しくは根部を予め凍結させた状態で切断することを特徴とし、
請求項4に係る発明は、
上記螺旋紋を改質させる第二工程において、メッキによる導電性被膜の形成を含むことを特徴とし、
請求項5に係る発明は、
上記螺旋紋を改質させる第二工程において、メッキによる磁性被膜の形成と着磁処理を含むことを特徴とし、
請求項6に係る発明は、
上記螺旋紋を改質させる第二工程において、メッキによる金属被膜の形成とこの金属被膜表面を酸化雰囲気中で加熱して少なくとも部分的に金属酸化物層を形成する酸化処理を含むことを特徴とし、
請求項7に係る発明は、
上記螺旋紋を改質させる第二工程において、ゾル−ゲル法による絶縁性被膜の形成を含むことを特徴とし、
また、請求項8に係る発明は、
上記改質された螺旋紋片を取り出す第三工程において、加熱による熱分解、薬品による化学分解、または、超音波、機械振動、遠心力のいずれかの外力による機械的分解から選択される少なくとも一つの分解を含むことを特徴とするものである。
Next, the invention according to claims 3 to 8 is based on the manufacturing method of the micro helix structure according to the invention according to claim 2,
The invention according to claim 3
In the first step of obtaining the slice piece, characterized in that the leaf part, stem part or root part of the vascular plant is cut in a frozen state,
The invention according to claim 4
The second step of modifying the spiral pattern includes forming a conductive film by plating,
The invention according to claim 5
In the second step of modifying the spiral pattern, the method includes formation of a magnetic film by plating and magnetization treatment,
The invention according to claim 6
The second step of modifying the spiral pattern includes forming a metal film by plating and heating the surface of the metal film in an oxidizing atmosphere to at least partially form a metal oxide layer. ,
The invention according to claim 7 provides:
The second step of modifying the spiral pattern includes forming an insulating film by a sol-gel method,
The invention according to claim 8 is
In the third step of taking out the modified helical pattern, at least one selected from thermal decomposition by heating, chemical decomposition by chemicals, or mechanical decomposition by any external force of ultrasonic, mechanical vibration, or centrifugal force. It is characterized by including one decomposition.

本発明に係る微小構造体並びに微小螺旋構造体の製造方法によれば、
維管束植物から、環状、螺旋状、梯子状または網目状形状を有する導管二次壁片をその微細形状を維持しつつ効率的に取り出すことができ、同時に、各種の表面処理、配向処理が施された導管二次壁片(微小構造体並びに微小螺旋構造体)を得ることが可能となる。
According to the manufacturing method of the microstructure and the microspiral structure according to the present invention,
From the vascular plant, it is possible to efficiently remove the secondary wall piece of the pipe having an annular shape, a spiral shape, a ladder shape, or a mesh shape while maintaining its fine shape, and at the same time, various surface treatments and orientation treatments are performed. It becomes possible to obtain the conduit | pipe secondary wall piece (micro structure as well as micro spiral structure) made.

以下、図面を参照しつつ本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は蓮(維管束植物)の茎断面を模式的に示す概略斜視図である。断面に露出した大きな穴は通気孔10であり、その周囲の領域に導管2が点在している。また、図2は上記蓮(維管束植物)における茎の内部構造を模式的に示す概略斜視図である。蓮の導管2は螺旋紋導管(導管二次壁が螺旋状形状を有する導管)であり、その内面には導管二次壁である螺旋紋3が形成されている。   FIG. 1 is a schematic perspective view schematically showing a stem section of a lotus (vascular plant). The large hole exposed in the cross section is the vent hole 10, and the conduits 2 are dotted in the surrounding area. FIG. 2 is a schematic perspective view schematically showing the internal structure of a stem in the lotus (vascular plant). The lotus conduit 2 is a spiral-patterned conduit (a conduit whose secondary wall has a spiral shape), and a spiral pattern 3 which is a conduit secondary wall is formed on the inner surface thereof.

そして、本発明に係る製造方法の第一工程においては、維管束植物の葉部、茎部若しくは根部を所望の厚さに切断してスライス片を得る。このとき、維管束組織、特に導管二次壁を破壊することなく切断可能な十分に鋭利な刃を用いることが重要である。また、切断時に導管2が変形したり潰れたりすると、切断面4において導管2が十分に開口せず、続く工程での処理が困難になる場合がある。そこで、切断時の機械力によって組織が変形することを防止するため、切断対象物(この場合には蓮の茎)を予め凍結させておくことは有効である。尚、図3は維管束植物である蓮の茎を例えば回転刃を用いて所望の間隔で切断して得たスライス片5の概略斜視図、図4はこのスライス片5の内部構造を模式的に示す概略斜視図である。   And in the 1st process of the manufacturing method which concerns on this invention, the leaf part, stem part, or root part of a vascular plant is cut | disconnected to desired thickness, and a slice piece is obtained. At this time, it is important to use a sufficiently sharp blade that can be cut without destroying the vascular tissue, especially the secondary wall of the conduit. Further, if the conduit 2 is deformed or crushed at the time of cutting, the conduit 2 may not be sufficiently opened at the cut surface 4, and processing in subsequent steps may be difficult. Therefore, in order to prevent the tissue from being deformed by the mechanical force at the time of cutting, it is effective to freeze the object to be cut (in this case, a lotus stalk) in advance. 3 is a schematic perspective view of a slice piece 5 obtained by cutting a lotus stalk, which is a vascular plant, at a desired interval using, for example, a rotary blade, and FIG. 4 is a schematic diagram showing the internal structure of the slice piece 5. It is a schematic perspective view shown in FIG.

次に、本発明に係る製造方法の第二工程においては、上記スライス片5の切断面4に露出した導管2の開口から導管2内に薬液を導入し、個々の螺旋紋片30を少なくとも部分的に改質する。   Next, in the second step of the manufacturing method according to the present invention, a chemical solution is introduced into the conduit 2 from the opening of the conduit 2 exposed on the cut surface 4 of the slice piece 5, and at least a part of the individual spiral pattern 30 is formed. Reform.

図5は、スライス片5における個々の螺旋紋片30表面に、メッキによりAuの導電性被膜が形成された状態を模式的に示す概略斜視図である。メッキによる導電性被膜には、Auの他、Cu、Ag、Al等を用いることができる。ここで、スライス片5に対し界面活性剤(上記薬液)を塗布あるいは浸漬等の界面活性処理を施すことにより、上記スライス片5は触媒付与やメッキ反応を行うための処理液(以下、単にメッキ処理液と称する)に沈むためスライス片5の全面がメッキされる。   FIG. 5 is a schematic perspective view schematically showing a state in which a conductive film of Au is formed on the surface of each spiral pattern piece 30 in the slice piece 5 by plating. In addition to Au, Cu, Ag, Al, or the like can be used for the conductive film by plating. Here, the slice piece 5 is subjected to a surface active treatment such as application or immersion of a surfactant (the above chemical solution), whereby the slice piece 5 is treated with a catalyst (hereinafter simply referred to as plating). The whole surface of the slice piece 5 is plated in order to sink into the processing solution.

一方、上記界面活性処理を省略してスライス片5がメッキ処理液に投入された場合、上記スライス片5はメッキ処理液面に浮いた状態を保持する。特に蓮のスライス片5においては通気孔10内面の高い撥水性により浮いた状態が長時間保持される。しかし、この場合においても元々高い親水性を有する導管内部にはメッキ処理液が浸透するため、導管内部におけるメッキ反応は優先的に進行する。また、メッキ処理液に接しているスライス片5の一方の断面においては破断組織からの溶出物がメッキ反応を阻害する場合がある。この場合においても、予め上記断面の洗浄を行った上で、界面活性剤を塗布して親水性を付与することにより確実なメッキが可能である。   On the other hand, when the surface activation treatment is omitted and the slice piece 5 is put into the plating solution, the slice piece 5 is kept floating on the plating solution surface. In particular, in the lotus slice piece 5, the floating state is maintained for a long time due to the high water repellency of the inner surface of the vent hole 10. However, in this case as well, the plating treatment liquid permeates into the conduit having high hydrophilicity originally, so that the plating reaction inside the conduit proceeds preferentially. Moreover, in one section of the slice piece 5 that is in contact with the plating solution, an eluate from the fractured structure may inhibit the plating reaction. Even in this case, reliable plating can be performed by previously washing the cross section and then applying a surfactant to impart hydrophilicity.

また、上記方法でスライス片5の片面に予め形成した無電解メッキ金属層(金属被膜)を電極として用い、更に電解メッキを行ってメッキ金属層(金属被膜)の追加成長を行ってもよい。あるいは、上記メッキ処理液に接するスライス片5の一方の断面を、積極的に親水化しないか積極的に撥水化することにより、この断面のメッキ処理が防止されて導管内部のみをメッキ処理することも可能である。   Further, an electroless plating metal layer (metal film) formed in advance on one surface of the slice piece 5 by the above method may be used as an electrode, and further electroplating may be performed to perform additional growth of the plating metal layer (metal film). Alternatively, one of the cross sections of the slice piece 5 in contact with the plating treatment liquid is not actively hydrophilized or water repellent, so that the plating treatment of the cross section is prevented and only the inside of the conduit is plated. It is also possible.

そして、本発明方法では、個々の螺旋紋片30はスライス片5に収容されたままの状態で、薬液である例えばメッキ処理液に投入され回収されるので、メッキ処理中に微細な螺旋紋片30が相互に絡み合うことがなく、またメッキ処理液から処理物を回収することも容易となっている。   In the method of the present invention, since the individual spiral pattern pieces 30 are contained in the slice pieces 5 and are collected and collected in, for example, a plating process solution, which is a chemical solution, fine spiral pattern pieces are obtained during the plating process. 30 are not entangled with each other, and it is easy to recover the processed material from the plating solution.

上記螺旋紋片30に対する他の改質処理としては、例えば、メッキによるNi、Fe、Co等の磁性被膜の形成、あるいは、ポリピロール、ポリチオフェン、ポリアニリン等の電解重合による導電性被膜の形成がある。また、絶縁性被膜の形成手段としては、ゾル−ゲル法による酸化物絶縁被膜若しくは誘電性被膜の形成等がある。あるいは、上記メッキにより形成した金属被膜(メッキ金属層)表面を、酸化雰囲気中で加熱等の手段により酸化させて少なくともその表面近傍を部分的に金属酸化膜に変換してもよい。   Other modification treatments for the spiral pattern 30 include, for example, the formation of a magnetic film such as Ni, Fe, or Co by plating, or the formation of a conductive film by electrolytic polymerization of polypyrrole, polythiophene, polyaniline, or the like. Further, as a means for forming the insulating coating, there is formation of an oxide insulating coating or a dielectric coating by a sol-gel method. Alternatively, the surface of the metal film (plated metal layer) formed by the plating may be oxidized by means such as heating in an oxidizing atmosphere to at least partially convert the surface vicinity into a metal oxide film.

そして、本発明に係る製造方法においては、被膜材質が強磁性材料の場合には着磁処理を、また、強誘電性材料の場合には分極処理を、個々の螺旋紋片30がスライス片5に収容されたままの状態で行うことが可能となっている。スライス片5に収容されたままの状態で各螺旋紋片30の螺旋軸は相互に略並行かつ切断面4に略垂直に保持されているので、切断面4に垂直に外部磁場若しくは電場を印加することにより、個々の螺旋紋片30が乱雑に配置された状態で着磁処理、分極処理を行う場合と比較して、高い能率の双極子を得ることが可能となる。   In the manufacturing method according to the present invention, when the coating material is a ferromagnetic material, the magnetization process is performed, and when the coating material is a ferroelectric material, the polarization process is performed. It is possible to carry out in a state where it is housed in the house. Since the spiral axes of the spiral pattern pieces 30 are held substantially parallel to each other and substantially perpendicular to the cut surface 4 while being accommodated in the slice piece 5, an external magnetic field or electric field is applied perpendicularly to the cut surface 4. By doing so, it is possible to obtain a dipole with higher efficiency than in the case where the magnetization process and the polarization process are performed in a state where the individual spiral pattern pieces 30 are randomly arranged.

次に、本発明に係る製造方法の第三工程においては、上記スライス片5の不要部位を除去して、改質された導管二次壁片(螺旋紋片)すなわち、図6に示すような微小螺旋構造体6を得る。   Next, in the third step of the manufacturing method according to the present invention, unnecessary portions of the slice piece 5 are removed, and the modified secondary pipe wall piece (spiral crest piece), that is, as shown in FIG. A micro helical structure 6 is obtained.

導管一次壁や他の維管束組織がセルロース、ヘミセルロース、およびペクチンやタンパク質と多量の水分を主成分とするのに対し、導管二次壁ではリグニンが蓄積しかつ相対的にペクチンやタンパク質および水分の含量が減少しており、導管一次壁や他の維管束組織よりも安定強固な組成となっている。   The primary wall of the duct and other vascular tissues are mainly composed of cellulose, hemicellulose, pectin and protein, and a large amount of water, whereas lignin accumulates in the secondary wall of the duct and is relatively free of pectin, protein and water. The content is reduced and the composition is more stable and stronger than the primary wall of the duct and other vascular tissues.

このため、特に改質処理されていない螺旋紋片30であっても、水酸化ナトリウム等のアルカリ性の薬液や、セルラーゼ等のセルロース分解酵素を適切な条件で適用することにより、周囲の不要な組織を溶解しつつ、導管二次壁の溶解を遅延させ、部分的に残存させることは可能である。   For this reason, even if it is the spiral pattern 30 which has not been especially modified, by applying an alkaline chemical solution such as sodium hydroxide or a cellulose-degrading enzyme such as cellulase under appropriate conditions, unnecessary surrounding tissue It is possible to delay and partially leave the secondary wall of the conduit while it dissolves.

しかし、本発明に係る微小構造体(微小螺旋構造体)の製造方法では、個々の螺旋紋片30に化学的溶解を防止する改質処理を施すことによって、不必要な導管一次壁や他の維管束組織の完全な除去を優先させても個々の螺旋紋片30を残存させることができ、更に、導管二次壁をも含む植物組織を完全に溶解または分解する薬液を用いた場合でも、上記被覆金属材質や被覆酸化物材質を残存させて被覆材質だけで構成される微小螺旋構造体6を得ることができる。   However, in the manufacturing method of the microstructure (micro-spiral structure) according to the present invention, an unnecessary conduit primary wall or other object can be obtained by subjecting each spiral pattern 30 to a modification treatment that prevents chemical dissolution. Even if priority is given to the complete removal of the vascular tissue, the individual helical pattern 30 can remain, and even when a chemical solution that completely dissolves or decomposes the plant tissue including the secondary wall of the conduit is used, By leaving the coating metal material and the coating oxide material, it is possible to obtain the micro helical structure 6 composed only of the coating material.

また、上記金属被覆や酸化物被覆の大部分は植物組織よりも耐熱性に優れているので、第二工程の改質処理(被覆処理を含む改質処理)後においてスライス片5を加熱し、植物組織を熱分解することによっても、被覆材質だけで構成される微小螺旋構造体6を得ることができる。このとき、超音波を含む機械的振動の印加や濾過および遠心分離手段の併用により、微小螺旋構造体6と周囲の不要部位との分離を加速しても、被覆材質により保護および補強された微小螺旋構造体(すなわち、螺旋紋片30と被覆材質とで構成される微小螺旋構造体)6は、変形または消失することなく取り出すことが可能である。   In addition, since most of the metal coating and oxide coating have better heat resistance than the plant tissue, the slice piece 5 is heated after the modification process (modification process including the coating process) in the second step, The micro helical structure 6 composed only of the covering material can be obtained also by pyrolyzing the plant tissue. At this time, even if acceleration of separation between the micro helix structure 6 and surrounding unnecessary portions is accelerated by the application of mechanical vibration including ultrasonic waves and the combined use of filtration and centrifugal separation means, the micro waves protected and reinforced by the coating material are used. The spiral structure (that is, the micro spiral structure composed of the spiral pattern 30 and the covering material) 6 can be taken out without being deformed or lost.

このように本発明における微小構造体並びに微小螺旋構造体には、被覆材質を有しない導管二次壁片のみで構成される構造体(例えば、被覆材質を有しない螺旋紋片)、被覆材質と導管二次壁片とで構成される構造体(例えば、被覆材質を有する螺旋紋片)、および、導管二次壁が除去された上記被覆材質だけで構成される構造体が含まれる。   As described above, the microstructure and the microspiral structure in the present invention include a structure (for example, a spiral crest without a coating material) constituted only by a conduit secondary wall piece having no coating material, a coating material, A structure composed of a conduit secondary wall piece (for example, a spiral pattern having a covering material) and a structure composed only of the covering material from which the conduit secondary wall has been removed are included.

尚、予め分極若しくは着磁された微小構造体が、電極若しくは電磁石を用いて容易に捕集可能であることは言うまでもない。また、維管束植物として蓮を例に挙げて本発明を説明したが、本発明に係る維管束植物は当然のことながら蓮に限定して適用されるものではなく、維管束植物全般に適用可能であり、特に、竹、ベニカナメモチ、カボチャ等螺旋紋を有する維管束植物に好適に用いることができる。   Needless to say, a microstructure that has been previously polarized or magnetized can be easily collected using an electrode or an electromagnet. Further, the present invention has been described by taking a lotus as an example of a vascular plant, but the vascular plant according to the present invention is naturally not limited to a lotus and can be applied to all vascular plants. In particular, it can be suitably used for vascular plants having a spiral pattern such as bamboo, Benicana memochi, and pumpkin.

そして、本発明により得られた微小構造体並びに微小螺旋構造体は、例えば、熱硬化性エポキシ樹脂に分散させてインキペーストとして利用することができ、このペーストを塗布後加熱して硬化させた塗膜は、例えば0.5〜100GHzの周波数域において良好な損失特性を有する電磁波吸収体として機能させることができる。   The microstructure and the spiral structure obtained by the present invention can be used as an ink paste dispersed in a thermosetting epoxy resin, for example. The film can function as an electromagnetic wave absorber having good loss characteristics in a frequency range of 0.5 to 100 GHz, for example.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

予め凍結した蓮の地上茎を回転円周刃により等間隔で輪切りにして、直径約20mm、厚さ1mmのスライス片を得た。   A pre-frozen lotus ground stalk was circularly cut at equal intervals with a rotating circumferential blade to obtain a sliced piece having a diameter of about 20 mm and a thickness of 1 mm.

尚、凍結状態の上記スライス片は、界面活性剤(メルテックス社製 商品名:メルプレートコンディショナ1101)を添加した室温の水中で自然解凍させた。そして、スライス片は解凍されつつ親水性を帯び、最終的には液中に没してスライス片全面に界面活性処理が施された。   The sliced piece in a frozen state was naturally thawed in room temperature water to which a surfactant (trade name: Melplate Conditioner 1101 manufactured by Meltex Co., Ltd.) was added. Then, the slice piece became hydrophilic while being thawed, and finally it was submerged in the liquid and subjected to a surface-active treatment on the entire surface of the slice piece.

次いで、解凍後のスライス片を、触媒(メルテックス社製 商品名:メルプレートアクチベータ7331)を含む水溶液中で触媒付与した後、Niメッキ液(メルテックス社製 商品名:メルプレートNI−871)に投入し、Ni無電解メッキ(すなわち、被覆処理を含む改質処理)を行った。メッキNi層は、スライス片の略全面に成長し、導管内においては主に螺旋紋の内面に成長した。また、メッキ膜厚は、約5μmであった。   Next, the sliced piece after thawing was applied with a catalyst in an aqueous solution containing a catalyst (trade name: Melplate Activator 7331 manufactured by Meltex), and then Ni plating solution (trade name: Melplate NI-871 manufactured by Meltex). Then, Ni electroless plating (that is, reforming treatment including coating treatment) was performed. The plated Ni layer grew on substantially the entire surface of the sliced piece, and grew mainly on the inner surface of the spiral pattern in the conduit. The plating film thickness was about 5 μm.

Niメッキされたスライス片は水洗、乾燥の後、スライス片断面に垂直なパルス磁場中において着磁した。その後、超音波を印加しつつ水酸化ナトリウム水溶液中にて有機物を分解除去し、残存した磁化済みの金属片(微小螺旋構造体)群を水洗し、更に電磁石により水中で捕集した。   The Ni-plated slice piece was magnetized in a pulsed magnetic field perpendicular to the slice piece cross section after washing and drying. Thereafter, organic substances were decomposed and removed in an aqueous sodium hydroxide solution while applying ultrasonic waves, the remaining magnetized metal pieces (microspiral structures) were washed with water, and further collected in water by an electromagnet.

捕集された金属片(微小螺旋構造体)群は水流と共に穴径1mmのメッシュを通過させて大型の破片を除去し、更に穴径0.05mmのメッシュ通過時の残存物として、平均直径は約0.1mm、平均長さ約1mmのNi微小螺旋構造体を得た。   The collected metal pieces (micro-spiral structures) are passed through a mesh with a hole diameter of 1 mm along with water flow to remove large pieces, and the average diameter as a residue when passing through a mesh with a hole diameter of 0.05 mm is A Ni microspiral structure having an average length of about 0.1 mm and an average length of about 1 mm was obtained.

尚、得られたNi微小螺旋構造体には、有機物である螺旋紋は残存しておらず、Niメッキ層(すなわち、被覆材質)単独で螺旋状形状が維持されていた。   In addition, in the obtained Ni micro spiral structure, the spiral pattern which is an organic substance did not remain | survive, and the spiral shape was maintained only by Ni plating layer (namely, coating | coated material).

予め凍結した蓮の地上茎を回転円周刃により等間隔で輪切りにして、直径約20mm、厚さ1mmのスライス片を得た。尚、凍結状態の上記スライス片は、室温の水中で自然解凍させた。   A pre-frozen lotus ground stalk was circularly cut at equal intervals with a rotating circumferential blade to obtain a sliced piece having a diameter of about 20 mm and a thickness of 1 mm. The frozen slices were naturally thawed in room temperature water.

次いで、解凍後のスライス片を少量の水およびアンモニアと共に、テトラエトキシシラン(20重量%)とエタノール(80重量%)から成る溶液に投入してこの溶液の加水分解を行った。スライス片は加水分解が十分に進行し、溶液がシリカゾルとなるまでの間、溶液中に保持された。   Next, the sliced piece after thawing was poured into a solution composed of tetraethoxysilane (20 wt%) and ethanol (80 wt%) together with a small amount of water and ammonia to hydrolyze this solution. The slice piece was kept in the solution until the hydrolysis proceeded sufficiently and the solution became a silica sol.

その後、スライス片を溶液から引き上げ、オーブン内にて80℃を30分間保持し乾燥した。通常のスライス片が乾燥に伴う組織の収縮により著しく変形するのに対し、表面にシリカゾルおよびその乾燥物(乾燥ゲル)が付着した状態で乾燥されたスライス片は、略原形を留めていた。   Thereafter, the slice piece was pulled up from the solution, and dried at 80 ° C. for 30 minutes in an oven. While ordinary slice pieces were significantly deformed due to tissue shrinkage due to drying, slice pieces dried with silica sol and its dried product (dried gel) attached to the surface remained substantially intact.

更に、乾燥ゲルが付着したスライス片を800℃で60分間熱処理し、付着した乾燥ゲルの焼結を行った。焼結時に、有機物からなる植物組織は熱分解され除去された。   Furthermore, the slice piece to which the dried gel adhered was heat-treated at 800 ° C. for 60 minutes, and the adhered dried gel was sintered. At the time of sintering, the plant tissue composed of organic matter was thermally decomposed and removed.

熱処理後に残存した破片は水流と共に遠心分離器内の穴径1mmのメッシュを通過させて大型の破片を除去し、更に、穴径0.05mmのメッシュ通過時の残存物として、平均直径は約0.1mm、平均長さ約1mmのシリカ微小螺旋構造体を得た。   The debris remaining after the heat treatment is passed through a mesh with a hole diameter of 1 mm in a centrifuge together with a water stream to remove large fragments, and the average diameter is about 0 as a residue when passing through a mesh with a hole diameter of 0.05 mm. A silica microspiral structure having a thickness of 1 mm and an average length of about 1 mm was obtained.

尚、得られたシリカ微小螺旋構造体には、有機物である螺旋紋は残存しておらず、焼結シリカ層(すなわち、被覆材質)単独で螺旋状形状が維持されていた。   In addition, the spiral pattern which is an organic substance did not remain | survive in the obtained silica micro helical structure, and the helical shape was maintained only by the sintered silica layer (namely, coating | coated material).

予め凍結した蓮の地上茎を回転円周刃により等間隔で輪切りにして、直径約20mm、厚さ1mmのスライス片を得た。尚、凍結状態の上記スライス片は、室温の大気中で自然解凍させた。   A pre-frozen lotus ground stalk was circularly cut at equal intervals with a rotating circumferential blade to obtain a sliced piece having a diameter of about 20 mm and a thickness of 1 mm. The sliced piece in the frozen state was naturally thawed in the air at room temperature.

次いで、解凍後のスライス片を、触媒(メルテックス社製 商品名:メルプレートアクチベータ7331)を含む水溶液に投入し、液面に浮かせた状態で触媒付与した後、Niメッキ液(メルテックス社製 商品名:メルプレートNI−871)に投入し、やはり液面に浮かせた状態でNi無電解メッキ(すなわち、被覆処理を含む改質処理)を行った。メッキNi層は、スライス片の導管内面にのみ成長し、導管内においては主に螺旋紋の内面に成長した。また、メッキ膜厚は、約5μmであった。   Next, the sliced piece after thawing was put into an aqueous solution containing a catalyst (trade name: Melplate Activator 7331 manufactured by Meltex Co., Ltd.) and applied with the catalyst in a state of floating on the liquid surface, and then Ni plating solution (manufactured by Meltex Corp.). (Product name: Melplate NI-871), and Ni electroless plating (that is, reforming treatment including coating treatment) was carried out while floating on the liquid surface. The plated Ni layer grew only on the inner surface of the conduit of the slice piece, and grew mainly on the inner surface of the spiral pattern in the conduit. The plating film thickness was about 5 μm.

Niメッキされたスライス片は水洗、乾燥の後、スライス片断面に垂直なパルス磁場中において着磁した。その後、超音波を印加しつつセルラーゼ及びマセロチームを含む水溶液中にて有機物を分解除去し、残存した磁化済みの金属片(Ni微小螺旋構造体)群を水洗し、更に電磁石により水中で捕集した。   The Ni-plated slice piece was magnetized in a pulsed magnetic field perpendicular to the slice piece cross section after washing and drying. Then, organic substances were decomposed and removed in an aqueous solution containing cellulase and maceroteam while applying ultrasonic waves, and the remaining magnetized metal pieces (Ni micro helical structure) group were washed with water and further collected in water by an electromagnet. .

尚、得られたNi微小螺旋構造体には、有機物である螺旋紋は残存しておらず、Niメッキ層(すなわち、被覆材質)単独で螺旋状形状が維持されていた。   In addition, in the obtained Ni micro spiral structure, the spiral pattern which is an organic substance did not remain | survive, and the spiral shape was maintained only by Ni plating layer (namely, coating | coated material).

予め凍結した蓮の地上茎を回転円周刃により等間隔で輪切りにして、直径約20mm、厚さ1mmのスライス片を得た。尚、凍結状態の上記スライス片は、室温の大気中で自然解凍させた。   A pre-frozen lotus ground stalk was circularly cut at equal intervals with a rotating circumferential blade to obtain a sliced piece having a diameter of about 20 mm and a thickness of 1 mm. The sliced piece in the frozen state was naturally thawed in the air at room temperature.

次に、解凍後のスライス片を流水洗浄した後、一方の断面に界面活性剤(メルテックス社製 商品名:メルプレートコンディショナ1101)が添加された水溶液を塗布した。   Next, the slice piece after thawing was washed with running water, and then an aqueous solution to which a surfactant (trade name: Melplate Conditioner 1101 manufactured by Meltex Co., Ltd.) was added was applied to one cross section.

次いで、塗布後のスライス片を、触媒(メルテックス社製 商品名:メルプレートアクチベータ7331)を含む水溶液に投入し、塗布面を液面に接しつつ浮かせた状態で触媒付与した後、Niメッキ液(メルテックス社製 商品名:メルプレートNI−871)に投入し、やはり塗布面を液面に接しつつ浮かせた状態でNi無電解メッキ(すなわち、被覆処理を含む改質処理)を行った。メッキNi層は、スライス片の導管内面と液面に接した側の断面に成長し、導管内においては主に螺旋紋の内面に成長した。また、メッキ膜厚は、約5μmであった。   Next, the slice piece after application was put into an aqueous solution containing a catalyst (trade name: Melplate Activator 7331 manufactured by Meltex Co., Ltd.), and the catalyst was applied in a state of floating while the application surface was in contact with the liquid surface. (Product name: Melplate NI-871 manufactured by Meltex Co., Ltd.) was applied, and Ni electroless plating (that is, reforming treatment including coating treatment) was performed in a state where the coated surface was floated while being in contact with the liquid surface. The plated Ni layer grew on the cross section of the slice piece on the side in contact with the inner surface of the conduit and the liquid surface, and grew mainly on the inner surface of the spiral pattern in the conduit. The plating film thickness was about 5 μm.

Niメッキされたスライス片は水洗の後、超音波を印加しつつセルラーゼを含有する水溶液中にて蓮の組織を分解除去した。残存物として、外径約20mmのNi円板とこの円板上に直立して付着した多数のNi微小螺旋構造体とで構成されたNi微小螺旋構造体アレイを得た。個々のNi微小螺旋構造体の平均直径は約0.1mm、長さは約1mmであった。   The Ni-plated slice pieces were washed with water, and the lotus tissue was decomposed and removed in an aqueous solution containing cellulase while applying ultrasonic waves. As a residue, an Ni micro helix structure array composed of a Ni disk having an outer diameter of about 20 mm and a large number of Ni micro helix structures attached upright on the disk was obtained. The average diameter of each Ni micro helical structure was about 0.1 mm and the length was about 1 mm.

尚、得られたNi微小螺旋構造体アレイには、有機物である螺旋紋等は残存しておらず、Niメッキ層(すなわち、被覆材質)単独で上記アレイ形状が維持されていた。   In the obtained Ni micro-helical structure array, the spiral pattern or the like that is an organic substance did not remain, and the above-described array shape was maintained by the Ni plating layer (that is, the coating material) alone.

本発明に係る微小構造体並びに微小螺旋構造体は、例えばインキペースト中に添加されて電磁波吸収被膜を形成する電磁波吸収材等に適用される産業上の利用可能性を有している。   The fine structure and the fine spiral structure according to the present invention have industrial applicability applied to, for example, an electromagnetic wave absorbing material that is added to an ink paste to form an electromagnetic wave absorbing film.

蓮(維管束植物)の茎断面を模式的に示す概略斜視図。The schematic perspective view which shows typically the stem cross section of a lotus (vascular plant). 蓮(維管束植物)における茎の内部構造を模式的に示す概略斜視図。The schematic perspective view which shows typically the internal structure of the stem in a lotus (vascular plant). 蓮(維管束植物)の茎を切断して得たスライス片の概略斜視図。The schematic perspective view of the slice piece obtained by cut | disconnecting the stem of a lotus (vascular plant). 上記スライス片の内部構造を模式的に示す概略斜視図。The schematic perspective view which shows typically the internal structure of the said slice piece. スライス片における個々の螺旋紋片表面に導電性被膜が形成された状態を模式的に示す概略斜視図。The schematic perspective view which shows typically the state by which the conductive film was formed in the surface of each spiral pattern piece in a slice piece. 本発明に係る微小螺旋構造体の概略斜視図。1 is a schematic perspective view of a micro helix structure according to the present invention.

符号の説明Explanation of symbols

1 表皮
2 導管
3 螺旋紋(導管二次壁)
4 切断面
5 スライス片
6 螺旋構造体
10 通気孔
30 螺旋紋片
1 Epidermis 2 Conduit 3 Spiral Crest (Conduit Secondary Wall)
4 Cut surface 5 Slice piece 6 Spiral structure 10 Vent 30 Spiral crest

Claims (8)

維管束植物から、環状、螺旋状、梯子状または網目状形状を有する微小構造体を製造する方法において、
維管束植物の葉部、茎部若しくは根部を所望の厚さに切断してスライス片を得る第一工程と、上記スライス片の切断面に露出した導管開口から導管内に薬液を導入し、導管内面において環状、螺旋状、梯子状または網目状形状を有する導管二次壁を少なくとも部分的に改質させる第二工程と、上記スライス片の不要部位を除去して改質された導管二次壁片を取り出す第三工程とを具備することを特徴とする微小構造体の製造方法。
In a method for producing a microstructure having a ring shape, a spiral shape, a ladder shape, or a mesh shape from a vascular plant,
A first step of cutting a leaf part, stem part or root part of a vascular plant to a desired thickness to obtain a slice piece, and introducing a drug solution into the conduit from a conduit opening exposed on the cut surface of the slice piece, A second step of at least partially modifying the conduit secondary wall having an annular, spiral, ladder-like or mesh-like shape on the inner surface; and a conduit secondary wall modified by removing unnecessary portions of the sliced piece. And a third step of taking out the piece.
維管束植物から螺旋状形状を有する微小螺旋構造体を製造する方法において、
維管束植物の葉部、茎部若しくは根部を所望の厚さに切断してスライス片を得る第一工程と、上記スライス片の切断面に露出した導管開口から導管内に薬液を導入し、導管内面において螺旋状形状を有する導管二次壁(以下、螺旋紋と称する)を少なくとも部分的に改質させる第二工程と、上記スライス片の不要部位を除去して改質された螺旋紋片を取り出す第三工程とを具備することを特徴とする微小螺旋構造体の製造方法。
In a method for producing a micro helical structure having a helical shape from a vascular plant,
A first step of cutting a leaf part, stem part or root part of a vascular plant to a desired thickness to obtain a slice piece, and introducing a drug solution into the conduit from a conduit opening exposed on the cut surface of the slice piece, A second step of at least partially modifying a conduit secondary wall (hereinafter referred to as a spiral pattern) having a spiral shape on the inner surface, and removing a modified spiral pattern piece by removing unnecessary portions of the slice piece. And a third step of taking out the method.
上記スライス片を得る第一工程において、維管束植物の葉部、茎部若しくは根部を予め凍結させた状態で切断することを特徴とする請求項2に記載の微小螺旋構造体の製造方法。   The method for producing a microspiral structure according to claim 2, wherein in the first step of obtaining the slice piece, the leaf part, stem part or root part of the vascular plant is cut in a frozen state in advance. 上記螺旋紋を改質させる第二工程において、メッキによる導電性被膜の形成を含むことを特徴とする請求項2に記載の微小螺旋構造体の製造方法。   3. The method of manufacturing a micro helix structure according to claim 2, wherein the second step of modifying the spiral pattern includes forming a conductive film by plating. 上記螺旋紋を改質させる第二工程において、メッキによる磁性被膜の形成と着磁処理を含むことを特徴とする請求項2に記載の微小螺旋構造体の製造方法。   3. The method of manufacturing a micro helical structure according to claim 2, wherein the second step of modifying the spiral pattern includes formation of a magnetic film by plating and a magnetizing process. 上記螺旋紋を改質させる第二工程において、メッキによる金属被膜の形成とこの金属被膜表面を酸化雰囲気中で加熱して少なくとも部分的に金属酸化物層を形成する酸化処理を含むことを特徴とする請求項2に記載の微小螺旋構造体の製造方法。   The second step of modifying the spiral pattern includes forming a metal film by plating and oxidizing the surface of the metal film by heating the surface of the metal film in an oxidizing atmosphere to at least partially form a metal oxide layer. The manufacturing method of the micro helical structure of Claim 2. 上記螺旋紋を改質させる第二工程において、ゾル−ゲル法による絶縁性被膜の形成を含むことを特徴とする請求項2に記載の微小螺旋構造体の製造方法。   The method for producing a microspiral structure according to claim 2, wherein the second step of modifying the spiral pattern includes forming an insulating film by a sol-gel method. 上記改質された螺旋紋片を取り出す第三工程において、加熱による熱分解、薬品による化学分解、または、超音波、機械振動、遠心力のいずれかの外力による機械的分解から選択される少なくとも一つの分解を含むことを特徴とする請求項2に記載の微小螺旋構造体の製造方法。   In the third step of taking out the modified helical pattern, at least one selected from thermal decomposition by heating, chemical decomposition by chemicals, or mechanical decomposition by any external force of ultrasonic, mechanical vibration, or centrifugal force. The method for manufacturing a micro-helical structure according to claim 2, wherein the method includes one decomposition.
JP2008067365A 2008-03-17 2008-03-17 MICROSTRUCTURE AND METHOD FOR PRODUCING MICROHELICAL STRUCTURE Expired - Fee Related JP5176232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067365A JP5176232B2 (en) 2008-03-17 2008-03-17 MICROSTRUCTURE AND METHOD FOR PRODUCING MICROHELICAL STRUCTURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067365A JP5176232B2 (en) 2008-03-17 2008-03-17 MICROSTRUCTURE AND METHOD FOR PRODUCING MICROHELICAL STRUCTURE

Publications (2)

Publication Number Publication Date
JP2009221149A JP2009221149A (en) 2009-10-01
JP5176232B2 true JP5176232B2 (en) 2013-04-03

Family

ID=41238323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067365A Expired - Fee Related JP5176232B2 (en) 2008-03-17 2008-03-17 MICROSTRUCTURE AND METHOD FOR PRODUCING MICROHELICAL STRUCTURE

Country Status (1)

Country Link
JP (1) JP5176232B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074227B2 (en) 2009-04-22 2015-07-07 Tokyo Institute Of Technology Helical fine structure, method for producing the same, and electric-wave shield or absorber using the helical fine structure
CN102144476A (en) * 2010-12-29 2011-08-10 镇江盛弘景观植物有限公司 Method of braiding, planting and cultivating multiple plants of photinia fraseri into stereoscopic landscape shape
CN116516685B (en) * 2023-04-19 2024-03-22 重庆文理学院 Preparation method of physiological monitoring multifunctional sensor

Also Published As

Publication number Publication date
JP2009221149A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5176232B2 (en) MICROSTRUCTURE AND METHOD FOR PRODUCING MICROHELICAL STRUCTURE
CN102121193B (en) Carbon nanofiber-metal composite and method for preparing the same
WO2021216651A1 (en) Evaporative devices having delignified plant materials, and systems and methods for fabrication and use thereof
CN108484784B (en) Physical separation method of in-vitro polysaccharide gum of water shield
CN101619104B (en) Method for extracting fucoidan for brown seaweed
CN101643516B (en) Method for preparing chitosan into water-soluble chitooligo saccharide
KR20140122944A (en) Method and apparatus for manufacturing graphite oxide
CN103928731A (en) TEM mode dielectric filter and manufacturing method
KR20010086023A (en) Process for metallizing a plastic surface
CN102925893B (en) Microetch process for restraining micro-discharge effect of microwave part
CN111842923B (en) Preparation method of silver nanowire/biomass porous carbon electromagnetic wave absorption material
EP2423308B1 (en) Fine helical structure, method for producing same, and electric wave-shielding or absorbing material using fine helical structure
CN109629041A (en) A kind of fibrosis production technology of marine algae extract
CN110547391A (en) Low-frequency ultrasonic-alkali recovery flaxseed kernel detoxification method
CN108755215B (en) Method for preparing nano cellulose whiskers by using peanut shells
CN111935965B (en) Preparation method of silver/biomass porous carbon electromagnetic wave absorption composite material
JP2009035853A (en) Method for refining treatment of fiber derived from plant root, and fiber obtained by the method
TW201523898A (en) Method for manufacturing solar cell
CN102936295A (en) Extraction method of bitter gourd polysaccharides
CN108751190A (en) A method of improving cocoanut active charcoal comprehensive utilization ratio
KR101393412B1 (en) Manufacturing method of hydrolysate with recoverable value added materials by alkali soaking-steam pretreatment from lignocellulosic biomass
CN110547390A (en) Detoxification method of linseed kernels
CN105218706B (en) The method that microwave and ultrasound cooperates with acid degradation maize straw
Jolley et al. Micropyle and oocyst wall changes associated with chemically mediated in vitro excystation of Eimeria stieda1 and Eimeria tenella
Norazlina et al. Extraction of Xylose from Rice Straw and Lemongrass Leaf via Microwave Assisted

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees