JP2020094866A - Detector for pressure and temperature in mould - Google Patents

Detector for pressure and temperature in mould Download PDF

Info

Publication number
JP2020094866A
JP2020094866A JP2018231720A JP2018231720A JP2020094866A JP 2020094866 A JP2020094866 A JP 2020094866A JP 2018231720 A JP2018231720 A JP 2018231720A JP 2018231720 A JP2018231720 A JP 2018231720A JP 2020094866 A JP2020094866 A JP 2020094866A
Authority
JP
Japan
Prior art keywords
pressure
temperature
mold
pressing lever
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018231720A
Other languages
Japanese (ja)
Other versions
JP6640969B1 (en
Inventor
陳碩卿
Shuo Ching Chen
蔡修安
Hsiu An Tsai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metal Industries Research and Development Centre
Original Assignee
Metal Industries Research and Development Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metal Industries Research and Development Centre filed Critical Metal Industries Research and Development Centre
Priority to JP2018231720A priority Critical patent/JP6640969B1/en
Application granted granted Critical
Publication of JP6640969B1 publication Critical patent/JP6640969B1/en
Publication of JP2020094866A publication Critical patent/JP2020094866A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a detector for pressure and temperature in a mould.SOLUTION: A detector for pressure and temperature in a mould in the present invention comprises a frame body, a pedestal, a pressing lever, a strain structure, a strain gauge, a temperature detection element, and a processing unit. The frame body is provided within a metal mould, brought into communication with a mould hole, and includes a passage and a housing space. The pedestal is provided on a bottom surface of the frame body and includes a flat surface on a top thereof. The pressing lever is provided in the housing space and includes a front end that extends to the passage and is exposed in the mould hole. The strain structure is provided between the flat surface and a rear end of the pressing lever, and fixedly positioned on the flat surface. The strain gauge is provided in the strain structure, measures an amount of deformation of the strain structure subjected to a mould hole pressure, and is used for converting the amount into deformation information. The temperature detection element is provided in the pressing lever, measures the temperature of the pressing lever and is used for converting the temperature into pressing lever temperature information. The processing unit is electrically connected to the strain gauge and the temperature detection element, respectively, and acquires the deformation information and the pressing lever temperature information.SELECTED DRAWING: Figure 7

Description

本発明は、型内の圧力及び温度検出装置に関し、より詳しくは、型穴内の同じ位置で金型の温度及び圧力の変化の即時計測を行う検出装置に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure and temperature detection device in a mold, and more particularly, to a detection device that immediately measures changes in the temperature and pressure of a mold at the same position in a mold cavity.

射出成形は切削が不要な高速成形加工法であり、射出成型及び圧力鋳造等のプロセスは製造効率が高く、経済的で寸法の精度も高く、互換性が高い等の特徴があるため、大規模産業では広く応用されており、急速に発展している。圧力鋳造はアルミニウム、マグネシウム、及び亜鉛等の軽金属の主要な成形方法となっており、大型の複雑な薄壁枠体部材の製造に適用されている。
圧力鋳造部材は自動車、運動器材、電子産業、及び宇宙航空産業等の分野の製品にとって重要な構成部材であり、とりわけ自動車産業においては圧力鋳造技術が応用される主要な分野となっており、全体の70%以上を占める。自動車、バイク、内燃機関、電子通信、計器類、家電、ハードウェア等の産業の急速な発展に伴い、圧力鋳造部材の機能及び応用分野が拡大を続けており、圧力鋳造技術の急速な発展を促している。
Injection molding is a high-speed molding method that does not require cutting, and processes such as injection molding and pressure casting have high manufacturing efficiency, are economical, have high dimensional accuracy, and have high compatibility, so they are large-scale. It is widely applied in industry and is developing rapidly. Pressure casting has become a main forming method for light metals such as aluminum, magnesium, and zinc, and is applied to the production of large-sized complex thin-walled frame members.
Pressure casting parts are important components for products in fields such as automobiles, sports equipment, electronics industry, and aerospace industry. Especially, in the automobile industry, pressure casting technology is a major field to which the pressure casting technology is applied. Account for over 70%. With the rapid development of industries such as automobiles, motorcycles, internal combustion engines, electronic communications, instruments, home appliances, and hardware, the function and application fields of pressure casting members continue to expand. Urging.

しかしながら、従来の射出成形製品は、設計及び製造方法が共に実際の製造経験を基礎とし、CAD及びCAEを結合させて運用されているため、シュミュレーション上の型内の圧力曲線と実際の型内の圧力曲線との間には相当な差異が存在する。図1に示されるように、実際の製造過程で出現する問題の多くは実際の経験を頼りに分析を行って措置を採る。 However, conventional injection molded products are designed and manufactured based on actual manufacturing experience, and are operated by combining CAD and CAE. Therefore, the pressure curve in the mold on the simulation and the actual mold There is a considerable difference with the pressure curve of. As shown in FIG. 1, most of the problems that appear in the actual manufacturing process rely on actual experience to analyze and take measures.

従来の射出成形産業は少なくとも下記の問題に直面している。
1.プロセス設備の装設品質及び劣化状況が不一致であり、プロセスのパラメータの補正効率が低すぎる。
2.完成品の品質を即時監視できず、製造後にサンプル検査を行わねばならない。
3.小ロット製造コストが高すぎ、在庫管理の最適化が達成できない。
The conventional injection molding industry faces at least the following problems.
1. The installation quality and deterioration status of the process equipment do not match, and the correction efficiency of the process parameters is too low.
2. The quality of the finished product cannot be monitored immediately and the sample must be inspected after manufacturing.
3. Small lot manufacturing costs are too high to achieve inventory control optimization.

従来の特許文献1では、例えば、圧力センサー付き押出しピン(Ejector pin with pressure sensor)が掲載され、この押出しピンは加工品を押出し成形するためのピン及び前記ピンを平滑に被装させるスリーブをを有する。前記ピンの端部は案内部分端部の開口面を介して前記型穴に対応する。スリーブ部分の下端部の段差部分によりポケットが限定される。ポケット内にはピン基部に位置される断面がU字形を呈するひずみ形成部分が装填される。ひずみ形成部分の横梁の下表面にはひずみセンサーが付設される。射出される樹脂の圧力がピンの端部に加えられ、ピンに加えられる下向きの負荷により横梁が下に向けて湾曲される。
このような構造が配置される検出素子は金型の外に装設される。これは間接計測方式に属し、且つ前記ピンが前記横梁に突き当てられる位置を前記横梁の中心部に正対させねばならない。そうしなければ前記突き当てられる位置が中心点から偏位し、変形データのひずみ率が大きく増加してしまう。
In conventional Patent Document 1, for example, an extruding pin with pressure sensor (Ejector pin with pressure sensor) is disclosed. The extruding pin includes a pin for extruding a workpiece and a sleeve for smoothly covering the pin. Have. The end of the pin corresponds to the mold cavity through the opening surface of the end of the guide portion. The pocket is defined by the stepped portion at the lower end of the sleeve portion. A strain-forming portion having a U-shaped cross section located at the pin base is loaded in the pocket. A strain sensor is attached to the lower surface of the cross beam in the strain forming portion. The pressure of the injected resin is applied to the end of the pin, and the downward load applied to the pin causes the cross beam to bend downwards.
The detection element having such a structure is mounted outside the mold. This belongs to the indirect measurement method, and the position where the pin abuts against the cross beam must be directly aligned with the center of the cross beam. Otherwise, the abutted position is deviated from the center point, and the distortion rate of the deformation data is greatly increased.

米国特許出願第6345974B1号明細書US Patent Application No. 6345974B1

本発明者は上記の欠点が改善可能と考え、鋭意検討を重ねた結果、合理的設計で上記の課題を効果的に改善する本発明の提案に到った。 The present inventor thought that the above-mentioned drawbacks can be ameliorated, and as a result of earnest studies, the inventors have arrived at the proposal of the present invention which effectively ameliorate the above-mentioned problems by rational design.

本発明は、以上の従来技術の課題を解決する為になされたものである。即ち、本発明の目的は、型内で射出プロセスにおける型内の圧力及び型内の温度を直接計測可能な検出装置であって、非圧力伝達経路のひずみ構造にひずみゲージ及び温度検出素子が保留される信号出力回路に応用し、同時に検出装置内にひずみゲージ及び温度検出素子が装設される検出装置を提供することである。 The present invention has been made to solve the problems of the above-mentioned conventional techniques. That is, the object of the present invention is a detection device capable of directly measuring the pressure in the mold and the temperature in the mold in the injection process in the mold, and the strain gauge and the temperature detecting element are retained in the strain structure of the non-pressure transmission path. And a strain gauge and a temperature detecting element are installed in the detecting device.

上記課題を解決する本発明は、金型に内設されると共に天井面が前記金型の型穴から露出される枠体であって、前記天井面には通路が凹設されると共に前記枠体内の収容空間に連通され、前記枠体の底面には前記収容空間に連通される開口端を有することと、前記枠体の底面に設置され、前記収容空間を封鎖させ、上部には平坦面を有し、中心部には貫通孔が設けられる台座と、前記収容空間に設置されると共に前端が前記通路内まで延伸されて前記型穴中に露出され、前記前端から型穴の圧力が伝達された後、前記通路内で軸方向に変移する押圧レバーと、前記平坦面と前記押圧レバーとの間に設置されるひずみ構造であって、前記押圧レバーの変位により伝達されて来た圧力を前記ひずみ構造の変形量に変換させることと、前記ひずみ構造に設置され、前記ひずみ構造の変形量を計測すると共に変形情報に変換させるための少なくとも1つのひずみゲージと、前記押圧レバーに設置され、前記押圧レバーの即時温度を計測すると共に押圧レバー温度情報に変換させるための少なくとも1つの温度検出素子と、前記ひずみゲージ及び前記温度検出素子にそれぞれ電気的に接続され、前記変形情報及び前記押圧レバー温度情報を取得するための処理ユニットと、を備えることを特徴とする型内の圧力及び温度検出装置。 The present invention for solving the above-mentioned problems is a frame body which is internally provided in a mold and whose ceiling surface is exposed from a mold hole of the mold, wherein the ceiling surface is provided with a passage and is concave. It has an open end that communicates with the accommodation space in the body, and has an open end on the bottom surface of the frame body that communicates with the accommodation space, and is installed on the bottom surface of the frame body to close the accommodation space and have a flat surface on the top. A pedestal having a through hole in the center, and a front end that is installed in the accommodation space and extends into the passage and is exposed in the mold cavity, and the pressure of the mold cavity is transmitted from the front end. After that, the pressure lever is displaced axially in the passage, and the strain structure is installed between the flat surface and the pressure lever, and the pressure transmitted by the displacement of the pressure lever is Converting to the deformation amount of the strain structure, installed in the strain structure, at least one strain gauge for measuring the deformation amount of the strain structure and converting it into deformation information, and installed in the pressing lever, At least one temperature detecting element for measuring the immediate temperature of the pressing lever and converting it into pressing lever temperature information, and electrically connected to the strain gauge and the temperature detecting element, respectively, the deformation information and the pressing lever. A pressure and temperature detection device in a mold, comprising: a processing unit for acquiring temperature information.

本発明の好適例において、前記枠体の前記天井面は前記型穴面と概ね水平になり、且つ初期装設時には、前記押圧レバーが圧力を受けていない場合、前記押圧レバーの前端の端面及び前記天井面が平坦性を保持させる。 In a preferred embodiment of the present invention, the ceiling surface of the frame is substantially horizontal to the mold cavity surface, and at the time of initial installation, when the pressure lever is not receiving pressure, an end surface of a front end of the pressure lever and The ceiling surface maintains flatness.

本発明の好適例において、前記押圧レバーは前記前端に連結されるレバー本体及び前記レバー本体に連結されると共に前記前端に背向する後端平坦面を更に備える。前記後端平坦面は前記収容空間に位置されると共に前記ひずみ構造に当接され、前記後端平坦面の直径は前記通路の直径より大きい。前記レバー本体には弾性部材が覆設され、前記弾性部材の両端が前記後端平坦面及び前記収容空間から前記通路の端面にそれぞれ近接されてその移動限界を限定させる。前記弾性部材は、前記押圧レバーが外力を解除させて前記軸方向への変移を発生させた際に、前記押圧レバーを原位置に復帰させるために用いられる。 In a preferred embodiment of the present invention, the pressing lever further includes a lever body connected to the front end and a rear end flat surface connected to the lever body and facing the front end. The rear end flat surface is located in the accommodation space and abuts against the strained structure, and the rear end flat surface has a diameter larger than a diameter of the passage. An elastic member is covered on the lever body, and both ends of the elastic member are respectively brought close to the rear end flat surface and the end surface of the passage from the accommodation space to limit a movement limit thereof. The elastic member is used to return the pressing lever to the original position when the pressing lever releases an external force and causes a displacement in the axial direction.

本発明の好適例において、これら前記温度検出素子は、前記押圧レバー及び前記ひずみ構造に設置され、前記押圧レバー温度情報及び前記ひずみ構造の即時温度をそれぞれ計測させると共に前記処理ユニットにフィードバックさせるために用いられる。 In a preferred embodiment of the present invention, these temperature detecting elements are installed in the pressure lever and the strain structure, and in order to measure the pressure lever temperature information and the instantaneous temperature of the strain structure, respectively, and to feed them back to the processing unit. Used.

本発明の好適例において、前記ひずみ構造は、押板部と、座板部と、両端が前記押板部及び前記座板部にそれぞれ連結される1対の支持梁と、を備える。前記座板部は前記平坦面に定位され、前記押板部は前記押圧レバーの後端に隣接し、前記1対の支持梁は前記押圧レバーの移動方向に平行に設置される。前記1対の支持梁の梁体は前記押板部が加える圧力を受けた後、他の支持梁に背向する方向にそれぞれ湾曲変形される。少なくとも1つのひずみゲージが前記1対の支持梁のうちの1つの梁体に設置される。 In a preferred embodiment of the present invention, the strained structure includes a push plate portion, a seat plate portion, and a pair of support beams whose both ends are connected to the push plate portion and the seat plate portion, respectively. The seat plate portion is located on the flat surface, the push plate portion is adjacent to the rear end of the push lever, and the pair of support beams are installed parallel to the moving direction of the push lever. The beam bodies of the pair of support beams are respectively bent and deformed in a direction facing the other support beams after receiving the pressure applied by the pressing plate portion. At least one strain gauge is installed on one beam body of the pair of support beams.

本発明の好適例において、これら前記支持梁は金属やセラミック等の材料で製造され、更には低温の場合はプラスチックにより製造されてもよい。原則的に、これら前記支持梁は前記収容空間内における変形量が永久的な変形を生じさせない材料であればよい。 In a preferred embodiment of the present invention, the support beams may be made of a material such as metal or ceramic, and may be made of plastic when the temperature is low. In principle, these supporting beams may be made of any material that does not cause permanent deformation in the amount of deformation in the accommodation space.

本発明の好適例において、前記座板部は前記平坦面の前記座板部の中心位置に形成される凹む位置決めスロットに定位され、且つ対応する前記平坦面には前記位置決めスロットと嵌め合わせられる凸部が設けられる。 In a preferred embodiment of the present invention, the seat plate portion is located in a recessed positioning slot formed at a center position of the seat plate portion of the flat surface, and the corresponding flat surface is fitted with the positioning slot. Parts are provided.

本発明の好適例において、これら前記ひずみゲージ及びこれら前記温度検出素子の電力及び信号の伝送ラインが前記枠体及び前記台座の外まで貫通させるように、前記押圧レバーの後端の端面の中心部にはめくら穴が設けられ、前記ひずみ構造の中心部及び前記台座の中心部にはスルーホールが設けられる。 In a preferred embodiment of the present invention, the central portion of the end face of the rear end of the pressing lever so that the transmission lines of power and signals of the strain gauges and the temperature detecting elements penetrate to the outside of the frame and the pedestal. A blind hole is provided in the center, and a through hole is provided in the center of the strained structure and the center of the pedestal.

本発明の好適例において、前記処理ユニットは前記ひずみ構造の変形情報及び前記押圧レバー温度情報をそれぞれ取得させると共に前記押圧レバーの温度において前記ひずみ構造の材質が発生させる変形量に対する影響を評価した後、実際の型穴の圧力値を更に推定させる。 In a preferred embodiment of the present invention, the processing unit obtains the deformation information of the strain structure and the pressure lever temperature information, respectively, and evaluates the influence on the deformation amount generated by the material of the strain structure at the temperature of the pressure lever. , Let the actual pressure value of the mold cavity be further estimated.

本発明の好適例において、前記処理ユニットは同じ時間における前記ひずみ構造の変形情報、前記ひずみ構造の即時温度、前記押圧レバー温度情報をそれぞれ取得させると共に前記ひずみ構造の材質が発生させる変形量に対する前記ひずみ構造の即時温度の影響を換算した後、実際の型穴の圧力値を更に推定させる。 In a preferred embodiment of the present invention, the processing unit obtains the deformation information of the strained structure at the same time, the immediate temperature of the strained structure, and the pressing lever temperature information, and the deformation amount generated by the material of the strained structure. After converting the effect of the immediate temperature of the strained structure, the actual pressure value of the mold cavity is further estimated.

本発明によれば、プロセス段階の型穴のプロセスの圧力及び温度の変化過程の曲線を提供し、完成品の品質の判定及び設備の機能の検証という目標を達成させる。品質管理システムが射出成形プロセスのパラメータを計測可能にするためには、射出成形品の品質を判定することが多大に貢献する。
検出構造の設計には制限があるため、異なる位置に多くの異なる検出器を使用して金型の状態を監視しなければならず、システムの装設及び配置が複雑化し、同じ位置から検出は行えなかったが、本発明が構築する検出器を利用すれば、金型の温度及び圧力の変化を即時計測可能になる。
本発明に係る検出器を利用して型内の圧力及び温度を計測し、従来の射出成形設備と統合して機能校正及びライン上の完成品の品質の判定を行う。本発明に係る型内の圧力及び温度検出装置は、金型の圧力及び温度を即時計測可能であるため、従来の金型感知技術のシステムが複雑であり、金型の統合性が低いという問題を解決させる。
According to the present invention, a curve of the process pressure and temperature change process of the process stage mold cavity is provided to achieve the goals of determining the quality of the finished product and verifying the functioning of the equipment. In order for the quality control system to be able to measure the parameters of the injection molding process, determining the quality of the injection molded product contributes significantly.
Due to the limited design of the detection structure, many different detectors must be used at different positions to monitor the mold condition, which complicates the installation and placement of the system and makes it impossible to detect from the same position. Although it could not be done, if the detector constructed by the present invention is used, it becomes possible to immediately measure changes in the temperature and pressure of the mold.
The pressure and temperature in the mold are measured using the detector according to the present invention, and the function calibration and the quality determination of the finished product on the line are performed by integrating with the conventional injection molding equipment. Since the pressure and temperature detecting device in the mold according to the present invention can immediately measure the pressure and temperature of the mold, the system of the conventional mold sensing technology is complicated and the integration of the mold is low. To solve.

従来の金型注入プロセスでは、型内の圧力と実際の型内の圧力の変化を模擬するグラフである。In a conventional mold injection process, it is a graph simulating the change of pressure inside the mold and the actual pressure inside the mold. 本発明の型内の圧力と温度の検出装置の実施形態が型内に適用された断面の概略図である。1 is a schematic view of a cross section of an embodiment of a pressure and temperature detecting device in a mold according to the present invention applied to the mold. 本発明の型内の圧力と温度の検出装置の実施形態を示す正面分解図である。It is a front exploded view showing an embodiment of a pressure and temperature detecting device in a mold of the present invention. 本発明の型内の圧力と温度の検出装置の実施形態のひずみ構造を示す傾斜図である。It is an inclination view showing a strained structure of an embodiment of a pressure and temperature detecting device in a mold of the present invention. 図3に示すひずみ構造が受圧により変形される傾斜の概略図である。FIG. 4 is a schematic view of an inclination in which the strained structure shown in FIG. 3 is deformed by receiving pressure. 本発明の型内の圧力と温度の検出装置の実施形態の正面組み合わせ図及び注型材料が型穴に注入されないときの検出装置の状態を示す概略図である。1 is a front view of an embodiment of a pressure and temperature detecting device in a mold of the present invention, and a schematic view showing a state of the detecting device when a casting material is not injected into a mold cavity. 本発明の型内の圧力と温度の検出装置の実施形態が注型材料が型穴に注入されるときの検出装置の作動を示す概略図である。FIG. 3 is a schematic view showing the operation of the pressure and temperature detecting device in the mold of the present invention when the casting material is injected into the mold cavity.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Needless to say, the present invention is not limited to the following examples and can be arbitrarily changed without departing from the gist of the present invention.

以下、図2乃至7を参照しながら、本発明をさらに詳しく説明する。本実施形態の圧力及び温度検出装置1は、金型Aに応用され、圧力及び温度検出装置1は、枠体11と、台座12と、押圧レバー13と、ひずみ構造14と、ひずみゲージ15と、温度検出素子16と、を備える。
枠体11は金型Aに内設されると共に枠体11の天井面111の金型Aの型穴(Mold Cavity)Bの空間中に露出される。枠体11は天井面111に凹設される通路112及び枠体11内に同様に設置されると共に通路112に連通される収容空間113を有し、枠体11の底面114には前記収容空間113に連通される開口端1141を含む。
台座12は枠体11の底面114の開口端1141に設置され、具体的には、図3、図6、及び図7に示される実施形態のように、前記台座12の外周壁面に雄ねじ123が設置され、前記枠体11の開口端1141の内壁には対応するように雌ねじ1142が設置され、これらが互いに螺設され、前記台座12が前記枠体11の底面114に分離可能に設置され(当然ながら、台座12の取り外しが不要な場合、溶接や粘着等の方式が採用され、前記台座12が前記枠体11の底面114の開口端1141に結合されてもよい)、前記収容空間113が封鎖される。台座12の上部には平坦面121を有し、台座12の中心部には台座12の中心軸を貫通させる貫通孔122が設けられる。
押圧レバー13は収容空間113に設置されると共にその前端131は通路112内まで延伸され、前記型穴Bの空間中に露出される。図7に示されるように、前記型穴Bが圧力Fを発生させると、押圧レバー13の前端131が型穴Bの圧力を伝達させ、押圧レバー13が前記通路112内で収容空間113の方向に向けて軸方向に変移する。
ひずみ構造14は平坦面121と押圧レバー13の後端132との間に設置され、且つ前記平坦面121に定位され、押圧レバー13が変移されることにより伝達されて来た圧力をひずみ構造14の変形量に変換させる。
ひずみゲージ15はひずみ構造14に設置され、ひずみ構造14の変形量に基づいて変形情報151に変換させる。当然ながら、ひずみ構造14の変形部材(図6の支持梁143参照)は複数箇所あり、前記変形部材に1つずつ設置されるか1つが選択されて設置される。
温度検出素子16(即ち、押圧レバー温度感知素子16a)は押圧レバー13中に設置され(図3及び図6に示されるように、押圧レバー13の後端132の端面の中心部にはめくら穴1322が凹設される)、押圧レバー13の即時温度を計測させると共に押圧レバー温度情報16a1に変換させるために用いられる(押圧レバー13の前端131が型穴Bから露出されるため、押圧レバー温度情報16a1が精確な型穴Bの実温度値を取得可能である)。
処理ユニット17はひずみゲージ15及び温度検出素子16にそれぞれ電気的に接続され、前記変形情報151及び押圧レバー温度情報16a1を取得し、これを変形情報を圧力情報に変換する根拠とする。
Hereinafter, the present invention will be described in more detail with reference to FIGS. The pressure and temperature detection device 1 of the present embodiment is applied to a mold A, and the pressure and temperature detection device 1 includes a frame body 11, a pedestal 12, a pressing lever 13, a strain structure 14, and a strain gauge 15. , And a temperature detection element 16.
The frame 11 is provided inside the mold A and is exposed in the space of the mold cavity B of the mold A on the ceiling surface 111 of the frame 11. The frame 11 has a passage 112 recessed in the ceiling surface 111 and an accommodation space 113 that is similarly installed in the frame 11 and communicates with the passage 112. The bottom surface 114 of the frame 11 has the accommodation space described above. It includes an open end 1141 communicating with 113.
The pedestal 12 is installed at the open end 1141 of the bottom surface 114 of the frame body 11. Specifically, as in the embodiment shown in FIGS. 3, 6, and 7, a male screw 123 is provided on the outer peripheral wall surface of the pedestal 12. The female screw 1142 is installed so as to correspond to the inner wall of the opening end 1141 of the frame 11 and these are screwed to each other, and the pedestal 12 is separably installed on the bottom surface 114 of the frame 11 ( Of course, when the pedestal 12 does not need to be removed, a method such as welding or adhesion may be adopted, and the pedestal 12 may be coupled to the open end 1141 of the bottom surface 114 of the frame body 11) and the accommodation space 113 To be blocked. A flat surface 121 is provided on the upper portion of the pedestal 12, and a through hole 122 that penetrates the central axis of the pedestal 12 is provided at the center of the pedestal 12.
The pressing lever 13 is installed in the accommodation space 113, and the front end 131 of the pressing lever 13 extends into the passage 112 and is exposed in the space of the mold cavity B. As shown in FIG. 7, when the mold hole B generates a pressure F, the front end 131 of the pressing lever 13 transmits the pressure of the mold hole B, and the pressing lever 13 moves in the passage 112 toward the accommodation space 113. Axial displacement toward.
The strain structure 14 is installed between the flat surface 121 and the rear end 132 of the pressing lever 13, and is localized on the flat surface 121. The strain structure 14 transfers the pressure transmitted by the displacement of the pressing lever 13. It is converted into the deformation amount of.
The strain gauge 15 is installed in the strain structure 14 and converted into deformation information 151 based on the amount of deformation of the strain structure 14. As a matter of course, there are a plurality of deforming members of the strain structure 14 (see the support beams 143 in FIG. 6), and they are installed one by one on the deforming member or one is selected.
The temperature detecting element 16 (that is, the pressing lever temperature sensing element 16a) is installed in the pressing lever 13 (as shown in FIGS. 3 and 6, a blind hole is formed at the center of the end surface of the rear end 132 of the pressing lever 13. 1322 is provided as a recess) and is used for measuring the immediate temperature of the pressing lever 13 and converting it into the pressing lever temperature information 16a1 (since the front end 131 of the pressing lever 13 is exposed from the mold cavity B, the pressing lever temperature The information 16a1 can acquire an accurate actual temperature value of the mold cavity B).
The processing unit 17 is electrically connected to the strain gauge 15 and the temperature detection element 16, respectively, and acquires the deformation information 151 and the pressure lever temperature information 16a1 and uses this as the basis for converting the deformation information into pressure information.

ある実施形態において、枠体11の天井面111は型穴面B1と概ね水平になり、且つ初期装設状態では、押圧レバー13が型穴の圧力Fを受けていない場合、押圧レバー13の前端131の端面及び天井面111が平坦性を保持させる(図6参照)。
射出成形プロセスが実行されている場合、型穴Bは注型材料Cが射出されることで発生する圧力の上昇が変化し、その型穴Bの圧力Fにより押圧レバー13が押され、押圧レバー13がひずみ構造14の上部に向けて押動される(押板部141参照)。
ひずみ構造14はその底部(底板部142参照)が固定される台座12の平坦面121に定位されるため、ひずみ構造14の座板部142が動かないように固定され、押板部141が伝来させる圧力により支持梁143が変形され、前記支持梁143に設置されるひずみゲージ15によりその変形値が計測される(図7参照)。
In one embodiment, the ceiling surface 111 of the frame body 11 is substantially horizontal to the mold hole surface B1, and in the initially installed state, when the pressure lever 13 does not receive the pressure F of the mold hole, the front end of the pressure lever 13 is The end surface of 131 and the ceiling surface 111 maintain flatness (see FIG. 6 ).
When the injection molding process is performed, the rise of the pressure generated by the injection of the casting material C in the mold hole B changes, and the pressure F of the mold hole B pushes the pressing lever 13 to press the pressing lever 13. 13 is pushed toward the upper portion of the strain structure 14 (see the pushing plate portion 141).
Since the strain structure 14 is localized on the flat surface 121 of the pedestal 12 to which the bottom portion (see the bottom plate portion 142) is fixed, the seat plate portion 142 of the strain structure 14 is fixed so as not to move, and the push plate portion 141 is transmitted. The supporting beam 143 is deformed by the applied pressure, and the deformation value is measured by the strain gauge 15 installed on the supporting beam 143 (see FIG. 7).

ある実施形態において、図3に示されるように、押圧レバー13は前端131に連結されるレバー本体133、及びレバー本体133に連結されると共に後端132に位置される後端平坦面1321を更に備え、後端平坦面1321は収容空間113に位置されると共にひずみ構造14に当接される。後端平坦面1321の直径は通路112の直径より大きく、レバー本体133には弾性部材18が覆設され(例えば、圧縮バネまたは錐形ワッシャー)、弾性部材18の前後両端が「後端平坦面1321」の天井面及び「収容空間113の通路112に連結される端面」によりその移動限界をそれぞれ限定させる。
前記弾性部材18は、押圧レバー13が外力(型穴の圧力)を解除させた後、ひずみ構造14が原状を回復させて押圧レバー13が戻された際に、ひずみ構造14の押板部141を押圧レバー13の後端132(即ち、後端平坦面1321の底面)に当接させるために用いられる。
3, the pressing lever 13 may further include a lever body 133 connected to the front end 131, and a rear end flat surface 1321 connected to the lever body 133 and located at the rear end 132. The rear end flat surface 1321 is located in the accommodation space 113 and abuts on the strain structure 14. The diameter of the rear end flat surface 1321 is larger than the diameter of the passage 112, and the lever body 133 is covered with the elastic member 18 (for example, a compression spring or a conical washer). The movement limit is limited by the ceiling surface of 1321" and the "end surface of the accommodation space 113 connected to the passage 112".
After the pressing lever 13 releases the external force (pressure of the mold cavity), the elastic member 18 recovers the original state of the strain structure 14 and the pressing lever 13 is returned to the pressing plate portion 141 of the strain structure 14. Is used to contact the rear end 132 of the pressing lever 13 (that is, the bottom surface of the rear end flat surface 1321).

ある実施形態において、温度検出素子16は押圧レバー温度感知素子16a及びひずみ構造温度感知素子16bであり、押圧レバー温度感知素子16aは押圧レバー13に設置され、ひずみ構造温度感知素子16bはひずみ構造14に設置され、押圧レバー温度情報16a1及びひずみ構造14のひずみ構造温度情報16b1をそれぞれ計測させると共に前記処理ユニット17にフィードバックさせる。 In one embodiment, the temperature sensing element 16 is a pressure lever temperature sensing element 16a and a strain structure temperature sensing element 16b, the pressure lever temperature sensing element 16a is installed on the pressure lever 13, and the strain structure temperature sensing element 16b is a strain structure 14. The pressure lever temperature information 16a1 and the strain structure temperature information 16b1 of the strain structure 14 are respectively measured and fed back to the processing unit 17.

ある実施形態において、図6及び図7に示されるように、ひずみ構造14は押板部141と、座板部142と、両端が押板部及び座板部にそれぞれ連結される弾性を有する1対の支持梁143と、を備える。座板部142は平坦面121に定位され(具体的には、その定位方式は座板部142の中心位置に凹む位置決めスロット1421が形成され、且つ対応する平坦面121には位置決めスロット1421と嵌め合わせられる凸部1211が設けられる)、押板部141は押圧レバー13の後端132に隣接し、2つの支持梁143は押圧レバー13の軸方向の移動方向に平行するように設置される(図3参照)。
前記1対の支持梁143の梁体1431は押板部141により加えられる圧力Fを受けた後、他の支持梁143に背向または対向する方向にそれぞれ湾曲変形される(即ち、前記ひずみ構造14の外側または内側に向けて湾曲され、図4及び図5に示されるように、前記1対の支持梁143が前記ひずみ構造14の外側に向けて湾曲される実施態様)。
ひずみゲージ15は支持梁143のうちの1つか2つの支持梁1431の梁体1431に設置される。なお、2つの支持梁143の厚さは同じであるか、同じでなくてもよく、且つ2つの支持梁143はひずみ構造14の中心軸Xに対して等径または不等径を呈して設置され、これはひずみゲージ15が2つの支持梁143のうちの1つまたは両者に設置される位置及び数量によって決められる(図3参照)。
In one embodiment, as shown in FIGS. 6 and 7, the strain structure 14 has a push plate portion 141, a seat plate portion 142, and both ends having elasticity to be connected to the push plate portion and the seat plate portion, respectively. And a pair of support beams 143. The seat plate portion 142 is positioned on the flat surface 121 (specifically, the positioning method forms a positioning slot 1421 recessed in the center position of the seat plate portion 142, and the corresponding flat surface 121 is fitted with the positioning slot 1421. The pressing plate portion 141 is adjacent to the rear end 132 of the pressing lever 13, and the two support beams 143 are installed so as to be parallel to the axial movement direction of the pressing lever 13 (the convex portion 1211 to be fitted is provided). (See FIG. 3).
The beam body 1431 of the pair of support beams 143 receives the pressure F applied by the push plate portion 141 and is then curved and deformed in the direction opposite to or opposite to the other support beams 143 (that is, the strained structure). 14 is curved toward the outside or inside, and the pair of support beams 143 is curved toward the outside of the strain structure 14 as shown in FIGS. 4 and 5.
The strain gauge 15 is installed on the beam body 1431 of one or two support beams 1431 of the support beams 143. The two support beams 143 may or may not have the same thickness, and the two support beams 143 are installed so as to have the same diameter or unequal diameter with respect to the central axis X of the strain structure 14. This is determined by the position and quantity at which the strain gauge 15 is installed on one or both of the two support beams 143 (see FIG. 3).

当然ながら、前述のこれら前記支持梁143は好ましくは金属材料で製造されるが、これに限られず、例えば、セラミック等の材料で製造されてもよく、更には低温の場合はプラスチック材料で製造されてもよく、これら前記支持梁143が収容空間113内で金型プロセスの温度を受け、且つその変形量が永久的な変形を生じない材料であればよい。 Of course, the support beams 143 described above are preferably made of a metal material, but the present invention is not limited to this, and may be made of a material such as ceramic, or even a plastic material at low temperatures. Alternatively, any material may be used as long as the support beams 143 receive the temperature of the mold process in the accommodation space 113 and the amount of deformation does not cause permanent deformation.

ちなみに、ひずみ構造14の押板部141の中心部に設けられるスルーホール1411、座板部142の中心部に設けられるスルーホール1422、及び台座142の中心部に設けられる貫通孔122には、これら前記ひずみゲージ15及びこれら前記温度検出素子16の電力及び信号の伝送ライン(L1、L2)が枠体11及び台座12の外部まで貫通される(図6及び図7参照)。当然ながら、貫通孔122から伝送ライン(L1、L2)が引き出された後、需要に応じて密封される。 By the way, the through hole 1411 provided in the central portion of the push plate portion 141 of the strain structure 14, the through hole 1422 provided in the central portion of the seat plate portion 142, and the through hole 122 provided in the central portion of the pedestal 142 have these holes. The strain gauge 15 and the power and signal transmission lines (L1, L2) of the temperature detecting element 16 are penetrated to the outside of the frame 11 and the pedestal 12 (see FIGS. 6 and 7). As a matter of course, after the transmission lines (L1, L2) are drawn out from the through hole 122, they are hermetically sealed according to demand.

さらに、処理ユニット17はひずみゲージ15からひずみ構造14の変形情報151、及び押圧レバー温度感知素子16aから押圧レバー温度情報16a1をそれぞれ取得させ、且つ温度がひずみ構造14の材質が発生させる変形量に対する押圧レバー温度情報16a1の影響を評価(同じ材質で異なる温度における変形量の変化)した後、実際の型穴の圧力値を更に推定させる。
さらに、押圧レバー13に押圧レバー温度感知素子16aが設置されるほか、ひずみ構造14にもひずみ構造温度感知素子16bが設置される場合、前記処理ユニット17は同じ時間におけるひずみ構造14の変形情報151、ひずみ構造14の即時温度のひずみ構造温度情報16b1、及び押圧レバー温度情報16a1をそれぞれ取得させ、実際の温度の変形量に対するひずみ構造14の影響を換算した後、実際の型穴の圧力値を更に推定させる。
この実施形態において、ひずみ構造14の即時温度が直接取得され、より精確な変形量の影響が得られ、実際の型穴の圧力値を更に正確に評価でき、プロセス段階において、型穴のプロセスの圧力及び型穴の温度変化過程の曲線を提供し、完成品の品質の判定及び設備機能の検証という目標を達成させる。
Further, the processing unit 17 respectively obtains the deformation information 151 of the strain structure 14 from the strain gauge 15 and the pressing lever temperature information 16a1 from the pressing lever temperature sensing element 16a, and the temperature corresponds to the amount of deformation generated by the material of the strain structure 14. After evaluating the influence of the pressure lever temperature information 16a1 (change in deformation amount at the same material but at different temperatures), the actual pressure value of the mold cavity is further estimated.
Further, when the pressing lever temperature sensing element 16a is installed on the pressing lever 13 and the strained structure temperature sensing element 16b is installed on the strained structure 14, the processing unit 17 causes the deformation information 151 of the strained structure 14 at the same time. , The strain structure temperature information 16b1 of the immediate temperature of the strain structure 14 and the pressing lever temperature information 16a1 are respectively acquired, and after converting the influence of the strain structure 14 on the deformation amount of the actual temperature, the actual pressure value of the mold cavity is calculated. Further estimate.
In this embodiment, the immediate temperature of the strained structure 14 is directly obtained, a more accurate effect of the amount of deformation is obtained, the pressure value of the actual mold cavity can be evaluated more accurately, and the process of the mold cavity can be evaluated in the process stage. It provides curves of pressure and mold temperature changes, and achieves the goals of determining the quality of finished products and verifying equipment functions.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 Although the embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the scope of the present invention.

1 圧力及び温度検出装置
11 枠体
111 天井面
112 通路
113 収容空間
114 底面
1141 開口端
1142 雌ねじ
12 台座
121 平坦面
1211 凸部
122 貫通孔
123 雄ねじ
13 押圧レバー
131 前端
132 後端
1321 後端平坦面
1322 めくら穴
133 レバー本体
14 ひずみ構造
141 押板部
1411 スルーホール
142 座板部
1421 位置決めスロット
1422 スルーホール
143 支持梁
1431 梁体
15 ひずみゲージ
151 変形情報
16 温度検出素子
16a 押圧レバー温度感知素子
16a1 押圧レバー温度情報
16b ひずみ構造温度感知素子
16b1 ひずみ構造温度情報
17 処理ユニット
18 弾性部材
A 金型
B 型穴
B1 型穴面
C 注型材料
L1 伝送ライン
L2 伝送ライン
F 圧力
X 中心軸
DESCRIPTION OF SYMBOLS 1 Pressure and temperature detection device 11 Frame body 111 Ceiling surface 112 Passage 113 Storage space 114 Bottom surface 1141 Opening end 1142 Female screw 12 Pedestal 121 Flat surface 1211 Convex part 122 Through hole 123 Male screw 13 Press lever 131 Front end 132 Rear end 1321 Rear end flat surface 1322 Blind hole 133 Lever body 14 Strain structure 141 Push plate part 1411 Through hole 142 Seat plate part 1421 Positioning slot 1422 Through hole 143 Support beam 1431 Beam body 15 Strain gauge 151 Deformation information 16 Temperature detection element 16a Push lever Temperature sensing element 16a1 Push Lever temperature information 16b Strain structure temperature sensing element 16b1 Strain structure temperature information 17 Processing unit 18 Elastic member A Mold B Mold hole B1 Mold hole surface C Casting material L1 Transmission line L2 Transmission line F Pressure X Central axis

Claims (10)

構造が、
金型に内設されると共に天井面が前記金型の型穴から露出される枠体であって、前記天井面には通路が凹設されると共に前記枠体内の収容空間に連通され、前記枠体の底面には前記収容空間に連通される開口端を有する枠体と、
前記枠体の底面に設置され、前記収容空間を封鎖させ、上部には平坦面を有し、中心部には貫通孔が設けられる台座と、
前記収容空間に設置されると共に前端が前記通路内まで延伸されて前記型穴中に露出され、前記前端から型穴の圧力が伝達された後、前記通路内で軸方向に変移する押圧レバーと、
前記平坦面と前記押圧レバーとの間に設置されるひずみ構造であって、前記押圧レバーが変位されることにより伝達されて来た圧力を前記ひずみ構造の変形量に変換させるひずみ構造と、
前記ひずみ構造に設置され、前記ひずみ構造の変形量を計測すると共に変形情報に変換させるための少なくとも1つのひずみゲージと、
前記押圧レバーに設置され、前記押圧レバーの即時温度を計測すると共に押圧レバー温度情報に変換させるための少なくとも1つの温度検出素子と、
前記ひずみゲージ及び前記温度検出素子にそれぞれ電気的に接続され、前記変形情報及び前記押圧レバー温度情報を取得するための処理ユニットと、を備えることを特徴とする、
型内の圧力及び温度検出装置。
Structure
A frame body which is internally provided in a mold and whose ceiling surface is exposed from a mold hole of the mold, wherein a passage is recessed in the ceiling surface and communicates with a housing space in the frame body, A frame body having an open end communicating with the accommodation space on the bottom surface of the frame body;
A pedestal that is installed on the bottom surface of the frame body, seals the accommodation space, has a flat surface in the upper portion, and has a through hole in the central portion,
A pressing lever installed in the accommodation space and having a front end extending into the passage and exposed in the mold cavity, and after the pressure of the mold cavity is transmitted from the front end, the pressing lever is displaced in the axial direction in the passage. ,
A strain structure installed between the flat surface and the pressing lever, the strain structure for converting the pressure transmitted by the displacement of the pressing lever to the deformation amount of the strain structure,
At least one strain gauge installed in the strain structure, for measuring the amount of deformation of the strain structure and converting it into deformation information;
At least one temperature detection element installed on the pressing lever, for measuring the immediate temperature of the pressing lever and converting it into pressing lever temperature information;
A processing unit that is electrically connected to the strain gauge and the temperature detection element, respectively, and that acquires the deformation information and the pressing lever temperature information.
Pressure and temperature detection device in the mold.
前記枠体の前記天井面は前記型穴面と概ね水平になり、且つ初期装設時には、前記押圧レバーが圧力を受けていない場合、前記押圧レバーの前端の端面及び前記天井面が平坦性を保持させることを特徴とする請求項1に記載の型内の圧力及び温度検出装置。 The ceiling surface of the frame body is substantially horizontal to the mold cavity surface, and at the time of initial installation, if the pressure lever is not receiving pressure, the front end surface of the pressure lever and the ceiling surface have flatness. The pressure and temperature detecting device in the mold according to claim 1, which is held. 前記押圧レバーは前記前端に連結されるレバー本体及び前記レバー本体に連結されると共に前記前端に背向する後端平坦面を更に備え、前記後端平坦面は前記収容空間に位置されると共に前記ひずみ構造に当接され、前記後端平坦面の直径は前記通路の直径より大きく、前記レバー本体には弾性部材が覆設され、前記弾性部材の両端が前記後端平坦面及び前記収容空間から前記通路の端面にそれぞれ連結されて前記弾性部材の移動限界を共に限定させることを特徴とする請求項2に記載の型内の圧力及び温度検出装置。 The pressing lever further includes a lever main body connected to the front end and a rear end flat surface connected to the lever main body and facing the front end, the rear end flat surface being located in the accommodation space. The rear end flat surface is in contact with a strained structure, the diameter of the rear end flat surface is larger than the diameter of the passage, the lever body is covered with elastic members, and both ends of the elastic member are separated from the rear end flat surface and the accommodation space. 3. The pressure and temperature detecting device in a mold according to claim 2, wherein the pressure detecting unit and the temperature detecting unit are respectively connected to end faces of the passages to limit movement limits of the elastic members. これら前記温度検出素子は前記押圧レバー及び前記ひずみ構造に設置され、前記押圧レバー温度情報及び前記ひずみ構造のひずみ構造温度情報をそれぞれ計測させると共に前記処理ユニットにフィードバックさせるために用いられることを特徴とする請求項1に記載の型内の圧力及び温度検出装置。 These temperature detecting elements are installed on the pressure lever and the strain structure, and are used to measure the pressure lever temperature information and the strain structure temperature information of the strain structure, respectively, and to feed them back to the processing unit. The pressure and temperature detecting device in the mold according to claim 1. 前記ひずみ構造は、押板部と、座板部と、両端が前記押板部及び前記座板部にそれぞれ連結される弾性を有する1対の支持梁と、を備え、前記座板部は前記平坦面に定位され、前記押板部は前記押圧レバーの後端に隣接し、前記1対の支持梁は前記押圧レバーの移動方向に平行するように設置され、且つ前記1対の支持梁の梁体が前記押板部により加えられる圧力を受けた後、他の支持梁に背向または対向する方向にそれぞれ湾曲変形され、少なくとも1つのひずみゲージが前記1対の支持梁のうちの1つの梁体に設置されることを特徴とする請求項1乃至4の何れか1項に記載の型内の圧力及び温度検出装置。 The strained structure includes a push plate portion, a seat plate portion, and a pair of elastic support beams, both ends of which are connected to the push plate portion and the seat plate portion, respectively. The pressing plate portion is located on a flat surface, the pressing plate portion is adjacent to the rear end of the pressing lever, the pair of supporting beams are installed so as to be parallel to the moving direction of the pressing lever, and After the beam body is subjected to the pressure applied by the push plate portion, the beam body is respectively curved and deformed in a direction opposite to or opposite to the other support beams, and at least one strain gauge is provided in one of the pair of support beams. The pressure and temperature detecting device in a mold according to any one of claims 1 to 4, which is installed on a beam. これら前記支持梁は金属、セラミック、またはプラスチック材質で製造され、これら前記支持梁は前記収容空間内で金型プロセスの温度を受け、その変形量は永久的な変形を生じさせない程度であることを特徴とする請求項5に記載の型内の圧力及び温度検出装置。 The support beams are made of metal, ceramic, or plastic material, and the support beams are subjected to the temperature of the mold process in the accommodation space, and the amount of deformation is such that permanent deformation is not caused. The in-mold pressure and temperature detection device of claim 5. 前記座板部は前記平坦面の前記座板部の中心位置に凹んで形成される位置決めスロットに定位され、且つ対応する前記平坦面には前記位置決めスロットと嵌め合わせられる凸部が設けられることを特徴とする請求項5に記載の型内の圧力及び温度検出装置。 The seat plate portion is located in a positioning slot formed by recessing the flat surface at the center position of the seat plate portion, and the corresponding flat surface is provided with a convex portion to be fitted with the positioning slot. The in-mold pressure and temperature detection device of claim 5. これら前記ひずみゲージ及びこれら前記温度検出素子の電力及び信号の伝送ラインが前記枠体及び前記台座の外まで貫通させるように、前記ひずみ構造の前記押板部の中心部、前記座板部の中心部、及び前記台座の中心部にはスルーホールが設けられることを特徴とする請求項4に記載の型内の圧力及び温度検出装置。 The strain gauge and the center of the push plate portion of the strain structure, the center of the seat plate portion, so that the power and signal transmission lines of the temperature detection element penetrate to the outside of the frame and the pedestal. The pressure and temperature detecting device in the mold according to claim 4, wherein a through hole is provided in the central part of the base and the pedestal. 前記処理ユニットは前記変形情報及び前記押圧レバー温度情報をそれぞれ取得させると共に前記ひずみ構造の材質が発生させる変形量に対する前記押圧レバー温度情報の影響を評価した後、実際の型穴の圧力値を更に推定させることを特徴とする請求項1に記載の型内の圧力及び温度検出装置。 The processing unit obtains the deformation information and the pressing lever temperature information respectively, and after evaluating the influence of the pressing lever temperature information on the amount of deformation generated by the material of the strained structure, the actual pressure value of the mold cavity is further calculated. The pressure and temperature detecting device in the mold according to claim 1, wherein the pressure and temperature are estimated. 前記処理ユニットは同じ時間における前記ひずみ構造の変形情報、前記ひずみ構造の即時温度、前記押圧レバーの温度情報をそれぞれ取得させると共に前記ひずみ構造の材質が発生させる変形量に対する前記ひずみ構造の即時温度の影響を換算した後、実際の型穴の圧力値を更に推定させることを特徴とする請求項4に記載の型内の圧力及び温度検出装置。 The processing unit deformation information of the strained structure at the same time, the immediate temperature of the strained structure, the temperature of the strained structure and the immediate temperature of the strained structure for the amount of deformation generated by the material of the strained structure, respectively. The pressure and temperature detecting device in the mold according to claim 4, wherein after the influence is converted, the actual pressure value of the mold cavity is further estimated.
JP2018231720A 2018-12-11 2018-12-11 Pressure and temperature detector in the mold Active JP6640969B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018231720A JP6640969B1 (en) 2018-12-11 2018-12-11 Pressure and temperature detector in the mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018231720A JP6640969B1 (en) 2018-12-11 2018-12-11 Pressure and temperature detector in the mold

Publications (2)

Publication Number Publication Date
JP6640969B1 JP6640969B1 (en) 2020-02-05
JP2020094866A true JP2020094866A (en) 2020-06-18

Family

ID=69320946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018231720A Active JP6640969B1 (en) 2018-12-11 2018-12-11 Pressure and temperature detector in the mold

Country Status (1)

Country Link
JP (1) JP6640969B1 (en)

Also Published As

Publication number Publication date
JP6640969B1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
US11041767B2 (en) Sensing device of pressure and temperature in mold
US20180309256A1 (en) Jaw tool and jaw tool group
JP7035065B2 (en) Vehicle brake pedal position sensor / force sensor assembly
JP2015009486A (en) Injection molding machine having graph display function
Yoneyama Development of a friction sensor for hot forging
JP6640969B1 (en) Pressure and temperature detector in the mold
CN205343650U (en) High intelligent mould
KR100258304B1 (en) Pressure sensor-equipped ejector pin
JP2010091310A (en) Contact thermometer
CN203274648U (en) Automatic alignment measuring device of thermal bimetal sheet type temperature switch
CN109186822B (en) Bolt fastening joint surface pressure detection method based on FBG sensor
CN101701784B (en) Expandable combined detection tool
JP6184452B2 (en) Pin with pressure sensor and molding device
TWI711812B (en) Inductive pressure plate type real-time monitoring device
JP4788339B2 (en) Casting apparatus and method, pressure measuring apparatus and method in cavity of casting apparatus
US11148336B2 (en) Sensing module
CN103363917B (en) Laser digital display point to point is from measuring instrument and point to point distance measurement method
CN110375909B (en) Bolt tension detection tool
JP6356471B2 (en) Apparatus and method for inspecting the filling state of a gas spring
KR102452842B1 (en) Mold displacement sensor for measuring displacement of molded part of injection mold
JPH10156837A (en) Measuring method of force of release and mold for molding resin
CN116638536B (en) robot
JP5176100B2 (en) Detection method of burrs
CN216745781U (en) Laser detection tool for automobile back door
CN209747561U (en) Sealing device of battery shell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191226

R150 Certificate of patent or registration of utility model

Ref document number: 6640969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250