JP5175450B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP5175450B2
JP5175450B2 JP2006104226A JP2006104226A JP5175450B2 JP 5175450 B2 JP5175450 B2 JP 5175450B2 JP 2006104226 A JP2006104226 A JP 2006104226A JP 2006104226 A JP2006104226 A JP 2006104226A JP 5175450 B2 JP5175450 B2 JP 5175450B2
Authority
JP
Japan
Prior art keywords
reaction gas
manifold
fuel cell
manifolds
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006104226A
Other languages
Japanese (ja)
Other versions
JP2007280716A (en
Inventor
敏昭 関
宗一郎 霜鳥
将一 干鯛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2006104226A priority Critical patent/JP5175450B2/en
Publication of JP2007280716A publication Critical patent/JP2007280716A/en
Application granted granted Critical
Publication of JP5175450B2 publication Critical patent/JP5175450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、電池本体の流路に反応ガスを流通させる反応ガスマニホルドを備えた燃料電池に係り、特に、反応ガスマニホルドを構成する材料に改良を施した燃料電池に関する。 The present invention relates to a fuel cell comprising a reaction gas manifold for circulating the reaction gas in the flow path of the cell main body, in particular, it relates to fuel cells which has been subjected to improvement in the material constituting the reaction gas manifolds.

燃料電池は、水素等の燃料ガスと空気等の酸化剤ガスを、電池本体に供給することにより、電気化学的に反応させ、燃料の持つ化学エネルギーを直接電気エネルギーに変換して外部へ取り出す発電装置である。この燃料電池は、発電効率が高く、汚染物質の排出および騒音が少ない環境性に優れた発電装置として評価されている。   A fuel cell is a power generator that supplies a fuel gas, such as hydrogen, and an oxidant gas, such as air, to the cell body to cause an electrochemical reaction, converting the chemical energy of the fuel directly into electrical energy and taking it out. Device. This fuel cell has been evaluated as a power generation device that has high power generation efficiency and is excellent in environmental performance with less pollutant emission and noise.

このような燃料電池のうち、固体高分子膜を用いたものの一例を、図6及び図7を参照して説明する。すなわち、燃料電池本体は、図6に示すように、複数の単位セル1を積層した積層体11を有しており、その積層体11の両端に、集電板2と締付板3を配置し、スタッド4及びナットと皿バネによって締め付けることにより構成されている。各セル1は、固体高分子膜の両端に、触媒を塗布した燃料極及び酸化剤極を配設し、さらにその両端に、燃料極流路を備えた燃料極流路板と酸化剤極流路を備えた酸化剤極流路板とを設けることによって構成されている。   An example of such a fuel cell using a solid polymer membrane will be described with reference to FIGS. That is, as shown in FIG. 6, the fuel cell main body has a laminated body 11 in which a plurality of unit cells 1 are laminated, and a current collecting plate 2 and a fastening plate 3 are arranged at both ends of the laminated body 11. And it is comprised by fastening with the stud 4 and a nut, and a disc spring. Each cell 1 has a fuel electrode and an oxidant electrode coated with a catalyst at both ends of the solid polymer membrane, and further, a fuel electrode channel plate having a fuel electrode channel at both ends and an oxidant electrode flow. An oxidant electrode flow path plate having a path is provided.

そして、積層体11の断面図である図7に示すように、燃料電池本体の周囲には、燃料極入口マニホルド6、燃料極出口マニホルド7、酸化剤極入口マニホルド8及び酸化剤極出口マニホルド9が配置されている。燃料ガスは、燃料極入口マニホルド6に入り、燃料極流路板5の燃料極流路10を通り、燃料極出口マニホルド7から燃料電池外へ排出される。また、酸化剤ガスも同様に酸化剤極入口マニホルド8に入り、図示しない酸化剤極流路板の酸化剤極流路を通り、酸化剤極出口マニホルド9から燃料電池外へ排出される。   As shown in FIG. 7, which is a cross-sectional view of the laminate 11, there are a fuel electrode inlet manifold 6, a fuel electrode outlet manifold 7, an oxidant electrode inlet manifold 8, and an oxidant electrode outlet manifold 9 around the fuel cell body. Is arranged. The fuel gas enters the fuel electrode inlet manifold 6, passes through the fuel electrode flow channel 10 of the fuel electrode flow channel plate 5, and is discharged from the fuel electrode outlet manifold 7 to the outside of the fuel cell. Similarly, the oxidant gas enters the oxidant electrode inlet manifold 8, passes through the oxidant electrode channel of the oxidant electrode channel plate (not shown), and is discharged from the oxidant electrode outlet manifold 9 to the outside of the fuel cell.

ところで、これらの外付け形の燃料極入口・出口及び酸化剤極入口・出口マニホルド(以下、反応ガスマニホルドとする)6〜9は、一般に、積層体11の積層面に取り付けられている。その目的は、反応ガスのセル1への供給と、セル1からの排出ガスの受入・所定次プロセスへの送り出しを行うことにある。また、安全確保及び電池効率低下防止の目的から、電池本体外部への反応ガスの漏洩を防止する機能も有している。   By the way, these externally attached fuel electrode inlet / outlet and oxidant electrode inlet / outlet manifolds (hereinafter referred to as reaction gas manifolds) 6 to 9 are generally attached to the stacked surface of the stacked body 11. The purpose is to supply the reaction gas to the cell 1 and to receive the exhaust gas from the cell 1 and send it to a predetermined next process. In addition, for the purpose of ensuring safety and preventing the battery efficiency from decreasing, it also has a function of preventing leakage of reaction gas to the outside of the battery body.

特に、電池本体外部への反応ガス漏洩防止のため、反応ガスマニホルドのシール端面12は、シール材13を介して積層体11の積層面に取りつけられている。そして、この反応ガスマニホルド6〜9は、反応ガスシールが確実に行えるように、シール材13を所定以上の力で押付けた状態で固定できる構造が必要となっている。   In particular, in order to prevent leakage of the reaction gas to the outside of the battery body, the seal end surface 12 of the reaction gas manifold is attached to the stacked surface of the stacked body 11 via the seal material 13. And this reaction gas manifold 6-9 needs the structure which can be fixed in the state which pressed the sealing material 13 with the force more than predetermined | prescribed so that reaction gas sealing can be performed reliably.

従来は、これらの機能を満足させるため、反応ガスマニホルドに、機械強度の得られる金属を用いており、その製造を、厚板の削り出し加工により行うか、金属板の溶接加工により行っていたのが一般的であった。また、特許文献1に示されているように、冷却水マニホルドとしての機能を合せ持つ反応ガスマニホルドにおいて、当該マニホルド内面に、腐食防止層を設けたものも提案されている。   In the past, in order to satisfy these functions, a metal having high mechanical strength was used for the reaction gas manifold, and its production was performed by machining a thick plate or by welding a metal plate. It was common. In addition, as shown in Patent Document 1, a reactive gas manifold having a function as a cooling water manifold is also proposed in which a corrosion prevention layer is provided on the inner surface of the manifold.

さらに、金属材料の代替材料として、強度の高い且つ耐食性の高いガラス織布樹脂積層板を機械加工したものも、反応ガスマニホルドとして使用されている。なお、特許文献1には、燃料ガス及び酸化剤ガスに直接接触しない部分を補強するため、当該部分を金属部材で覆った複合樹脂製反応ガスマニホルドも提案されている。
特開2001−167789号公報
Further, as a substitute material for a metal material, a machined glass woven fabric resin laminate having high strength and high corrosion resistance is also used as a reaction gas manifold. Patent Document 1 also proposes a composite resin reaction gas manifold in which a portion that is not in direct contact with the fuel gas and the oxidant gas is covered with a metal member.
JP 2001-167789 A

しかしながら、従来の反応ガスマニホルドは、金属材料を機械加工(削り出し、溶接等)で製造していたため、機械強度は充分であるが、製造コストが高くなる。また、機械的強度の高い織布補強積層樹脂材料を用いた場合には、図7に例示したような最終形状を一括して製造することが困難なため、平板を機械加工することにより製造する必要がある。このため、金属材料の機械加工と同様に、その製造コストが高くなるという問題がある。   However, since the conventional reactive gas manifold is manufactured by machining (cutting out, welding, etc.) a metal material, the mechanical strength is sufficient, but the manufacturing cost is increased. In addition, when a woven fabric reinforced laminated resin material having high mechanical strength is used, it is difficult to manufacture a final shape as illustrated in FIG. There is a need. For this reason, there exists a problem that the manufacturing cost becomes high like the machining of a metal material.

さらに、特許文献1に示されるような、樹脂製反応ガスマニホルドにおいては、反応ガスマニホルド自体の機械加工は省略できるが、機械加工を施した金属補強材が必須となり、結果的には、製造コストが低下しないという問題が残る。   Further, in the resin-made reaction gas manifold as shown in Patent Document 1, machining of the reaction gas manifold itself can be omitted, but a metal reinforcing material subjected to machining is indispensable, and as a result, the manufacturing cost is reduced. The problem remains that does not decrease.

本発明は、上記のような従来技術の問題点を解決するために提案されたものであり、その目的は、反応ガスマニホルドについて、加工の手間がかからず、低コストで製造できるとともに、充分な機械的強度が得られる燃料電池を提供することにある。 The present invention has been proposed in order to solve the above-described problems of the prior art, and the object of the present invention is that the reaction gas manifold can be manufactured at a low cost without the need for processing. and to provide a mechanical strength fuel cells which is obtained such.

上記目的を達成するために、本発明は、電解質膜と、前記電解質膜の両面にそれぞれ配置した燃料極および酸化剤極と、前記燃料極及び前記酸化剤極に反応ガスを供給する流路を構成する流路板とを備えたセルが、少なくとも1枚以上含まれた電池本体を有する燃料電池において、前記電池本体の周囲に、前記流路に対して反応ガスを流通させる反応ガスマニホルドが複数設けられ、前記複数の反応ガスマニホルドは、それぞれが前記電池本体に向かって開口する開口部と、前記開口部の端部から外側に向かって張り出す板状の固定部が形成された樹脂の一括成形品であり、前記固定部は、当該一括成形による、前記固定部に対して垂直方向に貫通する締め付け固定用のボルト穴と、補強部を備え、前記補強部は、前記固定部の前記電池本体と反対側の面と、前記反応ガスマニホルドの外壁に一体に成形され、前記固定部に対して垂直方向に延びる板状の部材であることを特徴とする。
In order to achieve the above object, the present invention provides an electrolyte membrane, a fuel electrode and an oxidant electrode respectively disposed on both surfaces of the electrolyte membrane, and a flow path for supplying a reaction gas to the fuel electrode and the oxidant electrode. In a fuel cell having a battery main body including at least one cell including a flow path plate that constitutes, a plurality of reaction gas manifolds for circulating a reaction gas through the flow path are provided around the battery main body. The plurality of reactive gas manifolds are formed of a resin in which an opening portion that opens toward the battery body and a plate-like fixing portion that protrudes outward from an end portion of the opening portion are formed. The fixed part includes a bolt hole for fastening and fixing penetrating in a direction perpendicular to the fixed part, and a reinforcing part, and the reinforcing part is the battery of the fixed part. Body The opposite face, the integrally formed on the outer wall of the reaction gas manifold, characterized in that it is a plate-like member extending in the vertical direction with respect to the fixed part.

以上のような本発明では、反応ガスマニホルドが、樹脂により一括して製造できる成形品であるため、加工の手間がかからず、低コストで製造できるとともに、要求される機械的強度を満たすことが可能となる。   In the present invention as described above, since the reaction gas manifold is a molded product that can be manufactured in a lump with a resin, it can be manufactured at low cost without satisfying processing, and satisfies the required mechanical strength. Is possible.

以上のような本発明によれば、反応ガスマニホルドについて、加工の手間がかからず、低コストで製造できるとともに、充分な機械的強度が得られる燃料電池を提供することができる。 According to the present invention as described above, the reaction gas manifold, takes the hassle of working, it is possible to manufacture at low cost, it is possible to provide a fuel cells that sufficient mechanical strength can be obtained.

本発明を実施するための最良の形態(以下、実施形態とする)を、図面を参照して、具体的に説明する。なお、図6及び図7に示した従来技術と同様の構成及び作用については、説明を省略する。   The best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be specifically described with reference to the drawings. Note that the description of the same configuration and operation as those of the prior art shown in FIGS. 6 and 7 is omitted.

[第1の実施形態…図1、図2]
[構成]
本発明の第1の実施形態を説明する。本実施形態は、基本的な構成は図6及び図7に示した従来技術と同様であり、セル1の積層体11(図7参照)の周囲に、複数のマニホルド(燃料極入口マニホルド6、燃料極出口マニホルド7、酸化剤極入口マニホルド8、酸化剤極出口マニホルド9)が、シール材13を介して配設されている。
[First Embodiment: FIGS. 1 and 2]
[Constitution]
A first embodiment of the present invention will be described. The basic configuration of this embodiment is the same as that of the prior art shown in FIGS. 6 and 7, and a plurality of manifolds (fuel electrode inlet manifolds 6, 6) around the stack 11 (see FIG. 7) of the cell 1. A fuel electrode outlet manifold 7, an oxidant electrode inlet manifold 8, and an oxidant electrode outlet manifold 9) are arranged via a seal material 13.

これらの反応ガスマニホルド6〜9は、図1及び図2に示すように、エポキシ樹脂を用いて、インジェクション成形により製造されている。このとき、締付ボルト穴14及び補強部18も、一括成形される。ここで、インジェクション成形に用いた材料の一例を、表1に示す。

Figure 0005175450
These reaction gas manifolds 6 to 9 are manufactured by injection molding using an epoxy resin as shown in FIGS. 1 and 2. At this time, the tightening bolt hole 14 and the reinforcing portion 18 are also molded together. Here, an example of the material used for the injection molding is shown in Table 1.
Figure 0005175450

そして、以上のように製造された反応ガスマニホルド6〜9は、積層体11を締め付けている両締付板3に対して、締付ボルト穴14を介したボルト締結により固定される。この固定力がシール端面12に伝わり、シール材13を加圧・圧縮することにより、シール機能が発揮される構成となっている。シール端面12の厚みは、締付時の変形によるシール材13とのズレ発生やシール材13の脱落を防止するため、例えば、6mm幅とすることが考えられるが、これに限定するものではない。   The reaction gas manifolds 6 to 9 manufactured as described above are fixed to both the fastening plates 3 fastening the laminate 11 by bolt fastening via the fastening bolt holes 14. This fixing force is transmitted to the seal end face 12 and pressurizes / compresses the seal material 13 so that the seal function is exhibited. The thickness of the seal end face 12 may be, for example, a width of 6 mm in order to prevent occurrence of deviation from the seal material 13 due to deformation at the time of tightening or dropout of the seal material 13, but is not limited thereto. .

[作用]
以上のような本実施形態におけるシール機能を説明する。まず、反応ガスマニホルド6〜9の最も重要な機能の一つである、外部への反応ガス(冷却水水マニホルド機能を併せ有している場合は、その冷却水)の外部への漏洩防止について考察する。すなわち、シール端面12と積層体11の積層面に介在するシール材13に、そのシール材13に要求される力(押付け力)が印加可能であれば、反応ガス漏洩防止は達成することができる。
[Action]
The sealing function in this embodiment as described above will be described. First, one of the most important functions of the reaction gas manifolds 6 to 9 is to prevent leakage of reaction gas to the outside (or cooling water if it has a cooling water manifold function) to the outside. Consider. That is, if the force (pressing force) required for the sealing material 13 can be applied to the sealing material 13 interposed between the sealing end surface 12 and the laminated surface of the laminated body 11, the prevention of reaction gas leakage can be achieved. .

これは、反応ガス漏洩防止のためには、必ずしも反応ガスマニホルド6〜9全体の強度を上げる必要はなく、構造的にシール端面12が充分な強度を持ち、且つ反応ガスマニホルド6〜9の取付・締付において、その締付力をシール端面12に加えることができる構造であればよいことを意味する。そこで、本実施形態においては、反応ガスマニホルド6〜9自体を、エポキシ樹脂を用いたインジェクション成形によって製造することにより、上記の構造を実現した。   In order to prevent leakage of the reaction gas, it is not always necessary to increase the strength of the reaction gas manifolds 6 to 9. The seal end surface 12 is structurally strong enough and the reaction gas manifolds 6 to 9 are attached. -In tightening, it means that the tightening force can be applied to the seal end surface 12. Therefore, in the present embodiment, the above structure is realized by manufacturing the reaction gas manifolds 6 to 9 themselves by injection molding using an epoxy resin.

実際に、本実施形態の反応ガスマニホルドのシール機能を確認する試験を行った。この実験は、まず、5mm厚のアルミ板の両面に、本実施形態の一対の反応ガスマニホルドA、Bを配置し、シール材として所定形状に切断したシリコンゴムシート(硬度40、3mm厚み)を介在させて、25%の変形を生じる締付を実施した。締付は、一対の反応ガスマニホルドA、Bにおける互いの締付ボルト穴を介して、ボルト締結を行うことで実施した。   Actually, a test for confirming the sealing function of the reaction gas manifold of the present embodiment was conducted. In this experiment, first, a pair of reaction gas manifolds A and B of this embodiment are arranged on both sides of an aluminum plate having a thickness of 5 mm, and a silicon rubber sheet (hardness 40, 3 mm thickness) cut into a predetermined shape as a sealing material is used. Clamping to cause 25% deformation was performed. The tightening was performed by performing bolt tightening through the respective tightening bolt holes in the pair of reaction gas manifolds A and B.

そして、両方の反応ガスマニホルドA、Bに、0.15kPaの内圧を与えた後に封じ切りを行い、内圧の減少速度を測定するシール性評価試験を行った。この試験の結果を以下の表2に示す。

Figure 0005175450
Then, after applying an internal pressure of 0.15 kPa to both of the reaction gas manifolds A and B, sealing was performed, and a sealing property evaluation test was performed in which a decrease rate of the internal pressure was measured. The results of this test are shown in Table 2 below.
Figure 0005175450

以上のことから、30分を経過した後でも、内圧の減少はなく充分なシール機能を有していることが確認できた。また、シール材のズレ・脱落も認められなかった。この時、反応ガスマニホルドA、Bのシール端面の外形寸法を測定したところ、締付前に比して、0.1mm以内の変形で収まっており、充分な強度を有していることも確認できた。   From the above, it was confirmed that even after 30 minutes had elapsed, the internal pressure did not decrease and the sealing function was sufficient. In addition, there was no displacement or omission of the sealing material. At this time, when the external dimensions of the seal end faces of the reaction gas manifolds A and B were measured, it was confirmed that the deformation was within 0.1 mm and sufficient strength compared to before tightening. did it.

[効果]
以上から明らかなように、本実施形態によれば、反応ガスマニホルド6〜9として、エポキシ樹脂のインジェクション成形により一括成形することにより、固体高分子形燃料電池用として充分な強度が得られる。
[effect]
As is clear from the above, according to the present embodiment, the reaction gas manifolds 6 to 9 can be sufficiently molded for a polymer electrolyte fuel cell by batch molding by injection molding of epoxy resin.

また、反応ガスマニホルド6〜9の製造に、従来の機械加工が必要なくなり、締付ボルト穴14及び補強部18も含めて、一回の樹脂のインジェクション成形で完成することから、安価且つ信頼性のある反応ガスマニホルド6〜9及びこれを用いた固体高分子形燃料電池を構成できる。   Further, the manufacturing of the reaction gas manifolds 6 to 9 eliminates the need for conventional machining and is completed by a single resin injection molding including the tightening bolt hole 14 and the reinforcing portion 18, so that it is inexpensive and reliable. Reaction gas manifolds 6 to 9 and a polymer electrolyte fuel cell using the same can be constructed.

[第2の実施形態…図3、図4、図5]
[構成]
本発明の第2の実施形態を、図3〜5を参照して説明する。本実施形態は、基本的には上記の第1の実施形態と同様に、反応ガスマニホルド6〜9を製造したものである。但し、本実施形態においては、反応ガスマニホルド6〜9の両側に、図3に示すような傾斜面19が設けられている。なお、図4に示すように、締付ボルト穴14及び補強部18も、一括成形されている。
[Second Embodiment: FIG. 3, FIG. 4, FIG. 5]
[Constitution]
A second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, reaction gas manifolds 6 to 9 are basically manufactured in the same manner as in the first embodiment. However, in this embodiment, inclined surfaces 19 as shown in FIG. 3 are provided on both sides of the reaction gas manifolds 6 to 9. In addition, as shown in FIG. 4, the fastening bolt hole 14 and the reinforcement part 18 are also collectively formed.

そして、積層体11を囲むように反応ガスマニホルド6〜9を配置し、互いの傾斜面19を利用して、隣接するガスマニホルド6〜9同士を、締付ボルト穴14を介して相互にボルト締結・締付を行う構成となっている。これにより、ボルト締結による締付力が、シール端面12に伝わり、シール材13を加圧・圧縮するので、シール機能が発揮される。シール端面12の厚みは、締付時の変形によるシール材13とのズレ発生やシール材13の脱落を防止するため、例えば、6mm幅とすることが考えられるが、これに限定するものではない。   Then, the reaction gas manifolds 6 to 9 are arranged so as to surround the laminated body 11, and the adjacent gas manifolds 6 to 9 are bolted to each other through the fastening bolt holes 14 by using the inclined surfaces 19. It is configured to fasten and tighten. Thereby, the tightening force due to the bolt fastening is transmitted to the seal end face 12 and pressurizes / compresses the seal material 13, so that the seal function is exhibited. The thickness of the seal end face 12 may be, for example, a width of 6 mm in order to prevent occurrence of deviation from the seal material 13 due to deformation at the time of tightening or dropout of the seal material 13, but is not limited thereto. .

[作用]
以上のような本実施形態における反応ガスマニホルドのシール機能を確認する試験を行った。図5は、この試験の態様を示す側面図である。すなわち、5mm厚のアルミ板15の両面に、本実施形態の一対のガスマニホルドA、Bを配置し、シール材13として所定形状に切断したシリコンゴムシート(硬度40、3mm厚み)を介在させて、25%の変形を生じる締付を実施した。
[Action]
A test for confirming the sealing function of the reaction gas manifold in the present embodiment as described above was conducted. FIG. 5 is a side view showing this test mode. That is, a pair of gas manifolds A and B of this embodiment are arranged on both surfaces of a 5 mm thick aluminum plate 15, and a silicon rubber sheet (hardness 40, 3 mm thickness) cut into a predetermined shape is interposed as a sealing material 13. , Tightening to produce a deformation of 25%.

締付は、スペーサ16を介して、一対の反応ガスマニホルドA、Bにおける互いの締付ボルト穴14を、ボルト締結部17を用いて締結することで実施した。そして、両方の反応ガスマニホルドA、Bに、0.15kPaの内圧を与えた後に封じ切りを行い、内圧の減少速度を測定するシール性評価試験を行った。この試験の結果を以下の表3に示す。

Figure 0005175450
Tightening was performed by fastening the fastening bolt holes 14 in the pair of reaction gas manifolds A and B using the bolt fastening portion 17 via the spacer 16. Then, after applying an internal pressure of 0.15 kPa to both of the reaction gas manifolds A and B, sealing was performed, and a sealing property evaluation test was performed in which a decrease rate of the internal pressure was measured. The results of this test are shown in Table 3 below.
Figure 0005175450

以上のことから、30分を経過した後でも、内圧の減少はなく充分なシール機能を有していることが確認できた。また、シール材13のズレ及び脱落も観察されなかった。この時、反応ガスマニホルドA、Bのシール端面12の外形寸法を測定したところ、締付前に比して、0.1mm以内の変形で収まっており、充分な強度を有していることも確認できた。   From the above, it was confirmed that even after 30 minutes had elapsed, the internal pressure did not decrease and the sealing function was sufficient. In addition, neither the displacement nor the dropping of the sealing material 13 was observed. At this time, when the outer dimensions of the seal gas end faces 12 of the reaction gas manifolds A and B were measured, they were accommodated by deformation within 0.1 mm as compared with those before tightening, and had sufficient strength. It could be confirmed.

[効果]
以上から明らかなように、本実施形態によれば、上記の第1の実施形態と同様に、充分な強度が得られ、安価且つ信頼性のある固体高分子形燃料電池を構成できる。さらに、本実施形態では、反応ガスマニホルド6〜9の相互をボルト締結することによって、積層体11の周囲に固定できるので、燃料電池本体側での特別な構造が不要となり、メンテナンス等のための取り外し、交換も容易である。
[effect]
As is apparent from the above, according to the present embodiment, a solid polymer fuel cell can be constructed that has sufficient strength and is inexpensive and reliable, as in the first embodiment. Furthermore, in this embodiment, since the reaction gas manifolds 6 to 9 can be fastened to each other around the laminate 11 by bolting, a special structure on the fuel cell main body side becomes unnecessary, and maintenance can be performed. Removal and replacement are easy.

[他の実施形態]
本発明は、上記のような実施形態に限定されるものではない。例えば、上記の実施形態では、反応ガスマニホルド6〜9の締付部は、何れもシール端面12の側面に設置しているが、その締付力をシール端面12に充分に伝えることができる構造であれば、上記の構造には限定されない。
[Other Embodiments]
The present invention is not limited to the embodiment as described above. For example, in the above embodiment, the tightening portions of the reaction gas manifolds 6 to 9 are all installed on the side surface of the seal end surface 12, but the structure capable of sufficiently transmitting the tightening force to the seal end surface 12. If it is, it is not limited to said structure.

また、上記の実施形態において、反応ガスマニホルド6〜9の成形用樹脂としてエポキシ樹脂を代表例として示したが、これには限定されない。例えば、熱硬化性樹脂であるフェノール系樹脂、熱可塑性樹脂であるポリカーボネイト樹脂、ポリイミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂等のいずれであっても、本発明を実現できる。可能であれば、固体高分子形燃料電池運転温度の90℃程度の温度で、充分な機械的強度を有し且つ維持できる樹脂が望ましい。   Moreover, in said embodiment, although the epoxy resin was shown as a representative example as resin for shaping | molding of the reaction gas manifolds 6-9, it is not limited to this. For example, the present invention can be realized by any of phenolic resins that are thermosetting resins, polycarbonate resins that are thermoplastic resins, polyimide resins, polyphenylene sulfide resins, and polyether ether ketone resins. If possible, a resin having sufficient mechanical strength and capable of being maintained at a temperature of about 90 ° C., which is the operating temperature of the polymer electrolyte fuel cell, is desirable.

また、上記の実施形態では、インジェクション成形により反応ガスマニホールドを形成した場合を述べたが、これに限定されるものではない。例えば、熱間加圧成形を用いて、反応ガスマニホールドを形成してもよい。全ての反応ガスマニホルドが樹脂成形品である必要はなく、一部のみでもよい。   In the above embodiment, the case where the reaction gas manifold is formed by injection molding has been described. However, the present invention is not limited to this. For example, the reaction gas manifold may be formed using hot pressing. It is not necessary that all the reaction gas manifolds are resin molded products, and only a part of them may be used.

さらに、上記の実施形態では、成形時の樹脂充填材として、シリカ(SiO)ビーズを用いた場合を説明したが、成形品の成形時の流れ改善若しくは成形品の強度向上を目的とする充填材としては、シリカビーズに限定されるものではない。例えば、シリカ繊維、カーボン粉、カーボン繊維、酸化チタン(TiO)粉体等であっても、同様な効果が得られる。なお、本発明は、固体高分子形燃料電池には限定されず、同様のマニホルドを必要とする燃料電池に広く適用可能である。 Furthermore, in the above embodiment, the case where silica (SiO 2 ) beads are used as the resin filler at the time of molding has been described. However, the filling for the purpose of improving the flow at the time of molding a molded product or improving the strength of the molded product. The material is not limited to silica beads. For example, the same effect can be obtained with silica fiber, carbon powder, carbon fiber, titanium oxide (TiO 2 ) powder, and the like. The present invention is not limited to a polymer electrolyte fuel cell, and can be widely applied to fuel cells that require a similar manifold.

本発明の第1の実施形態における反応ガスマニホルドの垂直断面図。1 is a vertical sectional view of a reaction gas manifold according to a first embodiment of the present invention. 図1の反応ガスマニホルドの平面図。FIG. 2 is a plan view of the reaction gas manifold of FIG. 1. 本発明の第2の実施形態における反応ガスマニホルドの垂直断面図。The vertical sectional view of the reaction gas manifold in the 2nd embodiment of the present invention. 図3の反応ガスマニホルドの平面図。FIG. 4 is a plan view of the reaction gas manifold of FIG. 3. 図3の実施形態におけるシール機能試験の態様を示す側面図。The side view which shows the aspect of the seal function test in embodiment of FIG. 一般的な燃料電池本体の一例を示す垂直断面図。The vertical sectional view showing an example of a general fuel cell main part. 図6の燃料電池を構成するマニホルドを示す垂直断面図。FIG. 7 is a vertical sectional view showing a manifold constituting the fuel cell of FIG. 6.

符号の説明Explanation of symbols

1…セル
2…集電板
3…締付板
5…燃料極流路板
6〜9…反応ガスマニホルド
10…燃料極流路
11…積層体
12…シール端面
13…シール材
14…締付ボルト穴
15…アルミ板
16…スペーサ
17…ボルト締結部
18…補強部
19…傾斜面
DESCRIPTION OF SYMBOLS 1 ... Cell 2 ... Current collecting plate 3 ... Fastening plate 5 ... Fuel electrode flow path plate 6-9 ... Reaction gas manifold 10 ... Fuel electrode flow path 11 ... Laminated body 12 ... Seal end surface 13 ... Sealing material 14 ... Fastening bolt Hole 15 ... Aluminum plate 16 ... Spacer 17 ... Bolt fastening part 18 ... Reinforcement part 19 ... Inclined surface

Claims (1)

電解質膜と、前記電解質膜の両面にそれぞれ配置した燃料極および酸化剤極と、前記燃料極及び前記酸化剤極に反応ガスを供給する流路を構成する流路板とを備えたセルが、少なくとも1枚以上含まれた電池本体を有する燃料電池において、
前記電池本体の周囲に、前記流路に対して反応ガスを流通させる反応ガスマニホルドが複数設けられ、
前記複数の反応ガスマニホルドは、それぞれが前記電池本体に向かって開口する開口部と、前記開口部の端部から外側に向かって張り出す板状の固定部が形成された樹脂の一括成形品であり、
前記固定部は、当該一括成形による、前記固定部に対して垂直方向に貫通する締め付け固定用のボルト穴と、補強部を備え、
前記補強部は、前記固定部の前記電池本体と反対側の面と、前記反応ガスマニホルドの外壁に一体に成形され、前記固定部に対して垂直方向に延びる板状の部材であることを特徴とする燃料電池。
A cell comprising an electrolyte membrane, a fuel electrode and an oxidant electrode respectively disposed on both surfaces of the electrolyte membrane, and a flow path plate constituting a flow path for supplying a reaction gas to the fuel electrode and the oxidant electrode, In a fuel cell having a battery body including at least one battery,
Around the battery body, a plurality of reaction gas manifolds for allowing reaction gas to flow through the flow path are provided,
Each of the plurality of reaction gas manifolds is a resin molded product in which an opening portion that opens toward the battery body and a plate-like fixing portion that projects outward from an end portion of the opening portion are formed. Yes,
The fixing portion includes a bolt hole for fastening and fixing that penetrates in a direction perpendicular to the fixing portion by the batch molding, and a reinforcing portion.
The reinforcing portion is a plate-like member that is formed integrally with a surface of the fixing portion opposite to the battery body and an outer wall of the reaction gas manifold and extends in a direction perpendicular to the fixing portion. A fuel cell.
JP2006104226A 2006-04-05 2006-04-05 Fuel cell Active JP5175450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104226A JP5175450B2 (en) 2006-04-05 2006-04-05 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104226A JP5175450B2 (en) 2006-04-05 2006-04-05 Fuel cell

Publications (2)

Publication Number Publication Date
JP2007280716A JP2007280716A (en) 2007-10-25
JP5175450B2 true JP5175450B2 (en) 2013-04-03

Family

ID=38681958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104226A Active JP5175450B2 (en) 2006-04-05 2006-04-05 Fuel cell

Country Status (1)

Country Link
JP (1) JP5175450B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010722B2 (en) * 1990-02-28 2000-02-21 富士電機株式会社 Fuel cell manifold fastening device
JP3212227B2 (en) * 1993-10-06 2001-09-25 大日本インキ化学工業株式会社 Method for manufacturing fuel cell header and molded body thereof
JP4096410B2 (en) * 1997-07-31 2008-06-04 東レ株式会社 Thermoplastic resin composition and connector
JP2001167789A (en) * 1999-12-09 2001-06-22 Matsushita Electric Ind Co Ltd High molecule electrolyte fuel cell
JP2005174772A (en) * 2003-12-11 2005-06-30 Polyplastics Co Fuel cell and its separator
JP4838546B2 (en) * 2005-07-29 2011-12-14 本田技研工業株式会社 Fuel cell stack

Also Published As

Publication number Publication date
JP2007280716A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
CN110581287B (en) Metal bipolar plate of proton exchange membrane fuel cell adhesion-free sealing structure
JP5516917B2 (en) Fuel cell
EP2681796B1 (en) Solid polymer electrolyte type fuel cell, and electrolyte membrane-electrode-frame assembly
CN106549181B (en) Asymmetric compact metal seal bead for fuel cell stacks
EP1997177B1 (en) Membrane electrode assembly with reinforced sealing structure
US9450252B2 (en) Insulating structure, fuel cell and fuel cell stack
JP2009199888A (en) Fuel cell
EP2860807B1 (en) Fuel cell stack
KR100788270B1 (en) Separator
JP5263927B2 (en) End plate for fuel cell stack and manufacturing method thereof
JP6103376B2 (en) Fuel cell stack and manufacturing method thereof
JP5175450B2 (en) Fuel cell
US20150180053A1 (en) Separator assembly for fuel cell and method of manufacturing the same
JP2007194077A (en) Fuel cell
WO2008056778A1 (en) Fuel cell and fuel cell manufacturing method
JP5178061B2 (en) Fuel cell
JP2001229932A (en) Separator for fuel cell and fuel cell
JP2006190626A (en) Separator
JP6008202B2 (en) Fuel cell stack
JP4921827B2 (en) Fuel cell stack and method for producing carbon separator
US8431283B2 (en) Process for molding composite bipolar plates with reinforced outer edges
EP2681795B1 (en) Fuel cell stack
JP4765594B2 (en) Fuel cell
JP2012150961A (en) Fuel cell
JP2010205525A (en) Gasket for fuel cell, fuel cell, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121002

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

R150 Certificate of patent or registration of utility model

Ref document number: 5175450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350