JP5176100B2 - Detection method of burrs - Google Patents

Detection method of burrs Download PDF

Info

Publication number
JP5176100B2
JP5176100B2 JP2007093691A JP2007093691A JP5176100B2 JP 5176100 B2 JP5176100 B2 JP 5176100B2 JP 2007093691 A JP2007093691 A JP 2007093691A JP 2007093691 A JP2007093691 A JP 2007093691A JP 5176100 B2 JP5176100 B2 JP 5176100B2
Authority
JP
Japan
Prior art keywords
mold
displacement
molding
movable
burrs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007093691A
Other languages
Japanese (ja)
Other versions
JP2008249612A (en
Inventor
宏之 是澤
裕 鈴木
弘之 楢原
康弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2007093691A priority Critical patent/JP5176100B2/en
Publication of JP2008249612A publication Critical patent/JP2008249612A/en
Application granted granted Critical
Publication of JP5176100B2 publication Critical patent/JP5176100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶融金属、溶融樹脂等の流動物質を金型内に射出成形する場合、あるいは粉末のように加圧下で流動物と類似した挙動を示す物質を金型内に供給して加圧成形する場合のバリ発生の検知方法に関する。 In the present invention, when a fluid substance such as a molten metal or a molten resin is injection-molded in a mold, or a substance such as a powder that exhibits a behavior similar to that of a fluid under pressure is supplied to the mold. The present invention relates to a method for detecting the occurrence of burrs when molding.

例えば、射出成形時に生じるバリは、金型の加工精度が低いために金型の分割面に形成された隙間により発生する場合を除いて、成形時の金型変形により金型分割面に発生する隙間に物質が侵入することにより、あるいは成形圧力が型締め圧力より大きいために成形時の金型分割面の開口により発生する隙間に物質が侵入することにより発生する。従って、バリの発生を検知するには、非特許文献1に記載されているように、1)金型分割面の先端付近の隙間の幅を直接計測する方法、2)金型内部の成形圧力を計測する方法、3)金型下面内での歪み量を計測する方法がある。更に、4)成形中の成形機からの情報(例えば、射出圧力、スクリュー位置)を収集する方法がある。 For example, burrs generated during injection molding occur on the mold dividing surface due to mold deformation at the time of molding, except when generated due to gaps formed on the mold dividing surface due to low processing accuracy of the mold. This occurs when a substance enters the gap or because the molding pressure is larger than the clamping pressure and the substance enters the gap generated by the opening of the mold dividing surface during molding. Therefore, in order to detect the occurrence of burrs, as described in Non-Patent Document 1, 1) a method of directly measuring the width of the gap near the tip of the mold dividing surface, 2) molding pressure inside the mold 3) There is a method of measuring the amount of distortion in the lower surface of the mold. Furthermore, 4) there is a method of collecting information (for example, injection pressure, screw position) from a molding machine during molding.

村田泰彦、外2名、「プラスチック射出成形品におけるバリ発生検知方法」、型技術、2006年7月、第21巻、第8号、p.128−129Yasuhiko Murata and two others, “Method for detecting occurrence of burrs in plastic injection molded products”, Mold Technology, July 2006, Vol. 21, No. 8, p. 128-129

しかしながら、1)の隙間の幅を直接計測する方法では金型にセンサを取付けセンサからの信号線を取出すための加工を施す必要があることから、2)の金型内部の成形圧力を計測する方法は圧力センサが高価で、かつ金型に圧力センサの取付けおよび信号線を取出すための加工を行なう必要があることから、生産設備に対しては非現実的な方法になるという問題がある。3)の金型下面の歪みを計測する方法では、金型には冷却媒体を通過させるための孔や各種センサ用の取付け穴、成形体を金型から離型させるために用いられるエジェクタピンのための孔、更に金型組立ておよび型締の際に使用する複数の穴や多数の切り欠きが設けられているため、金型には多くの応力集中部が存在することになって、成形時に発生した応力集中が互いに干渉して金型内および金型表面に発生する応力場は非常に複雑になる。このため、最適な位置に歪みセンサを配置しないと計測される歪み量が穴の影響を強く受け、バリ発生と関連する歪み量を計測することができないという問題が生じるが、歪みセンサを配置する最適位置を見出すことは非常に困難である。更に、4)の成形中の成形機からの情報を収集する方法は、成形機からの情報とバリの発生が必ずしも連動しているとは言えず、常にバリの発生を安定して検出することができないという問題がある。 However, in the method of directly measuring the width of the gap in 1), since it is necessary to attach a sensor to the mold and to process the signal line from the sensor, 2) measure the molding pressure inside the mold. This method has a problem that the pressure sensor is expensive, and it is necessary to perform processing for mounting the pressure sensor on the mold and taking out the signal line, so that it becomes an unrealistic method for production equipment. In the method 3) of measuring the distortion of the lower surface of the mold, the mold has holes for allowing the cooling medium to pass, mounting holes for various sensors, and ejector pins used for releasing the molded body from the mold. There are a lot of holes and many notches used for mold assembly and mold clamping, and there are many stress concentration parts in the mold. The generated stress concentration interferes with each other and the stress field generated in the mold and on the mold surface becomes very complicated. For this reason, if the strain sensor is not arranged at the optimum position, the measured strain amount is strongly influenced by the hole, and there is a problem that the strain amount associated with the occurrence of burrs cannot be measured. Finding an optimal position is very difficult. Furthermore, the method of collecting information from the molding machine during the molding in 4) is not necessarily linked with the information from the molding machine and the occurrence of burrs, and always detects the occurrence of burrs stably. There is a problem that can not be.

本発明はかかる事情に鑑みてなされたもので、金型の構造上の影響を受けずに容易かつ安価にバリの発生を検知することが可能なバリ発生の検知方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a method for detecting the occurrence of burrs that can easily and inexpensively detect the occurrence of burrs without being affected by the structure of the mold. To do.

前記目的に沿う本発明に係るバリ発生の検知方法は、固定型に可動型を密着させ所定の型締め力で保持した成形金型内に材料を供給して加圧成形する際に発生するバリを検出するバリ発生の検知方法において、
前記成形金型内に供給した材料の加圧成形時に前記可動型の下側面の前記成形金型の型締め方向の変位を測定し、該側面の変位が予め設定した基準値を超えた時点でバリが発生したと判断する。
The method for detecting the occurrence of burrs according to the present invention that meets the above-described object is a method for generating burrs when a movable mold is brought into close contact with a fixed mold and a material is supplied into a molding die held with a predetermined clamping force to perform pressure molding. In the method for detecting the occurrence of burrs,
Time when the said molding die clamping direction of displacement of the lower surface of the pressure molding the movable mold when the material fed into the molding die was measured, exceeds a reference value displacement of the lower surface is preset It is determined that burr has occurred.

そして、前記側面の変位は、前記可動型の下側面の基準位置に対する位置変化量を測定することにより求めることができる。 Then, the displacement of the lower side can be determined by measuring the change in position with respect to the reference position of the lower surface of the movable mold.

請求項1、2記載のバリ発生の検知方法においては、成形時の成形金型に発生する変位分布は、成形金型内に存在する応力集中部の影響を受けないので、変位量の計測が容易になって変位量とバリ発生との関連付けが容易になる。その結果、連続成形中での成形条件の変動に伴うバリ発生を検知することが可能になる。
また、成形金型の変位分布が応力集中部の影響を受けないため、数値解析結果(数値解析で求めた変位量)から判断できるバリ発生と実際の成形金型におけるバリ発生を比較検討することが可能になり、数値解析結果の精度を向上させることができるとともに、変位量を成形状態の再現性を検討する際の指標の一つとして用いることもできる。更に、数値解析モデルを単純化でき、短時間で効率的かつ高品質の成形金型の設計が可能になる。
In the detection method of burr generation according to claims 1 and 2, the displacement distribution generated in the molding die at the time of molding is not affected by the stress concentration portion existing in the molding die. It becomes easy to associate the displacement amount with the occurrence of burrs. As a result, it becomes possible to detect the occurrence of burrs due to variations in molding conditions during continuous molding.
In addition, since the displacement distribution of the molding die is not affected by the stress concentration part, the burr generation that can be judged from the numerical analysis results (displacement amount obtained by numerical analysis) and the burr generation in the actual molding die should be compared. Thus, the accuracy of numerical analysis results can be improved, and the amount of displacement can also be used as one of the indices when examining the reproducibility of the molding state. Furthermore, the numerical analysis model can be simplified, and an efficient and high-quality molding die can be designed in a short time.

特に成形金型は型締め方向に変位し易いので、可動型の下側面の型締め方向の変位を測定することで、バリ発生との対応が容易になる。
また、可動型は固定型と比較して変位し易いので、可動型の側面の変位を測定することにより、変位の測定を容易かつ正確に行なうことができる。
請求項記載のバリ発生の検知方法においては、可動型の下側面に対する位置変化量を測定するので、測定機器の設置が容易となって測定を正確かつ容易に行なうことができる。
In particular , since the mold is easily displaced in the mold clamping direction, measuring the displacement in the mold clamping direction of the lower surface of the movable mold makes it easy to cope with the occurrence of burrs.
Further, since the movable mold is easily displaced as compared with the fixed mold, the displacement can be easily and accurately measured by measuring the displacement of the lower surface of the movable mold.
In the method for detecting the occurrence of burrs according to claim 2, since the amount of change in position relative to the lower surface of the movable mold is measured, it is easy to install the measuring device, and the measurement can be performed accurately and easily.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係るバリ発生の検知方法を適用する成形金型の構造を示す模式図、図2(A)は応力集中を考慮した数値解析で求めた可動型の外側面における型締め方向の変位分布を示す説明図、(B)は応力集中を考慮せずに数値解析で求めた可動型の外側面における型締め方向の変位分布を示す説明図、図3(A)は加圧成形時に測定した可動型の外側面における型締め方向の変位の変化挙動を示すグラフ、(B)は加圧成形時に測定した固定型と可動型の境界面の間隙の変化挙動を示すグラフ、図4は可動型の外側面の変位、保圧力、およびバリ発生の関係を示す説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a schematic diagram showing the structure of a molding die to which the method for detecting burr occurrence according to one embodiment of the present invention is applied, and FIG. 2A is a movable obtained by numerical analysis in consideration of stress concentration. Explanatory diagram showing the displacement distribution in the mold clamping direction on the outer surface of the mold, (B) is an explanatory diagram showing the displacement distribution in the mold clamping direction on the outer surface of the movable mold obtained by numerical analysis without considering the stress concentration, FIG. 3 (A) is a graph showing the change behavior of the displacement in the clamping direction on the outer surface of the movable mold measured at the time of pressure molding, and (B) is the gap between the boundary surface of the fixed mold and the movable mold measured at the time of pressure molding. FIG. 4 is a graph showing the change behavior, and FIG. 4 is an explanatory diagram showing the relationship between the displacement of the movable outer surface, the holding pressure, and the occurrence of burrs.

図1に示すように、本発明の一実施の形態に係るバリ発生の検知方法を適用する成形金型の一例である射出成形金型10は、成形機のフレーム(図示せず)に固定側取付け板11を介して固定される固定型12と、成形機のフレームに設けられた可動側取付け板13に複数のスペーサブロック15を介して取付けられた可動型16とを有している。これによって、固定型12に対して、可動側取付け板13の移動によって可動型16は移動(昇降)する。なお、可動型16と可動側取付け板13との間には、複数のスペーサブロック15によって空間部14が形成される。
そして、可動型16を上昇させて固定型12に密着させ所定の型締め力で保持することにより射出成形金型10が形成される。固定型12の下部には下側に開口する凹部17が形成されており、固定型12の凹部17と可動型16の上面で囲まれた所定形状を有する空洞18内に、空洞18に連通する材料供給路18aを介して材料を所定の圧力で射出し、保圧することで、材料を所定の形状に成形できる。
As shown in FIG. 1, an injection mold 10, which is an example of a molding mold to which the method for detecting occurrence of burrs according to an embodiment of the present invention is applied, is fixed to a frame (not shown) of a molding machine. It has a fixed die 12 fixed via an attachment plate 11 and a movable die 16 attached via a plurality of spacer blocks 15 to a movable side attachment plate 13 provided on the frame of the molding machine. As a result, the movable mold 16 moves (lifts) with respect to the fixed mold 12 by the movement of the movable mounting plate 13. A space 14 is formed by a plurality of spacer blocks 15 between the movable die 16 and the movable side mounting plate 13.
Then, the injection mold 10 is formed by raising the movable mold 16 to be in close contact with the fixed mold 12 and holding it with a predetermined clamping force. A recessed portion 17 that opens downward is formed in the lower portion of the fixed mold 12, and communicates with the cavity 18 in a cavity 18 having a predetermined shape surrounded by the recessed portion 17 of the fixed mold 12 and the upper surface of the movable mold 16. By injecting the material at a predetermined pressure through the material supply path 18a and holding the pressure, the material can be formed into a predetermined shape.

続いて、本発明の一実施の形態に係るバリ発生の検知方法について説明する。
図1に示すように、射出成形金型10内に供給した材料の加圧成形を行なうと、空洞18内の材料により固定型12の凹部17の内面および可動型16の上面の一部(凹部17の開口を覆う領域)に成形圧力(射出圧力と引き続いて負荷される保圧力)が印加される。このため、固定型12と可動型16には変形が生じ、射出成形金型10の外側面、すなわち、固定型12と可動型16の外側面にはそれぞれ変位が生じる。一方、射出成形金型10の構造上、空洞18に作用する成形圧力は、特に型締め方向に作用しており、射出成形金型10は型締め方向に変位し易い。また、固定型12と可動型16を比較すると、可動型16の底壁外面(下側面)の一部は、空間部14と接しているために、強度的に弱い構造となっており変位し易い。従って、加圧成形時の射出成形金型10の挙動を把握するには、可動型16の底壁外面の変位量が有効となる。
Next, a burr generation detection method according to an embodiment of the present invention will be described.
As shown in FIG. 1, when the material supplied into the injection mold 10 is pressure-molded, the material in the cavity 18 causes the inner surface of the concave portion 17 of the fixed mold 12 and a part of the upper surface of the movable die 16 (recessed portion). A molding pressure (an injection pressure and a holding pressure that is subsequently applied) is applied to a region that covers 17 openings. For this reason, deformation occurs in the fixed mold 12 and the movable mold 16, and displacement occurs on the outer surface of the injection mold 10, that is, on the outer surfaces of the fixed mold 12 and the movable mold 16. On the other hand, due to the structure of the injection mold 10, the molding pressure acting on the cavity 18 is particularly acting in the mold clamping direction, and the injection mold 10 is easily displaced in the mold clamping direction. Further, when the fixed mold 12 and the movable mold 16 are compared, a part of the outer surface (lower side) of the bottom wall of the movable mold 16 is in contact with the space portion 14 and thus has a weak structure and is displaced. easy. Therefore, in order to grasp the behavior of the injection mold 10 during pressure molding, the displacement amount of the bottom wall outer surface of the movable mold 16 is effective.

そこで、可動型16の下側面における型締め方向の変位挙動を把握するために行なった、数値解析の結果を図2(A)、(B)に示す。図2(A)は可動型16に設けられた冷却媒体を通過させるための孔や各種センサ用の取付け穴、成形体を金型から離型させるために用いられるエジェクタピンのための孔、可動型16の組立ておよび型締の際に使用する複数の穴や多数の切り欠きによる応力集中を考慮した場合の可動型16の下側面における変位分布を、(B)は応力集中を考慮しない場合の可動型16の下側面における変位分布を示す。(A)と(B)の変位分布の状態を比較すると、変位分布には応力集中の影響が現われないことが判る。なお、図2(A)、(B)では、可動型16の下側面の変位分布の対称性から、可動型16の下側面の半分の領域の変位分布のみを示している。 2A and 2B show the results of numerical analysis performed to grasp the displacement behavior in the mold clamping direction on the lower surface of the movable mold 16. FIG. 2A shows a hole provided in the movable mold 16 for allowing a cooling medium to pass therethrough, a mounting hole for various sensors, a hole for an ejector pin used for releasing the molded body from the mold, and movable. The displacement distribution on the lower surface of the movable mold 16 when considering the stress concentration due to a plurality of holes and a large number of notches used when assembling and clamping the mold 16, (B) shows the case where the stress concentration is not considered. The displacement distribution on the lower surface of the movable mold 16 is shown. Comparing the displacement distribution states of (A) and (B), it can be seen that the influence of stress concentration does not appear in the displacement distribution. 2A and 2B, only the displacement distribution in the half region of the lower surface of the movable die 16 is shown because of the symmetry of the displacement distribution on the lower surface of the movable die 16.

ここで、可動型16の下側面の変位は、例えば、基準位置の一例である可動側取付け板13の上面に対する可動型16の下側面の位置変化量を測定することにより得られる。そこで、図1に示すように、変位センサの一例である渦電流式変位センサ19を、空間部14内に配置されるように可動側取付け板13に固定部材20を介して取付けることにより、可動型16の下側面の位置変化量を測定する。
一方、可動型16の下側面の変位分布が応力集中の影響を受けないことから、可動型16の下側面内の任意の位置における変位を求めることで、加圧成形時の射出成形金型10の挙動が把握できる。
Here, the displacement of the lower surface of the movable mold 16 is obtained, for example, by measuring the position change amount of the lower surface of the movable mold 16 with respect to the upper surface of the movable side mounting plate 13 which is an example of the reference position. Therefore, as shown in FIG. 1, an eddy current displacement sensor 19, which is an example of a displacement sensor, is mounted on a movable side mounting plate 13 via a fixed member 20 so as to be disposed in the space portion 14. The amount of change in the position of the lower surface of the mold 16 is measured.
On the other hand, since the displacement distribution on the lower surface of the movable die 16 is not affected by the stress concentration, the injection mold 10 at the time of pressure molding is obtained by obtaining the displacement at an arbitrary position in the lower surface of the movable die 16. Can be understood.

従って、適切な射出条件を設定し、一定の成形圧力(保圧力ともいう)で加圧成形したときの可動型16の下側面の、例えば中央部における型締め方向の変位d1を測定した結果を図3(A)に示す。また、固定型12と可動型16との境界部(分割面)に生じる隙間d2の加圧成形時における変化をギャップセンサで測定した結果を図3(B)に示す。ここで、型締め方向の変位d1および隙間d2は、いずれも型締め時を基準(d1=0、d2=0)としている。なお、加圧終了時で隙間d2が0に戻らないのは、隙間d2内でバリが発生し保圧力が0になっても隙間d2が消失できないことによる。 Accordingly, the result of measuring the displacement d 1 in the mold clamping direction, for example, at the center of the lower surface of the movable mold 16 when an appropriate injection condition is set and pressure molding is performed with a constant molding pressure (also referred to as holding pressure). Is shown in FIG. Further, FIG. 3B shows a result of measuring a change in the gap d 2 generated at the boundary portion (divided surface) between the fixed die 12 and the movable die 16 at the time of pressure molding with a gap sensor. Here, the displacement d 1 and the gap d 2 in the mold clamping direction are both based on the mold clamping (d 1 = 0, d 2 = 0). Incidentally, the gap d 2 does not return to zero at the end pressure, due to the inability lost gap d 2 also becomes 0 coercive pressure burrs generated in the gap d 2.

図3(A)、(B)から可動型16の下側面の変位d1の変化挙動と、境界部の隙間d2の変化挙動の間にはよい対応関係が認められ、変位d1の絶対値が最大値を示す時間と隙間d2が最大となる時間は一致することが確認できる。ここで、バリ発生の機構から、固定型12と可動型16との境界部に生じる隙間d2の変化挙動とバリ発生の有無との間には明確な対応関係が存在していることが明らかなので、境界部の隙間d2とよい対応関係を持つ可動型16の下側面の変位d1の変化挙動とバリ発生の有無との間にも、明確な対応関係を存在すると解される。 From FIGS. 3A and 3B, there is a good correspondence between the change behavior of the displacement d 1 on the lower surface of the movable die 16 and the change behavior of the gap d 2 at the boundary, and the absolute value of the displacement d 1 It can be confirmed that the time when the value shows the maximum value coincides with the time when the gap d 2 becomes the maximum. Here, it is clear from the burr generation mechanism that there is a clear correspondence between the change behavior of the gap d 2 generated at the boundary between the fixed mold 12 and the movable mold 16 and the presence or absence of burr generation. Therefore, it is understood that there is a clear correspondence between the change behavior of the displacement d 1 of the lower surface of the movable die 16 having a good correspondence with the gap d 2 at the boundary and the presence or absence of the occurrence of burrs.

そこで、固定型12と可動型16に一定の型締め力を負荷して射出成形金型10を形成し、保圧力を変化させながら成形を行ない、バリの発生状況を調べるとともに、加圧成形時の可動型16の下側面における型締め方向の変位d1を測定した。可動型16の下側面の変位d1の絶対値の最大値、保圧力、およびバリ発生の関係を図4に示す。また、図4には、固定型12と可動型16との分割面に生じる隙間d2の最大値、保圧力、およびバリ発生の関係も合わせて示す。 Therefore, the fixed mold 12 and the movable mold 16 are loaded with a fixed clamping force to form the injection mold 10, and molding is performed while changing the holding pressure, and the occurrence of burrs is examined, and at the time of pressure molding The displacement d 1 in the mold clamping direction on the lower surface of the movable mold 16 was measured. FIG. 4 shows the relationship between the maximum absolute value of the displacement d 1 on the lower surface of the movable die 16, the holding pressure, and the occurrence of burrs. FIG. 4 also shows the relationship between the maximum value of the gap d 2 generated on the split surface between the fixed mold 12 and the movable mold 16, the holding pressure, and the occurrence of burrs.

図4から、保圧力が低く所定形状の成形体が得られない場合(ショートショットの場合)は、バリの発生はなく、可動型16の下側面の変位d1の絶対値の最大値および境界部の隙間d2の最大値はいずれも小さいことが判る。一方、保圧力が大きくなると、所定形状の成形体が得られるが同時にバリも発生するようになり、可動型16の下側面の変位d1の絶対値の最大値および境界部の隙間d2の最大値は増加することが判る。また、ショートショットとなる保圧力とバリが発生する保圧力の間に、所定形状の成形体が得られ、しかもバリ発生がない適正成形領域が存在することが判る。そして、図4の場合、適正成形領域における可動型16の下側面の変位d1の絶対値の最大値の範囲は0.0025mm未満となる。従って、例えば、0.002mmを基準値として予め設定しておくと、可動型16の下側面の型締め方向の変位d1の絶対値の最大値を測定して、得られた変位の値が予め設定した基準値を超えた時点でバリが発生したと判断することが可能になる。 From FIG. 4, when the holding pressure is low and a molded body having a predetermined shape cannot be obtained (in the case of a short shot), no burr is generated, and the maximum absolute value of the displacement d 1 on the lower surface of the movable die 16 and the boundary It can be seen that the maximum value of the gap d 2 between the portions is small. On the other hand, when the holding pressure is increased, a molded body having a predetermined shape is obtained, but burrs are also generated at the same time, and the maximum absolute value of the displacement d 1 on the lower surface of the movable die 16 and the gap d 2 at the boundary portion It can be seen that the maximum value increases. Further, it can be seen that there is an appropriate molding region in which a molded body having a predetermined shape is obtained between the holding pressure for short shot and the holding pressure for generating burrs. In the case of FIG. 4, the range of the maximum value of the absolute value of the displacement d 1 of the lower surface of the movable mold 16 in the proper molding region is less than 0.0025 mm. Therefore, for example, if 0.002 mm is set in advance as a reference value, the maximum value of the absolute value of the displacement d 1 in the mold clamping direction of the lower surface of the movable mold 16 is measured, and the obtained displacement value is It becomes possible to determine that burrs have occurred when the preset reference value is exceeded.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、可動型の外側面(即ち、下側面)における型締め方向の変位を渦電流式変位センサで測定したが、レーザ変位計または差動変圧器式変位センサを使用することもできる。
更に、本実施の形態では、変位センサ(渦電流式変位センサ)を基準位置(可動側取付け板)側に取付けて成形金型の外側面(可動型の下側面)の位置変化量を測定したが、変位センサを成形金型の外側面に取付けて基準位置に対する成形金型の外側面の位置変化量を測定するようにしてもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, although the displacement in the mold clamping direction on the outer side surface (that is, the lower side surface ) of the movable mold is measured with an eddy current type displacement sensor, a laser displacement meter or a differential transformer type displacement sensor can also be used.
Furthermore, in this embodiment, a displacement sensor (eddy current type displacement sensor) is attached to the reference position (movable side mounting plate) side, and the amount of change in position of the outer side surface (lower side surface of the movable die) of the molding die is measured. However, a displacement sensor may be attached to the outer surface of the molding die to measure the position change amount of the outer surface of the molding die with respect to the reference position.

本発明の一実施の形態に係るバリ発生の検知方法を適用する成形金型の構造を示す模式図である。It is a schematic diagram which shows the structure of the shaping die which applies the detection method of the burr | flash generation which concerns on one embodiment of this invention. (A)は応力集中を考慮した数値解析で求めた可動型の外側面における型締め方向の変位分布を示す説明図、(B)は応力集中を考慮せずに数値解析で求めた可動型の外側面における型締め方向の変位分布を示す説明図である。(A) is explanatory drawing which shows the displacement distribution of the mold clamping direction in the outer side surface of the movable mold | die calculated | required by the numerical analysis which considered stress concentration, (B) is the movable type | mold calculated | required by the numerical analysis without considering stress concentration. It is explanatory drawing which shows the displacement distribution of the mold clamping direction in an outer surface. (A)は加圧成形時に測定した可動型の外側面における型締め方向の変位の変化挙動を示すグラフ、(B)は加圧成形時に測定した固定型と可動型の境界面の間隙の変化挙動を示すグラフである。(A) is a graph showing the change behavior of displacement in the mold clamping direction on the outer surface of the movable mold measured during pressure molding, and (B) is the change in the gap between the boundary surface of the fixed mold and movable mold measured during pressure molding. It is a graph which shows a behavior. 可動型の外側面の変位、保圧力、およびバリ発生の関係を示す説明図である。It is explanatory drawing which shows the relationship of the displacement of a movable type outer side surface, holding pressure, and burr | flash generation | occurrence | production.

10:射出成形金型、11:固定側取付け板、12:固定型、13:可動側取付け板、14:空間部、15:スペーサブロック、16:可動型、17:凹部、18:空洞、18a:材料供給路、19:渦電流式変位センサ、20:固定部材 10: injection mold, 11: fixed side mounting plate, 12: fixed type, 13: movable side mounting plate, 14: space part, 15: spacer block, 16: movable type, 17: recessed part, 18: cavity, 18a : Material supply path, 19: Eddy current displacement sensor, 20: Fixed member

Claims (2)

固定型に可動型を密着させ所定の型締め力で保持した成形金型内に材料を供給して加圧成形する際に発生するバリを検出するバリ発生の検知方法において、
前記成形金型内に供給した材料の加圧成形時に前記可動型の下側面の前記成形金型の型締め方向の変位を測定し、該側面の変位が予め設定した基準値を超えた時点でバリが発生したと判断することを特徴とするバリ発生の検知方法。
In the detection method of burr generation, which detects a burr generated when a material is supplied into a molding die held in contact with a fixed mold and held with a predetermined clamping force, and pressure molding is performed.
Time when the said molding die clamping direction of displacement of the lower surface of the pressure molding the movable mold when the material fed into the molding die was measured, exceeds a reference value displacement of the lower surface is preset A method for detecting the occurrence of burrs, characterized by determining that burrs have occurred in
請求項記載のバリ発生の検知方法において、前記側面の変位は、前記可動型の下側面の基準位置に対する位置変化量を測定することにより求めることを特徴とするバリ発生の検知方法。 In the detection method of claim 1, wherein the burr, the displacement of the lower side, the detection method of the burr, characterized in that determined by measuring the change in position with respect to the reference position of the lower surface of the movable mold.
JP2007093691A 2007-03-30 2007-03-30 Detection method of burrs Active JP5176100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093691A JP5176100B2 (en) 2007-03-30 2007-03-30 Detection method of burrs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093691A JP5176100B2 (en) 2007-03-30 2007-03-30 Detection method of burrs

Publications (2)

Publication Number Publication Date
JP2008249612A JP2008249612A (en) 2008-10-16
JP5176100B2 true JP5176100B2 (en) 2013-04-03

Family

ID=39974724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093691A Active JP5176100B2 (en) 2007-03-30 2007-03-30 Detection method of burrs

Country Status (1)

Country Link
JP (1) JP5176100B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177681A (en) * 1991-12-27 1993-07-20 Shinko Serubitsuku:Kk Injection molding machine having function for detecting proper mold clamping force
JPH09192816A (en) * 1996-01-11 1997-07-29 Toshiba Mach Co Ltd Detecting method for defect in die clamping of die casting machine and die casting machine
JPH11320069A (en) * 1998-05-15 1999-11-24 Honda Motor Co Ltd Mold clamping decision apparatus for metal mold

Also Published As

Publication number Publication date
JP2008249612A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
US11613059B2 (en) External sensor kit for injection molding apparatus and methods of use
US10444092B2 (en) Upstream nozzle sensor for injection molding apparatus and methods of use
TWI690402B (en) Mold clamping device and method
US11618197B2 (en) Method for controlling a rate or force of a clamp in a molding system using one or more strain gauges
KR101757073B1 (en) Temperature measuring device of die casting
TWI566061B (en) The management system of the mold clamping device
US11041767B2 (en) Sensing device of pressure and temperature in mold
KR20130005259U (en) Structure for installing temperature sensor of mold
JP2009096120A (en) Mold releasing force measuring device, mold releasing force measuring method, resin molding device and manufacturing method of resin molded article
KR100258304B1 (en) Pressure sensor-equipped ejector pin
US10850439B2 (en) Injection molding machine
JP5176100B2 (en) Detection method of burrs
JP2009137076A (en) Injection molding mold, method for detecting defective plasticization in injection molding, and injection molding method
JP2006289783A (en) Resin molding die and resin molding apparatus
CN108127865B (en) Mold stack
JP4042223B2 (en) Mold material flow sensor
US20060110489A1 (en) Apparatus for measuring separation of mold parts
JP2016087684A (en) Shrinkage measuring apparatus
WO2023157680A1 (en) Resin mold
JPH0322286B2 (en)
JP2002331545A (en) Insert molding method and die device for insert molding
JP2006102783A (en) Die casting machine and its operating method
JP2020094866A (en) Detector for pressure and temperature in mould
JP2014094528A (en) Cassette type mold apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091125

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Effective date: 20120309

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20121211

Free format text: JAPANESE INTERMEDIATE CODE: A01