JP2007194077A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2007194077A
JP2007194077A JP2006011253A JP2006011253A JP2007194077A JP 2007194077 A JP2007194077 A JP 2007194077A JP 2006011253 A JP2006011253 A JP 2006011253A JP 2006011253 A JP2006011253 A JP 2006011253A JP 2007194077 A JP2007194077 A JP 2007194077A
Authority
JP
Japan
Prior art keywords
gasket
fuel cell
facing
separator
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006011253A
Other languages
Japanese (ja)
Inventor
Akira Shimizu
安起良 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006011253A priority Critical patent/JP2007194077A/en
Publication of JP2007194077A publication Critical patent/JP2007194077A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To favorably control surface pressure between an MEA part and a gasket part in the structure integrally forming the gasket part in the outer periphery of the membrane electrode assembly. <P>SOLUTION: In a fuel cell having the MEA 15 in which an electrolyte membrane 13 is interposed between a pair of electrodes 14, a gasket part 21 is formed by integrally forming the outer periphery with resin, and a separator 16 arranged on each side of the MEA 15, the separator 16 is equipped with an assembly facing part 30 facing an assembly body 20 on the inside in the surface direction than the gasket part 21 of the MEA 15; a gasket facing part 31 facing the gasket part 21; and a connecting part 32 connecting the assembly facing part 30 and the gasket facing part 31, and absorbing deformation in the crossing direction to the surface direction of the assembly facing part 30 and the gasket facing part 31. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、外周にガスケット部が一体成形された膜−電極接合体を有する燃料電池に関する。   The present invention relates to a fuel cell having a membrane-electrode assembly in which a gasket portion is integrally formed on the outer periphery.

近年、燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池をエネルギ源とした燃料電池自動車等が注目されている。このような燃料電池では、通常、燃料ガスと酸化ガスとの電気化学反応によって発電するセルを所要数積層した燃料電池スタックが用いられることになるが、セルの構造は、電解質膜及びその両面側に配置された一対の電極を有するMEA(Membrance Electrode Assembly)と、このMEAを挟持する一対のセパレータと、で構成される。   In recent years, a fuel cell vehicle using a fuel cell that generates power by an electrochemical reaction between a fuel gas and an oxidizing gas as an energy source has attracted attention. In such a fuel cell, a fuel cell stack in which a required number of cells that generate electricity by an electrochemical reaction between a fuel gas and an oxidizing gas are usually used. The cell structure is composed of an electrolyte membrane and its both sides. A MEA (Membrane Electrode Assembly) having a pair of electrodes disposed on the substrate and a pair of separators sandwiching the MEA.

そして、セルは、各セパレータに形成されたガス流路を介して酸化ガス又は燃料ガスが各電極に供給されることで発電するようになっている。この種の燃料電池においては、MEAに加わる面圧をコントロールし、面圧によるMEAの損傷を低減する技術が開示されている(例えば、特許文献1〜5参照)。
特開2004−335453号公報 特開平11−329468号公報 特開平7−153473号公報 特開2003−338295号公報 特開2002−117866号公報
The cell is configured to generate power by supplying an oxidizing gas or a fuel gas to each electrode through a gas flow path formed in each separator. In this type of fuel cell, a technique for controlling the surface pressure applied to the MEA and reducing the damage to the MEA due to the surface pressure is disclosed (for example, see Patent Documents 1 to 5).
JP 2004-335453 A JP 11-329468 A JP 7-153473 A JP 2003-338295 A JP 2002-117866 A

近年、生産性の向上等の目的のため、MEAの外周側のガスケット部分を一体成形することが行われている。このガスケット部は、シール性を確保するために、比較的面圧を高くする必要があるが、ガスケット部を一体成形した燃料電池では、ガスケット部における高い面圧がセパレータによって、ガスケット部の面方向内側の発電部分である接合体本体へ伝達されるため、接合体本体の面圧が高くなり過ぎてしまう。   In recent years, a gasket part on the outer peripheral side of the MEA has been integrally formed for the purpose of improving productivity. In order to ensure sealing performance, the gasket portion needs to have a relatively high surface pressure. However, in a fuel cell in which the gasket portion is integrally molded, the high surface pressure in the gasket portion is caused by the separator in the surface direction of the gasket portion. Since it is transmitted to the joined body main body which is the inner power generation part, the surface pressure of the joined body becomes too high.

つまり、接合体本体の外周にガスケット部が一体成形された構造の燃料電池では、ガスケット部におけるシール性の確保と接合体本体における面圧管理とを両立させることが難しかった。このため、ガスケット部を一体成形した構造において、接合体本体とその外周側のガスケット部における面圧をそれぞれ管理することが可能な構造が望まれていた。   That is, in the fuel cell having a structure in which the gasket portion is integrally formed on the outer periphery of the joined body, it is difficult to achieve both the securing of the sealing performance in the gasket portion and the management of the surface pressure in the joined body. For this reason, in the structure which integrally molded the gasket part, the structure which can respectively manage the surface pressure in a joined body main body and the gasket part of the outer peripheral side was desired.

本発明は、上記事情に鑑みてなされたもので、膜−電極接合体の外周にガスケット部が一体成形された構造において、接合体本体とガスケット部との面圧管理を良好に行うことが可能な燃料電池を提供することを目的としている。   The present invention has been made in view of the above circumstances, and in a structure in which a gasket portion is integrally formed on the outer periphery of a membrane-electrode assembly, it is possible to satisfactorily manage surface pressure between the joined body and the gasket portion. It aims to provide a simple fuel cell.

上記目的を達成するために、本発明の燃料電池は、電解質膜が一対の電極で挟持され、かつその外周にシール材が一体成形されてガスケット部とされた膜−電極接合体と、該膜−電極接合体の両面側に配置されたセパレータと、を有する燃料電池であって、前記セパレータは、前記膜−電極接合体の前記ガスケット部よりも面方向内側の接合体本体に対向した接合体対向部と、前記ガスケット部に対向したガスケット対向部と、これら接合体対向部とガスケット対向部との間を連結すると共に前記接合体対向部及びガスケット対向部の面方向と交差する方向の変位を吸収可能な連結部と、を備えている。   In order to achieve the above object, a fuel cell of the present invention comprises a membrane-electrode assembly in which an electrolyte membrane is sandwiched between a pair of electrodes, and a sealing material is integrally formed on the outer periphery thereof to form a gasket portion, and the membrane A separator disposed on both sides of the electrode assembly, wherein the separator is opposed to the assembly body on the inner side in the plane direction than the gasket portion of the membrane-electrode assembly. Displacement in a direction intersecting the surface direction of the joined body facing portion and the gasket facing portion while connecting the facing portion, the gasket facing portion facing the gasket portion, and the joined body facing portion and the gasket facing portion. And an absorbable connecting portion.

この構成によれば、セパレータの連結部によって接合体対向部及びガスケット対向部の面方向と交差する方向の変位を吸収することが可能になるので、一体成形したガスケット部と接合体本体とに異なった面圧を付与することができる。   According to this configuration, since it is possible to absorb the displacement in the direction intersecting the surface direction of the joined body facing portion and the gasket facing portion by the connecting portion of the separator, it is different between the integrally molded gasket portion and the joined body main body. The contact pressure can be applied.

つまり、生産性向上のために膜−電極接合体の外周を樹脂によって一体成形してガスケット部とした構造の燃料電池において、接合体本体とガスケット部との面圧管理を各々良好に行うことができ、良好なシール性を確保しつつ、接合体本体への過剰な面圧をなくすことができる。   That is, in order to improve productivity, in the fuel cell having a structure in which the outer periphery of the membrane-electrode assembly is integrally molded with a resin to form a gasket portion, the surface pressure management between the joined body and the gasket portion can be performed satisfactorily. It is possible to eliminate excessive surface pressure on the joined body while ensuring good sealing performance.

この場合、前記セパレータは、金属あるいはカーボンによって一体に成形されていることが好ましい。   In this case, it is preferable that the separator is integrally formed of metal or carbon.

また、前記セパレータの連結部は、断面視にて凹凸形状とすることにより蛇腹状に形成されていることが好ましい。   Moreover, it is preferable that the connection part of the said separator is formed in the bellows shape by making it uneven | corrugated shape by sectional view.

本発明によれば、膜−電極接合体の外周にガスケット部が一体成形された構造において、接合体本体とガスケット部との面圧管理を良好に行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, in the structure where the gasket part was integrally molded by the outer periphery of the membrane-electrode assembly, the surface pressure management of a conjugate | zygote main body and a gasket part can be performed favorably.

次に、本発明に係る燃料電池の実施形態について、図面を参照しつつ説明する。図1は、燃料ガス及び酸化ガスの供給を受けて発電する単一のセル(燃料電池)を示すものであり、このセルは、厚さ方向に所要数積層され燃料電池スタックとされて使用されるものである。   Next, an embodiment of a fuel cell according to the present invention will be described with reference to the drawings. FIG. 1 shows a single cell (fuel cell) that generates power by receiving supply of fuel gas and oxidant gas. This cell is used as a fuel cell stack by stacking a required number of cells in the thickness direction. Is.

なお、この燃料電池スタックは、燃料電池自動車の車載発電システムや船舶、航空機、電車あるいは歩行ロボット等のあらゆる移動体用の発電システム、さらには、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システム等に適用可能である。   This fuel cell stack is used as an in-vehicle power generation system for fuel cell vehicles, a power generation system for all moving objects such as ships, airplanes, trains or walking robots, and also as a power generation facility for buildings (housing, buildings, etc.). It can be applied to a stationary power generation system.

図1に示すように、燃料電池ス+タックを構成するセル11は、電解質膜13とその両面側に設けられた一対の電極14とを有する薄板形状のMEA(膜−電極接合体)15と、このMEA15の厚さ方向の両側に配設された薄板形状の一対のセパレータ16とで構成される。なお、MEA15を構成する電極14は、電極触媒層と、これら電極触媒層のそれぞれの電解質膜13とは反対側に形成された一対の拡散層との積層構造とされている。   As shown in FIG. 1, a cell 11 constituting a fuel cell stack includes a thin plate-shaped MEA (membrane-electrode assembly) 15 having an electrolyte membrane 13 and a pair of electrodes 14 provided on both sides thereof. The MEA 15 is composed of a pair of thin plate-like separators 16 disposed on both sides in the thickness direction. The electrode 14 constituting the MEA 15 has a laminated structure of an electrode catalyst layer and a pair of diffusion layers formed on the opposite side of each electrode catalyst layer from the electrolyte membrane 13.

また、MEA15は、上記した電解質膜13と一対の電極14とで構成される接合体本体20を有しており、この接合体本体20は、中央の電解質膜13が、一対の電極14の外周部よりも外側に全周にわたって突出しており、この接合体本体20の外周部には、例えば樹脂(シール材)によって一体成形したガスケット部21が全周にわたって設けられている。なお、このガスケット部21は、例えば、射出成形あるいは薄い材料を層状に貼り合わせるラミネートによって一体成形されたものである。   The MEA 15 has a joined body 20 composed of the above-described electrolyte membrane 13 and a pair of electrodes 14, and the joined body 20 has a central electrolyte membrane 13 and an outer periphery of the pair of electrodes 14. The gasket body 21 protrudes over the entire circumference from the outer periphery, and a gasket portion 21 integrally formed with, for example, a resin (sealant) is provided on the entire outer periphery of the joined body 20. The gasket portion 21 is integrally formed by, for example, injection molding or lamination in which a thin material is laminated in layers.

図2に示すように、セパレータ16は、MEA15の接合体本体20と対向する部分が接合体対向部30とされ、MEA15のガスケット部21と対向する部分がガスケット対向部31とされている。そして、これら接合体対向部30とその周囲のガスケット対向部31との間は、周方向にわたって対向部30,31間を連結する連結部32とされている。   As shown in FIG. 2, in the separator 16, a portion facing the joined body 20 of the MEA 15 is a joined body facing portion 30, and a portion facing the gasket portion 21 of the MEA 15 is a gasket facing portion 31. And between these conjugate | zygote opposing parts 30 and the gasket opposing part 31 of the circumference | surroundings is used as the connection part 32 which connects between the opposing parts 30 and 31 over the circumferential direction.

この連結部32は、断面視にて凹凸形状とすることにより蛇腹状に形成されて容易に変形可能とされており、この連結部32は、構造的に、接合体対向部30及びガスケット対向部31の積層方向(面方向に交差する(垂直な)方向)の変位を吸収することが可能である。凹凸の数、凹凸の高さ等は図示された形態に限定されるものではなく、必要に応じて適宜変更することが可能である。   The connecting portion 32 is formed in a bellows shape by making it uneven in a cross-sectional view, and can be easily deformed. The connecting portion 32 is structurally composed of a joined body facing portion 30 and a gasket facing portion. It is possible to absorb the displacement of 31 in the stacking direction (direction intersecting (perpendicular to) the plane direction). The number of irregularities, the height of the irregularities, and the like are not limited to the illustrated forms, and can be appropriately changed as necessary.

接合体対向部30には、その接合体本体20と対向する対向面に、燃料ガス及び酸化ガスのいずれか対応する一方を流すための凹状のガス流路溝41が形成されており、逆側の面に、冷却液を流すための凹状の冷却流路溝42が形成されている。また、MEA15のガスケット部21及びセパレータ16のガスケット対向部31には、これら燃料ガス、酸化ガス及び冷却液の供給、排出用のマニホールド43が厚さ方向に貫通するように形成されている。   The joined body facing portion 30 is formed with a concave gas flow channel groove 41 for flowing one of the fuel gas and the oxidizing gas on the facing surface facing the joined body 20, on the opposite side. A concave cooling channel groove 42 for flowing the coolant is formed on the surface. Further, a manifold 43 for supplying and discharging the fuel gas, the oxidizing gas, and the coolant is formed in the gasket portion 21 of the MEA 15 and the gasket facing portion 31 of the separator 16 so as to penetrate in the thickness direction.

上記構造のセル11では、MEA15のガスケット部21とセパレータ16のガスケット対向部31との積層部分が、ガスケット面圧領域αとされ、MEA15の接合体本体20とセパレータ16の接合体対向部30との積層部分が、接合体面圧領域βとされている。   In the cell 11 having the above structure, the laminated portion of the gasket portion 21 of the MEA 15 and the gasket facing portion 31 of the separator 16 is a gasket surface pressure region α, and the joined body 20 of the MEA 15 and the joined body facing portion 30 of the separator 16 The laminated portion is the joined body surface pressure region β.

そして、図3に示すように、上記構成のセル11は、セパレータ16のガスケット対向部31に、環状のシール部材44を介して厚さ方向に複数(数10〜数100枚)積層され、積層方向の両側から接合体部挟持用エンドプレート51及びガスケット部挟持用エンドプレート52によって挟持されて燃料電池スタック10が構成され、ガスケット部挟持用エンドプレート52及び接合体部挟持用エンドプレート51によってそれぞれのセル11のガスケット面圧領域α及び接合体面圧領域βに面圧が付与される。   As shown in FIG. 3, a plurality of cells (several tens to several hundreds) are stacked in the thickness direction on the gasket facing portion 31 of the separator 16 via the annular seal member 44, and stacked. The fuel cell stack 10 is configured by being sandwiched by the joined part sandwiching end plate 51 and the gasket part sandwiching end plate 52 from both sides in the direction, and the gasket part sandwiching end plate 52 and the joined part sandwiching end plate 51 respectively. A surface pressure is applied to the gasket surface pressure region α and the joined body surface pressure region β of the cell 11.

このように、上記実施形態に係る燃料電池によれば、セパレータ16の連結部32が当該セパレータ16の他の部位に比して変形容易とされて接合体対向部30及びガスケット対向部31の積層方向の変位を吸収することが可能になるので、一体成形したガスケット部21と接合体本体20とに異なった面圧を付与することができる。   As described above, according to the fuel cell according to the above-described embodiment, the connecting portion 32 of the separator 16 is easily deformed as compared with other portions of the separator 16, and the laminated body facing portion 30 and the gasket facing portion 31 are stacked. Since the displacement in the direction can be absorbed, different surface pressures can be applied to the integrally formed gasket portion 21 and the joined body 20.

つまり、生産性向上のためにMEA15の外周を樹脂等のシール材によって一体成形してガスケット部21とした構造の燃料電池において、接合体本体20とガスケット部21との面圧管理を各々良好に行うことができ、良好なシール性を確保しつつ、接合体本体20への過剰な面圧をなくすことができる。   That is, in the fuel cell having a structure in which the outer periphery of the MEA 15 is integrally molded with a sealing material such as a resin to form the gasket portion 21 in order to improve productivity, the surface pressure management between the joined body 20 and the gasket portion 21 is improved. It is possible to eliminate the excessive surface pressure applied to the joined body 20 while ensuring good sealing performance.

また、セパレータ16を、金属あるいはカーボンによって一体に成形することにより、構造の簡略化を図ることができる。   Further, the structure can be simplified by integrally forming the separator 16 with metal or carbon.

しかも、連結部32が、断面視にて凹凸形状とすることにより蛇腹状に形成されているので、この連結部32にて、接合体本体20及びガスケット部21の積層方向の変位を簡易な構成にて良好に吸収することができる。   In addition, since the connecting portion 32 is formed in an accordion shape by forming an uneven shape in a cross-sectional view, the connecting portion 32 can easily displace the joined body 20 and the gasket portion 21 in the stacking direction. Can be absorbed well.

本発明に係る実施形態の燃料電池を構成するセルの断面図である。It is sectional drawing of the cell which comprises the fuel cell of embodiment which concerns on this invention. 本発明に係る実施形態の燃料電池を構成するセルの平面図である。It is a top view of the cell which comprises the fuel cell of embodiment which concerns on this invention. セルを積層させた燃料電池スタックを説明する燃料電池スタックの断面図である。It is sectional drawing of the fuel cell stack explaining the fuel cell stack which laminated | stacked the cell.

符号の説明Explanation of symbols

13…電解質膜、14…電極、15…MEA(膜−電極接合体)、16…セパレータ、20…接合体本体、21…ガスケット部、30…接合体対向部、31…ガスケット対向部、32…連結部。

DESCRIPTION OF SYMBOLS 13 ... Electrolyte membrane, 14 ... Electrode, 15 ... MEA (membrane-electrode assembly), 16 ... Separator, 20 ... Assembly main body, 21 ... Gasket part, 30 ... Assembly opposing part, 31 ... Gasket opposing part, 32 ... Connecting part.

Claims (3)

電解質膜が一対の電極で挟持され、かつその外周にシール材が一体成形されてガスケット部とされた膜−電極接合体と、該膜−電極接合体の両面側に配置されたセパレータと、を有する燃料電池であって、
前記セパレータは、前記膜−電極接合体の前記ガスケット部よりも面方向内側の接合体本体に対向した接合体対向部と、前記ガスケット部に対向したガスケット対向部と、これら接合体対向部とガスケット対向部との間を連結すると共に前記接合体対向部及びガスケット対向部の面方向と交差する方向の変位を吸収可能な連結部と、を備えた燃料電池。
A membrane-electrode assembly in which an electrolyte membrane is sandwiched between a pair of electrodes and a sealing material is integrally formed on the outer periphery thereof to form a gasket portion, and separators disposed on both sides of the membrane-electrode assembly. A fuel cell comprising:
The separator includes a bonded body facing portion facing the bonded body body in the surface direction of the membrane portion of the membrane-electrode assembly, a gasket facing portion facing the gasket portion, and the bonded body facing portion and the gasket. A fuel cell comprising: a connecting portion that connects between the facing portions and can absorb a displacement in a direction intersecting a surface direction of the joined body facing portion and the gasket facing portion.
請求項1に記載の燃料電池であって、
前記セパレータは、金属あるいはカーボンによって一体に成形されている燃料電池。
The fuel cell according to claim 1,
The separator is a fuel cell integrally formed of metal or carbon.
請求項1又は2に記載の燃料電池であって、
前記セパレータの連結部は、断面視にて凹凸形状とすることにより蛇腹状に形成されている燃料電池。

The fuel cell according to claim 1 or 2,
The connecting portion of the separator is a fuel cell that is formed in an accordion shape by forming an uneven shape in a sectional view.

JP2006011253A 2006-01-19 2006-01-19 Fuel cell Pending JP2007194077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011253A JP2007194077A (en) 2006-01-19 2006-01-19 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011253A JP2007194077A (en) 2006-01-19 2006-01-19 Fuel cell

Publications (1)

Publication Number Publication Date
JP2007194077A true JP2007194077A (en) 2007-08-02

Family

ID=38449606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011253A Pending JP2007194077A (en) 2006-01-19 2006-01-19 Fuel cell

Country Status (1)

Country Link
JP (1) JP2007194077A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129342A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Fuel cell, and manufacturing method of fuel cell stack
KR101029034B1 (en) * 2007-11-22 2011-04-15 한국타이어 주식회사 Gasket fuel cell bipolar plate
JP2014093212A (en) * 2012-11-05 2014-05-19 Nissan Motor Co Ltd Fuel cell and fuel cell stack
KR20160047547A (en) * 2013-10-01 2016-05-02 도요타지도샤가부시키가이샤 Fuel cell separator and fuel cell
JP2019036445A (en) * 2017-08-10 2019-03-07 日産自動車株式会社 Fuel cell stack

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101029034B1 (en) * 2007-11-22 2011-04-15 한국타이어 주식회사 Gasket fuel cell bipolar plate
JP2010129342A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Fuel cell, and manufacturing method of fuel cell stack
JP2014093212A (en) * 2012-11-05 2014-05-19 Nissan Motor Co Ltd Fuel cell and fuel cell stack
KR20160047547A (en) * 2013-10-01 2016-05-02 도요타지도샤가부시키가이샤 Fuel cell separator and fuel cell
CN105594038A (en) * 2013-10-01 2016-05-18 丰田自动车株式会社 Seal configuration for electrochemical cell
EP3054513A4 (en) * 2013-10-01 2016-10-12 Toyota Motor Co Ltd Fuel cell separator and fuel cell
KR101889201B1 (en) * 2013-10-01 2018-08-16 도요타지도샤가부시키가이샤 Fuel cell separator and fuel cell
US10153498B2 (en) 2013-10-01 2018-12-11 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and fuel cell
JP2019036445A (en) * 2017-08-10 2019-03-07 日産自動車株式会社 Fuel cell stack

Similar Documents

Publication Publication Date Title
US20140017593A1 (en) Fuel battery cell
US20180226663A1 (en) Fuel cell metal separator, method of producing the fuel cell metal separator, and power generation cell
US9450252B2 (en) Insulating structure, fuel cell and fuel cell stack
JP2009199888A (en) Fuel cell
US20190273268A1 (en) Frame equipped membrane electrode assembly, method of producing the frame equipped membrane electrode assembly, and fuel cell
US20140248549A1 (en) Fuel cell
US20150295266A1 (en) Cell module and fuel cell stack
EP2790255B1 (en) Fuel cell
CA2991279C (en) Fuel cell for reducing leakage of gas and water vapor
JP2007053007A (en) Fuel cell
JP2009070792A (en) Gasket of fuel cell stack
JP2016091849A (en) Separator for fuel battery, fuel battery cell and fuel battery
JP2007194077A (en) Fuel cell
US20160149232A1 (en) Resin-framed membrane-electrode assembly for fuel cell
JP2008130432A (en) Polymer electrolyte fuel cell
JP2007193970A (en) Fuel cell
CN115149057B (en) Power generation cell and membrane electrode assembly with resin frame
JP2008004448A (en) Fuel cell stack
JP2007005169A (en) Fuel cell stack
JP5756653B2 (en) Fuel cell stack
JP5278042B2 (en) Fuel cell
KR101822246B1 (en) Fuel cell stack
JP5729682B2 (en) Fuel cell separator
JP5242189B2 (en) Fuel cell
JP2006351342A (en) Fuel cell stack, seal member of fuel cell stack, and manufacturing method of fuel cell stack