JPH03232709A - Polysilazane for silicon nitride fiber and production thereof - Google Patents

Polysilazane for silicon nitride fiber and production thereof

Info

Publication number
JPH03232709A
JPH03232709A JP2822790A JP2822790A JPH03232709A JP H03232709 A JPH03232709 A JP H03232709A JP 2822790 A JP2822790 A JP 2822790A JP 2822790 A JP2822790 A JP 2822790A JP H03232709 A JPH03232709 A JP H03232709A
Authority
JP
Japan
Prior art keywords
molecular weight
temperature
perhydropolysilazane
average molecular
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2822790A
Other languages
Japanese (ja)
Inventor
Isato Nishii
西井 勇人
Yoshio Kawashima
河嶌 善雄
Koji Okuda
奥田 浩次
Yasuo Shimizu
泰雄 清水
Masaaki Ichiyama
一山 昌章
Takeshi Isoda
礒田 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP2822790A priority Critical patent/JPH03232709A/en
Publication of JPH03232709A publication Critical patent/JPH03232709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain a perhydropolysilazane suitable for producing silicon nitride fiber by reacting dichlorosilane with a Lewis base and subsequently reacting the resultant complex with ammonia at specific temperature under specified pressure. CONSTITUTION:Dichlorosilane is reacted with a Lewis base at -5 to 20 deg.C under the atmospheric pressure to 10kg/cm<2>G to produce a complex. The complex is reacted with ammonia in a molar ratio of 1:>=3 at -5 to 50 deg.C under a pressure of the atmospheric pressure to 10kg/cm<2>G to provide the objective perhydropolysilazane. The perhydropolysilazane solution is, if necessary, further modified in an inert gas atmosphere or in an atmosphere having an ammonia mol fraction of <=0.85 at -5 to 120 deg.C under the atmospheric pressure to 15kg/ cm<2>G. The perhydropolysilazane has a skeleton composed of structural units of the formula, a number-average mol.wt. of 1400-4000 converted into that of polystyrene, a Mw/Mn ratio of <=7.0 between the weight-average mol.wt. Mw and the number-average mol.wt. Mn and a Si/N molar ratio of 0.75-1.25.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化珪素繊維用ペルヒドロポリシラザン及びそ
の製法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to perhydropolysilazane for silicon nitride fibers and a method for producing the same.

〔従来の技術〕[Conventional technology]

本出願人は窒化珪素製造用前駆体として使用できるペル
ヒドロポリシラザン及びその合成方法を開示した(特公
昭63−16325号公報)。このペルヒドロポリシラ
ザンは側鎖がすべて水素からなり有機基を含まないので
セラミック収率が高く、また炭素を含まないので電気絶
縁性も優れているという特徴と、分子量が液体を示すも
のはもちろん、固体を示すものでも溶剤可溶であるため
成形、特に紡糸が容易であるという特徴を有し、従って
窒化珪素繊維の前駆体としても有用である。
The present applicant has disclosed a perhydropolysilazane that can be used as a precursor for producing silicon nitride and a method for synthesizing the same (Japanese Patent Publication No. 16325/1983). This perhydropolysilazane has a high ceramic yield because its side chains are all hydrogen and does not contain organic groups, and it also has excellent electrical insulation properties because it does not contain carbon. Even if it is solid, it is soluble in solvents, so it is easy to mold, especially to spin, and is therefore useful as a precursor for silicon nitride fibers.

また、このペルヒドロポリシラザンのSi/N組成比を
低減し、分子量を大きくするためにアンニモアで改質し
たり、加熱重合する方法についても開示している(特願
平1−138107、特願平1138108号公報)。
In addition, in order to reduce the Si/N composition ratio of this perhydropolysilazane and increase its molecular weight, it also discloses a method of modifying with annimore and heating polymerization (Japanese Patent Application No. 1-138107, 1138108).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の方法で得られるペルヒドロポリシラザンは分子量
分布がブロードであり、高分子量分がゲル化を起こし易
いため、特に厳密な性状管理が要求される繊維用途で次
の如き問題があった。すなわち、ポリマー濃縮ないし紡
糸工程においてゲル化によりロスが発生して繊維の収率
が低下する。
The perhydropolysilazane obtained by the above method has a broad molecular weight distribution, and the high molecular weight component tends to cause gelation, so there are the following problems especially in fiber applications where strict property control is required. That is, in the polymer concentration or spinning process, loss occurs due to gelation and the yield of fibers decreases.

また、紡糸工程でゲル生成して糸切れが発生してしまう
In addition, gel is formed during the spinning process, resulting in thread breakage.

そこで、本発明は、上記の如き問題点に鑑み、窒化珪素
繊維の製造用途に好適なペルヒドロポリシラザン及びそ
の製造方法を提供することを目的とする。
Therefore, in view of the above problems, an object of the present invention is to provide a perhydropolysilazane suitable for use in manufacturing silicon nitride fibers and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、次の一般式 で表わされる骨格を有するペルヒドロポリシラザンであ
って、ポリスチレン換算数平均分子量が1400〜40
00、重量平均分子量Mwと数平均分子量Mnとの比M
 w / M nが7゜0以下、かつSi とNのモル
組成比が0.75〜1.25であることを特徴とする窒
化珪素繊維用ペルヒドロポリシラザンを提供する。
In order to achieve the above object, the present invention provides a perhydropolysilazane having a skeleton represented by the following general formula, which has a polystyrene equivalent number average molecular weight of 1400 to 40.
00, ratio M of weight average molecular weight Mw to number average molecular weight Mn
Provided is a perhydropolysilazane for silicon nitride fiber, characterized in that w/Mn is 7°0 or less and the molar composition ratio of Si to N is 0.75 to 1.25.

本発明のペルヒドロポリシラザンは、従来技術の欄に記
載した先頭に開示したように、また後記のように、ジク
ロロシランとアンモニアの反応生成物、またはこれをア
ンニモア又は熱重合で改質したものであるので、一般式
+5HJH+で表わされる骨格を有し、これにアンモニ
アにもとづくNH−単位が付加した構造を有する。
The perhydropolysilazane of the present invention is a reaction product of dichlorosilane and ammonia, or a product modified by annimore or thermal polymerization, as disclosed at the beginning of the prior art section and as described later. Therefore, it has a skeleton represented by the general formula +5HJH+, and has a structure in which an NH- unit based on ammonia is added to this skeleton.

本発明の窒化珪素繊維用ペルヒドロポリシラザン(以下
、単に「ポリシラザン」とも称する。)の分子量は数平
均分子量が1400〜4000 (ポリスチレン換算)
である。分子量が1400以下の場合、凝固性が不足し
ているため繊維として賦形化できないし、また4000
を超えると、高分子量分のためゲル化しやすくなるから
である。
The molecular weight of the perhydropolysilazane for silicon nitride fibers of the present invention (hereinafter also simply referred to as "polysilazane") is 1400 to 4000 (in terms of polystyrene).
It is. If the molecular weight is less than 1,400, it cannot be shaped into fibers due to insufficient coagulability, and if the molecular weight is less than 4,000,
This is because if it exceeds 100%, gelation tends to occur due to the high molecular weight.

また、ポリシラザンの分子量分布は重量平均分子量M−
と数平均分子量Mnの比(Mw/Mn)が7.0以下で
ある。Mw/Mnが7.0を越すと、ポリシラザンの熱
安定性が悪くなり、ゲル化するからである。
In addition, the molecular weight distribution of polysilazane is the weight average molecular weight M-
and the number average molecular weight Mn (Mw/Mn) is 7.0 or less. This is because when Mw/Mn exceeds 7.0, the thermal stability of polysilazane deteriorates and gelation occurs.

さらに、ポリシラザンのSi/Nのモル組成比が0.7
5〜1.25の範囲内であるべきである。Si /Nが
1.25を越えると窒化珪素繊維の機械的強度が著しく
低下し、また前駆体繊維の焼成条件がシビアになるから
である。一方、Si/Nが0.75より小さいポリシラ
ザンでは、架橋構造のためゲル化し易く、取り扱いが困
難である。
Furthermore, the Si/N molar composition ratio of polysilazane is 0.7.
It should be within the range of 5 to 1.25. This is because if Si 2 /N exceeds 1.25, the mechanical strength of the silicon nitride fiber will drop significantly and the firing conditions for the precursor fiber will become severe. On the other hand, polysilazane with Si/N smaller than 0.75 tends to gel due to its crosslinked structure, making it difficult to handle.

本発明によれば、同様にして、上記の如きポリシラザン
を製造する方法として、ジクロロシランとルイス塩基を
一5℃〜20℃の温度、大気圧〜10kg/cm2Gの
圧力下で反応させて錯体を生成し、該R体に錯体1モル
に対し3モル以上のアンモニアを一5℃〜50℃の温度
、大気圧〜10kg/cj Gの圧力下で反応させ、さ
らに必要に応じて、該ペルヒドロポリシラザンの溶液を
不活性ガス雰囲気または0.85以下のアンニモアモル
分率とし、−5℃〜120℃の温度、大気圧〜15kg
/d Gの圧力下で改質することを特徴とする方法を提
供する。
According to the present invention, similarly, as a method for producing polysilazane as described above, dichlorosilane and a Lewis base are reacted at a temperature of -5°C to 20°C and a pressure of atmospheric pressure to 10 kg/cm2G to form a complex. The R form is reacted with 3 mol or more of ammonia per 1 mol of the complex at a temperature of -5°C to 50°C and a pressure of atmospheric pressure to 10 kg/cj G, and if necessary, the perhydrogen A solution of polysilazane is prepared in an inert gas atmosphere or with an annimol mole fraction of 0.85 or less, at a temperature of -5°C to 120°C, and at an atmospheric pressure of up to 15 kg.
Provided is a method characterized in that the reforming is carried out under a pressure of /dG.

出発原料としてはジクロロシランを用いる。他のハロシ
ランでもベルヒドロシラザンの生成は可能であるが、取
り扱い上及び経済上から好ましいので本発明ではジクロ
ロシランを用いる。
Dichlorosilane is used as a starting material. Although it is possible to produce perhydrosilazane using other halosilanes, dichlorosilane is used in the present invention because it is preferred from the viewpoint of handling and economy.

このジクロロシランに、先ず、ルイス塩基を付加させて
錯体を形成させる。
First, a Lewis base is added to this dichlorosilane to form a complex.

使用する塩基はハロシランとアダクトを形成する反応以
外の反応をしないルイス塩基である。このような塩基と
しては例えば、3級アミン類(トリメチルアミン、ジメ
チルエチルアミン、ジエチルメチルアミン、及びトリエ
チルアミン等のトリアルキルアミン、ピリジン、ピコリ
ンジメチルアニリン及びこれらの誘導体)、立体障害性
の基を有する2級アミン類、フォスフイン、スチピン、
アルシン及びこれらの誘導体等(例えばトリメチルフォ
スフイン、ジメチルエチルフォスフイン、メチルジエチ
ルフォスフイン、トリエチルフォスフイン、トリメチル
アルシン、トリメチルスチビン、トリメチルアミン、ト
リエチルアミン等)を挙げることができる。中でも、低
沸点でアンモニアより塩基性の小さい塩基(例えばピリ
ジン、ピコリン、トリメチルフォスフイン、ジメチルエ
チルフォスフイン、メチルジエチルフォスフイン、トリ
エチルフォスフイン)が好ましく、特にピリジン及びピ
コリンが取扱上及び経済上から好ましい ジクロロシランに対するルイス塩基の量は、モル比で0
.5以上、好ましくは1.0以上、より好ましくは1.
5以上とするのがよい。
The base used is a Lewis base that does not react with the halosilane other than to form an adduct. Examples of such bases include tertiary amines (trialkylamines such as trimethylamine, dimethylethylamine, diethylmethylamine, and triethylamine, pyridine, picoline dimethylaniline, and derivatives thereof), secondary bases having sterically hindered groups, etc. Amines, phosphine, stipine,
Examples include arsine and derivatives thereof (eg, trimethylphosphine, dimethylethylphosphine, methyldiethylphosphine, triethylphosphine, trimethylarsine, trimethylstibine, trimethylamine, triethylamine, etc.). Among these, bases with a low boiling point and less basicity than ammonia (for example, pyridine, picoline, trimethylphosphine, dimethylethylphosphine, methyldiethylphosphine, triethylphosphine) are preferable, and pyridine and picoline are particularly preferred from the viewpoint of handling and economy. The preferred amount of Lewis base to dichlorosilane is 0 in molar ratio.
.. 5 or more, preferably 1.0 or more, more preferably 1.
It is better to set it to 5 or more.

ジクロロシランにルイス塩基を付加させて錯体を形成さ
せる際の反応媒体としては、ルイス塩基単独、あるいは
非反応性溶媒とルイス塩基との混合物を用いるのがよい
。非反応性溶媒としては、脂肪族炭化水素、脂環式炭化
水素、芳香族炭化水素の炭化水素溶媒、ハロゲン化メタ
ン、ハロゲン化エタン、ハロゲン化ベンゼン等のハロゲ
ン化炭化水素、脂肪族エーテル、脂環式エーテル等のエ
ーテル類が使用できる。
As a reaction medium for forming a complex by adding a Lewis base to dichlorosilane, it is preferable to use a Lewis base alone or a mixture of a non-reactive solvent and a Lewis base. Non-reactive solvents include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbons such as halogenated methane, halogenated ethane, and halogenated benzene, aliphatic ethers, and aliphatic hydrocarbons. Ethers such as cyclic ethers can be used.

好ましい溶媒は、塩化メチレン、クロロホルム、四塩化
炭素、ブロモホルム、塩化エチレン、塩化エチリデン、
トリクロロエタン、テトラクロロエターン等のハロゲン
化炭化水素、エチルエーテル、イソプロピルエーテル、
エチルブチルエーテル、ブチルエーテル、1,2−ジオ
キシエタン、ジオキサン、ジメチルジオキサン、テトラ
ヒドロフラン、テトラヒドロピラン等のエーテル類、ペ
ンタン、ヘキサン、イソヘキサン、メチルペンタン、ヘ
プタン、イソへブタン、オクタン、イソオクタン、シク
ロペンクン、メチルシクロペンタン、シクロヘキサン、
メチルシクロヘキサン、ベンゼン、トルエン、キシレン
、エチルベンゼン等の炭化水素である。これらの溶媒の
うち、安全性などの点から、ジクロロメタンやピリジン
が特に好ましい。
Preferred solvents are methylene chloride, chloroform, carbon tetrachloride, bromoform, ethylene chloride, ethylidene chloride,
Halogenated hydrocarbons such as trichloroethane and tetrachloroethane, ethyl ether, isopropyl ether,
Ethers such as ethyl butyl ether, butyl ether, 1,2-dioxyethane, dioxane, dimethyldioxane, tetrahydrofuran, tetrahydropyran, pentane, hexane, isohexane, methylpentane, heptane, isohebtan, octane, isooctane, cyclopenkune, methylcyclopentane, cyclohexane,
Hydrocarbons such as methylcyclohexane, benzene, toluene, xylene, and ethylbenzene. Among these solvents, dichloromethane and pyridine are particularly preferred from the viewpoint of safety.

溶媒中のジクロロシランの濃度は任意とすることができ
るが、1〜15重量%(以下、%と略称する)の範囲と
するのがよい。
The concentration of dichlorosilane in the solvent can be set arbitrarily, but it is preferably in the range of 1 to 15% by weight (hereinafter abbreviated as %).

本発明では、この錯体形成を、不活性ガス雰囲気中、−
5℃〜20℃の温度、大気圧−10kg/allGの圧
力下で行なうことが好ましい。20″C以上の温度では
一05iHzC42z 、ピリジンが反応しないで不活
性ガスとともに飛散し、出口ラインの閉塞・収率の低下
の原因となる。また5iHzCfzが不均化をおこす。
In the present invention, this complex formation is carried out in an inert gas atmosphere.
It is preferable to carry out the reaction at a temperature of 5° C. to 20° C. and a pressure of atmospheric pressure −10 kg/all G. At temperatures above 20"C, pyridine does not react and scatters together with the inert gas, causing blockage of the outlet line and reduction in yield.Furthermore, 5iHzCfz causes disproportionation.

−5℃以下の温度では低温の冷媒が必要となるためコス
ト高になる。圧力については特に限定はないが、経済性
理由等から大気圧−10kg/ ctA Gが望ましい
At temperatures below -5°C, a low-temperature refrigerant is required, resulting in high costs. Although there is no particular limitation on the pressure, atmospheric pressure -10 kg/ctAG is desirable for economical reasons.

反応は極めて速いので反応時間を任意に定めることがで
きる。
Since the reaction is extremely fast, the reaction time can be set arbitrarily.

次に、このようにして製造した錯体に乾燥アンモニアを
反応させて加安分解(アンモノリシス)を行なわせる。
Next, the complex thus produced is reacted with dry ammonia to effect ammonolysis.

この際使用するアンモニアは気体でも液体でもよい。ア
ンモニアの乾燥は、例えば固体水酸化ナトリウムに通し
た後、金属ナトリウムに通すなどの方法により行なうの
がよい。アンモニアの添加量は、ジクロロシランの合計
量に対して、モル比で3.0以上、好ましくは4〜15
倍とするのがよい。反応溶媒、反応圧力、時間とも錯体
形成時の条件と同じでよい。但し、閉鎖系ではアンモニ
ア加圧となる。又、反応系中の水分量は、例えば500
ppm以下とするのが望ましい。
The ammonia used at this time may be either gas or liquid. Ammonia is preferably dried by, for example, passing it through solid sodium hydroxide and then passing it through metallic sodium. The amount of ammonia added is 3.0 or more in molar ratio, preferably 4 to 15 to the total amount of dichlorosilane.
It is better to double it. The reaction solvent, reaction pressure, and time may be the same as those used for complex formation. However, in a closed system, ammonia is pressurized. In addition, the amount of water in the reaction system is, for example, 500
It is desirable to set it to less than ppm.

反応雰囲気はアンニモア又は不活性ガス雰囲気を用いる
Annimore or an inert gas atmosphere is used as the reaction atmosphere.

反応温度は一5℃〜50℃とする。従来は錯体形成時と
同じ条件でアンモノリシスを行なっていたが、アンモノ
リシス反応時の温度を上げると生成物の分子量が増加す
るので、これを分子量制御に利用することができる。
The reaction temperature is -5°C to 50°C. Conventionally, ammonolysis was carried out under the same conditions as when forming the complex, but increasing the temperature during the ammonolysis reaction increases the molecular weight of the product, which can be used to control the molecular weight.

反応終了後、濾過などの常用手段を用いて塩化アンモニ
ウムを除去してポリシラザンを得ることができる。必要
に応じて、塩化アンモニウム除去前に溶媒を追加してポ
リシラザンを希釈、洗浄する。
After the reaction is completed, ammonium chloride can be removed using conventional means such as filtration to obtain polysilazane. If necessary, add a solvent to dilute and wash the polysilazane before removing ammonium chloride.

得られたポリシラザンは生成条件に応じて、本発明の所
期の特性値を有するポリシラザンであることができるが
、次の改質反応と組み合せて条件を制御することにより
、より容易に所期の特性値を有するポリシラザンを生成
することができる。
The obtained polysilazane can be a polysilazane having the desired characteristic values of the present invention depending on the production conditions, but it is easier to obtain the desired properties by controlling the conditions in combination with the following modification reaction. It is possible to produce polysilazane with characteristic values.

改質反応は、塩化アンモニウム除去後のポリシラザン溶
液をアンモニア又は不活性ガス雰囲気下、5℃〜120
℃の温度、大気圧〜15kg/cmlGの圧力下でアン
モニアを添加し、0.5〜30時間程時間待してポリン
ラザン架橋反応を行なうものである。
In the modification reaction, the polysilazane solution after removing ammonium chloride is heated at 5°C to 120°C in an ammonia or inert gas atmosphere.
Ammonia is added at a temperature of .degree. C. and a pressure of from atmospheric pressure to 15 kg/cmlG, and the porinrazan crosslinking reaction is carried out for about 0.5 to 30 hours.

このとき、ポリシラザン溶液中のアンモニアモル分率は
0.85以下とする。アンモニア分率が0.85以上だ
と改質反応速度が速すぎて、分子量、S i / N比
の制御が困難である。この改質反応では、特にSi/N
比との分子量調整ができる。ピリジン中に溶解している
NH3の量と反応温度、時間を変えることで分子量およ
びSi/N比を制御できる。
At this time, the ammonia mole fraction in the polysilazane solution is set to 0.85 or less. If the ammonia fraction is 0.85 or more, the reforming reaction rate is too fast, making it difficult to control the molecular weight and S i /N ratio. In this modification reaction, especially Si/N
The molecular weight can be adjusted with the ratio. The molecular weight and Si/N ratio can be controlled by changing the amount of NH3 dissolved in pyridine, reaction temperature, and time.

分子量は加熱する時間と温度を変えることによって制御
することができる。温度が低いと反応速度が遅いために
加熱時間を長く取らなければならず、高いと反応速度が
速すぎて制御が困難となる。Si/N比は反応時間とポ
リシラザン溶液中のアンモニアモル分率を変えることで
制御できる。アンモニアモル分率を高くすると反応生成
物のSi/N比が下がる。また、反応時間が長いとSi
/N比が下がる。圧カ一定で温度を上昇するとアンモニ
アモル分率が減少するため最終プロダクトの数平均分子
量とSi/N比にみあうよう、反応温度、圧力、時間を
調整する。
Molecular weight can be controlled by varying the heating time and temperature. If the temperature is low, the reaction rate is slow, requiring a long heating time; if the temperature is high, the reaction rate is too fast, making control difficult. The Si/N ratio can be controlled by changing the reaction time and the ammonia mole fraction in the polysilazane solution. Increasing the ammonia mole fraction lowers the Si/N ratio of the reaction product. In addition, if the reaction time is long, Si
/N ratio decreases. If the temperature is increased while the pressure is constant, the ammonia mole fraction decreases, so the reaction temperature, pressure, and time are adjusted to match the number average molecular weight and Si/N ratio of the final product.

このように、本発明では、(1)ジクロロシランの錯体
生成、(2)アンモノリシス反応、(3)改質反応、特
に(2)、(3)の反応、改質条件を制御することによ
って、本発明が目的とする所期の特性値を有する窒化珪
素繊維用ペルヒドロポリシラザンを製造することができ
る。
As described above, in the present invention, by controlling (1) complex formation of dichlorosilane, (2) ammonolysis reaction, (3) modification reaction, especially reactions (2) and (3), and modification conditions, Perhydropolysilazane for silicon nitride fibers having the desired characteristic values aimed at by the present invention can be produced.

〔実施例〕〔Example〕

皇311よ 反応装置を第1図に示す。第1図中、1はジクロロシラ
ン貯槽、2は溶媒貯槽、3は反応器、4は窒素ガス管、
5はアンモニアガス管、6は恒温槽、7はモーター、8
は温度計9と連動したヒーター、10は排ガス管である
。この装置を用いて以下の反応を実施した。
The Ko-311 reactor is shown in Figure 1. In Figure 1, 1 is a dichlorosilane storage tank, 2 is a solvent storage tank, 3 is a reactor, 4 is a nitrogen gas pipe,
5 is an ammonia gas pipe, 6 is a constant temperature oven, 7 is a motor, 8
1 is a heater linked to a thermometer 9, and 10 is an exhaust gas pipe. The following reactions were carried out using this apparatus.

温度が0℃の恒温槽内に設置した反応器内を乾燥窒素で
置換した後、乾燥ピリジン900mを入れ゛温度が一定
となるまで保持した後、撹拌しながらジクロロシラン(
Si82C12) 101.0 gを加え、白色固体状
のアダクトを得た。反応混合物をOocに冷却し、攪拌
しながら、乾燥アンモニア72gを吹きこんだ。
After purging the inside of the reactor installed in a constant temperature bath with a temperature of 0°C with dry nitrogen, 900 m of dry pyridine was added and the temperature was maintained until the temperature became constant. Dichlorosilane (
101.0 g of Si82C12) was added to obtain a white solid adduct. The reaction mixture was cooled to OOC and 72 g of dry ammonia was bubbled in while stirring.

反応終了後、乾燥窒素を吹きこみ、未反応のアンモニア
を除去した後、窒素雰囲気下で加圧濾過し、濾液850
mを得た。この濾液に乾燥。−キシレン1000mを加
え、約900−になるまで減圧下で溶媒を除去し、さら
に乾燥0−キシレン1000dを加え再び減圧蒸留して
700dの溶媒を得た。溶液の一部を分取し、さらに溶
媒を減圧除去すると無色の粘性液体が得られた。
After the reaction was completed, dry nitrogen was blown in to remove unreacted ammonia, and the filtrate was filtered under pressure under a nitrogen atmosphere.
I got m. Dry this filtrate. 1,000 m of -xylene was added, and the solvent was removed under reduced pressure until it became about 900 -. Furthermore, 1,000 d of dry O-xylene was added and distilled under reduced pressure again to obtain 700 d of solvent. A portion of the solution was separated and the solvent was removed under reduced pressure to obtain a colorless viscous liquid.

この粘性液体を、GPCにより分子量を測定したところ
数平均分子量(Mn)は528、重量平均分子量(Mw
)は996であり、重量平均分子量と数平均分子量の比
(Mn/Mw)は1.88であった。
When the molecular weight of this viscous liquid was measured by GPC, the number average molecular weight (Mn) was 528, and the weight average molecular weight (Mw
) was 996, and the ratio of weight average molecular weight to number average molecular weight (Mn/Mw) was 1.88.

また、そのIRスペトクル(溶媒:0−キシレン)の分
析の結果、波数(C1−’) 3350および1175
のN−Hに基づく吸収; 2170のSi −Hに基づ
く吸収i 1020〜820の5i−Hおよび5i−N
−3iに基づく吸収を示すことが確認された。さらに、
このポリマーの’ H−NMR(プロトン核磁気共鳴)
スペトクル(60MHz、 溶媒;  CDCj23 
/基準物質TMS)を分析したところ64.8 (br
、 5iHzまたは5in)δ4.4 (br、 Si
H:+) 、61.4 (br、 NH)の吸収が確認
された。また、前記重合体の元素組成(重量%)はSi
  :64.3  N :26.8. O: 1.9 
、 C: 2.6であった。
In addition, as a result of analysis of its IR spectrum (solvent: 0-xylene), the wave number (C1-') was 3350 and 1175.
Absorption based on N-H of 2170; Absorption i based on Si-H of 1020-820 5i-H and 5i-N
-3i-based absorption was confirmed. moreover,
'H-NMR (proton nuclear magnetic resonance) of this polymer
Spectacle (60MHz, solvent; CDCj23
/Reference material TMS) was analyzed and it was 64.8 (br
, 5iHz or 5in) δ4.4 (br, Si
Absorption of H:+), 61.4 (br, NH) was confirmed. Furthermore, the elemental composition (wt%) of the polymer is Si
:64.3 N :26.8. O: 1.9
, C: 2.6.

f1■江η 参考例1と同様の装置を用いて以下の反応を実施した。f1■Eη The following reaction was carried out using the same apparatus as in Reference Example 1.

温度が0℃の恒温槽内に設置した反応器内を乾燥窒素で
置換した後、乾燥ピリジン9ooIIdlを入れ温度が
一定となるまで保持した後、攪拌しながらジクロロシラ
ン(SiH2C12) 101.0 gを加え、白色固
体状のアダクトを得た。次に反応混合物を30″Cに設
定し、攪拌しながら、乾燥アンモニア72gを吹きこん
だ。
After replacing the inside of the reactor installed in a constant temperature bath with a temperature of 0°C with dry nitrogen, add 9ooIIdl of dry pyridine and maintain it until the temperature becomes constant, then add 101.0 g of dichlorosilane (SiH2C12) while stirring. In addition, a white solid adduct was obtained. The reaction mixture was then set at 30''C and 72 g of dry ammonia was bubbled in while stirring.

反応終了後、乾燥窒素を吹きこみ、未反応のアンモニア
を除去した後、窒素雰囲気下で加圧濾過し、濾液850
−を得た。この濾液に乾燥。−キシレン1000mを加
え、約900dになるまで減圧下で溶媒を除去し、さら
に乾燥0−キシレン1000戚を加え再び減圧茎留して
700戚の溶媒を得た。?8液の一部を分取し、さらに
溶媒を減圧除去すると白色の固体状の無機シラザンが得
られた。
After the reaction was completed, dry nitrogen was blown in to remove unreacted ammonia, and the filtrate was filtered under pressure under a nitrogen atmosphere.
I got -. Dry this filtrate. - 1000m of xylene was added, and the solvent was removed under reduced pressure until it reached about 900d, and dried O-xylene 1000m was added and distilled under reduced pressure again to obtain a 700m solvent. ? A portion of the 8 liquid was separated and the solvent was removed under reduced pressure to obtain a white solid inorganic silazane.

GPCにより分子量を測定したところ数平均分子量(M
n)は1280、重量平均分子量(Mw)は3359で
あり、重量平均分子量と数平均分子量の比(Mw/ M
 n )は2.62であった。元素分析により、珪素と
窒素の組成比は1.20であった。
When the molecular weight was measured by GPC, the number average molecular weight (M
n) is 1280, the weight average molecular weight (Mw) is 3359, and the ratio of weight average molecular weight to number average molecular weight (Mw/M
n) was 2.62. According to elemental analysis, the composition ratio of silicon to nitrogen was 1.20.

夫隻桝よ 参考例1と同様の装置を用いて以下の反応を実施した。Husband-masu The following reaction was carried out using the same apparatus as in Reference Example 1.

温度がO″Cの恒温槽内に設置した反応器内を乾燥窒素
で置換した後、乾燥ピリジン900mを入れ温度が一定
となるまで保持した後、攪拌しながらジクロロシラン(
SiH2C12) 101.0 gを加え、白色固体状
のアダクトを得た。次に反応混合物を50℃に加熱し、
攪拌しながら、乾燥アンモニア72gを吹きこんだ。
After replacing the inside of the reactor installed in a constant temperature bath with a temperature of O''C with dry nitrogen, 900 m of dry pyridine was added and the temperature was maintained until the temperature became constant, and dichlorosilane (
101.0 g of SiH2C12) was added to obtain a white solid adduct. The reaction mixture was then heated to 50°C,
While stirring, 72 g of dry ammonia was blown into the solution.

反応終了後、乾燥窒素を吹きこみ、未反応のアンモニア
を除去した後、窒素雰囲気下で加圧濾過し、濾液85(
ldを得た。この濾液に乾燥。−キシレン1000−を
加え、約900−になるまで減圧下で溶媒を除去し、さ
らに乾燥0−キシレン1000−を加え再び減圧蒸留し
て700−の溶液を得た。溶液の一部を分取し、さらに
溶媒を減圧除去すると白色固体状の無機シラザンが得ら
れた。
After the reaction was completed, dry nitrogen was blown in to remove unreacted ammonia, followed by pressure filtration in a nitrogen atmosphere to obtain a filtrate 85 (
I got ld. Dry this filtrate. -Xylene 1000- was added, and the solvent was removed under reduced pressure until it became about 900-, and then dried 0-xylene 1000- was added and distilled under reduced pressure again to obtain a solution of 700-. A portion of the solution was separated and the solvent was removed under reduced pressure to obtain a white solid inorganic silazane.

GPCにより分子量を測定したところ数平均分子量(M
n)は1620、重量平均分子量(M−)は5022で
あり、重量平均分子量と数平均分子量の比(Mw/Mn
)は3.10であった。元素分析により、珪素と窒素の
組成比は1.25であった。
When the molecular weight was measured by GPC, the number average molecular weight (M
n) is 1620, the weight average molecular weight (M-) is 5022, and the ratio of weight average molecular weight to number average molecular weight (Mw/Mn
) was 3.10. According to elemental analysis, the composition ratio of silicon to nitrogen was 1.25.

さらに、ロータリーエバポレーターで溶媒を減圧除去し
た。溶液が十分に曳糸性を示すようになったとき減圧除
去を中止した。この溶液を乾式紡糸装置の脱泡容器に移
送して紡糸溶液とした。約2時間、60℃で静置脱泡後
、30℃で口径0.1 rmのノズルより、130℃の
乾燥空気雰囲気下の紡糸塔内に吐出し、300m/分の
速度で巻き取り、平均繊維径7.nの繊維を得た。
Furthermore, the solvent was removed under reduced pressure using a rotary evaporator. Vacuum removal was discontinued when the solution became sufficiently stringy. This solution was transferred to a defoaming container of a dry spinning device to obtain a spinning solution. After standing at 60°C for about 2 hours to degas, it was discharged at 30°C from a nozzle with a diameter of 0.1 rm into a spinning tower in a dry air atmosphere at 130°C, and wound at a speed of 300 m/min. Fiber diameter 7. n fibers were obtained.

次いで、前記紡糸繊維に1kg/now”の張力を作用
させながら、窒素雰囲気下で室温から1200℃まで、
180℃/時間で昇温しで窒化珪素繊維とした。
Next, while applying a tension of 1 kg/now to the spun fibers, from room temperature to 1200° C. in a nitrogen atmosphere,
The temperature was raised at 180° C./hour to obtain silicon nitride fibers.

この窒化珪素繊維の引っ張り強度は200〜290kg
/腫2(平均230kg/m2)、弾性率は16〜26
 ton / I!lll1”(平均21ton /■
りであった。この窒化珪素繊維を元素分析したところ、
窒素は33.2重量%、酸素は3.3重量%であった。
The tensile strength of this silicon nitride fiber is 200 to 290 kg.
/ tumor 2 (average 230 kg/m2), elastic modulus 16-26
ton/I! lll1” (average 21 tons/■
It was ri. Elemental analysis of this silicon nitride fiber revealed that
Nitrogen was 33.2% by weight and oxygen was 3.3% by weight.

ル較±玉 参考例1.で得られた無機シラザンをロータリーエバポ
レーターで溶媒を減圧除去したところ溶媒を完全に除去
しても粘度が足りず、曳糸性を示すには至らなかったた
め紡糸できなかった。
Comparison example 1. When the solvent of the obtained inorganic silazane was removed under reduced pressure using a rotary evaporator, the viscosity was insufficient even after the solvent was completely removed, and the product could not be spun because it did not exhibit spinnability.

凡Ml引η 参考例2.で得られた無機シラザンをロータリーエバポ
レーターで溶媒を減圧除去した。溶液が十分に曳糸性を
示すようになったとき減圧除去を中止した。この溶液を
乾式紡糸装置の脱泡容易に移送して紡糸溶液とした。約
2時間、60″Cで静置脱泡後、30℃で口径0.1 
mのノズルより、130℃の乾燥空気雰囲気下の紡糸塔
内に吐出し、300m/分の速度で巻き取り、平均繊維
径10,1ullの繊維を得た。
About Ml η Reference example 2. The solvent of the obtained inorganic silazane was removed under reduced pressure using a rotary evaporator. Vacuum removal was discontinued when the solution became sufficiently stringy. This solution was easily degassed and transferred to a dry spinning device to obtain a spinning solution. After standing at 60"C for about 2 hours to defoam, the diameter is 0.1 at 30℃.
The fibers were discharged from a nozzle of 130° C. into a spinning tower in a dry air atmosphere at 130° C., and wound up at a speed of 300 m/min to obtain fibers with an average fiber diameter of 10.1 μl.

次いで、前記紡糸繊維に1 kg / me 2の張力
を作用させながら、窒素雰囲気下で室温から1200″
Cまで180″C/時間で昇温しだが、焼成した窒化珪
素繊維を走査型電子顕微鏡で観察したところ、一部、回
りの繊維と融着していた。融着していない部分について
引っ張り強度・弾性率を測定したところ引っ張り強度は
100〜190kg/m+++”(平均150kg/f
f11112)、弾性率は12〜20ton /ltm
2(平均15ton 、/n112)であった。
The spun fibers were then spun from room temperature to 1200″ under a nitrogen atmosphere while applying a tension of 1 kg/me2.
The temperature was raised to C at 180"C/hour, but when the fired silicon nitride fibers were observed with a scanning electron microscope, some of them were fused to the surrounding fibers. The tensile strength of the unfused portions was・When the elastic modulus was measured, the tensile strength was 100 to 190 kg/m+++” (average 150 kg/f
f11112), elastic modulus is 12-20ton/ltm
2 (average 15 tons, /n112).

夫隻斑茎 反応装置を第2図に示す。第2図中、1は無機シラザン
貯槽、2は反応器、3は窒素ガス管、4はアンモニアガ
ス管、5は恒温槽、6はモーター7は温度計8と連動し
たヒーター 9は圧力計と連動した調節弁、11は排ガ
ス管である。
Fig. 2 shows the Fussen Spotted Stem Reaction Apparatus. In Fig. 2, 1 is an inorganic silazane storage tank, 2 is a reactor, 3 is a nitrogen gas pipe, 4 is an ammonia gas pipe, 5 is a thermostat, 6 is a motor 7, a heater linked to a thermometer 8, and 9 is a pressure gauge. The linked control valve 11 is an exhaust gas pipe.

温度が60℃の恒温槽内に設置した反応器内を乾燥窒素
で置換した後、参考例1.で得られた無機シラザンのピ
リジン溶e600−を入れ温度が一定となるまで保持し
た後、アンモニアガスを注入した。
After replacing the inside of the reactor installed in a constant temperature bath with a temperature of 60°C with dry nitrogen, Reference Example 1. A pyridine solution of the inorganic silazane obtained in step E600- was added and the temperature was maintained until the temperature became constant, and then ammonia gas was injected.

調節弁から余分なガスを放出して反応器の圧力が5 k
g / cdr Gとなるように設定し、14時間保持
した。
Excess gas is released from the control valve to reduce the reactor pressure to 5 k.
g/cdr G and maintained for 14 hours.

途中、放出されたガスをガスクロマトグラフィーで分析
したところ大量の水素が含まれていた。
Gas chromatography analysis of the gas released during the process revealed that it contained a large amount of hydrogen.

反応終了後、700ad!の乾燥O−キシレンを加え乾
燥窒素を吹き込み、未反応のアンモニアを除去した後、
約100dになるまで減圧下で溶媒を除去し、さらに乾
燥0−キシレン700Idを加え再び減圧蒸留して50
0mの溶液を得た。溶液の一部を分取し、さらに溶媒を
減圧除去すると白色固体状のシラザンが得られた。
After the reaction is completed, 700ad! After adding dry O-xylene and blowing dry nitrogen to remove unreacted ammonia,
The solvent was removed under reduced pressure until it reached about 100 d, and 700 Id of dry O-xylene was added and distilled under reduced pressure again to give 50 d.
A solution of 0 m was obtained. A portion of the solution was separated and the solvent was removed under reduced pressure to obtain a white solid silazane.

GPCにより分子量を測定したところ数平均分子量(M
n)は1927、重量平均分子量(Mw)は7309で
あり、重量平均分子量と数平均分子量の比(Mw/Mn
)は3.79であった。元素分析により、珪素と窒素の
組成比は1.05であった。
When the molecular weight was measured by GPC, the number average molecular weight (M
n) is 1927, the weight average molecular weight (Mw) is 7309, and the ratio of weight average molecular weight to number average molecular weight (Mw/Mn
) was 3.79. According to elemental analysis, the composition ratio of silicon to nitrogen was 1.05.

サラニ、ロータリーエバポレーターで溶媒を減圧除去し
た。溶液が十分に曳糸性を示すようになったとき減圧除
去を中止した。この溶液を乾式紡糸装置の脱泡容器に移
送して紡糸溶液とした。約2時間、60”Cで静置脱泡
後、30℃で口径0.1 mのノズルより、130℃の
乾燥空気雰囲気下の紡糸塔内に吐出し、300m/分の
速度で巻き取り、平均繊維径7paの繊維を得た。
The solvent was removed under reduced pressure using a rotary evaporator. Vacuum removal was discontinued when the solution became sufficiently stringy. This solution was transferred to a defoaming container of a dry spinning device to obtain a spinning solution. After standing at 60"C for about 2 hours to degas the mixture, it was discharged from a nozzle with a diameter of 0.1 m at 30°C into a spinning tower in a dry air atmosphere at 130°C, and wound up at a speed of 300 m/min. Fibers with an average fiber diameter of 7 pa were obtained.

次いで、前記紡糸繊維に1kg/nm”の張力を作用さ
せながら、窒素雰囲気下で室温から1200℃まで、1
80℃/時間で昇温しで窒化珪素繊維とした。
Next, while applying a tension of 1 kg/nm to the spun fibers, the spun fibers were heated from room temperature to 1200° C. for 1 hour under a nitrogen atmosphere.
The temperature was raised at 80° C./hour to obtain silicon nitride fibers.

この窒化珪素繊維の引っ張り強度は220〜360kg
/■t(平均290kg / m 2)、弾性率は19
〜30ton/m”(平均24ton /鵬っであった
。この窒化珪素繊維を元素分析したところ、窒素は35
.3重量%、酸素は2.1重置%であった。
The tensile strength of this silicon nitride fiber is 220 to 360 kg.
/■t (average 290 kg/m2), elastic modulus is 19
~30 ton/m" (average 24 ton/m). Elemental analysis of this silicon nitride fiber revealed that nitrogen was 35
.. 3% by weight, and oxygen was 2.1% by weight.

実施例2.と同一の装置を用いて反応を行った。Example 2. The reaction was carried out using the same equipment.

温度が30℃の恒温槽内に設置した反応器内を乾燥窒素
で置換した後、参考例1.で得られた無機シラザンのピ
リジン溶液600−を入れ温度が一定となるまで保持し
た後、アンモニアガスを注入した。
After replacing the inside of the reactor installed in a constant temperature bath with a temperature of 30°C with dry nitrogen, Reference Example 1. A pyridine solution of the inorganic silazane obtained in step 600 was added and the temperature was maintained until the temperature became constant, and then ammonia gas was injected.

調節弁から余分なガスを放出して反応器の圧力が4kg
/cm2Gとなるように設定し、10時間保持した。
Excess gas is released from the control valve and the pressure in the reactor is 4 kg.
/cm2G and maintained for 10 hours.

途中、放出されたガスをガスクロマドグー7フイーで分
析したところ大量の水素が含まれていた。
On the way, the gas released was analyzed using a Gas Chromad Goo 7F, and it was found to contain a large amount of hydrogen.

反応終了後、700dの乾燥0−キシレンを加え乾燥窒
素を吹きこみ、未反応のアンモニアを除去した後、約7
00 ad!になるまで減圧下で溶媒を留去し、この操
作をさらに2回くり返した。溶液の一部を分取し、さら
に溶媒を減圧除去すると白色固体状めシラザンが得られ
た。
After the reaction was completed, 700 d of dry O-xylene was added and dry nitrogen was blown in to remove unreacted ammonia.
00 ad! The solvent was distilled off under reduced pressure until the residue was dissolved, and this operation was repeated two more times. A portion of the solution was taken and the solvent was removed under reduced pressure to obtain silazane as a white solid.

GPCにより分子量を測定したところ数平均分子量(M
n)は2201、重量平均分子量(M−は8692であ
り、重量平均分子量と数平均分子量の比(M wr/M
n)は3.95であった。元素分析により、珪素と窒素
の組成比は0.95であった。
When the molecular weight was measured by GPC, the number average molecular weight (M
n) is 2201, weight average molecular weight (M- is 8692, ratio of weight average molecular weight to number average molecular weight (M wr/M
n) was 3.95. According to elemental analysis, the composition ratio of silicon to nitrogen was 0.95.

さらに、ロータリーエバポレーターで溶媒を減圧除去し
た。溶液が十分に曳糸性を示すようになったとき減圧除
去を中止した。この溶液を乾式紡糸装置の脱泡容器に移
送して紡糸溶液とした。約2時間、60℃で静置脱泡後
、30℃で口径0.1−のノズルより、130℃の乾燥
空気雰囲気下の紡糸塔内に吐出し、300m/分の速度
で巻き取り、平均繊維径7μの繊維を得た。
Furthermore, the solvent was removed under reduced pressure using a rotary evaporator. Vacuum removal was discontinued when the solution became sufficiently stringy. This solution was transferred to a defoaming container of a dry spinning device to obtain a spinning solution. After standing at 60°C for about 2 hours to degas the mixture, it was discharged at 30°C from a nozzle with a diameter of 0.1 mm into a spinning tower in a dry air atmosphere at 130°C, and wound at a speed of 300 m/min. Fibers with a fiber diameter of 7 μm were obtained.

次いで、前記紡糸繊維に1kg/m2の張力を作用させ
ながら、窒素雰囲気下で室温から1200″Cまで、1
80℃/時間で昇温しで窒化珪素繊維とした。
Next, while applying a tension of 1 kg/m2 to the spun fibers, the spun fibers were heated for 1 hour from room temperature to 1200''C in a nitrogen atmosphere.
The temperature was raised at 80° C./hour to obtain silicon nitride fibers.

この窒化珪素繊維の引っ張り強度は280〜380kg
/=2(平均320kg / am ”)、弾性率は2
1〜30ton/ ttm”(平均25ton /ma
+”)であった。
The tensile strength of this silicon nitride fiber is 280 to 380 kg.
/=2 (average 320 kg/am”), elastic modulus is 2
1~30ton/ttm” (average 25ton/ma
+”).

夫嵐開ル 実施例2.と同様の装置を用いて以下の反応を実施した
Huarashi opening example 2. The following reaction was carried out using the same apparatus as .

温度が80℃の恒温槽内に設置した反応器内を乾燥窒素
で置換した後、参考例1.で得られた無機シラザンのピ
リジン溶液600 dを入れ、窒素で加圧したまま密閉
系で20時間保持した。この間大量のガスが発生し圧力
が上昇したが、ガスクロマトグラフィーで分析したとこ
ろ発生したガスは水素であった。反応終了後、100d
の乾燥エチルヘンゼンを加えて、温度60℃7−溶媒を
減圧留去すると白色固体状の無機シラザンが得られた。
After replacing the inside of the reactor installed in a constant temperature bath with a temperature of 80°C with dry nitrogen, Reference Example 1. 600 d of the pyridine solution of the inorganic silazane obtained in step 1 was added and kept in a closed system for 20 hours while pressurized with nitrogen. During this time, a large amount of gas was generated and the pressure rose, but analysis by gas chromatography revealed that the gas generated was hydrogen. After the reaction is completed, 100 d
Dry ethyl hanzene was added thereto, and the solvent was distilled off under reduced pressure at a temperature of 60°C to obtain a white solid inorganic silazane.

GPCにより分子量を測定したところ数平均分子量(M
n)は2312、重量平均分子量(M−は10599で
あり、重量平均分子量と数平均分子量の比(Mh/Mn
)は4.59であった。元素分析により、珪素と窒素の
組成比は1.20であった。
When the molecular weight was measured by GPC, the number average molecular weight (M
n) is 2312, weight average molecular weight (M- is 10599, ratio of weight average molecular weight to number average molecular weight (Mh/Mn)
) was 4.59. According to elemental analysis, the composition ratio of silicon to nitrogen was 1.20.

この白色粉末にトルエンを加えて徐々に溶解し、溶液が
十分に曳糸性を示すようになったときトルエンの添加を
中止した。この溶液を乾式紡糸装置の脱泡容器に移送し
て約2時間、60℃で静置脱泡後、40℃で口径0.0
8m+のノズルより、130℃の乾燥空気雰囲気下の紡
糸塔内に吐出し、500m/分の速度で巻き取り、平均
繊維径10#11の繊維を得た。
Toluene was added to this white powder to gradually dissolve it, and when the solution became sufficiently stringable, the addition of toluene was stopped. This solution was transferred to the degassing container of the dry spinning device and left to stand at 60°C for about 2 hours to defoam, and then heated to 40°C with a diameter of 0.0.
It was discharged from an 8m+ nozzle into a spinning tower under a dry air atmosphere at 130°C and wound up at a speed of 500m/min to obtain fibers with an average fiber diameter of 10#11.

次いで、前記紡糸繊維に1kg/■2の張力を作用させ
ながら、窒素雰囲気下で室温から1200℃まで、18
0℃/時間で昇温して窒化珪素繊維とした。
Next, while applying a tension of 1 kg/■2 to the spun fibers, the spun fibers were heated from room temperature to 1200° C. for 18 hours in a nitrogen atmosphere.
The temperature was raised at 0° C./hour to obtain silicon nitride fibers.

この窒化珪素繊維の引っ張り強度は220〜310kg
/IIIm ” (平均260kg/mIす、弾性率は
13〜23ton/ mt(平均19ton /騰りで
あった。
The tensile strength of this silicon nitride fiber is 220 to 310 kg.
/IIIm'' (average 260 kg/mI), elastic modulus was 13-23 ton/mt (average 19 ton/m).

夫隻±l 実施例2.と同一の装置を用いて反応を実施した。Husband±l Example 2. The reaction was carried out using the same equipment as.

温度が120℃の恒温槽内に設置した反応器内を乾燥窒
素で置換した後、参考例1.で得られた無機シラザンの
ピリジン溶液600 mを入れ、窒素で加圧したまま密
閉系で12時間保持した。この間大量のガスが発生し圧
力が上昇したが、ガスクロマトグラフィーで分析したと
ころ発生したガスは水素であった。反応終了後、700
−の乾燥エチルベンゼンを加えて、温度60℃で溶媒を
減圧留去すると白色固体状の無機シラザンが得られた。
After replacing the inside of the reactor installed in a constant temperature bath with a temperature of 120°C with dry nitrogen, Reference Example 1. 600 ml of the pyridine solution of the inorganic silazane obtained in step 1 was added and kept in a closed system for 12 hours while pressurized with nitrogen. During this time, a large amount of gas was generated and the pressure rose, but analysis by gas chromatography revealed that the gas generated was hydrogen. After the reaction, 700
- Dry ethylbenzene was added and the solvent was distilled off under reduced pressure at a temperature of 60°C to obtain a white solid inorganic silazane.

GPCにより分子量を測定したところ数平均分子量(M
n)は3290、重量平均分子量(M−)は19730
であり、重量平均分子量と数平均分子量の比(M w/
Mn)は6.00であった。元素分析により、珪素と窒
素の組成比は1822であった。
When the molecular weight was measured by GPC, the number average molecular weight (M
n) is 3290, weight average molecular weight (M-) is 19730
and the ratio of weight average molecular weight to number average molecular weight (M w/
Mn) was 6.00. According to elemental analysis, the composition ratio of silicon to nitrogen was 1822.

この白色粉末を実施例3.と同一の方法で紡糸・焼成を
行い窒化珪素繊維を得た。この窒化珪素繊維の引っ張り
強度は160〜280kg/m”(平均220kg/−
2)、弾性率は15〜30ton /1111”(平均
21ton /−りであった。
This white powder was used in Example 3. Spinning and firing were performed in the same manner as above to obtain silicon nitride fibers. The tensile strength of this silicon nitride fiber is 160 to 280 kg/m'' (average 220 kg/-
2) The elastic modulus was 15 to 30 tons/1111'' (average 21 tons/-).

亥11引謂 実施例2.と同一の装置を用いて反応を行った。Pig 11 reference Example 2. The reaction was carried out using the same equipment.

温度が60℃の恒温槽内に設置した反応器内を乾燥窒素
で置換した後、参考例2で得られた無機シラザンのピリ
ジン溶液600 mを入れ温度が一定となるまで保持し
た後、アンモニアガスを注入した。
After purging the inside of the reactor installed in a constant temperature bath with a temperature of 60°C with dry nitrogen, 600 m of the pyridine solution of the inorganic silazane obtained in Reference Example 2 was added, and the temperature was maintained until the temperature became constant, and then ammonia gas was added. was injected.

調節弁から余分なガスを放出して反応器の圧力が5kg
/CdGとなるように設定し、14時間保持した。
Excess gas is released from the control valve and the pressure in the reactor is 5 kg.
/CdG and held for 14 hours.

途中、放出されたガスをガスクロマトグラフィーで分析
したところ大量の水素が含まれていた。
Gas chromatography analysis of the gas released during the process revealed that it contained a large amount of hydrogen.

反応終了後、700jdの乾燥0−キシレンを加え乾燥
窒素を吹きこみ、未反応のアンモニアを除去した後、約
700jleになるまで減圧下で溶媒留去し、この操作
をさらに2回くり返した。溶液の一部を分取し、さらに
溶媒を減圧除去すると白色固体状の無機シラザンが得ら
れた。
After the reaction was completed, 700 jd of dry O-xylene was added and dry nitrogen was blown into the flask to remove unreacted ammonia, and then the solvent was distilled off under reduced pressure until it became about 700 jle, and this operation was repeated two more times. A portion of the solution was separated and the solvent was removed under reduced pressure to obtain a white solid inorganic silazane.

GPCにより分子量を測定したところ数平均分子量(M
n)は2950、重量平均分子量(M−)は13730
であり、重量平均分子量と数平均分子量の比(M w/
Mn)は4.65であった。元素分析により、珪素と窒
素の組成比は1.02であった。
When the molecular weight was measured by GPC, the number average molecular weight (M
n) is 2950, weight average molecular weight (M-) is 13730
and the ratio of weight average molecular weight to number average molecular weight (M w/
Mn) was 4.65. According to elemental analysis, the composition ratio of silicon to nitrogen was 1.02.

サラに、ロータリーエバポレーターで溶媒を減圧除去し
た。溶液が十分に曳糸性を示すようになったとき減圧除
去を中止した。この溶液を乾式紡糸装置の脱泡容器に移
送して紡糸溶液とした。約2時間、60゛Cで静置脱泡
後、30゛Cで口径0.1−のノズルより、130℃の
乾燥空気雰囲気下の紡糸塔内に吐出し、300m/分の
速度で巻き取り、平均繊維径7.nの繊維を得た。
Finally, the solvent was removed under reduced pressure using a rotary evaporator. Vacuum removal was discontinued when the solution became sufficiently stringy. This solution was transferred to a defoaming container of a dry spinning device to obtain a spinning solution. After standing at 60°C for approximately 2 hours to defoam, the product was discharged at 30°C from a nozzle with a diameter of 0.1 mm into a spinning tower in a dry air atmosphere at 130°C, and wound at a speed of 300 m/min. , average fiber diameter 7. n fibers were obtained.

次いで、前記紡糸繊維に1kg/mi+”の張力を作用
させながら、窒素雰囲気下で室温から1200℃まで、
180℃/時間で昇温しで窒化珪素繊維とした。
Next, while applying a tension of 1 kg/mi+'' to the spun fibers, the temperature was increased from room temperature to 1200°C under a nitrogen atmosphere.
The temperature was raised at 180° C./hour to obtain silicon nitride fibers.

この窒化珪素繊維の引っ張り強度は220〜350kg
/B2(平均300kg/mm2)、弾性率は20〜3
2ton/l1II112(平均25ton /■2)
であった。
The tensile strength of this silicon nitride fiber is 220 to 350 kg.
/B2 (average 300 kg/mm2), elastic modulus is 20-3
2ton/l1II112 (average 25ton/■2)
Met.

なお、上記の例のうち参考例1.2、比較例1で得られ
たポリシラザンは紡糸できなかった。
Note that among the above examples, the polysilazane obtained in Reference Example 1.2 and Comparative Example 1 could not be spun.

以上の結果のうち主なものを、下記表に示す。The main results of the above are shown in the table below.

実施例2.と同一の装置を用いて反応を行った。Example 2. The reaction was carried out using the same equipment.

温度が0℃の恒温槽内に設置した反応器内を乾燥窒素で
置換した後、参考例1.で得られた無機シラザンのピリ
ジン溶液600−を入れ温度が一定となるまで保持した
後、アンモニアガスを注入した。
After replacing the inside of the reactor installed in a constant temperature bath with a temperature of 0° C. with dry nitrogen, Reference Example 1. A pyridine solution of the inorganic silazane obtained in step 600 was added and the temperature was maintained until the temperature became constant, and then ammonia gas was injected.

調節弁から余分なガスを放出して反応器の圧力が2.5
kg/cm2Gとなるように設定し、1時間保持した。
Excess gas is released from the control valve to reduce the reactor pressure to 2.5
kg/cm2G and maintained for 1 hour.

途中、放出されたガスをガスクロマトグラフィーで分析
したところ大量の水素が含まれていた。
Gas chromatography analysis of the gas released during the process revealed that it contained a large amount of hydrogen.

反応終了後、700dの乾燥0−キシレンを加え乾燥窒
素を吹きこみ、未反応のアンモニアを除去した後、約7
00dになるまで減圧下で溶媒を留去し、この操作をさ
らに2回くり返した。溶液の一部を分取し、さらに溶媒
を減圧除去すると白色固体状の無機シラザンが得られた
After the reaction was completed, 700 d of dry O-xylene was added and dry nitrogen was blown in to remove unreacted ammonia.
The solvent was distilled off under reduced pressure until it reached 00d, and this operation was repeated two more times. A portion of the solution was separated and the solvent was removed under reduced pressure to obtain a white solid inorganic silazane.

C,PCにより分子量を測定したところ数平均分子量(
Mn)は1421、重量平均分子量(M−)は5826
であり、重量平均分子量と数平均分子量の比(Mw/ 
M n )は4.10であった。元素分析ムこより、珪
素と窒素の組成比は0.86であった。
When the molecular weight was measured by C, PC, the number average molecular weight (
Mn) is 1421, weight average molecular weight (M-) is 5826
and the ratio of weight average molecular weight to number average molecular weight (Mw/
M n ) was 4.10. From elemental analysis, the composition ratio of silicon to nitrogen was 0.86.

さらに、ロータリーエバポレーターで溶媒を減圧除去し
た。溶液が十分に曳糸性を示すようになったとき減圧除
去を中止した。この溶液を乾式紡糸装置の脱泡容器に移
送して、約2時間、60℃で静置脱泡後、30℃で口径
0.1 mmのノズルより、130℃の乾燥空気雰囲気
下の紡糸塔内に吐出し、300m/分の速度で巻き取り
、平均繊維径7趨の繊維を得た。
Furthermore, the solvent was removed under reduced pressure using a rotary evaporator. Vacuum removal was discontinued when the solution became sufficiently stringy. This solution was transferred to a degassing container of a dry spinning device, left to stand at 60°C for about 2 hours, and then passed through a nozzle with a diameter of 0.1 mm at 30°C to a spinning tower in a dry air atmosphere at 130°C. The fibers were discharged into a tube and wound at a speed of 300 m/min to obtain fibers with an average fiber diameter of 7.

次いで、前記紡糸繊維に1kg/m”の張力を作用させ
ながら、窒素雰囲気下で室温から1200’Cまで、1
80℃/時間で昇温しで窒化珪素繊維とした。
Next, while applying a tension of 1 kg/m'' to the spun fibers, the spun fibers were heated for 1 hour from room temperature to 1200'C under a nitrogen atmosphere.
The temperature was raised at 80° C./hour to obtain silicon nitride fibers.

この窒化珪素繊維の引っ張り強度は240〜380kg
/閣2(平均330kg/■す、弾性率は25〜35 
ton / m ”(平均28ton/a+m”)であ
った。
The tensile strength of this silicon nitride fiber is 240 to 380 kg.
/ Cabinet 2 (average 330 kg/■, elastic modulus 25-35
ton/m" (average 28 ton/a+m").

[発明の効果〕 本発明によれば、窒化珪素繊維製造用の前駆体として好
適なペルヒドロポリシラザンが得られ、紡糸が容易化し
、また繊維の収率が向上する効果がある。
[Effects of the Invention] According to the present invention, perhydropolysilazane suitable as a precursor for producing silicon nitride fibers can be obtained, facilitating spinning and improving the yield of fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の合成装置の模式図である。 1・・・ジクロロシラン槽、2・・・溶媒槽、3・・・
反応器、      4・・・窒素ガス管、5・・・ア
ンモニア管、   6・・・恒温槽。
FIG. 1 is a schematic diagram of a synthesis apparatus of an example. 1... Dichlorosilane tank, 2... Solvent tank, 3...
Reactor, 4... Nitrogen gas pipe, 5... Ammonia pipe, 6... Constant temperature bath.

Claims (1)

【特許請求の範囲】 1、一般式 ▲数式、化学式、表等があります▼ で表わされる骨格を有するペルヒドロポリシラザンであ
って、ポリスチレン換算数平均分子量が1400〜40
00であり、重量平均分子量Mwと数平均分子量Mnと
の比Mw/Mnが7.0以下、かつSiとNのモル組成
比が0.75〜1.25であることを特徴とする窒化珪
素繊維用ペルヒドロポリシラザン。 2、ジクロロシランとルイス塩基を−5℃〜20℃の温
度、大気圧〜10kg/cm^2Gの圧力下で反応させ
て錯体を生成し、該錯体に錯体1モルに対し3モル以上
のアンモニアを−5℃〜50℃の温度、大気圧〜10k
g/cm^2Gの圧力下で反応させることを特徴とする
請求項1記載の窒化繊維用ペルヒドロポリシラザンの製
法。 3、請求項2記載の方法で得られたペルヒドロポリシラ
ザンをさらに、該ペルヒドロポリシラザンの溶液に不活
性ガスまたはアンモニアを0.85以下の溶液中アンモ
ニア分率で供給し、−5℃〜−120℃の温度、大気圧
〜15kg/cm^2Gの圧力下で改質させる窒化珪素
繊維用ペルヒドロポリシラザンの製法。
[Claims] 1. A perhydropolysilazane having a skeleton represented by the general formula ▲ Numerical formulas, chemical formulas, tables, etc. ▼, which has a polystyrene equivalent number average molecular weight of 1400 to 40
00, the ratio Mw/Mn of weight average molecular weight Mw to number average molecular weight Mn is 7.0 or less, and the molar composition ratio of Si and N is 0.75 to 1.25. Perhydropolysilazane for textiles. 2. React dichlorosilane and Lewis base at a temperature of -5°C to 20°C and a pressure of atmospheric pressure to 10 kg/cm^2G to form a complex, and add 3 moles or more of ammonia per 1 mole of the complex to the complex. -5℃~50℃ temperature, atmospheric pressure~10k
The method for producing perhydropolysilazane for nitrided fibers according to claim 1, characterized in that the reaction is carried out under a pressure of g/cm^2G. 3. The perhydropolysilazane obtained by the method according to claim 2 is further heated at -5°C to - A method for producing perhydropolysilazane for silicon nitride fibers, which is modified at a temperature of 120°C and a pressure of atmospheric pressure to 15 kg/cm^2G.
JP2822790A 1990-02-09 1990-02-09 Polysilazane for silicon nitride fiber and production thereof Pending JPH03232709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2822790A JPH03232709A (en) 1990-02-09 1990-02-09 Polysilazane for silicon nitride fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2822790A JPH03232709A (en) 1990-02-09 1990-02-09 Polysilazane for silicon nitride fiber and production thereof

Publications (1)

Publication Number Publication Date
JPH03232709A true JPH03232709A (en) 1991-10-16

Family

ID=12242720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2822790A Pending JPH03232709A (en) 1990-02-09 1990-02-09 Polysilazane for silicon nitride fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH03232709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7429637B2 (en) * 2003-02-12 2008-09-30 Samsung Electronics Co., Ltd. Compositions including perhydro-polysilazane used in a semiconductor manufacturing process and methods of manufacturing semiconductor devices using the same
JP2011142207A (en) * 2010-01-07 2011-07-21 Az Electronic Materials Kk Coating composition including polysilazane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7429637B2 (en) * 2003-02-12 2008-09-30 Samsung Electronics Co., Ltd. Compositions including perhydro-polysilazane used in a semiconductor manufacturing process and methods of manufacturing semiconductor devices using the same
JP2011142207A (en) * 2010-01-07 2011-07-21 Az Electronic Materials Kk Coating composition including polysilazane

Similar Documents

Publication Publication Date Title
CN1253432C (en) Method for preparing (cycle) fatty isocyanate
JPH0618885B2 (en) Polysiloxazane and its manufacturing method
JPS60145903A (en) Synthesis of inorganic polysilazane
JPS62290730A (en) Production of organosilazane polymer and production of ceramics using said polymer
JPS62156135A (en) Polyorgano (hydro) silazane
KR100684648B1 (en) Manufacturing method of semi-crystallized silicon carbide fiber made from polycarbosilane
CN107266658A (en) The polyurethane elastomer of a kind of main chain containing ferrocene and preparation method thereof
US6579959B2 (en) Process for producing isobutylene polymers
JPH01129033A (en) Polymer based on boron and nitrogen especially usable in production of ceramic product and article based on boron nitride and production thereof
Zhang et al. A novel high yield polyborosilazane precursor for SiBNC ceramic fibers
JPH03232709A (en) Polysilazane for silicon nitride fiber and production thereof
Riffle et al. Synthesis of hydroxyl‐terminated polycarbonates of controlled number‐average molecular weight
JPH049169B2 (en)
Zhang et al. Comparison of effects of nitrogen sources on the structures and properties of SiBNC ceramic fiber precursors
CN104327274B (en) A kind of synthetic method of polyaluminocarbosilane
JP2707401B2 (en) Method for producing polyaminoborazine
US7202376B2 (en) Method of producing polycarbosilane using zeolite as catalyst
CN115044047A (en) Polyaluminosilazane, preparation method and application
JPH01203429A (en) Modified polysilazane and production thereof
US5145917A (en) Boron/nitrogen/silicon preceramic polymers and boron nitride ceramic materials produced therefrom
Hasegawa Factors affecting the thermal stability of continuous SiC fibres
JPH03170533A (en) Polysilazane and its preparation
Hsu et al. Hybrid materials derived from modified styrene-butadiene-styrene copolymer (SBS) and silica through the sol-gel process
JPH04164923A (en) Polyphosphosilazane, its production, and phosphorated ceramic
JP2003286616A (en) Method for producing boron nitride fiber and resultant fiber