JP5173477B2 - Hybrid refrigerator - Google Patents

Hybrid refrigerator Download PDF

Info

Publication number
JP5173477B2
JP5173477B2 JP2008039035A JP2008039035A JP5173477B2 JP 5173477 B2 JP5173477 B2 JP 5173477B2 JP 2008039035 A JP2008039035 A JP 2008039035A JP 2008039035 A JP2008039035 A JP 2008039035A JP 5173477 B2 JP5173477 B2 JP 5173477B2
Authority
JP
Japan
Prior art keywords
steam
expander
refrigerant
pressure compressor
working medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008039035A
Other languages
Japanese (ja)
Other versions
JP2009198056A (en
Inventor
洋 藤本
努 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2008039035A priority Critical patent/JP5173477B2/en
Publication of JP2009198056A publication Critical patent/JP2009198056A/en
Application granted granted Critical
Publication of JP5173477B2 publication Critical patent/JP5173477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、原動機と、その軸出力により駆動される圧縮機とを有する圧縮冷凍サイクルを備えた冷凍機に関する。   The present invention relates to a refrigerator equipped with a compression refrigeration cycle having a prime mover and a compressor driven by its shaft output.

圧縮式冷凍機をガスエンジンなどの原動機で駆動することは広く行われているが、排熱は給湯に利用する以外は捨てられることが多い。排熱で駆動する排熱吸収冷凍機は、発電を主体とするコージェネレーションでは多く用いられるが、圧縮式冷凍機と併設されることは少ない。この点、原動機に加えて、圧縮式冷凍機、排熱吸収冷凍機を備えて設備を構成すると、設備全体が大きくなる、圧縮冷凍機と排熱吸収冷凍機との負荷分担と温度制御精度の両立が難しい、冷媒を直接室内で蒸発させる直膨タイプを作りにくいなどの理由によるものと考えられる。   Driving a compression refrigerator with a prime mover such as a gas engine is widely performed, but waste heat is often discarded except for use in hot water supply. Exhaust heat absorption refrigerators driven by exhaust heat are often used in cogeneration mainly for power generation, but are rarely provided with compression refrigerators. In this respect, in addition to the prime mover, if the equipment is configured with a compression refrigeration machine and an exhaust heat absorption chiller, the entire equipment becomes larger. This is probably because it is difficult to achieve both, and it is difficult to make a direct expansion type that directly evaporates the refrigerant in the room.

これらの欠陥をある程度改善し、原動機から発生する排熱を有効に利用するものとして、圧縮冷凍サイクルと排熱吸収冷凍サイクルとを共に設け、両サイクルで凝縮器と蒸発器を共用し融合したアンモニアハイブリッドサイクルが提案されている(非特許文献1)。
一方、非特許文献2には、排熱吸収冷凍サイクルの蒸発器と吸収器の間に、圧縮機を挿入する構造が提案されている。
In order to improve these defects to some extent and to effectively use the exhaust heat generated by the prime mover, both the compression refrigeration cycle and the exhaust heat absorption refrigeration cycle are provided, and both cycles share a condenser and an evaporator to combine ammonia. A hybrid cycle has been proposed (Non-Patent Document 1).
On the other hand, Non-Patent Document 2 proposes a structure in which a compressor is inserted between an evaporator and an absorber of an exhaust heat absorption refrigeration cycle.

Optimization study of combined refrigeration cycles driven by an engine,Yang Zhao est.,Applied Energy 76(2003)379−389Optimization study of combined refrigeration cycles driven by an engine, Yang Zhao est. , Applied Energy 76 (2003) 379-389. Hybrid Compression/Absorption Type Heat Utilization System,T.Karimata etc.,6th IEA International Energy Agency Heat Pump Conference 1999 “Heat Pump−a Benefit for the Environment”May31−June2,1999,Berlin,P34Hybrid Compression / Absorption Type Heat Utilization System, T.A. Karimata etc. , 6th IEA International Energy Agency Heat Pump Conference 1999 “Heat Pump-a Benefit for the Environment” May 31-June 2, 1999, Berlin, P34.

しかしながら、非特許文献1に開示されるアンモニアハイブリッドサイクルにおいては、蒸発器の冷媒を圧縮機の吸込みと吸収器とに異なるメカニズムを使用して分配しており、負荷分担が難しく、また吸収器側の水分が圧縮サイクル側に紛れ込み圧縮機の潤滑オイルの性能劣化や蒸発器の性能劣化を引き起こす危険性がある。さらに、このアンモニアハイブリッドサイクルでは、蒸気発生器には精留器を設ける必要があるが、これが性能低下の要因になる。この例における吸収器は、図2に示す本願の第2実施形態における復水器と、近似する役割を果たす。   However, in the ammonia hybrid cycle disclosed in Non-Patent Document 1, the refrigerant of the evaporator is distributed to the compressor suction and the absorber using different mechanisms, and the load sharing is difficult, and the absorber side There is a risk that the moisture of the water will be mixed into the compression cycle side and cause the deterioration of the performance of the lubricating oil of the compressor and the deterioration of the performance of the evaporator. Furthermore, in this ammonia hybrid cycle, it is necessary to provide a rectifier in the steam generator, which causes a decrease in performance. The absorber in this example plays a role similar to the condenser in the second embodiment of the present application shown in FIG.

一方、非特許文献2に開示されているように、排熱吸収冷凍サイクルの蒸発器と吸収器の間に、圧縮機を挿入する構造を採用すると冷媒の分配の問題は解決されるが、圧縮機を原動機としてのエンジンで駆動する場合、圧縮機の能力が当該排熱吸収冷凍サイクルの再生器の蒸発能力に対して過大であり、サイクルが成立しなくなる。   On the other hand, as disclosed in Non-Patent Document 2, when a structure in which a compressor is inserted between the evaporator and the absorber of the exhaust heat absorption refrigeration cycle is used, the problem of refrigerant distribution is solved. When the machine is driven by an engine as a prime mover, the capacity of the compressor is excessive with respect to the evaporation capacity of the regenerator of the exhaust heat absorption refrigeration cycle, and the cycle cannot be established.

本発明の目的は、軸出力を得ることができる原動機と、圧縮冷凍サイクルとを備えた冷凍機において、軸出力の発生に伴って原動機から発生する排熱を有効に利用できる冷凍機を得ることにある。   An object of the present invention is to obtain a refrigerator capable of effectively utilizing exhaust heat generated from a prime mover with generation of shaft output in a refrigerator equipped with a prime mover capable of obtaining shaft output and a compression refrigeration cycle. It is in.

上記目的を達成するための、本願に係るハイブリッド冷凍機の特徴構成は、
蒸発器で発生される冷媒蒸気を、低圧圧縮機及び高圧圧縮機で順次圧縮し、高圧圧縮機で生成される高圧冷媒蒸気を凝縮器で凝縮させて冷媒液とするとともに、冷媒液を膨張弁で膨張させ、前記蒸発器で蒸発させて冷熱を発生させる圧縮冷凍サイクルを設け、
軸出力を発生する原動機を設け、
前記原動機から回収される排熱により作動媒体の蒸気を得る蒸気発生機構と、前記蒸気発生機構で発生された蒸気を膨張させて軸出力を得る膨張機と、前記膨張機で膨張後の作動媒体を液に戻す復水器を備えた蒸気サイクルを設け、
前記原動機の軸出力により前記低圧圧縮機が働き、前記膨張機の軸出力により前記高圧圧縮機が働くことにある。
In order to achieve the above object, the characteristic configuration of the hybrid refrigerator according to the present application is as follows:
Refrigerant vapor generated in the evaporator is sequentially compressed by a low-pressure compressor and a high-pressure compressor, and the high-pressure refrigerant vapor generated by the high-pressure compressor is condensed in a condenser to form a refrigerant liquid, and the refrigerant liquid is expanded by an expansion valve. Provided with a compression refrigeration cycle that expands in the evaporator and evaporates in the evaporator to generate cold.
Provide a prime mover that generates shaft output,
A steam generation mechanism that obtains steam of a working medium by exhaust heat recovered from the prime mover, an expander that expands the steam generated by the steam generation mechanism to obtain a shaft output, and a working medium that has been expanded by the expander A steam cycle with a condenser to return the liquid to the liquid,
The low pressure compressor works by the shaft output of the prime mover, and the high pressure compressor works by the shaft output of the expander.

このハイブリッド冷凍機は、圧縮冷凍サイクルと、蒸気サイクルと、原動機とを備えて構成される。そして、原動機を運転することで、その軸出力を低圧圧縮機の動力として使用し、その排熱を蒸気サイクルを介して膨張機の軸出力として取り出し、その軸出力を高圧圧縮機の動力として使用する。
ここで、これら低圧圧縮機及び高圧圧縮機は直列に接続されており、圧縮冷凍サイクルを成す蒸発器で発生される冷媒蒸気が順次圧縮される。この二段圧縮にあっては、高圧圧縮機による圧縮に関して、低圧圧縮機で圧縮された冷媒をさらに圧縮するものとなるため、必要とされる動力は比較的小さくなり、蒸気サイクルで回収される排熱で発生できる動力で十分まかなうことができる。また、排熱で駆動する程度の小型圧縮機を高圧圧縮機に使用できる。さらに、この構成では、圧縮冷凍サイクルを循環する冷媒は、その全量が順次圧縮されるため、先に説明したような冷媒の分配の問題も発生することはない。
そして、上記の二段の圧縮工程を経て得られた冷媒を凝縮器に送り凝縮させるとともに、膨張弁で膨張させ、さらに蒸発器で蒸発させることで、原動機から発生される軸出力及び排熱を利用して、冷熱を、コンパクトな機器構成で得ることができる。
This hybrid refrigerator includes a compression refrigeration cycle, a steam cycle, and a prime mover. Then, by operating the prime mover, the shaft output is used as the power for the low pressure compressor, the exhaust heat is taken out as the shaft output of the expander through the steam cycle, and the shaft output is used as the power for the high pressure compressor. To do.
Here, the low-pressure compressor and the high-pressure compressor are connected in series, and the refrigerant vapor generated in the evaporator constituting the compression refrigeration cycle is sequentially compressed. In this two-stage compression, since the refrigerant compressed by the low pressure compressor is further compressed with respect to the compression by the high pressure compressor, the required power becomes relatively small and is recovered by the steam cycle. Power that can be generated by exhaust heat can be fully covered. Further, a small compressor that can be driven by exhaust heat can be used for the high-pressure compressor. Furthermore, in this configuration, the refrigerant circulating in the compression refrigeration cycle is compressed in its entirety, so that the problem of refrigerant distribution as described above does not occur.
Then, the refrigerant obtained through the two-stage compression process is sent to the condenser to be condensed, expanded by the expansion valve, and further evaporated by the evaporator, thereby reducing the shaft output and exhaust heat generated from the prime mover. Utilizing this, cold energy can be obtained with a compact device configuration.

上記の構成で、前記蒸気サイクルを循環する作動媒体が、前記圧縮冷凍サイクルを循環する冷媒の溶液であり、前記蒸気発生機構が、前記原動機の冷却水により回収された排熱により作動媒体を再生する再生器と、当該再生器で再生された作動媒体を冷媒の低濃度溶液と高濃度蒸気とに分離する分離器により構成され、
前記低濃度溶液を復水器に戻す低濃度溶液戻り路が備えられ、前記高濃度蒸気が前記膨張機に送られる構成とされていることが好ましい。
With the above configuration, the working medium circulating in the steam cycle is a refrigerant solution circulating in the compression refrigeration cycle, and the steam generation mechanism regenerates the working medium by exhaust heat recovered by the cooling water of the prime mover. And a separator that separates the working medium regenerated by the regenerator into a low-concentration refrigerant solution and a high-concentration vapor,
It is preferable that a low-concentration solution return path for returning the low-concentration solution to the condenser is provided, and the high-concentration steam is sent to the expander.

このハイブリッド冷凍機にあっては、蒸気サイクルを循環する作動媒体が、圧縮冷凍サイクルを循環する冷媒の溶液とされることで、媒体の共通化が図られる。従って、圧縮機側から膨張機側へ冷媒が多少洩れても、大きな影響を及ぼす心配はない。
そして、蒸気発生機構を、原動機の冷却水により回収された排熱により作動媒体を再生する再生器と、当該再生器で再生された作動媒体を冷媒の低濃度溶液と高濃度蒸気とに分離する分離器とで構成し、この分離器で分離される低濃度溶液を、低濃度溶液戻り路を介して復水器に戻し、高濃度蒸気を膨張機に送る。このようにすることで、蒸気発生機構において、排熱吸収冷凍サイクルにおける再生器の役割を担わせることができ、排熱を作動媒体の再生に利用しながら、得られる高濃度蒸気のみを膨張機に送り軸出力を得ることができる。この構成では、再生器圧力、すなわち、高濃度蒸気の圧力は、再生器に送り込む溶液の濃度によって調整することができるので、膨張機の圧力比を効率が高くなるよう適切に維持できる。
In this hybrid refrigerator, the working medium circulating in the vapor cycle is used as a refrigerant solution circulating in the compression refrigeration cycle, so that the medium can be shared. Therefore, even if the refrigerant leaks from the compressor side to the expander side to some extent, there is no fear of having a great influence.
Then, the steam generation mechanism separates the regenerator that regenerates the working medium by exhaust heat recovered by the cooling water of the prime mover, and the working medium regenerated by the regenerator into a low-concentration refrigerant solution and high-concentration steam. The low concentration solution separated by the separator is returned to the condenser via the low concentration solution return path, and the high concentration steam is sent to the expander. In this way, in the steam generation mechanism, the regenerator can play a role in the exhaust heat absorption refrigeration cycle, and only the high-concentration steam obtained can be expanded while utilizing the exhaust heat for regeneration of the working medium. The feed shaft output can be obtained. In this configuration, the regenerator pressure, that is, the pressure of the high-concentration steam can be adjusted by the concentration of the solution fed into the regenerator, so that the pressure ratio of the expander can be appropriately maintained so as to increase the efficiency.

また、この構成において、さらに具体的には、圧縮冷凍サイクルを循環する冷媒がアンモニアであり、蒸気サイクルを循環する作動媒体がアンモニアと水の混合媒体であり、高圧圧縮機と膨張機を直結した軸の膨張機側圧力が、圧縮機側圧力よりも低くなるように、前記作動媒体のアンモニア濃度が設定されている。
この構成のハイブリッド冷凍機では、高圧圧縮機と膨張機とを直結して(所謂、ターボチャジャーとして)、その中間をシールし、且つ軸の膨張機側を圧縮機側より若干低くする。従って、この構造では、漏洩は高圧圧縮機(圧縮冷凍サイクル)側から膨張機(蒸気サイクル)側に向かってのみ起こり、漏洩は圧縮冷凍サイクル内を循環する冷媒成分に影響しないし、膨張機側も少量の漏洩であれば殆ど影響はない。従って、圧縮冷凍サイクルに備えられる低圧圧縮機及び高圧圧縮機における圧縮機の潤滑オイルの劣化を防止できるとともに、冷凍機全体を一体設計できる。
In this configuration, more specifically, the refrigerant circulating in the compression refrigeration cycle is ammonia, the working medium circulating in the vapor cycle is a mixed medium of ammonia and water, and the high pressure compressor and the expander are directly connected. expander side pressure of the shaft, so that is lower than the compressor outlet pressure, the ammonia concentration of the working medium that has been set.
In the hybrid refrigerator having this configuration, the high pressure compressor and the expander are directly connected (as a so-called turbocharger), the middle is sealed, and the expander side of the shaft is slightly lower than the compressor side. Therefore, in this structure, leakage occurs only from the high-pressure compressor (compression refrigeration cycle) side to the expander (steam cycle) side, and the leakage does not affect the refrigerant component circulating in the compression refrigeration cycle, and the expander side If there is a small amount of leakage, there is almost no effect. Accordingly, it is possible to prevent deterioration of the lubricating oil of the compressor in the low-pressure compressor and the high-pressure compressor provided in the compression refrigeration cycle, and it is possible to design the entire refrigerator as an integral unit.

さて、これまで説明してきた構成において、低圧圧縮機から高圧圧縮機に送られる冷媒を、復水器から蒸気発生機構に送られる作動媒体の液又は蒸気発生機構から膨張機に向かう蒸気、あるいはそれらの両方と熱交換可能に構成することが好ましい。
この構成を採用することで、蒸気サイクル側の効率が向上するとともに、圧縮機側は、所謂、二段圧縮中間冷却の構造になるため、やはり効率を向上することができる。
In the configuration described so far, the refrigerant sent from the low-pressure compressor to the high-pressure compressor is the liquid of the working medium sent from the condenser to the steam generating mechanism, the steam from the steam generating mechanism to the expander, or those It is preferable that the heat exchange is possible with both.
By adopting this configuration, the efficiency on the steam cycle side is improved, and the compressor side has a so-called two-stage compression / intermediate cooling structure, so the efficiency can also be improved.

以下、本願の実施形態を図面に基づいて説明する。本明細書では、第1実施形態(図1)、第2実施形態(図2)及び第3実施形態(図3)を紹介するが、まず、共通構成に関して説明する。   Hereinafter, embodiments of the present application will be described with reference to the drawings. In this specification, the first embodiment (FIG. 1), the second embodiment (FIG. 2), and the third embodiment (FIG. 3) are introduced. First, the common configuration will be described.

〔共通構成〕
本願に係るハイブリッド冷凍機であるコンバインドシステム100は、原動機101と圧縮冷凍サイクル102及び蒸気サイクル103を備えて構成されている。
[Common configuration]
A combined system 100, which is a hybrid refrigerator according to the present application, includes a prime mover 101, a compression refrigeration cycle 102, and a steam cycle 103.

原動機101は、軸出力を出力可能に構成されるとともに、その軸出力の出力に伴って発生する排熱は冷却水cにより回収される。   The prime mover 101 is configured to be capable of outputting a shaft output, and exhaust heat generated with the output of the shaft output is recovered by the cooling water c.

圧縮冷凍サイクル102の構成は全ての形態で共通しており、圧縮機1として、直列接続された低圧圧縮機1aと高圧圧縮機1bとを備えて構成されている。そして、前記原動機101の軸出力によりこの低圧圧縮機1aが働く構成が採用されるとともに、後述する蒸気サイクル102を成す膨張機12の軸出力により高圧圧縮機1bが働く構成が採用されている。
さらに、詳細には、圧縮冷凍サイクル102は、良く知られているように、蒸発器2、圧縮機1(直列接続された低圧圧縮機1aと高圧圧縮機1b)、凝縮器3、膨張弁4を、冷媒が循環する循環回路に記載順に備えて構成されている。そして、蒸発器2で発生される冷媒蒸気を、低圧圧縮機1a及び高圧圧縮機1bで順次圧縮し、高圧圧縮機1bで生成される高圧冷媒蒸気を凝縮器3で凝縮させて冷媒液とするとともに、この冷媒液を膨張弁4で膨張させ、蒸発器2でさらに蒸発させて、当該蒸発器2で冷媒の蒸発に伴って冷熱を取り出せるように構成されている。この圧縮冷凍サイクル101の冷媒aとしては、例えばアンモニアが使用可能である。
The configuration of the compression refrigeration cycle 102 is common to all forms, and the compressor 1 includes a low-pressure compressor 1a and a high-pressure compressor 1b connected in series. A configuration is employed in which the low pressure compressor 1a is operated by the shaft output of the prime mover 101, and a configuration is employed in which the high pressure compressor 1b is operated by the shaft output of the expander 12 constituting the steam cycle 102 described later.
More specifically, the compression refrigeration cycle 102 includes, as is well known, an evaporator 2, a compressor 1 (a low-pressure compressor 1 a and a high-pressure compressor 1 b connected in series), a condenser 3, and an expansion valve 4. Are arranged in the order of description in a circulation circuit in which the refrigerant circulates. Then, the refrigerant vapor generated in the evaporator 2 is sequentially compressed by the low-pressure compressor 1a and the high-pressure compressor 1b, and the high-pressure refrigerant vapor generated by the high-pressure compressor 1b is condensed by the condenser 3 to obtain a refrigerant liquid. At the same time, the refrigerant liquid is expanded by the expansion valve 4, further evaporated by the evaporator 2, and the evaporator 2 is configured to take out cold heat as the refrigerant evaporates. As the refrigerant a of the compression refrigeration cycle 101, for example, ammonia can be used.

蒸気サイクル103は、蒸気発生機構11、膨張機12、復水器13、循環ポンプ14を、作動媒体が循環する循環回路に記載順に備えて構成されており、原動機101の排熱により作動媒体の蒸気を得る蒸気発生機構11と、この蒸気発生機構11で発生された蒸気を膨張させて軸出力を得る膨張機12と、膨張機12で膨張後の作動媒体を液に戻す復水器13とを備えて構成されており、復水器13により液状態となった作動媒体を循環ポンプ14により蒸気発生機構11に導入する構成とされている。この蒸気サイクル103の作動媒体bとしては、例えば吸収液に吸収される被吸収液が水、吸収液がアンモニアである混合媒体bを使用可能である。ここで、先にも説明したように、膨張機12で発生される軸出力は高圧圧縮機1bの運転に使用されるが、膨張機12の出力軸は高圧圧縮機1bの駆動軸に直結されている。そして、高圧圧縮機1bと前記膨張機12を直結した軸の膨張機側圧力が、圧縮機側圧力よりも低く設定される場合は、圧縮冷凍サイクル102側から蒸気サイクル103側へのアンモニアの漏れは許容されるが、蒸気サイクル103側から圧縮冷凍サイクル102側への作動媒体の侵入は起こらない。この様な圧力設定は、混合媒体のアンモニア濃度を適切に選択することで実現できる。
以上が、本願に係るコンバインドシステム100の共通構成である。以下、各図をも参考にして、各実施形態の特徴構成を中心に説明する。
The steam cycle 103 includes a steam generation mechanism 11, an expander 12, a condenser 13, and a circulation pump 14 in the order of description in a circulation circuit in which the working medium circulates. A steam generating mechanism 11 for obtaining steam; an expander 12 for expanding the steam generated by the steam generating mechanism 11 to obtain a shaft output; and a condenser 13 for returning the working medium expanded by the expander 12 to liquid. The working medium that has become liquid by the condenser 13 is introduced into the steam generating mechanism 11 by the circulation pump 14. As the working medium b of the vapor cycle 103, for example, a mixed medium b in which the liquid to be absorbed absorbed by the absorbing liquid is water and the absorbing liquid is ammonia can be used. Here, as described above, the shaft output generated by the expander 12 is used for the operation of the high-pressure compressor 1b, but the output shaft of the expander 12 is directly connected to the drive shaft of the high-pressure compressor 1b. ing. When the expander side pressure of the shaft directly connecting the high pressure compressor 1b and the expander 12 is set lower than the compressor side pressure, ammonia leaks from the compression refrigeration cycle 102 side to the steam cycle 103 side. However, the working medium does not enter from the steam cycle 103 side to the compression refrigeration cycle 102 side. Such pressure setting can be realized by appropriately selecting the ammonia concentration of the mixed medium.
The above is the common configuration of the combined system 100 according to the present application. Hereinafter, the characteristic configuration of each embodiment will be mainly described with reference to each drawing.

〔第1実施形態〕
この実施形態が図1に示されている。同図に示すように、この例では、蒸気発生機構11として、冷却水cが保有する排熱から作動媒体の蒸気を発生する蒸気発生器11aを採用している。この形態は、本願の最も基本的な実施形態となっている。従って、この実施形態では、発生される全ての蒸気が膨張機12に送られる。
[First Embodiment]
This embodiment is shown in FIG. As shown in the figure, in this example, a steam generator 11 a that generates steam of the working medium from exhaust heat held by the cooling water c is employed as the steam generation mechanism 11. This form is the most basic embodiment of the present application. Therefore, in this embodiment, all generated steam is sent to the expander 12.

〔第2実施形態〕
この実施形態が図2に示されている。同図に示すように、この例では、蒸気発生機構11が、原動機101の冷却水cにより回収される排熱により作動媒体bを再生する再生器11bと、当該再生器11bで発生される低濃度溶液と高濃度蒸気とに分離する分離器11cにより構成される例であり、分離器11cから低濃度溶液(水濃度が低い水アンモニア溶液)が低濃度溶液路11dを介して復水器13に戻され、高濃度蒸気(水濃度が高い蒸気)が膨張機12に送られる構成が採用されている。この形態は、混合媒体bの特性を有効に利用できる実施形態となっている。
[Second Embodiment]
This embodiment is shown in FIG. As shown in the figure, in this example, the steam generating mechanism 11 includes a regenerator 11b that regenerates the working medium b by exhaust heat recovered by the cooling water c of the prime mover 101, and a low level generated by the regenerator 11b. This is an example constituted by a separator 11c that separates into a concentrated solution and a high-concentrated vapor. A low-concentration solution (water ammonia solution having a low water concentration) is separated from the separator 11c through a low-concentration solution path 11d. The configuration in which the high-concentration steam (steam having a high water concentration) is sent to the expander 12 is adopted. This embodiment is an embodiment in which the characteristics of the mixed medium b can be used effectively.

〔第3実施形態〕
この実施形態が図3に示されている。同図に示すように、この例では、低圧圧縮機1aから高圧圧縮機1bに送られる冷媒aを、復水器13から蒸気発生機構11に送られる作動媒体の液b及び蒸気発生機構11から膨張機12に向かう蒸気bの両方と熱交換するように、第1熱交換器15a、第2熱交換器15bが設けられている。この形態は、蒸気サイクル103側の効率が向上するとともに、圧縮機構1側で、二段圧縮中間冷却の構造となるため、やはり効率を向上することができる。
この例の場合、第1熱交換器15a、第2熱交換器15bとのいずれか一方を備える構造としてもよい。
[Third Embodiment]
This embodiment is shown in FIG. As shown in the figure, in this example, the refrigerant a sent from the low pressure compressor 1a to the high pressure compressor 1b is supplied from the liquid b of the working medium sent from the condenser 13 to the steam generation mechanism 11 and the steam generation mechanism 11. A first heat exchanger 15a and a second heat exchanger 15b are provided so as to exchange heat with both of the steam b traveling toward the expander 12. In this embodiment, the efficiency on the steam cycle 103 side is improved and the structure of the two-stage compression intermediate cooling is performed on the compression mechanism 1 side, so that the efficiency can also be improved.
In the case of this example, it is good also as a structure provided with either one of the 1st heat exchanger 15a and the 2nd heat exchanger 15b.

〔別実施形態〕
(1) 上記の実施形態にあっては、原動機の冷却水で回収される排熱を蒸気サイクルの熱源としたが、原動機から排出される排ガスが有する熱を利用して、蒸気サイクルを運転することとしてもよい。
(2) 上記の実施形態にあっては、圧縮冷凍サイクルの冷媒としてアンモニアを使用し、蒸気サイクルの作動媒体として水アンモニアの混合媒体を使用する例を示したが、圧縮冷凍サイクルの冷媒としてエチルアルコールを使用し、蒸気サイクルの作動媒体としてエチルアルコールと水との混合媒体を使用するものとしてもよい。
[Another embodiment]
(1) In the above embodiment, the exhaust heat recovered by the cooling water of the prime mover is used as the heat source of the steam cycle, but the steam cycle is operated using the heat of the exhaust gas discharged from the prime mover. It is good as well.
(2) In the above embodiment, an example is shown in which ammonia is used as the refrigerant for the compression refrigeration cycle, and a mixed medium of water ammonia is used as the working medium for the vapor cycle. Alcohol may be used, and a mixed medium of ethyl alcohol and water may be used as the working medium for the steam cycle.

第1実施形態の構成を示す図The figure which shows the structure of 1st Embodiment. 第2実施形態の構成を示す図The figure which shows the structure of 2nd Embodiment. 第3実施形態の構成を示す図The figure which shows the structure of 3rd Embodiment.

符号の説明Explanation of symbols

1 圧縮機
1a 低圧圧縮機
1b 高圧圧縮機
2 蒸発器
3 凝縮器
4 膨張弁
11 蒸気発生機構
11a蒸気発生器
11b再生器
11c分離器
12 膨張機
13 復水器
14 循環ポンプ
15 熱交換器
100コンバインドシステム
101原動機
102圧縮冷凍サイクル
103蒸気サイクル
a 冷媒
b 作動媒体
c 冷却水
DESCRIPTION OF SYMBOLS 1 Compressor 1a Low pressure compressor 1b High pressure compressor 2 Evaporator 3 Condenser 4 Expansion valve 11 Steam generation mechanism 11a Steam generator 11b Regenerator 11c Separator 12 Expander 13 Condenser 14 Circulation pump 15 Heat exchanger 100 Combined System 101 Motor 102 Compression refrigeration cycle 103 Steam cycle a Refrigerant b Working medium c Cooling water

Claims (3)

蒸発器で発生される冷媒蒸気を、低圧圧縮機及び高圧圧縮機で順次圧縮し、高圧圧縮機で生成される高圧冷媒蒸気を凝縮器で凝縮させて冷媒液とするとともに、冷媒液を膨張弁で膨張させ、前記蒸発器で蒸発させて冷熱を発生させる圧縮冷凍サイクルを設け、
軸出力を発生する原動機を設け、
前記原動機から回収される排熱により作動媒体の蒸気を得る蒸気発生機構と、前記蒸気発生機構で発生された蒸気を膨張させて軸出力を得る膨張機と、前記膨張機で膨張後の作動媒体を液に戻す復水器を備えた蒸気サイクルを設け、
前記原動機の軸出力により前記低圧圧縮機が働き、前記膨張機の軸出力により前記高圧圧縮機が働き、
前記圧縮冷凍サイクルを循環する冷媒がアンモニアであり、前記蒸気サイクルを循環する作動媒体がアンモニアと水の混合媒体であり、
前記高圧圧縮機と前記膨張機を直結した軸の膨張機側圧力が、圧縮機側圧力よりも低くなるように、前記作動媒体のアンモニア濃度が設定されているハイブリッド冷凍機。
Refrigerant vapor generated in the evaporator is sequentially compressed by a low-pressure compressor and a high-pressure compressor, and the high-pressure refrigerant vapor generated by the high-pressure compressor is condensed in a condenser to form a refrigerant liquid, and the refrigerant liquid is expanded by an expansion valve. Provided with a compression refrigeration cycle that expands in the evaporator and evaporates in the evaporator to generate cold.
Provide a prime mover that generates shaft output,
A steam generation mechanism that obtains steam of a working medium by exhaust heat recovered from the prime mover, an expander that expands the steam generated by the steam generation mechanism to obtain a shaft output, and a working medium that has been expanded by the expander A steam cycle with a condenser to return the liquid to the liquid,
The low-pressure compressor is exerted by the shaft output of the prime mover,-out said high pressure compressor work by a shaft output of the expander,
The refrigerant circulating in the compression refrigeration cycle is ammonia, the working medium circulating in the vapor cycle is a mixed medium of ammonia and water,
A hybrid refrigerator in which an ammonia concentration of the working medium is set so that an expander-side pressure of a shaft directly connecting the high-pressure compressor and the expander is lower than a compressor-side pressure .
前記蒸気サイクルを循環する作動媒体が、前記圧縮冷凍サイクルを循環する冷媒の溶液であり、前記蒸気発生機構が、前記原動機の冷却水により回収された排熱により作動媒体を再生する再生器と、当該再生器で再生された作動媒体を冷媒の低濃度溶液と高濃度蒸気とに分離する分離器により構成され、
前記低濃度溶液を復水器に戻す低濃度溶液戻り路が備えられ、前記高濃度蒸気が前記膨張機に送られる請求項1記載のハイブリッド冷凍機。
A regenerator in which the working medium circulating in the steam cycle is a refrigerant solution circulating in the compression refrigeration cycle, and the steam generating mechanism regenerates the working medium by exhaust heat recovered by cooling water of the prime mover; The working medium regenerated by the regenerator is constituted by a separator that separates a low-concentration refrigerant solution and a high-concentration vapor,
The hybrid refrigerator according to claim 1, further comprising a low-concentration solution return path for returning the low-concentration solution to a condenser, wherein the high-concentration steam is sent to the expander.
前記低圧圧縮機から高圧圧縮機に送られる冷媒を、前記復水器から前記蒸気発生機構に送られる作動媒体の液又は前記蒸気発生機構から前記膨張機に向かう蒸気、あるいはそれらの両方と熱交換可能に構成した請求項1又は2記載のハイブリッド冷凍機。 The refrigerant sent from the low-pressure compressor to the high-pressure compressor exchanges heat with the liquid of the working medium sent from the condenser to the steam generation mechanism, the steam from the steam generation mechanism toward the expander, or both. The hybrid refrigerator according to claim 1 or 2 , configured to be possible.
JP2008039035A 2008-02-20 2008-02-20 Hybrid refrigerator Expired - Fee Related JP5173477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039035A JP5173477B2 (en) 2008-02-20 2008-02-20 Hybrid refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039035A JP5173477B2 (en) 2008-02-20 2008-02-20 Hybrid refrigerator

Publications (2)

Publication Number Publication Date
JP2009198056A JP2009198056A (en) 2009-09-03
JP5173477B2 true JP5173477B2 (en) 2013-04-03

Family

ID=41141745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039035A Expired - Fee Related JP5173477B2 (en) 2008-02-20 2008-02-20 Hybrid refrigerator

Country Status (1)

Country Link
JP (1) JP5173477B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673384B (en) * 2012-12-04 2017-01-04 摩尔动力(北京)技术股份有限公司 Engine exhaust heat refrigeration system
CN108106050A (en) * 2018-01-15 2018-06-01 江苏乐科节能科技股份有限公司 The refrigeration system and method for chilled water are produced using low-grade exhaust heat

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249413A (en) * 1999-03-01 2000-09-14 Daikin Ind Ltd Refrigeration unit
JP3952284B2 (en) * 2002-06-12 2007-08-01 東京瓦斯株式会社 Air conditioner
JP4738225B2 (en) * 2006-03-27 2011-08-03 大阪瓦斯株式会社 Power system
JP4866155B2 (en) * 2006-06-12 2012-02-01 株式会社荏原製作所 Waste heat power generator
JP2007255889A (en) * 2007-05-24 2007-10-04 Mitsubishi Electric Corp Refrigerating air conditioning device

Also Published As

Publication number Publication date
JP2009198056A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
US10774733B2 (en) Bottoming cycle power system
RU2006139188A (en) HIGH EFFICIENCY HEAT CYCLE DEVICE
WO2006012406A3 (en) Combined rankine and vapor compression cycles
WO2000071944A1 (en) A semi self sustaining thermo-volumetric motor
JP2009270745A (en) Refrigerating system
WO2013046853A1 (en) Waste heat regeneration system
JP2007178072A (en) Air conditioner for vehicle
JP2006348876A (en) Steam supply system and power generation plant
JP2011099640A (en) Hybrid heat pump
JP5173477B2 (en) Hybrid refrigerator
US8631660B2 (en) Integrated gasification combined cycle system with vapor absorption chilling
JP6745247B2 (en) Energy conversion system
JP5312644B1 (en) Air conditioning power generation system
JP2010223439A (en) Solar heat utilizing steam generating system and solar heat utilizing absorption refrigerating machine using the same
JP2007263482A (en) Composite heat pump system
JP2003336927A (en) Combined refrigerating system
US10837682B2 (en) Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
JP5389366B2 (en) Steam compression / absorption hybrid refrigerator
US3175371A (en) Refrigeration process and apparatus for the same
JP2013217512A (en) Engine driven heat pump air conditioner
JP6327544B2 (en) Waste heat heat pump system
CN106949668B (en) A kind of IDC computer room heat pump refrigerating power generator and working method
KR101271189B1 (en) Intake air cooling system for ship
JP2009198057A (en) Combined system
JPH11223412A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5173477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees