JP5172867B2 - Coating composition comprising polysilazane - Google Patents

Coating composition comprising polysilazane Download PDF

Info

Publication number
JP5172867B2
JP5172867B2 JP2010001883A JP2010001883A JP5172867B2 JP 5172867 B2 JP5172867 B2 JP 5172867B2 JP 2010001883 A JP2010001883 A JP 2010001883A JP 2010001883 A JP2010001883 A JP 2010001883A JP 5172867 B2 JP5172867 B2 JP 5172867B2
Authority
JP
Japan
Prior art keywords
molecular weight
perhydropolysilazane
coating composition
coating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010001883A
Other languages
Japanese (ja)
Other versions
JP2011142207A5 (en
JP2011142207A (en
Inventor
昌 伸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Performance Materials IP Japan GK
Original Assignee
AZ Electronic Materials IP Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AZ Electronic Materials IP Japan Co Ltd filed Critical AZ Electronic Materials IP Japan Co Ltd
Priority to JP2010001883A priority Critical patent/JP5172867B2/en
Priority to KR1020100136639A priority patent/KR101711662B1/en
Priority to CN201110006067.2A priority patent/CN102153951B/en
Priority to TW100100458A priority patent/TWI568806B/en
Publication of JP2011142207A publication Critical patent/JP2011142207A/en
Publication of JP2011142207A5 publication Critical patent/JP2011142207A5/ja
Application granted granted Critical
Publication of JP5172867B2 publication Critical patent/JP5172867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)
  • Element Separation (AREA)

Description

本発明は、半導体の製造工程においてシリカ質膜を形成させるためのコーティング組成物に関するものである。より具体的には、半導体の製造工程で絶縁膜として使用されるシリカ質膜を形成させるためのポリシラザンを含むコーティング組成物に関するものである。   The present invention relates to a coating composition for forming a siliceous film in a semiconductor manufacturing process. More specifically, the present invention relates to a coating composition containing polysilazane for forming a siliceous film used as an insulating film in a semiconductor manufacturing process.

昨今、半導体装置にはより高い集積密度が求められるようになっており、それに応えるべく製造技術が改良されている。そして、そのような半導体装置の製造過程のひとつである、絶縁膜を形成させる工程では、狭いギャップを埋設することが必要になってきている。   In recent years, higher integration density has been demanded for semiconductor devices, and manufacturing technology has been improved to meet this demand. In the process of forming an insulating film, which is one of the manufacturing processes of such a semiconductor device, it is necessary to bury a narrow gap.

このような狭いギャップを埋設するのに、ペルヒドロポリシラザンを含むコーティング組成物を用いることが知られている。ペルヒドロポリシラザンは基本骨格がSi−N、Si−H、N−H結合により構成される重合体であり、酸素および/または水蒸気を含む雰囲気で焼成することでSi−N結合がSi−O結合に置換され、純度の高いシリカ質膜が得られるという特徴を有している。   It is known to use coating compositions containing perhydropolysilazane to fill such narrow gaps. Perhydropolysilazane is a polymer whose basic skeleton is composed of Si—N, Si—H, and N—H bonds. By baking in an atmosphere containing oxygen and / or water vapor, Si—N bonds become Si—O bonds. Thus, a siliceous film having a high purity can be obtained.

しかしながら、半導体に要求される集積密度がより高くなるにしたがい、ギャップはより狭くなってきている。従来知られている、ペルヒドロポリシラザンを含むコーティング組成物は一般的に埋設性に優れているといわれているが、昨今要求される高い集積密度を達成するためには、改良が必要になってきている。具体的には、従来のコーティング組成物では、埋設性と塗布性とを両立させることが困難になってきている。   However, the gap is becoming narrower as the integration density required for semiconductors becomes higher. Conventionally known coating compositions containing perhydropolysilazane are generally said to have excellent embedding properties, but improvements are required to achieve the high integration density required recently. ing. Specifically, with conventional coating compositions, it has become difficult to achieve both embedding and coating properties.

このような問題の原因の一つとして、ペルヒドロポリシラザンの分子量分布があることが知られている。例えば、特許文献1には重量平均分子量が4000〜8000であり、重量平均分子量および数平均分子量の比が3.0〜4.0であるペルヒドロポリシランザンを用いたスピンオンガラス組成物が開示されている。また、特許文献2には、重量平均分子量が3000〜6000であるポリシラザンを含むスピンオングラスが開示されている。さらに、特許文献3にはポリスチレン換算分子量が700以下のポリシラザン量が、全ポリシラザン量の10%以下であるシリカ系被膜形成用塗布液が開示されている。これらは、いずれもポリシラザンの分子量分布を制御して塗布性等を改良しようとするものである。   One of the causes of such problems is known to be the molecular weight distribution of perhydropolysilazane. For example, Patent Document 1 discloses a spin-on glass composition using perhydropolysilane having a weight average molecular weight of 4000 to 8000 and a ratio of the weight average molecular weight to the number average molecular weight of 3.0 to 4.0. ing. Patent Document 2 discloses a spin-on glass containing polysilazane having a weight average molecular weight of 3000 to 6000. Further, Patent Document 3 discloses a coating solution for forming a silica-based film in which the amount of polysilazane having a polystyrene-equivalent molecular weight of 700 or less is 10% or less of the total amount of polysilazane. These are all intended to improve the coatability and the like by controlling the molecular weight distribution of polysilazane.

本発明者らの検討によれば、重量平均分子量の小さいペルヒドロポリシラザンを用いると埋設性は向上する傾向にあるが、塗布時にストリエーションが発生しやすくなり、反対に重量平均分子量の大きいペルヒドロポリシラザンを用いると、ストリエーションの発生が抑制されて塗布性が改良されるが、埋設性は劣化する傾向にある。この結果、狭いギャップの深部まで十分埋設されず、塗布後に焼成してシリカ質膜を形成させた場合、ギャップ深部のフッ酸によるエッチングレートが大きくなるという問題が発生しやすいという問題点があった。このような問題点は、特許文献1〜3に記載されているような分子量分布の制御だけでは十分ではなく、さらなる改良が望まれていた。   According to the study by the present inventors, when perhydropolysilazane having a small weight average molecular weight is used, embedding tends to be improved. When polysilazane is used, the occurrence of striation is suppressed and the coating property is improved, but the embedding property tends to deteriorate. As a result, there is a problem in that the depth of the gap is not sufficiently embedded, and when the siliceous film is formed by baking after coating, the etching rate of the gap deep due to hydrofluoric acid tends to increase. . For such problems, it is not sufficient to control the molecular weight distribution as described in Patent Documents 1 to 3, and further improvement has been desired.

特開2001−319927号明細書JP 2001-319927 A 特開2005−150702号明細書Japanese Patent Application Laid-Open No. 2005-150702 特開平8−269399号明細書JP-A-8-269399 特許第1474685号明細書Japanese Patent No. 1474685 特許第2613787号明細書Japanese Patent No. 2613787

以上の通り、従来のコーティング組成物では、昨今要求されるような狭いギャップを有する基板に対してシリカ質膜を形成させようとする場合に、埋設性と塗布性とを十分に両立できていなかった。本発明の目的は、このような問題点に鑑みて、狭いギャップ、言い換えればアスペクト比の大きいギャップを十分に埋設することができ、かつ、塗布時にストリエーションの発生しない、半導体装置のシリカ質膜を形成させるためコーティング組成物を提供することにある。   As described above, in the conventional coating composition, when trying to form a siliceous film on a substrate having a narrow gap as required recently, embedding property and applicability cannot be sufficiently achieved. It was. In view of such problems, an object of the present invention is to provide a siliceous film for a semiconductor device in which a narrow gap, in other words, a gap having a large aspect ratio can be sufficiently embedded, and no striation occurs during coating. Is to provide a coating composition.

本発明によるコーティング組成物は、ペルヒドロポリシラザンと溶媒とを含んでなるコーティング組成物であって、前記ペルヒドロポリシラザンの分子量分布曲線が、分子量800〜2,500の範囲と、分子量3,000〜8,000の範囲とにそれぞれ極大を有し、重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが6〜12であることを特徴とする、ものである。   The coating composition according to the present invention is a coating composition comprising perhydropolysilazane and a solvent, wherein the molecular weight distribution curve of the perhydropolysilazane has a molecular weight in the range of 800-2,500 and a molecular weight of 3,000- Each has a maximum in the range of 8,000, and the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn is 6-12.

また、本発明によるシリカ質膜の形成方法は、
凹凸を有する基板の表面上に、ペルヒドロポリシラザンと溶媒とを含んでなるコーティング組成物であって、前記ペルヒドロポリシラザンの分子量分布曲線が、分子量800〜2,500の範囲と、分子量3,000〜8,000の範囲とにそれぞれ極大を有し、重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが6〜12であるコーティング組成物を塗布する塗布工程、および
塗布済み基板を1000℃未満の酸素雰囲気または水蒸気を含む酸化雰囲気で加熱処理して前記組成物を二酸化ケイ素膜に転化させる硬化工程
を含んでなることを特徴とするものである。
The method for forming a siliceous film according to the present invention includes:
A coating composition comprising perhydropolysilazane and a solvent on the surface of an uneven substrate, wherein the molecular weight distribution curve of the perhydropolysilazane has a molecular weight in the range of 800 to 2,500 and a molecular weight of 3,000. A coating step of applying a coating composition having a maximum in the range of ˜8,000 and a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of 6 to 12, and a coated substrate at 1000 ° C. It is characterized by comprising a curing step in which the composition is converted into a silicon dioxide film by heat treatment in an oxygen atmosphere or an oxidizing atmosphere containing water vapor.

本発明のコーティング組成物によれば、ポリシラザン化合物を含むコーティング組成物の塗布性と埋設性とを両立した上に、さらに得られるシリカ質膜の膜物性をも改善することができる。   According to the coating composition of the present invention, the coating property and embedding property of the coating composition containing a polysilazane compound can be made compatible, and the physical properties of the resulting siliceous film can be improved.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

コーティング組成物
本発明によるコーティング組成物は、ペルヒドロポリシラザンとそのペルヒドロポリシラザンを溶解し得る溶媒とを含んでなる。
Coating Composition The coating composition according to the present invention comprises perhydropolysilazane and a solvent capable of dissolving the perhydropolysilazane.

本発明に用いられるペルヒドロポリシラザンは、後述するように特定の分子量および分子量分布を有することが必要であるが、その構造は特に限定されず、本発明の効果を損なわない限り任意の構造のものを選択することができる。無機化合物であるペルヒドロポリシラザンは、ケイ素、窒素、および水素だけからなり、焼成によりシリカ質膜を形成させたときに不純物が混入しにくいという特徴を有している。このようなペルヒドロポリシラザンの具体的な構造は、下記一般式(I)で表すことができる。
−(SiH−NH)− (I)
式中、nは重合度を表す数である。
The perhydropolysilazane used in the present invention is required to have a specific molecular weight and molecular weight distribution as will be described later. However, the structure is not particularly limited, and may have any structure as long as the effects of the present invention are not impaired. Can be selected. Perhydropolysilazane, which is an inorganic compound, consists only of silicon, nitrogen, and hydrogen, and has a feature that impurities are hardly mixed when a siliceous film is formed by firing. The specific structure of such perhydropolysilazane can be represented by the following general formula (I).
- (SiH 2 -NH) n - (I)
In the formula, n is a number representing the degree of polymerization.

なお本発明の効果を損なわない範囲で、(I)式の水素の一部または全部がアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基またはアルコキシ基などに置換されたポリシラザン化合物を少量含むこともできる。   It should be noted that part or all of the hydrogen in the formula (I) is substituted with an alkyl group, alkenyl group, cycloalkyl group, aryl group, alkylsilyl group, alkylamino group, alkoxy group or the like within a range not impairing the effects of the present invention. A small amount of polysilazane compound can also be included.

本発明によるポリシラザン組成物は、前記したペルヒドロポリシラザンを含んでなるものであるが、そのペルヒドロポリシラザンの分子量分布曲線が、分子量800〜2,500の領域と、分子量3,000〜8,000の領域とに極大を有するものである。この場合、その二つの極大の間には一つ以上の、好ましくは一つの極小が存在する。   The polysilazane composition according to the present invention comprises the above-described perhydropolysilazane. The molecular weight distribution curve of the perhydropolysilazane has a molecular weight of 800 to 2,500 and a molecular weight of 3,000 to 8,000. It has a maximum in the region. In this case, there is one or more, preferably one minimum, between the two maximums.

このような分子量分布曲線を有するペルヒドロポリシラザンは、任意の方法で調製することができるが、もっとも簡単には、相対的に分子量が大きいペルヒドロポリシラザンと、相対的に分子量が小さいペルヒドロポリシラザンとを混合することにより得ることができる。より具体的には、重量平均分子量が800〜2,500、特に1,000〜2,200、であるペルヒドロポリシラザン(以下、簡単のために低分子量ポリシラザンという)と、重量平均分子量が3,000〜8,000、特に3,500〜7,000、であるペルヒドロポリシラザン(以下、簡単のために高分子量ポリシラザンという)とを混合することにより得ることが好ましい。これは、混合前のペルヒドロポリシラザンの合成方法は特に限定されないが、例えば特許文献4または5に記載された方法により合成することができる。   A perhydropolysilazane having such a molecular weight distribution curve can be prepared by any method, but most simply, a perhydropolysilazane having a relatively high molecular weight and a perhydropolysilazane having a relatively low molecular weight Can be obtained by mixing. More specifically, a perhydropolysilazane having a weight average molecular weight of 800 to 2,500, particularly 1,000 to 2,200 (hereinafter referred to as low molecular weight polysilazane for simplicity), and a weight average molecular weight of 3, It is preferably obtained by mixing with perhydropolysilazane (hereinafter referred to as high molecular weight polysilazane for simplicity) of 000 to 8,000, particularly 3,500 to 7,000. The method for synthesizing perhydropolysilazane before mixing is not particularly limited, but can be synthesized by the method described in Patent Document 4 or 5, for example.

ペルヒドロポリシラザンに限らず、高分子化合物は分子量分布に幅があるため、分子量の異なる2種類の高分子化合物を混合したとき、混合の前後で分子量分布の極大の位置が変化することがある。これは、特に2種類の高分子化合物の分子量分布において、極大となる分子量が近い場合に起こりやすく、混合によって、極大値をもつ分子量が近づく傾向にある。場合によっては極大値がひとつになることもある。しかしながら、前記したような重量平均分子量を有する2種類のペルヒドロポリシラザンを混合した場合、分子量の差が大きいので一般的には極大値がひとつとなることはない。また、本願発明においては、二つの極大値の間の分子量を有する成分を少なくすることによって本発明の効果が発現するものと考えられるため、少なくとも二つの極大の間に極小を有するように2種類のペルヒドロポリシラザンを混合する必要がある。   Since not only perhydropolysilazane but a polymer compound has a wide molecular weight distribution, when two kinds of polymer compounds having different molecular weights are mixed, the maximum position of the molecular weight distribution may change before and after mixing. This is particularly likely to occur when the molecular weights that are maximal are close in the molecular weight distribution of two types of polymer compounds, and the molecular weight having the maximum value tends to approach by mixing. In some cases, the maximum value may be one. However, when two types of perhydropolysilazane having a weight average molecular weight as described above are mixed, the difference in molecular weight is large, so that the maximum value is generally not one. In the present invention, since it is considered that the effect of the present invention is manifested by reducing the number of components having a molecular weight between two maximum values, two types have a minimum between at least two maximum values. Of perhydropolysilazane must be mixed.

本発明において、目的とする分子量分布を達成するために2種類のペルヒドロポリシラザンを混合する場合、それぞれペルヒドロポリシラザンの分子量分布は狭いほうが好ましい。これは、混合されるいずれかの、または両方のペルヒドロポリシラザンの分子量分布が広いと、分布曲線の2つの極大の間に極小が表れにくくなり、また、本発明の効果も小さくなる傾向があるからである。具体的には、混合する前の2種類のペルヒドロポリシラザンのそれぞれについて、重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが1.1〜1.8であることが好ましい。   In the present invention, when two kinds of perhydropolysilazane are mixed in order to achieve the target molecular weight distribution, it is preferable that the molecular weight distribution of each perhydropolysilazane is narrow. This is because if one or both of the perhydropolysilazanes mixed has a wide molecular weight distribution, it is difficult for the minimum to appear between the two maximums of the distribution curve, and the effect of the present invention tends to be small. Because. Specifically, the ratio Mw / Mn of the weight average molecular weight Mw and the number average molecular weight Mn is preferably 1.1 to 1.8 for each of the two types of perhydropolysilazane before mixing.

ペルヒドロポリシラザンの分子量分布を狭くするには、ペルヒドロポリシラザンに含まれる高分子量成分、および/または低分子量成分を除去することにより行うことが簡便である。このように高分子量成分、および/または低分子量成分を除去する簡単な方法としては、溶解度の分子量依存性を利用する方法が挙げられる。すなわち、ペルヒドロポリシラザンは一般に分子量が大きいほど溶解度が低く、分子量が小さいほど溶解度が高い傾向にある。このような溶解度の差を利用し、そのペルヒドロポリシラザンの一部を溶解できる程度の溶解性を有する溶媒にそのペルヒドロポリシラザンを溶解させ、不溶性成分を濾別することにより、不溶性成分として濾別された高分子量成分と、溶媒中に溶解した低分子量成分とに分別することができる。すなわち、濾別された不溶性成分を除去すれば高分子量成分を除去することとなり、溶解した成分を除去すれば低分子量成分を除去することとなる。   In order to narrow the molecular weight distribution of perhydropolysilazane, it is convenient to remove the high molecular weight component and / or the low molecular weight component contained in perhydropolysilazane. As a simple method for removing the high molecular weight component and / or the low molecular weight component in this manner, a method utilizing the molecular weight dependency of solubility can be mentioned. That is, perhydropolysilazane generally tends to have lower solubility as the molecular weight increases, and higher solubility as the molecular weight decreases. By using such a difference in solubility, the perhydropolysilazane is dissolved in a solvent having a solubility sufficient to dissolve a part of the perhydropolysilazane, and the insoluble component is separated by filtration, so that it is filtered as an insoluble component. The high molecular weight component can be separated from the low molecular weight component dissolved in the solvent. That is, removing the insoluble component separated by filtration removes the high molecular weight component, and removing the dissolved component removes the low molecular weight component.

ここで、ペルヒドロポリシラザンの溶解性は、用いる溶媒により異なるので、ある溶媒で高分子量成分を除去したあと、溶解性が異なる別の溶媒を用いて低分子量を除去して、さらに分子量分布の幅を狭くすることもできる。このような方法では、高分子量成分または低分子量成分を完全に除去できない場合が多いが、異なった分子量、すなわち重合度の異なる化合物の混合物である高分子化合物の分子量分布を狭くするためには簡便かつ有効な方法である。このような用途に用いられる溶媒としては、例えば炭化水素が適当である。例えばアルカン類であると、炭素数が多くなるにつれて分子量がより大きいペルヒドロポリシラザンを溶解できる傾向にある。一般には、炭素数が5〜10程度の炭化水素を用いることができる。   Here, since the solubility of perhydropolysilazane varies depending on the solvent used, after removing the high molecular weight component with one solvent, the low molecular weight is removed with another solvent with different solubility, and the width of the molecular weight distribution is further increased. Can be narrowed. In many cases, such a method cannot completely remove the high molecular weight component or the low molecular weight component, but it is convenient for narrowing the molecular weight distribution of the high molecular weight compound that is a mixture of compounds having different molecular weights, that is, different degrees of polymerization. And it is an effective method. As a solvent used for such an application, for example, a hydrocarbon is suitable. For example, alkanes tend to dissolve perhydropolysilazane having a higher molecular weight as the number of carbon atoms increases. In general, hydrocarbons having about 5 to 10 carbon atoms can be used.

また、高分子化合物の分子量分布を狭くするために、一般に用いられるクロマトグラフィーなどによって、ペルヒドロポリシラザンの分子量ごとに分別することもできる。しかし、クロマトグラフィーを用いると処理時間が長くなることがあり、生産効率の観点から前記した溶媒に対する溶解性の差を利用する方法が好ましい。   Further, in order to narrow the molecular weight distribution of the polymer compound, it can be classified according to the molecular weight of perhydropolysilazane by commonly used chromatography or the like. However, when chromatography is used, the treatment time may be long, and from the viewpoint of production efficiency, a method using the above-described difference in solubility in a solvent is preferable.

そのほか、ペルヒドロポリシラザンの分子量分布を狭くするための処理をするのではなく、分子量分布の狭いペルヒドロポリシラザンを、合成方法や合成原料の調整を行うことにより合成することも有効である。   In addition, it is also effective to synthesize perhydropolysilazane having a narrow molecular weight distribution by adjusting the synthesis method and synthesis raw materials, instead of performing a treatment for narrowing the molecular weight distribution of perhydropolysilazane.

なお、2種類のペルヒドロポリシラザンを混合する前に、それぞれのペルヒドロポリシラザンに含まれる高分子量成分または低分子量成分を除去する場合には、低分子量ペルヒドロポリシラザンの高分子量成分を、また、高分子量ペルヒドロポリシラザンの低分子量成分を除去することが好ましい。このように分子量分布曲線の2つの極大の中間領域に対応する成分を少なくすることで、本発明の効果がより強く発現する。   When the high molecular weight component or low molecular weight component contained in each perhydropolysilazane is to be removed before mixing the two types of perhydropolysilazane, the high molecular weight component of the low molecular weight perhydropolysilazane is added to the high molecular weight component. It is preferred to remove the low molecular weight component of the molecular weight perhydropolysilazane. Thus, by reducing the components corresponding to the two intermediate regions of the molecular weight distribution curve, the effect of the present invention is more strongly expressed.

以上のような方法で、異なった分子量を有するペルヒドロポリシラザンを準備し、それらを混合するとき、その混合比は、低分子量ポリシラザンと高分子量ポリシラザンとの重量比が3:7〜6:4であることが好ましく、4:6〜6:4であることがより好ましい。混合比がこの範囲外であると、塗布性と埋設性とのバランスが悪くなることがあるためである。   When perhydropolysilazane having different molecular weights is prepared and mixed by the above method, the mixing ratio is such that the weight ratio of low molecular weight polysilazane to high molecular weight polysilazane is 3: 7 to 6: 4. It is preferable that the ratio is 4: 6 to 6: 4. This is because if the mixing ratio is outside this range, the balance between applicability and embedding property may be deteriorated.

本発明において特定される分子量分布を有するペルヒドロポリシラザンは、前記したように分子量の異なる2種類のペルヒドロポリシラザンを混合することにより得ることが簡便であるが、そのほかの方法により得られるものであってもよい。例えば、比較的広い分子量分布を有するペルヒドロポリシラザンを準備し、それからクロマトグラフフィーで分子量が2,500〜3,000付近の中間領域成分を除去することで、所望の分子量分布を達成できる。   The perhydropolysilazane having a molecular weight distribution specified in the present invention can be easily obtained by mixing two types of perhydropolysilazanes having different molecular weights as described above, but can be obtained by other methods. May be. For example, a desired molecular weight distribution can be achieved by preparing perhydropolysilazane having a relatively broad molecular weight distribution, and then removing intermediate region components having a molecular weight of about 2,500 to 3,000 by chromatography.

また、本発明に用いられるペルヒドロポリシラザンは、その重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが6〜12であることが必要であり、7〜10であることが好ましい。このような比Mw/Mnは、前記したように2種類のペルヒドロポリシラザンを混合する場合には、低分子量ペルヒドロポリシラザンと、高分子量ペルヒドロポリシラザンとを、3:7〜6:4の重量比で混合した場合に達成できる。   Further, the perhydropolysilazane used in the present invention needs to have a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of 6 to 12, and preferably 7 to 10. Such a ratio Mw / Mn is a weight ratio of 3: 7 to 6: 4 of low molecular weight perhydropolysilazane and high molecular weight perhydropolysilazane when mixing two kinds of perhydropolysilazane as described above. This can be achieved when mixing at a ratio.

本発明によるコーティング組成物は、前記のペルヒドロポリシラザンを溶解し得る溶媒を含んでなる。このような溶媒としては、前記の各成分を溶解し得るものであれば特に限定されるものではないが、好ましい溶媒の具体例としては、次のものが挙げられる:
(a)芳香族化合物、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、トリエチルベンゼン等、(b)飽和炭化水素化合物、例えばn−ペンタン、i−ペンタン、n−ヘキサン、i−ヘキサン、n−ヘプタン、i−ヘプタン、n−オクタン、i−オクタン、n−ノナン、i−ノナン、n−デカン、i−デカン等、(c)脂環式炭化水素化合物、例えばエチルシクロヘキサン、メチルシクロヘキサン、シクロヘキサン、シクロヘキセン、p−メンタン、デカヒドロナフタレン、ジペンテン、リモネン等、(d)エーテル類、例えばジプロピルエーテル、ジブチルエーテル、ジエチルエーテル、メチルターシャリーブチルエーテル、アニソール等、および(e)ケトン類、例えばメチルイソブチルケトン等。これらのうち、(b)飽和炭化水素化合物、(c)脂環式炭化水素化合物(d)エーテル類、および(e)ケトン類がより好ましい。
The coating composition according to the present invention comprises a solvent capable of dissolving the perhydropolysilazane. Such a solvent is not particularly limited as long as it can dissolve each of the above-mentioned components. Specific examples of preferable solvents include the following:
(A) Aromatic compounds such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, trimethylbenzene, triethylbenzene, etc. (b) Saturated hydrocarbon compounds such as n-pentane, i-pentane, n-hexane, i-hexane , N-heptane, i-heptane, n-octane, i-octane, n-nonane, i-nonane, n-decane, i-decane, etc. (c) alicyclic hydrocarbon compounds such as ethylcyclohexane, methylcyclohexane , Cyclohexane, cyclohexene, p-menthane, decahydronaphthalene, dipentene, limonene and the like, (d) ethers such as dipropyl ether, dibutyl ether, diethyl ether, methyl tertiary butyl ether, anisole and the like, and (e) ketones, For example methyl isobut Ruketo down, and the like. Of these, (b) saturated hydrocarbon compounds, (c) alicyclic hydrocarbon compounds (d) ethers, and (e) ketones are more preferred.

これらの溶媒は、溶剤の蒸発速度の調整のため、人体への有害性を低くするため、または各成分の溶解性の調製のために、適宜2種以上混合したものも使用できる。   These solvents may be used by appropriately mixing two or more of them in order to adjust the evaporation rate of the solvent, to reduce the harmfulness to the human body, or to adjust the solubility of each component.

本発明に用いられるコーティング組成物は、必要に応じてその他の添加剤成分を含有することもできる。そのような成分として、例えば粘度調整剤、架橋促進剤等が挙げられる。また、半導体装置に用いられたときにナトリウムのゲッタリング効果などを目的に、リン化合物、例えばトリス(トリメチルシリル)フォスフェート等、を含有することもできる。   The coating composition used for this invention can also contain another additive component as needed. Examples of such components include viscosity modifiers and crosslinking accelerators. In addition, a phosphorus compound such as tris (trimethylsilyl) phosphate may be contained for the purpose of obtaining a sodium gettering effect when used in a semiconductor device.

また、前記の各成分の含有量は、目的とする組成物の用途によって変化するが、ペルヒドロポリシラザンの含有率が10〜25重量%であることが好ましく、12〜22重量%とすることがより好ましい。一般的にペルヒドロポリシラザンの含有量が過度に高いとコーティング組成物の粘度が高くなって埋設性や塗布性が劣化する傾向にあり、また過度に低いと形成されるシリカ質膜の厚さが不足する傾向がある。   Moreover, although content of each said component changes with uses of the target composition, it is preferable that the content rate of perhydropolysilazane is 10 to 25 weight%, and it shall be 12 to 22 weight%. More preferred. In general, when the content of perhydropolysilazane is excessively high, the viscosity of the coating composition tends to be high and the embedding property and coating property tend to be deteriorated. There is a tendency to run out.

シリカ質膜の製造法
本発明によるシリカ質膜の製造法によれば、溝や穴などのギャップがある基板上に、ギャップの深部まで十分に埋設され、膜面が平坦であり、膜質も均質な被膜を形成することができる。したがって、電子デバイスのトランジスター部やキャパシター部の平坦化絶縁膜(プリメタル絶縁膜)として形成することも、また溝付き基板上にシリカ質膜を形成させて溝を埋封することによって、トレンチ・アイソレーション構造を形成することもできる。以下、トレンチ・アイソレーション構造を形成させる方法に基づいて本発明を説明する。
Production method of siliceous film According to the production method of siliceous film according to the present invention, a gap surface such as a groove or a hole is sufficiently buried to the deep part of the gap, the film surface is flat, and the film quality is uniform. Can be formed. Therefore, it can be formed as a planarizing insulating film (pre-metal insulating film) for a transistor part or a capacitor part of an electronic device, or by forming a siliceous film on a grooved substrate and embedding the groove, The structure can also be formed. Hereinafter, the present invention will be described based on a method of forming a trench isolation structure.

(A)塗布工程
本発明によるコーティング組成物は、基板上のトレンチ・アイソレーション構造の形成に適したものである。トレンチ・アイソレーション構造を形成させる場合には所望の溝パターンを有するシリコンなどの基板を準備する。この溝形成には、任意の方法を用いることができるが、例えば以下に示す方法により形成させることができるである。
(A) Coating process The coating composition according to the present invention is suitable for forming a trench isolation structure on a substrate. In the case of forming a trench isolation structure, a substrate such as silicon having a desired groove pattern is prepared. Although any method can be used for forming the groove, for example, the groove can be formed by the following method.

まず、シリコン基板表面に、例えば熱酸化法により、二酸化シリコン膜を形成させる。ここで形成させる二酸化シリコン膜の厚さは一般に5〜30nmである。   First, a silicon dioxide film is formed on the surface of a silicon substrate by, for example, a thermal oxidation method. The thickness of the silicon dioxide film formed here is generally 5 to 30 nm.

必要に応じて、形成された二酸化シリコン膜上に、例えば減圧CVD法により、窒化シリコン膜を形成させる。この窒化シリコン膜は、後のエッチング工程におけるマスク、あるいは後述する研磨工程におけるストップ層として機能させることのできるものである。窒化シリコン膜は、形成させる場合には、一般に100〜400nmの厚さで形成させる。   If necessary, a silicon nitride film is formed on the formed silicon dioxide film by, for example, a low pressure CVD method. This silicon nitride film can function as a mask in a later etching process or a stop layer in a polishing process described later. The silicon nitride film is generally formed with a thickness of 100 to 400 nm when formed.

このように形成させた二酸化シリコン膜または窒化シリコン膜の上に、フォトレジストを塗布する。必要に応じてフォトレジスト膜を乾燥または硬化させた後、所望のパターンで露光および現像してパターンを形成させる。露光の方法はマスク露光、走査露光など、任意の方法で行うことができる。また、フォトレジストも解像度などの観点から任意のものを選択して用いることができる。   A photoresist is applied on the silicon dioxide film or silicon nitride film thus formed. The photoresist film is dried or cured as necessary, and then exposed and developed with a desired pattern to form a pattern. The exposure method can be performed by any method such as mask exposure or scanning exposure. Also, any photoresist can be selected and used from the viewpoint of resolution and the like.

形成されたフォトレジスト膜をマスクとして、窒化シリコン膜およびその下にある二酸化シリコン膜を順次エッチングする。この操作によって、窒化シリコン膜および二酸化シリコン膜に所望のパターンが形成される。   Using the formed photoresist film as a mask, the silicon nitride film and the underlying silicon dioxide film are sequentially etched. By this operation, a desired pattern is formed on the silicon nitride film and the silicon dioxide film.

パターンが形成された窒化シリコン膜および二酸化シリコン膜をマスクとして、シリコン基板をドライエッチングして、トレンチ・アイソレーション溝を形成させる。   Using the silicon nitride film and silicon dioxide film on which the pattern is formed as a mask, the silicon substrate is dry etched to form trench isolation grooves.

形成されるトレンチ・アイソレーション溝の幅は、フォトレジスト膜を露光するパターンにより決定される。半導体素子におけるトレンチ・アイソレーション溝は、目的とする半導体素子により異なるが、幅は一般に0.02〜10μm、好ましくは0.05〜5μm、であり、深さは200〜1000nm、好ましくは300〜700nmである。本発明による方法は、従来のトレンチ・アイソレーション構造の形成方法に比べて、より狭く、より深い部分まで、均一に埋設することが可能であるため、より狭く、より深いトレンチ・アイソレーション構造を形成させる場合に適しているものである。特に、従来のシリカ質膜形成用組成物やシリカ質膜の形成方法では、溝の深い部分まで均一なシリカ質膜の形成が困難であった、溝の幅が一般に0.5μm以下、特に0.1μm以下、アスペクト比が5以上であるトレンチ・アイソレーション構造を形成する場合、本発明によるシリカ質膜形成用組成物を用いることにより溝内のシリカ質膜を均一に形成させることができる。   The width of the trench isolation groove to be formed is determined by the pattern for exposing the photoresist film. The trench isolation groove in the semiconductor element varies depending on the target semiconductor element, but the width is generally 0.02 to 10 μm, preferably 0.05 to 5 μm, and the depth is 200 to 1000 nm, preferably 300 to 700 nm. The method according to the present invention makes it possible to uniformly embed a narrower and deeper portion than a conventional trench isolation structure formation method, so that a narrower and deeper trench isolation structure is formed. It is suitable for forming. In particular, in the conventional siliceous film forming composition and the siliceous film forming method, it is difficult to form a uniform siliceous film up to the deep part of the groove. The groove width is generally 0.5 μm or less, particularly 0. In the case of forming a trench isolation structure having an aspect ratio of 5 or more, a siliceous film in the groove can be formed uniformly by using the composition for forming a siliceous film according to the present invention.

次いで、このように準備されたシリコン基板上に、シリカ質膜の材料となる前記のコーティング組成物の塗膜を形成させる。   Subsequently, the coating film of the said coating composition used as the material of a siliceous film | membrane is formed on the silicon substrate prepared in this way.

コーティング組成物は、任意の方法で基板上に塗布することができる。具体的には、スピンコート、カーテンコート、ディップコート、およびその他が挙げられる。これらのうち、塗膜面の均一性などの観点からスピンコートが特に好ましい。   The coating composition can be applied onto the substrate by any method. Specific examples include spin coating, curtain coating, dip coating, and others. Of these, spin coating is particularly preferable from the viewpoint of uniformity of the coating surface.

シリカ質膜形成用組成物塗布後のトレンチ溝埋設性および塗布性を両立させるために、塗布される塗膜の厚さは、一般に10〜1,000nm、好ましくは50〜800nmである。   In order to achieve both trench groove embedding and coating properties after application of the siliceous film-forming composition, the thickness of the applied coating is generally 10 to 1,000 nm, preferably 50 to 800 nm.

塗布の条件は、組成物の濃度、溶媒、または塗布方法などによって変化するが、スピンコートを例に挙げると以下の通りである。   The application conditions vary depending on the concentration of the composition, the solvent, the application method, and the like, and are as follows by taking spin coating as an example.

最近は製造の歩留まりを改善するために、大型の基板に素子を形成させることが多いが、8インチ以上のシリコン基板に均一にシリカ質膜形成用組成物の塗膜を形成させるためには、複数の段階を組み合わせたスピンコートが有効である。   Recently, in order to improve the manufacturing yield, devices are often formed on a large substrate, but in order to uniformly form a coating film of a siliceous film forming composition on a silicon substrate of 8 inches or more, Spin coating that combines multiple stages is effective.

まず、シリコン基板の中心部に、または基板全面に平均的に塗膜が形成されるような、中心部を含む数カ所に、一般にシリコン基板1枚あたり0.5〜20ccの組成物を滴下する。   First, in general, 0.5 to 20 cc of a composition per silicon substrate is dropped at several locations including the central portion such that a coating film is formed on the entire surface of the silicon substrate or on the entire surface of the substrate.

次いで、滴下した組成物をシリコン基板全面に広げるために、比較的低速かつ短時間、例えば回転速度50〜500rpmで0.5〜10秒、回転させる(プレスピン)。   Next, in order to spread the dropped composition over the entire surface of the silicon substrate, the composition is rotated at a relatively low speed for a short time, for example, at a rotational speed of 50 to 500 rpm for 0.5 to 10 seconds (press pin).

次いで、塗膜を所望の厚さにするために、比較的高速、例えば回転速度500〜4500rpmで0.5〜800秒、回転させる(メインスピン)。   Next, in order to make the coating film have a desired thickness, the coating film is rotated at a relatively high speed, for example, at a rotational speed of 500 to 4500 rpm for 0.5 to 800 seconds (main spin).

さらに、シリコン基板の周辺部での塗膜の盛り上がりを低減させ、かつ塗膜中の溶剤を可能な限り乾燥させるために、前記メインスピン回転速度に対して500rpm以上速い回転速度で、例えば回転速度1000〜5000rpmで5〜300秒、回転させる(ファイナルスピン)。   Furthermore, in order to reduce the swelling of the coating film around the silicon substrate and to dry the solvent in the coating film as much as possible, the rotational speed is higher than the main spin rotational speed by 500 rpm or more, for example, the rotational speed. Rotate at 1000-5000 rpm for 5-300 seconds (final spin).

これらの塗布条件は、用いる基板の大きさや、目的とする半導体素子の性能などに応じて、適宜調整される。   These application conditions are appropriately adjusted according to the size of the substrate to be used, the performance of the target semiconductor element, and the like.

(B)硬化工程
コーティング組成物を塗布した後、必要に応じてプリベーク工程に付すことができる。
プリベーク工程では、塗膜中に含まれる溶媒の完全除去と、塗膜の予備硬化を目的とするものである。特にポリシラザンを含む組成物を用いる本発明のシリカ質膜の形成方法においては、プリベーク処理をすることにより、形成されるシリカ質膜の緻密性が向上するので、プリベーク工程を組み合わせることが好ましい。
(B) Curing process After apply | coating a coating composition, it can attach | subject to a prebaking process as needed.
In the pre-baking step, the purpose is to completely remove the solvent contained in the coating film and to pre-cure the coating film. In particular, in the method for forming a siliceous film of the present invention using a composition containing polysilazane, the pre-baking treatment improves the denseness of the formed siliceous film.

通常、プリベーク工程では、実質的に一定温度で加熱する方法がとられる。また、硬化の際に塗膜が収縮し、ギャップ部がへこみになったり、ギャップ内部にボイドが生じたりすることを防ぐために、プリベーク工程における温度を制御し、経時で上昇させながらプリベークを行うことが好ましい。プリベーク工程における温度は通常50℃〜400℃、好ましくは100〜300℃、の範囲内である。プリベーク工程の所要時間は一般に10秒〜30分、好ましくは30秒〜10分、である。   Usually, in the prebaking process, a method of heating at a substantially constant temperature is employed. In addition, to prevent the coating film from shrinking during curing and the gap to become dents or voids to form inside the gap, the temperature in the prebaking process is controlled and prebaked while increasing over time. Is preferred. The temperature in a prebaking process is in the range of 50 to 400 degreeC normally, Preferably it is 100 to 300 degreeC. The time required for the prebaking step is generally 10 seconds to 30 minutes, preferably 30 seconds to 10 minutes.

プリベーク工程における温度を経時で上昇させるには、基板が置かれている雰囲気の温度を段階的に上昇させる方法、あるいは温度を単調増加的に上昇させる方法が挙げられる。ここで、プリベーク工程における最高プリベーク温度は、被膜からの溶媒を除去するという観点から、シリカ質膜形成用組成物に用いる溶媒の沸点よりも高い温度に設定するのが一般的である。   In order to increase the temperature in the pre-bake process over time, a method of increasing the temperature of the atmosphere in which the substrate is placed in a stepwise manner or a method of increasing the temperature in a monotonically increasing manner can be mentioned. Here, the maximum prebaking temperature in the prebaking step is generally set to a temperature higher than the boiling point of the solvent used in the composition for forming a siliceous film from the viewpoint of removing the solvent from the coating.

なお、本発明による方法においてプリベーク工程を組み合わせる場合には、プリベークにより高温となった基板を、温度が下がる前に、好ましくは50℃以上、プリベーク時の最高温度以下の温度の基板を硬化工程に付すことが好ましい。温度が下がる前の基板を硬化工程に付すことで、再度温度を上昇させるエネルギーと時間とを節約することができる。
次に、ポリシラザンを含む塗膜をシリカ質膜に転化させて硬化させるために、基板全体を加熱する、硬化工程に付す。通常は、基板全体を硬化炉などに投入して加熱するのが一般的である。
When the prebaking process is combined in the method according to the present invention, the substrate heated to a high temperature by prebaking is preferably subjected to a curing process at a temperature of 50 ° C. or higher and lower than the maximum temperature during prebaking before the temperature decreases. It is preferable to attach. By subjecting the substrate before the temperature to the curing step, energy and time for raising the temperature again can be saved.
Next, in order to convert the coating film containing polysilazane into a siliceous film and cure it, the entire substrate is subjected to a curing step. Usually, the entire substrate is generally put into a curing furnace and heated.

硬化は、硬化炉やホットプレートを用いて、水蒸気を含んだ、不活性ガスまたは酸素雰囲気下で行うことが好ましい。水蒸気は、ポリシラザンをシリカ質膜(すなわち二酸化ケイ素)に十分に転化させるのに重要であり、好ましくは30%以上、より好ましくは50%以上、最も好ましくは70%以上とする。特に水蒸気濃度が80%以上であると、有機化合物のシリカ質膜への転化が進行しやすくなり、ボイドなどの欠陥が発生が少なくなり、シリカ質膜の特性が改良されるので好ましい。雰囲気ガスとして不活性ガスを用いる場合には、窒素、アルゴン、またはヘリウムなどを用いる。   Curing is preferably performed in an inert gas or oxygen atmosphere containing water vapor using a curing furnace or a hot plate. The water vapor is important for sufficiently converting the polysilazane into a siliceous film (ie, silicon dioxide), preferably 30% or more, more preferably 50% or more, and most preferably 70% or more. In particular, a water vapor concentration of 80% or more is preferable because conversion of an organic compound to a siliceous film is likely to proceed, defects such as voids are reduced, and characteristics of the siliceous film are improved. When an inert gas is used as the atmospheric gas, nitrogen, argon, helium, or the like is used.

硬化させるための温度条件は、用いるシリカ質膜形成用組成物の種類や、工程の組み合わせ方によって変化する。しかしながら、温度が高いほうがポリシラザンがシリカ質膜に転化される速度が速くなる傾向にあり、また、温度が低いほうがシリコン基板の酸化または結晶構造の変化によるデバイス特性への悪影響が小さくなる傾向がある。このような観点から、本発明における硬化工程では、通常1000℃以下、好ましくは400〜700℃で加熱を行う。ここで、目標温度までの昇温時間は一般に1〜100℃/分であり、目標温度に到達してからの硬化時間は一般に1分〜10時間、好ましくは15分〜3時間、である。必要に応じて硬化温度または硬化雰囲気の組成を段階的に変化させることもできる。この加熱により、ポリシラザンが二酸化ケイ素に転化してシリカ質膜となる。   The temperature conditions for curing vary depending on the type of siliceous film-forming composition to be used and how the processes are combined. However, the higher the temperature, the higher the rate at which polysilazane is converted into a siliceous film, and the lower the temperature, the less adverse effects on device characteristics due to oxidation of the silicon substrate or changes in crystal structure. . From such a viewpoint, in the curing step in the present invention, heating is usually performed at 1000 ° C. or lower, preferably 400 to 700 ° C. Here, the temperature raising time to the target temperature is generally 1 to 100 ° C./min, and the curing time after reaching the target temperature is generally 1 minute to 10 hours, preferably 15 minutes to 3 hours. If necessary, the curing temperature or the composition of the curing atmosphere can be changed stepwise. By this heating, the polysilazane is converted into silicon dioxide to form a siliceous film.

本発明によるシリカ質膜の形成方法は、前記の各工程を必須とするものであるが、必要に応じて、研磨工程やエッチング工程などのさらなる工程を組み合わせることもできる。   The method for forming a siliceous film according to the present invention requires the above-described steps, but further steps such as a polishing step and an etching step can be combined as necessary.

本発明を諸例を用いて説明すると以下のとおりである。   The present invention will be described below with reference to various examples.

含成例1 低分子量ポリシラザンの合成
純度99%以上のジクロロシラン400gを0℃の脱水ピリジン5kgに撹拌しながら注入した。この混合物の温度を0℃に維持したまま、純度99.9%のアンモニアガス1.22kgを撹拌しながら混合物に注入した。
Composition Example 1 Synthesis of Low Molecular Weight Polysilazane 400 g of dichlorosilane having a purity of 99% or more was poured into 5 kg of dehydrated pyridine at 0 ° C. with stirring. While maintaining the temperature of this mixture at 0 ° C., 1.22 kg of 99.9% purity ammonia gas was injected into the mixture with stirring.

混合物の温度を0℃に維持しながら撹拌を続けて12時間反応を行った。反応後の混合物に乾燥窒素を30分間吹き込んで過剰なアンモニアを除去し、その後スラリー状の反応混合物から塩化アンモニウムを濾別して、濾液Aを得た。得られた濾液Aにキシレンを混合して50℃に加熱し、20mmHgの減圧下で蒸留してピリジンを除去し、重量平均分子量1450のポリマーを含む20重量%濃度の溶液とした。   While maintaining the temperature of the mixture at 0 ° C., the reaction was continued for 12 hours with continued stirring. Excess ammonia was removed by blowing dry nitrogen into the mixture after the reaction for 30 minutes, and then ammonium chloride was filtered off from the slurry-like reaction mixture to obtain a filtrate A. Xylene was mixed with the obtained filtrate A, heated to 50 ° C., and distilled under a reduced pressure of 20 mmHg to remove pyridine, thereby obtaining a 20 wt% concentration solution containing a polymer having a weight average molecular weight of 1450.

得られた20重量%のキシレン溶液を50℃に加熱し、10mmHgの減圧下で蒸留してキシレンを除去した。得られる無色透明液体にn−ペンタンを加え、10重量%濃度の白色溶液とした。この溶液を濾過精度0.2μmのフィルターで濾過してポリマー溶液を得た。このポリマー溶液にジブチルエーテルを混合して50℃に加熱し、20mmHgの減圧下で蒸留してn−ペンタンを除去し、重量平均分子量が1100、重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが1.45のポリマーを含む20重量%濃度のポリマー溶液1とした。   The resulting 20 wt% xylene solution was heated to 50 ° C. and distilled under a reduced pressure of 10 mmHg to remove xylene. N-Pentane was added to the resulting colorless transparent liquid to give a white solution having a concentration of 10% by weight. This solution was filtered through a filter having a filtration accuracy of 0.2 μm to obtain a polymer solution. Dibutyl ether was mixed with this polymer solution and heated to 50 ° C., and distilled under a reduced pressure of 20 mmHg to remove n-pentane. The weight average molecular weight was 1100, and the ratio Mw / weight average molecular weight Mw to number average molecular weight Mn A 20 wt% polymer solution 1 containing a polymer having a Mn of 1.45 was obtained.

合成例2 高分子量ポリシラザンの合成
合成例1と同様にして濾液Aを調製し、さらに密閉系で150℃で3時間加熱した。室温に冷却後、常圧に戻し、得られた溶液にキシレンを混合して50℃に加熱し、20mmHgの減圧下で蒸留してピリジンを除去し、重量平均分子量6000のポリマーを含む20重量%濃度の溶液とした。
Synthesis Example 2 Synthesis of High Molecular Weight Polysilazane A filtrate A was prepared in the same manner as in Synthesis Example 1, and further heated at 150 ° C. for 3 hours in a closed system. After cooling to room temperature, the pressure is returned to normal pressure, and the resulting solution is mixed with xylene, heated to 50 ° C., distilled under a reduced pressure of 20 mmHg to remove pyridine, and 20% by weight containing a polymer with a weight average molecular weight of 6000 The solution was a concentration.

得られる20重量%のキシレン溶液を50℃に加熱し、10mmHgの減圧下で蒸留してキシレンを除去した。得られる白色粉末にn−ヘプタンを加え、10重量%濃度の分散液とした。この分散液をガラスフィルター(アドバンテック東洋株式会社製:GF−75(商品名))を用いて減圧濾過し、溶媒を除去した。得られた白色粉末をジブチルエーテルに溶解し、重量平均分子量が6400、重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが1.22のポリマーを含む20重量%濃度のポリマー溶液2とした。 The resulting 20 wt% xylene solution was heated to 50 ° C. and distilled under reduced pressure of 10 mmHg to remove xylene. N-Heptane was added to the obtained white powder to prepare a dispersion having a concentration of 10% by weight. This dispersion was filtered under reduced pressure using a glass filter (manufactured by Advantech Toyo Co., Ltd .: GF-75 (trade name)) to remove the solvent. The resulting et a white powder was dissolved in dibutyl ether, weight average molecular weight of 6400, with the polymer solution 2 in 20% strength by weight comprises a ratio Mw / Mn of 1.22 polymer having a weight average molecular weight Mw to the number average molecular weight Mn did.

合成例3 超高分子量ポリシラザンの合成
合成例1と同様にして濾液Aを調製し、密閉系で150℃で6時間加熱した。室温に冷却後、常圧に戻し、得られた溶液にジブチルエーテルを混合して50℃に加熱し、20mmHgの減圧下で蒸留してピリジンを除去し、重量平均分子量9200のポリマーを含む20重量%濃度のポリマー溶液3とした。
Synthesis Example 3 Synthesis of Ultra High Molecular Weight Polysilazane A filtrate A was prepared in the same manner as in Synthesis Example 1 and heated at 150 ° C. for 6 hours in a closed system. After cooling to room temperature, the pressure is returned to normal pressure, and the resulting solution is mixed with dibutyl ether and heated to 50 ° C., distilled under a reduced pressure of 20 mmHg to remove pyridine, and 20 weight containing a polymer having a weight average molecular weight of 9,200. % Concentration of polymer solution 3 was obtained.

実施例1
60gのポリマー溶液1と40gのポリマー溶液2とを混合した。混合後のポリマー溶液は、分子量分布曲線の分子量が6300の位置と650の位置とに極大を有し、またMw/Mnは10であった。
Example 1
60 g of polymer solution 1 and 40 g of polymer solution 2 were mixed. The polymer solution after mixing had a maximum in the molecular weight distribution curve at positions 6300 and 650, and Mw / Mn was 10.

シリコン墓板として、深さ0.5μmで0.05、0.1、0.2、及び0.5μmの幅を有する溝が形成され、表面が窒化ケイ素ライナー層で被覆された基板を用意した。この基板に、調製したポリマー溶液をコーティング組成物としてスピンコーティングにより塗布した。塗布条件は、プレスピン:300rpm/5秒間、メインスピン:1000rpm/20秒間、ファイナルスピン:l500rpm/10秒間とした。塗布後の膜面を観察したところ、ストリエーションの発生はなく、優れた塗布性を達成できていることが確認できた。   As a silicon grave plate, a substrate was prepared in which grooves having a depth of 0.5 μm and widths of 0.05, 0.1, 0.2, and 0.5 μm were formed, and the surface was coated with a silicon nitride liner layer. . The prepared polymer solution was applied to this substrate by spin coating as a coating composition. The coating conditions were as follows: press pin: 300 rpm / 5 seconds, main spin: 1000 rpm / 20 seconds, final spin: 1,500 rpm / 10 seconds. When the film surface after coating was observed, it was confirmed that no striation occurred and excellent coating properties were achieved.

さらにこの塗布後の基板を、ホットプレート上で150℃、3分間プリベークし、引き続き冷却せずに純酸素雰囲気下の焼成炉に導入した。焼成炉内で昇温速度10℃/分で800℃まで加熱し、さらに水蒸気濃度80%の酸素雰囲気下で30分間焼成した。得られた焼成膜のFT−IRを測定したところ、Si−O結合に帰属される波数1080cm−1の吸収が観測され、シリカ質膜が得られていることが確認された。一方で、N−H結合およびSi−H結合に帰属される波数3380cm−1及び2200cm−1の吸収は観測されず、ペルヒドロポリシラザンがシリカに転換したことが確認された。 Furthermore, the substrate after this application was pre-baked on a hot plate at 150 ° C. for 3 minutes, and subsequently introduced into a firing furnace in a pure oxygen atmosphere without cooling. The mixture was heated to 800 ° C. at a heating rate of 10 ° C./min in a baking furnace, and further baked for 30 minutes in an oxygen atmosphere with a water vapor concentration of 80%. When the FT-IR of the obtained fired film was measured, absorption at a wave number of 1080 cm −1 attributed to the Si—O bond was observed, and it was confirmed that a siliceous film was obtained. On the other hand, the absorption wave numbers 3380 cm -1 and 2200 cm -1 attributed to N-H bonds and Si-H bonds are not observed, the perhydropolysilazane was converted to silica has been confirmed.

また、0.5重量%のフッ化水素酸と30重量%のフッ化アンモニウムを含む水溶液をエッチング溶液として用いて、23℃でエッチングを行なって熱酸化シリカ膜に対する相対エッチングレートを測定したところ1.48であった。   Further, when an aqueous solution containing 0.5% by weight of hydrofluoric acid and 30% by weight of ammonium fluoride was used as an etching solution, etching was performed at 23 ° C., and the relative etching rate with respect to the thermally oxidized silica film was measured. .48.

焼成後の基板を溝の長手方向に対して直角の方向で切断した後、0.5重量%のフッ化水素酸と30重量%のフッ化アンモニウムを含む水溶液に30秒浸潰し、さらに純水で十分に洗浄してから乾燥させた。 After cutting in the direction perpendicular to the substrate after firing with respect to the longitudinal direction of the grooves, the aqueous solution to crush immersed for 30 seconds with 0.5 wt% hydrofluoric acid and 30% by weight of ammonium fluoride, further net After thoroughly washing with water, it was dried.

基板の断面を走査型電子顕微鏡により、50,000倍で断面に垂直な方向の仰角30°上方から、各溝の最深部を観察し、エッチング量を評価した。溝幅が変化しても、エッチング量の変化は僅かであり、幅0.05μmの溝の最深部においても十分に緻密なシリカ質膜が形成されていることが確認できた。 The cross-section of the substrate was observed with a scanning electron microscope from the top at an elevation angle of 30 ° in the direction perpendicular to the cross-section at a magnification of 50,000 times, and the etching depth was evaluated. Even when the groove width was changed, the change in the etching amount was slight, and it was confirmed that a sufficiently dense siliceous film was formed even at the deepest part of the groove having a width of 0.05 μm.

実施例2
40gのポリマー溶液1と60gのポリマー溶液2とを混合した。混合後のポリマー溶液は、分子量分布曲線の分子量が6250の位置と680の位置とに極大を有し、またMw/Mnは10であった。
Example 2
40 g of polymer solution 1 and 60 g of polymer solution 2 were mixed . The polymer solution after mixing had a maximum in the molecular weight distribution curve where the molecular weight was 6250 and 680, and Mw / Mn was 10.

調製したポリマー溶液をコーティング組成物として、実施例1と同様にして、シリコン基板上に塗布した。塗布後の膜面を観察したところ、ストリエーションの発生はなく、優れた塗布性を達成できていることが確認できた。   The prepared polymer solution was applied as a coating composition on a silicon substrate in the same manner as in Example 1. When the film surface after coating was observed, it was confirmed that no striation occurred and excellent coating properties were achieved.

さらにこの塗布後の基板を、実施例1と同様に焼成した。得られた焼成膜のFT−IRを測定したところ、Si−O結合に帰属される波数1080cm−1の吸収が観測され、シリカ質膜が得られていることが確認された。一方で、N−H結合及びSi−H結合に帰属される波数3380cm−1及び2200cm−1の吸収は観測されず、ペルヒドロポリシラザンがシリカに転換したことが確認された。また、実施例1と同様に熱酸化シリカ膜に対する相対エッチングレートを測定したところ1.50であった。 Further, the substrate after this application was fired in the same manner as in Example 1. When the FT-IR of the obtained fired film was measured, absorption at a wave number of 1080 cm −1 attributed to the Si—O bond was observed, and it was confirmed that a siliceous film was obtained. On the other hand, the absorption wave numbers 3380 cm -1 and 2200 cm -1 attributed to N-H bonds and Si-H bonds are not observed, the perhydropolysilazane was converted to silica has been confirmed. Further, when the relative etching rate with respect to the thermally oxidized silica film was measured in the same manner as in Example 1, it was 1.50.

焼成後の基板の断面を実施例1と同様の方法により観察し、エッチング量を評価した。溝幅が変化しても、エッチング量の変化は僅かであり、幅0.05μmの溝の最深部においても十分に緻密なシリカ質膜が形成されていることが確認できた。   The cross section of the substrate after firing was observed by the same method as in Example 1, and the etching amount was evaluated. Even when the groove width was changed, the change in the etching amount was slight, and it was confirmed that a sufficiently dense siliceous film was formed even at the deepest part of the groove having a width of 0.05 μm.

比較例1
ポリマー溶液1をコーティング組成物とし、実施例1と同様にして、シリコン基板上に塗布した。塗布後の膜面を観察したところ、中心部から周辺部に向かうストリエーションが多数発生しており、塗布性が不十分であることが確認された。
Comparative Example 1
Polymer solution 1 was used as a coating composition, and was applied onto a silicon substrate in the same manner as in Example 1. When the film surface after application was observed, a large number of striations from the central part toward the peripheral part occurred, and it was confirmed that the application property was insufficient.

さらにこの塗布後の基板を、実施例1と同様の方法で焼成し、断面を電子顕微鏡で観察した。幅0.1μm以上の溝ではエッチング量の変化は僅かであり、最深部においても十分に緻密なシリカ質膜が形成されていることが確認できた。しかし、幅0.05μmの溝の最深部においてはエッチング量が大きく、その部分には緻密なシリカ質膜が形成されていないことが確認された。   Furthermore, the substrate after this application was fired in the same manner as in Example 1, and the cross section was observed with an electron microscope. In the groove having a width of 0.1 μm or more, the change in the etching amount was slight, and it was confirmed that a sufficiently dense siliceous film was formed even in the deepest part. However, it was confirmed that the etching amount was large in the deepest portion of the groove having a width of 0.05 μm, and a dense siliceous film was not formed in that portion.

比較例2
ポリマー溶液2をコーティング組成物とし、実施例1と同様にして、シリコン基板上に塗布した。塗布後の膜面を観察したところ、ストリエーションの発生はなく、優れた塗布性を達成できていることが確認された。
Comparative Example 2
Polymer solution 2 was used as a coating composition, and was applied onto a silicon substrate in the same manner as in Example 1. When the film surface after coating was observed, it was confirmed that no striation occurred and excellent coating properties were achieved.

さらにこの塗布後の基板を、実施例1と同様の方法で焼成し、断面を電子顕微鏡で観察した。幅0.2μm以上の溝ではエッチング量の変化は僅かであり、最深部においても十分に緻密なシリカ質膜が形成されていることが確認できた。しかし、幅0.05μmと0.1μmの溝の最深部においてはエッチング量が大きく、その部分には緻密なシリカ質膜が形成されていないことが確認できた。   Furthermore, the substrate after this application was fired in the same manner as in Example 1, and the cross section was observed with an electron microscope. In the groove having a width of 0.2 μm or more, the change in the etching amount was slight, and it was confirmed that a sufficiently dense siliceous film was formed even in the deepest part. However, the etching amount was large in the deepest part of the grooves having a width of 0.05 μm and 0.1 μm, and it was confirmed that a dense siliceous film was not formed in that part.

比較例3
ポリマー溶液3をコーティング組成物とし、実施例1と同様にして、シリコン基板上に塗布した。塗布後の膜面を観察したところ、ストリエーションの発生はなく、優れた塗布性を達成できていることが確認できた。
Comparative Example 3
Polymer solution 3 was used as a coating composition, and was applied onto a silicon substrate in the same manner as in Example 1. When the film surface after coating was observed, it was confirmed that no striation occurred and excellent coating properties were achieved.

さらにこの塗布後の基板を、実施例1と同様の方法で焼成し、断面を電子顕微鏡で観察した。幅0.2μm以下の溝の最深部には空隙が認められ、埋設性に改良の余地があることが確認できた。 Furthermore, the substrate after this application was fired in the same manner as in Example 1, and the cross section was observed with an electron microscope. A void was observed in the deepest part of the groove having a width of 0.2 μm or less, and it was confirmed that there was room for improvement in embedding property.

Claims (6)

ペルヒドロポリシラザンと溶媒とを含んでなるコーティング組成物であって、前記ペルヒドロポリシラザンの分子量分布曲線が、分子量800〜2,500の範囲と、分子量3,000〜8,000の範囲とにそれぞれ極大を有し、重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが6〜12であることを特徴とする、コーティング組成物。   A coating composition comprising perhydropolysilazane and a solvent, wherein the molecular weight distribution curve of the perhydropolysilazane has a molecular weight of 800 to 2,500 and a molecular weight of 3,000 to 8,000, respectively. A coating composition having a maximum and a ratio Mw / Mn of weight average molecular weight Mw to number average molecular weight Mn of 6 to 12. ペルヒドロポリシラザンの含有率が、コーティング組成物の全重量を基準として10〜25重量%である、請求項1に記載のコーティング組成物。   The coating composition according to claim 1, wherein the content of perhydropolysilazane is 10 to 25% by weight, based on the total weight of the coating composition. 前記ペルヒドロポリシラザンが、重量平均分子量が800〜2,500の低分子量ポリシラザンと、重量平均分子量が3,000〜8,000の高分子量ポリシラザンとの混合物である、請求項1または2に記載のコーティング組成物。   3. The perhydropolysilazane according to claim 1, wherein the perhydropolysilazane is a mixture of a low molecular weight polysilazane having a weight average molecular weight of 800 to 2,500 and a high molecular weight polysilazane having a weight average molecular weight of 3,000 to 8,000. Coating composition. 前記低分子量ポリシラザンと前記高分子量ポリシラザンとの重量比が3:7〜6:4である、請求項3に記載のコーティング組成物。   The coating composition of Claim 3 whose weight ratio of the said low molecular weight polysilazane and the said high molecular weight polysilazane is 3: 7-6: 4. 凹凸を有する基板の表面上に、ペルヒドロポリシラザンと溶媒とを含んでなるコーティング組成物であって、前記ペルヒドロポリシラザンの分子量分布曲線が、分子量800〜2,500の範囲と、分子量3,000〜8,000の範囲とにそれぞれ極大を有し、重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが6〜12であるコーティング組成物を塗布する塗布工程、および
塗布済み基板を1000℃未満の酸素雰囲気または水蒸気を含む酸化雰囲気で加熱処理して前記組成物を二酸化ケイ素膜に転化させる硬化工程
を含んでなることを特徴とする、シリカ質膜の形成方法。
A coating composition comprising perhydropolysilazane and a solvent on the surface of an uneven substrate, wherein the molecular weight distribution curve of the perhydropolysilazane has a molecular weight in the range of 800 to 2,500 and a molecular weight of 3,000. A coating step of applying a coating composition having a maximum in the range of ˜8,000 and a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of 6 to 12, and a coated substrate at 1000 ° C. A method for forming a siliceous film, comprising a curing step in which the composition is converted into a silicon dioxide film by heat treatment in an oxygen atmosphere or an oxidizing atmosphere containing water vapor.
塗布工程と硬化工程の間に、塗布済み基板を50℃〜400℃で10秒〜30分加熱するプリベーク工程をさらに含んでなる、請求項5に記載のシリカ質膜の形成方法。   The method for forming a siliceous film according to claim 5, further comprising a prebaking step of heating the coated substrate at 50 ° C to 400 ° C for 10 seconds to 30 minutes between the coating step and the curing step.
JP2010001883A 2010-01-07 2010-01-07 Coating composition comprising polysilazane Active JP5172867B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010001883A JP5172867B2 (en) 2010-01-07 2010-01-07 Coating composition comprising polysilazane
KR1020100136639A KR101711662B1 (en) 2010-01-07 2010-12-28 Coating composition containing polysilazane
CN201110006067.2A CN102153951B (en) 2010-01-07 2011-01-06 Coating composition containing polysilazane
TW100100458A TWI568806B (en) 2010-01-07 2011-01-06 Coating composition containing polysilazane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001883A JP5172867B2 (en) 2010-01-07 2010-01-07 Coating composition comprising polysilazane

Publications (3)

Publication Number Publication Date
JP2011142207A JP2011142207A (en) 2011-07-21
JP2011142207A5 JP2011142207A5 (en) 2012-09-06
JP5172867B2 true JP5172867B2 (en) 2013-03-27

Family

ID=44435640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001883A Active JP5172867B2 (en) 2010-01-07 2010-01-07 Coating composition comprising polysilazane

Country Status (4)

Country Link
JP (1) JP5172867B2 (en)
KR (1) KR101711662B1 (en)
CN (1) CN102153951B (en)
TW (1) TWI568806B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201052B2 (en) 2019-05-17 2021-12-14 Samsung Sdi Co., Ltd. Composition for forming silica layer, silica layer and electronic device incorporating silica layer

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970197B2 (en) * 2012-02-08 2016-08-17 メルクパフォーマンスマテリアルズマニュファクチャリング合同会社 Inorganic polysilazane resin
JP6107188B2 (en) * 2012-03-13 2017-04-05 セントラル硝子株式会社 Antifogging film forming material, antifogging film forming coating solution, antifogging article, and production method thereof
KR101556672B1 (en) 2012-12-27 2015-10-01 제일모직 주식회사 Composition for forming silica based insulating layer, method for manufacturing composition for forming silica based insulating layer, silica based insulating layer and method for manufacturing silica based insulating layer
JP2014213318A (en) * 2013-04-30 2014-11-17 チェイル インダストリーズインコーポレイテッド Method for producing modified silica film, coating liquid, and modified silica film
US20140322486A1 (en) * 2013-04-30 2014-10-30 Shigeto Kobori Method for preparing modified silica film, coating liquid for the same and modified silica film prepared from the same
JP6104785B2 (en) 2013-12-09 2017-03-29 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Perhydropolysilazane, composition containing the same, and method for forming siliceous film using the same
JP6198685B2 (en) * 2014-07-01 2017-09-20 国立大学法人東京工業大学 Polybenzoxazine-silica composite and method for producing the same
KR101806328B1 (en) * 2014-10-07 2017-12-07 삼성에스디아이 주식회사 Composition for forming silica based layer, silica based layer, and electronic device
US10020185B2 (en) 2014-10-07 2018-07-10 Samsung Sdi Co., Ltd. Composition for forming silica layer, silica layer, and electronic device
KR101833800B1 (en) * 2014-12-19 2018-03-02 삼성에스디아이 주식회사 Composition for forming silica based layer, method for manufacturing silica based layer, and electronic device including the silica based layer
KR101837971B1 (en) 2014-12-19 2018-03-13 삼성에스디아이 주식회사 Composition for forming silica based layer, silica based layer, and electronic device
KR20170014946A (en) 2015-07-31 2017-02-08 삼성에스디아이 주식회사 Composition for forming silica layer, method for manufacturing silica layer, and silica layer
KR102066271B1 (en) * 2017-04-18 2020-01-14 단국대학교 천안캠퍼스 산학협력단 Sealing method of electrostatic chuck
CN111148804B (en) * 2017-09-27 2022-05-17 信越化学工业株式会社 Fluorine-containing coating agent composition, surface treatment agent, and article
CN108329506A (en) * 2018-03-01 2018-07-27 苏州维洛克电子科技有限公司 The preparation method of polyester film containing Perhydropolysilazane-urea coating
KR102094647B1 (en) * 2019-10-31 2020-03-31 화성이엔씨(주) Two-component pavement agent for heat shielding and non-slip to be paved at room temperature, and preparation method thereof
CN110925779A (en) * 2019-12-11 2020-03-27 大连东泰产业废弃物处理有限公司 Method for utilizing perhydropolysilazane-containing waste organic solvent in incinerator
JP7222948B2 (en) 2020-04-23 2023-02-15 信越化学工業株式会社 COATING AGENT COMPOSITION FOR FORMING HIGH HARDNESS FILM
KR102253483B1 (en) * 2021-01-13 2021-05-20 (주)에스케이솔라에너지 Color Photovoltaic Module For Building
KR102265267B1 (en) * 2021-01-13 2021-06-17 (주)에스케이솔라에너지 Color Photovoltaic Module For Building

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613787B2 (en) 1987-08-13 1997-05-28 財団法人石油産業活性化センター Inorganic silazane high polymer, production method thereof and use thereof
JPH03232709A (en) * 1990-02-09 1991-10-16 Tonen Corp Polysilazane for silicon nitride fiber and production thereof
JP3015104B2 (en) * 1991-07-16 2000-03-06 触媒化成工業株式会社 Semiconductor device and manufacturing method thereof
JPH05148720A (en) * 1991-11-22 1993-06-15 Honda Motor Co Ltd Polysilazane fiber, its production and ceramic fiber
EP0623571A4 (en) * 1992-11-26 1997-07-02 Tonen Corp Process for producing ceramic product.
JP3208040B2 (en) 1995-04-04 2001-09-10 触媒化成工業株式会社 Coating solution for forming silica-based film and substrate with film
JP5020425B2 (en) * 2000-04-25 2012-09-05 Azエレクトロニックマテリアルズ株式会社 Method for embedding fine grooves with siliceous material
KR100362834B1 (en) * 2000-05-02 2002-11-29 삼성전자 주식회사 Method for forming oxide layer in semiconductor manufacturing process and semiconductor device manufactured by using the same
JP3479648B2 (en) * 2001-12-27 2003-12-15 クラリアント インターナショナル リミテッド Polysilazane treatment solvent and method for treating polysilazane using this solvent
CN100444331C (en) * 2003-11-11 2008-12-17 三星电子株式会社 Spin-on glass composition and method of forming silicon oxide layer in semiconductor manufacturing process using the same
DE102004011212A1 (en) * 2004-03-04 2005-09-29 Clariant International Limited Perhydropolysilazane-containing coatings for metal and polymer surfaces
JP2006054353A (en) * 2004-08-13 2006-02-23 Az Electronic Materials Kk Siliceous film having little flat-band shift and its manufacturing method
JP4578993B2 (en) * 2005-02-02 2010-11-10 Azエレクトロニックマテリアルズ株式会社 Polysilazane treatment solvent and method for treating polysilazane using this solvent
JP2009158887A (en) * 2007-12-28 2009-07-16 Jgc Catalysts & Chemicals Ltd Semiconductor device and method of manufacturing the same
JP5306669B2 (en) * 2008-02-29 2013-10-02 AzエレクトロニックマテリアルズIp株式会社 Method for forming siliceous film and siliceous film formed thereby
JP5692736B2 (en) * 2009-10-05 2015-04-01 株式会社Adeka Insulating film forming coating liquid and insulating film using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201052B2 (en) 2019-05-17 2021-12-14 Samsung Sdi Co., Ltd. Composition for forming silica layer, silica layer and electronic device incorporating silica layer

Also Published As

Publication number Publication date
JP2011142207A (en) 2011-07-21
KR20110081043A (en) 2011-07-13
CN102153951B (en) 2015-03-25
TWI568806B (en) 2017-02-01
CN102153951A (en) 2011-08-17
KR101711662B1 (en) 2017-03-02
TW201132716A (en) 2011-10-01

Similar Documents

Publication Publication Date Title
JP5172867B2 (en) Coating composition comprising polysilazane
JP6104785B2 (en) Perhydropolysilazane, composition containing the same, and method for forming siliceous film using the same
JP4982659B2 (en) Method for producing siliceous film and substrate with siliceous film produced thereby
JP6060460B2 (en) Method for forming siliceous film and siliceous film formed by the same method
JP5405031B2 (en) Solution for immersion used in the production of siliceous film and method for producing siliceous film using the same
EP2071616B1 (en) Composition for forming siliceous film and process for producing siliceous film from the same
JP5306669B2 (en) Method for forming siliceous film and siliceous film formed thereby
KR20070028518A (en) Method for forming trench isolation structure
US8828877B2 (en) Etching solution and trench isolation structure-formation process employing the same
WO2012111729A1 (en) Method for producing silicon dioxide film
EP2637203B1 (en) Method for forming isolation structure
WO2012176291A1 (en) Method for forming silicon oxynitride film, and substrate having silicon oxynitride film produced using this formation method
WO2009157333A1 (en) Shallow trench isolation structure and method for forming the shallow trench isolation structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5172867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250