JP5172416B2 - Foamed resin coated metal sheet and unfoamed resin coated metal sheet - Google Patents

Foamed resin coated metal sheet and unfoamed resin coated metal sheet Download PDF

Info

Publication number
JP5172416B2
JP5172416B2 JP2008083775A JP2008083775A JP5172416B2 JP 5172416 B2 JP5172416 B2 JP 5172416B2 JP 2008083775 A JP2008083775 A JP 2008083775A JP 2008083775 A JP2008083775 A JP 2008083775A JP 5172416 B2 JP5172416 B2 JP 5172416B2
Authority
JP
Japan
Prior art keywords
foamed resin
resin coating
metal plate
fine particles
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008083775A
Other languages
Japanese (ja)
Other versions
JP2009234069A (en
Inventor
康雄 平野
岳史 渡瀬
明男 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008083775A priority Critical patent/JP5172416B2/en
Publication of JP2009234069A publication Critical patent/JP2009234069A/en
Application granted granted Critical
Publication of JP5172416B2 publication Critical patent/JP5172416B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、制振性・吸音性に優れ、かつ溶接可能な発泡樹脂塗膜積層金属板に関するものである。   The present invention relates to a foamed resin-coated laminated metal plate that is excellent in vibration damping properties and sound absorption properties and that can be welded.

樹脂積層金属板に溶接性を付与するために、膜厚と同程度の粒径を有する金属微粒子を樹脂皮膜中に含有させることはよく知られている。例えば、特許文献1には、膜厚1〜20μmの有機塗膜中に、平均粒径1〜30μmの金属微粒子を存在させて溶接性を付与する技術が開示されており、実施例の大半は、膜厚と金属微粒子の平均粒径とが同じ5μmである。そして、金属微粒子が小さすぎると、塗膜中で相互に接触しがたくなり、溶接電流の経路として不十分であることが記載されている。また、膜厚が大きくなると、溶接性が低下することも記載されている。   In order to impart weldability to a resin laminated metal plate, it is well known that metal fine particles having a particle size comparable to the film thickness are contained in the resin film. For example, Patent Document 1 discloses a technique for imparting weldability by allowing metal fine particles having an average particle diameter of 1 to 30 μm to be present in an organic coating film having a thickness of 1 to 20 μm. The film thickness and the average particle diameter of the metal fine particles are the same 5 μm. Further, it is described that when the metal fine particles are too small, it is difficult to contact each other in the coating film, which is insufficient as a welding current path. It is also described that weldability decreases as the film thickness increases.

一方、家電製品、事務機器、自動車等の移動体等には、様々な部位に制振材が用いられており、制振材の需要は大きい。従来の制振材の中には、金属板に発泡樹脂層を積層したものがある。例えば、特許文献2には、未発泡状態で優れた加工性を有し、発泡後には、制振性、剛性、遮音性、断熱性等を示す加熱発泡性の樹脂積層金属板が開示されているが、この文献に記載の技術では、溶接性については一切考慮されていない。   On the other hand, damping materials are used in various parts of mobile objects such as home appliances, office equipment, and automobiles, and the demand for damping materials is great. Some conventional vibration damping materials have a foamed resin layer laminated on a metal plate. For example, Patent Document 2 discloses a heat-foamable resin-laminated metal plate that has excellent workability in an unfoamed state and exhibits vibration damping, rigidity, sound insulation, heat insulation, and the like after foaming. However, in the technique described in this document, no consideration is given to weldability.

他方、特許文献3には、0028段落や0065段落には、発泡可能樹脂に導電性物質を用いれば溶接性が向上する、との記載があるが、詳細な記載は認められず、発泡可能樹脂と導電性物質とをどのように組み合わせればよいか等は一切不明である。
特開2001−170558号公報(0014等) 特開2007−253353号公報(請求項1等) 特開2004−42649号公報(0028、0065等)
On the other hand, in Patent Document 3, in paragraphs 0028 and 0065, there is a description that if a conductive substance is used for the foamable resin, the weldability is improved. It is unclear how to combine the conductive material with the conductive material.
JP 2001-170558 A (0014 etc.) JP 2007-253353 A (Claim 1 etc.) JP 2004-42649 A (0028, 0065, etc.)

制振材として多用されている発泡樹脂積層金属板が抵抗溶接可能になれば、加工が容易になり、製品のコストダウンにつながる。しかし、従来知られている溶接可能な樹脂積層金属板は、特許文献1にあるように溶接性を重視するために膜厚を大きくすることができず、制振性を付与することができない。   If a foamed resin laminated metal plate that is frequently used as a vibration damping material can be resistance welded, the processing becomes easier and the cost of the product is reduced. However, the conventionally known weldable resin laminated metal plate cannot increase the film thickness because it places importance on weldability as disclosed in Patent Document 1, and cannot provide vibration damping.

そこで本発明では、制振性を有すると共に溶接可能な樹脂塗膜積層金属板の提供を課題として掲げた。   Therefore, in the present invention, an object is to provide a resin-coated laminated metal plate that has vibration damping properties and can be welded.

本発明は、金属板の表面に金属微粒子を含有する発泡樹脂塗膜が積層された溶接可能な発泡樹脂塗膜積層金属板であって、
発泡樹脂塗膜は、見掛け密度が0.02〜1.1g/cm3で、膜厚が0.1〜5mmであり、
金属微粒子は、平均粒子径が1〜30μmで、発泡樹脂塗膜中10〜70質量%含まれているところに要旨を有する。
The present invention is a weldable foamed resin coating laminated metal plate in which a foamed resin coating containing metal fine particles is laminated on the surface of a metal plate,
The foamed resin coating film has an apparent density of 0.02 to 1.1 g / cm 3 and a film thickness of 0.1 to 5 mm.
The metal fine particles have an average particle diameter of 1 to 30 μm and have a gist where they are contained in the foamed resin coating film in an amount of 10 to 70% by mass.

発泡樹脂塗膜中の気泡は、熱膨張後の熱膨張性カプセルである態様、化学発泡剤が揮発して形成されたものである態様、いずれも本発明の好ましい実施態様である。   The bubble in the foamed resin coating film is an embodiment that is a thermally expandable capsule after thermal expansion, and an embodiment that is formed by volatilization of a chemical foaming agent, both of which are preferred embodiments of the present invention.

本発明には、金属板の表面に、金属微粒子を含有する未発泡樹脂塗膜が積層された未発泡樹脂塗膜積層金属板であって、
未発泡樹脂塗膜は、熱膨張性カプセルおよび/または化学発泡剤を含むと共に、平均粒子径が1〜30μmの金属微粒子を10〜70質量%含むことを特徴とする未発泡樹脂塗膜積層金属板も包含される。
The present invention is a non-foamed resin coating laminated metal plate in which an unfoamed resin coating containing metal fine particles is laminated on the surface of a metal plate,
The unfoamed resin coating film comprises a thermally expandable capsule and / or a chemical foaming agent, and contains 10 to 70% by mass of metal fine particles having an average particle diameter of 1 to 30 μm. Plates are also included.

本発明の発泡樹脂塗膜積層金属板は、塗膜厚と比べてかなり小さい金属微粒子を用いているにもかかわらず、良好な溶接性を示し、かつ塗膜は、厚みの厚い発泡樹脂によって構成されているので制振性にも優れている。このため、従来解決できなかった溶接性と制振性との両立を可能にした金属板を提供することができた。   The foamed resin-coated metal sheet of the present invention exhibits good weldability despite the use of metal particles that are considerably smaller than the coating thickness, and the coating film is composed of a thick foamed resin. It is also excellent in vibration control. For this reason, the metal plate which enabled coexistence with the weldability and vibration suppression which could not be solved conventionally was able to be provided.

本発明の発泡樹脂塗膜積層金属板は、制振性が必要とされるあらゆる部材に適用することができ、スポット溶接が可能なため製造コストを低減することもできた。   The foamed resin-coated laminated metal plate of the present invention can be applied to any member that requires vibration damping properties, and can reduce the manufacturing cost because spot welding is possible.

本発明の発泡樹脂塗膜積層金属板では、金属微粒子が気泡と気泡との間に存在しており、金属板を溶接する際に、発泡樹脂塗膜が応力によって塑性変形し、気泡も変形することで、金属微粒子同士の接触、あるいは金属板や電極との接触が起きて通電し、良好な溶接性を示すものと考えられる。以下、本発明を詳細に説明する。   In the foamed resin-coated metal sheet of the present invention, metal fine particles are present between the bubbles and the bubbles, and when the metal plate is welded, the foamed resin-coated film is plastically deformed by stress and the bubbles are also deformed. Thus, it is considered that the contact between the metal fine particles or the contact with the metal plate or the electrode occurs to energize and show good weldability. Hereinafter, the present invention will be described in detail.

本発明で用いることのできる金属板としては、抵抗溶接が可能であれば特に限定されず、鋼板または非鉄金属の金属板、これらに単一金属または各種合金のめっきを施しためっき金属板等が含まれる。具体的には、例えば、熱延鋼板、冷延鋼板、ステンレス鋼板等の鋼板;溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、電気Zn−Ni合金めっき鋼板等のめっき鋼板;アルミニウム、チタン、亜鉛等の非鉄金属板またはこれらにめっきが施されためっき非鉄金属板等が挙げられる。これらに、表面処理として、例えば、リン酸塩処理、クロメート処理、酸洗処理、アルカリ処理、電解還元処理、シランカップリング処理、無機シリケート処理等が施されていてもよい。   The metal plate that can be used in the present invention is not particularly limited as long as resistance welding is possible, such as a steel plate or a non-ferrous metal plate, or a plated metal plate obtained by plating a single metal or various alloys on these. included. Specifically, for example, steel sheets such as hot-rolled steel sheets, cold-rolled steel sheets, and stainless steel sheets; plated steel sheets such as hot-dip galvanized steel sheets, alloyed hot-dip galvanized steel sheets, electrogalvanized steel sheets, and electric Zn-Ni alloy-plated steel sheets; Examples thereof include non-ferrous metal plates such as aluminum, titanium, and zinc, or plated non-ferrous metal plates obtained by plating them. These may be subjected to, for example, phosphate treatment, chromate treatment, pickling treatment, alkali treatment, electrolytic reduction treatment, silane coupling treatment, inorganic silicate treatment, etc. as surface treatment.

金属微粒子としては、ニッケル、リン化鉄、亜鉛、アルミニウム、銀、銅等を挙げることができる。金属微粒子としては、平均粒子径が1〜30μmであるものを用いる。1μmより小さいと溶接性が低下し、30μmを超えると、発泡樹脂塗膜から脱落する粒子が増えるため好ましくない。より好ましい平均粒子径の範囲は、1〜20μmである。なお、平均粒子径は、電子顕微鏡写真等で観察する等、公知の方法で測定できる。   Examples of the metal fine particles include nickel, iron phosphide, zinc, aluminum, silver, and copper. As the metal fine particles, those having an average particle diameter of 1 to 30 μm are used. If it is smaller than 1 μm, the weldability is lowered, and if it exceeds 30 μm, particles falling off from the foamed resin coating film increase, which is not preferable. A more preferable range of the average particle diameter is 1 to 20 μm. In addition, an average particle diameter can be measured by a well-known method, such as observing with an electron micrograph etc.

金属微粒子は、発泡樹脂塗膜中、10〜70質量%必要である。10質量%より少ないと溶接性が低下し、70質量%を超えると、発泡樹脂塗膜から脱落する粒子が増えるためと、発泡樹脂の量が少なくなって制振性が劣るものになるため、好ましくない。より好ましい金属微粒子量は、発泡樹脂塗膜中、20〜60質量%であり、さらに好ましくは、30〜50質量%である。   The metal fine particles are required to be 10 to 70% by mass in the foamed resin coating film. If the amount is less than 10% by mass, the weldability deteriorates, and if it exceeds 70% by mass, the amount of particles falling from the foamed resin coating film increases, and the amount of the foamed resin decreases, resulting in poor vibration damping. It is not preferable. A more preferable amount of metal fine particles is 20 to 60% by mass in the foamed resin coating film, and more preferably 30 to 50% by mass.

発泡樹脂塗膜は、その見掛け密度(金属微粒子込み)が0.02〜1.1g/cm3でなければならない。金属微粒子の含有量が10質量%で、50倍発泡させた塗膜の見掛け密度は0.026g/cm3となり、金属微粒子の含有量が70質量%で、2倍発泡させた塗膜の見掛け密度は1.02g/cm3となるため、上記範囲に設定した。より好ましい見掛け密度は、0.03〜0.5g/cm3で、さらに好ましくは、0.03〜0.3g/cm3である。本発明で言う見掛け密度は発泡樹脂塗膜の単位体積当たりの質量である。発泡樹脂塗膜の体積を求めるときの厚みの測定方法は、塗膜断面を3〜4mm程度(横幅)デジタルマイクロスコープ(キーエンス社製;VHX−100F)で観察(50〜60倍程度)し、発泡樹脂塗膜表面から見て最も深い凹部の底を通る金属板表面と平行な直線と、金属板表面との距離を発泡樹脂塗膜の厚みとした。なお、極端に深い凹部の場合は、異常部分として扱い、厚み測定には用いなかった。 The foamed resin coating film must have an apparent density (including metal fine particles) of 0.02 to 1.1 g / cm 3 . The apparent density of the coating film foamed 50 times with a metal fine particle content of 10% by mass was 0.026 g / cm 3 , and the apparent coating film with a metal fine particle content of 70% by mass foamed twice. Since the density was 1.02 g / cm 3 , it was set in the above range. A more preferable apparent density is 0.03 to 0.5 g / cm 3 , and further preferably 0.03 to 0.3 g / cm 3 . The apparent density referred to in the present invention is the mass per unit volume of the foamed resin coating film. The method of measuring the thickness when determining the volume of the foamed resin coating film is to observe (about 50 to 60 times) the cross section of the coating film with a digital microscope (VHX-100F manufactured by Keyence Corporation) about 3 to 4 mm (width). The distance between the metal plate surface and the straight line passing through the bottom of the deepest recess as viewed from the surface of the foamed resin coating film was defined as the thickness of the foamed resin coating film. In addition, in the case of an extremely deep recessed part, it treated as an abnormal part and was not used for thickness measurement.

発泡樹脂塗膜の厚みは0.1〜5mmである。0.1mmより薄いと、制振性・吸音性が不十分であり、5mmを超えると、加工等に不具合が生じる。発泡倍率は、2〜50倍程度が好ましい。発泡倍率が小さすぎると制振性が不十分となり、50倍を超えて発泡させると塗膜強度が低下するため好ましくない。発泡倍率を2〜50倍に制御するには、発泡前の樹脂塗膜に、後述する熱膨張性カプセルを2〜30質量%(樹脂と架橋剤と熱膨張性カプセルの合計を100質量%とした場合の百分率)含有させるか、化学発泡剤を0.5〜5質量%(樹脂と架橋剤と化学発泡剤の合計を100質量%とした場合の百分率)含有させることが好ましい。両者を併用する場合は、適宜、使用量を変更すればよい。なお、制振性の目安としては、25℃での損失係数で0.02以上が好ましい。   The thickness of the foamed resin coating film is 0.1 to 5 mm. If it is thinner than 0.1 mm, the vibration damping property and sound absorbing property are insufficient, and if it exceeds 5 mm, problems occur in processing and the like. The expansion ratio is preferably about 2 to 50 times. If the expansion ratio is too small, the vibration damping property becomes insufficient, and if the expansion ratio exceeds 50 times, the coating film strength decreases, which is not preferable. In order to control the expansion ratio to 2 to 50 times, 2 to 30% by mass of the thermally expandable capsule described later is added to the resin coating film before foaming (the total of the resin, the crosslinking agent and the thermally expandable capsule is 100% by mass). Or a chemical foaming agent is preferably contained in an amount of 0.5 to 5% by mass (percentage when the total of the resin, the crosslinking agent and the chemical foaming agent is 100% by mass). When both are used in combination, the amount used may be appropriately changed. In addition, as a standard of damping property, 0.02 or more is preferable in the loss coefficient at 25 degreeC.

樹脂としては、Tgが30℃以下のものが好ましい。Tgが30℃を超える樹脂では、常温使用の際に樹脂が硬くなって、溶接時の応力によっても気泡が変形しにくいため、通電しにくい。さらには発泡樹脂塗膜が脆いものとなりやすい。樹脂の種類は特に限定されないが、汎用のポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、シリコーン系樹脂が利用可能である。中でも、東洋紡績社製の「バイロン(登録商標)」シリーズ等のポリエステル系樹脂が好ましい。なお、塗膜強度を確保するために、ポリエステル系樹脂をメラミン樹脂等で架橋してもよい。メラミン樹脂としては、住友化学社製の「スミマール(登録商標)」シリーズや、三井サイテック社製の「サイメル(登録商標)」シリーズがある。架橋剤は、樹脂と架橋剤の合計を100質量%としたときに、0.5〜30質量%(より好ましくは5〜25質量%)となるように、配合することが好ましい。   The resin preferably has a Tg of 30 ° C. or lower. With a resin having a Tg of more than 30 ° C., the resin becomes hard when used at room temperature, and bubbles are not easily deformed by stress during welding. Furthermore, the foamed resin coating film tends to be brittle. The type of the resin is not particularly limited, but general-purpose polyester resins, acrylic resins, urethane resins, polyolefin resins, fluorine resins, and silicone resins can be used. Among them, polyester resins such as “Byron (registered trademark)” series manufactured by Toyobo Co., Ltd. are preferable. In order to secure the coating strength, the polyester resin may be crosslinked with a melamine resin or the like. As the melamine resin, there are “Sumimar (registered trademark)” series manufactured by Sumitomo Chemical Co., Ltd. and “Cymel (registered trademark)” series manufactured by Mitsui Cytec. The crosslinking agent is preferably blended so as to be 0.5 to 30% by mass (more preferably 5 to 25% by mass) when the total of the resin and the crosslinking agent is 100% by mass.

熱膨張性カプセルとしては、日本フィライト社製の「エクスパンセル」シリーズや、積水化学工業社製の「アドバンセル(登録商標)」シリーズがある。エクスパンセル920−40は、平均粒子径(膨張前)が10〜17μm、膨張開始温度127〜139℃、最高膨張温度164〜187℃であり、エクスパンセル092−120は、平均粒子径(膨張前)が28〜38μm、膨張開始温度122〜132℃、最高膨張温度194〜206℃である。「アドバンセル(登録商標)EHM401」は膨張開始温度140〜150℃である。これらの熱膨張性カプセルは、ガス化する液体を内包しており、これらがガス化することで膨張するが、カプセル壁が変形能に優れているため破裂はせず、発泡樹脂塗膜の中に膨張状態で残存している。これらの膨張粒子同士の間隙に金属微粒子が存在しているものと考えられる。熱膨張性カプセルは、前記したとおり、発泡前の樹脂塗膜中に2〜30質量%(樹脂と架橋剤と熱膨張性カプセルの合計が100質量%)含まれていることが好ましい。熱膨張性カプセルの使用量は、5〜20質量%がより好ましい。なお、発泡後の樹脂塗膜中には、ガスがカプセルから抜けていかない限りにおいては、ガスを内包した膨張後のカプセルが発泡前と同量存在していることとなる。従って、FT−IRや公知の定量分析法で、発泡樹脂塗膜中の熱膨張後カプセルの定量が可能である。   Examples of the thermally expandable capsule include “Expancel” series manufactured by Nippon Philite Co., Ltd. and “Advancel (registered trademark)” series manufactured by Sekisui Chemical Co., Ltd. The expand cell 920-40 has an average particle size (before expansion) of 10 to 17 μm, an expansion start temperature of 127 to 139 ° C., and a maximum expansion temperature of 164 to 187 ° C. The expand cell 092-120 has an average particle size ( Before expansion) is 28 to 38 μm, expansion start temperature 122 to 132 ° C., and maximum expansion temperature 194 to 206 ° C. “Advancel (registered trademark) EHM401” has an expansion start temperature of 140 to 150 ° C. These thermally expandable capsules contain liquids that are gasified and expand when they are gasified, but they do not rupture because the capsule walls are excellent in deformability, and are not contained in the foamed resin coating. Remain in an expanded state. It is considered that fine metal particles are present in the gap between these expanded particles. As described above, the thermally expandable capsule is preferably contained in the resin coating film before foaming in an amount of 2 to 30% by mass (the total of the resin, the crosslinking agent, and the thermally expandable capsule is 100% by mass). As for the usage-amount of a thermally expansible capsule, 5-20 mass% is more preferable. In the resin film after foaming, as long as the gas does not escape from the capsule, the expanded capsule containing the gas is present in the same amount as before foaming. Therefore, the capsule after thermal expansion in the foamed resin coating film can be quantified by FT-IR or a known quantitative analysis method.

化学発泡剤としては、有機発泡剤、無機発泡剤のいずれも使用可能である。有機発泡剤としては、例えば、アゾ化合物、ニトロソ化合物、スルホニルヒドラジド化合物およびその他の化合物等が使用可能であり、具体的には、アゾジカルボンアミド、アゾジカルボン酸バリウム、アゾビスイソブチロニトリル、N,N’−ジニトロソペンタメチレンテトラミン、p−トルエンスルホニルヒドラジド、p,p’−オキシビス(ベンゼンスルホニルヒドラジド)、ヒドラゾジカルボンアミド、ジフェニルスルホン−3,3−ジスルホニルヒドラジド、p−トルエンスルホニルセミカルバジド、トリヒドラジノトリアジン、ビウレア等が挙げられる。無機発泡剤としては、炭酸水素ナトリウム、炭酸亜鉛等が挙げられる。これらの化学発泡剤は、それぞれの分解温度近傍で加熱することにより、分解してガス化する。化学発泡剤はガス発生量が多いので、発泡倍率を2〜50倍に制御するには、前記したとおり、発泡前の樹脂塗膜中に0.5〜5質量%(樹脂と架橋剤と化学発泡剤の合計が100質量%)含まれていることが好ましい。また、従来公知の発泡助剤を併用してもよい。化学発泡剤は、通常、分解残渣が発泡塗膜樹脂中に残存しているので、FT−IRや公知の定量分析法で、化学発泡剤の使用量を確認することができる。   As the chemical foaming agent, either an organic foaming agent or an inorganic foaming agent can be used. As the organic foaming agent, for example, azo compounds, nitroso compounds, sulfonyl hydrazide compounds and other compounds can be used. Specifically, azodicarbonamide, barium azodicarboxylate, azobisisobutyronitrile, N , N′-dinitrosopentamethylenetetramine, p-toluenesulfonyl hydrazide, p, p′-oxybis (benzenesulfonyl hydrazide), hydrazodicarbonamide, diphenylsulfone-3,3-disulfonyl hydrazide, p-toluenesulfonyl semicarbazide, Examples include trihydrazinotriazine, biurea and the like. Examples of the inorganic foaming agent include sodium hydrogen carbonate and zinc carbonate. These chemical foaming agents are decomposed and gasified by heating near their respective decomposition temperatures. Since the chemical foaming agent generates a large amount of gas, to control the expansion ratio to 2 to 50 times, as described above, 0.5 to 5% by mass (resin, crosslinking agent and chemical) The total of the foaming agents is preferably 100% by mass). Moreover, you may use a conventionally well-known foaming adjuvant together. Since the chemical foaming agent usually has a decomposition residue remaining in the foam coating resin, the amount of the chemical foaming agent can be confirmed by FT-IR or a known quantitative analysis method.

本発明の発泡樹脂塗膜積層金属板を製造するには、発泡樹脂の原料組成物を調製し、これを金属板に塗布・乾燥する方法を採用するのが好ましい。原料組成物は、マトリックス樹脂、金属微粒子、熱膨張性カプセルおよび/または化学発泡剤、必要により添加される架橋剤や発泡助剤等を、有機溶剤等で希釈して塗工に適した粘度にしたものを用いる。有機溶剤としては特に限定されないが、トルエン、キシレン等の芳香族系炭化水素;酢酸エチル、酢酸ブチル等の脂肪族エステル類;シクロヘキサン等の脂環族炭化水素類;ヘキサン、ペンタン等の脂肪族炭化水素類等;メチルエチルケトン、シクロヘキサノン等のケトン類等が挙げられる。   In order to produce the foamed resin coated metal sheet of the present invention, it is preferable to employ a method in which a foamed resin raw material composition is prepared, and this is applied to a metal plate and dried. The raw material composition has a viscosity suitable for coating by diluting a matrix resin, metal fine particles, thermally expandable capsules and / or chemical foaming agent, and a crosslinking agent or foaming aid added as necessary with an organic solvent. Use what you did. The organic solvent is not particularly limited, but aromatic hydrocarbons such as toluene and xylene; aliphatic esters such as ethyl acetate and butyl acetate; alicyclic hydrocarbons such as cyclohexane; aliphatic carbonization such as hexane and pentane. Hydrogen etc .; Ketones such as methyl ethyl ketone and cyclohexanone are listed.

上記原料組成物には、本発明の目的を阻害しない範囲で、艶消し剤、体質顔料、防錆剤、沈降防止剤、ワックス等、樹脂塗膜積層金属板分野で用いられる各種公知の添加剤を添加してもよい。   In the raw material composition, various known additives used in the field of resin coating laminated metal plates, such as matting agents, extender pigments, rust preventives, anti-settling agents, and waxes, as long as the object of the present invention is not impaired. May be added.

上記原料組成物を金属板に塗布する方法は特に限定されず、バーコーター法、ロールコーター法、スプレー法、カーテンフローコーター法等が採用可能である。発泡前の樹脂塗膜(未発泡樹脂塗膜)の膜厚は、好適発泡倍率(2〜50倍)と発泡樹脂塗膜の好適膜厚(0.1〜5mm)から逆算して決定すれば良く、大体10μm〜50μm程度である。   The method for applying the raw material composition to the metal plate is not particularly limited, and a bar coater method, a roll coater method, a spray method, a curtain flow coater method, or the like can be employed. If the film thickness of the resin coating film before foaming (unfoamed resin coating film) is determined by calculating back from the suitable foaming ratio (2 to 50 times) and the suitable film thickness (0.1 to 5 mm) of the foamed resin coating film It is about 10 μm to 50 μm.

塗布後には、溶剤を揮散させ、続けて熱膨張性カプセルの膨張開始温度以上、あるいは化学発泡剤の分解温度以上で、発泡工程を行う。溶剤の乾燥と発泡工程を同時に行ってもよいが、化学発泡剤の場合は、先に溶剤を揮散させた後に、発泡工程を行う方がきれいに発泡する。なお、本発明には、未発泡樹脂塗膜積層金属板も包含される。   After coating, the solvent is volatilized, and then the foaming step is performed at a temperature not lower than the expansion start temperature of the thermally expandable capsule or the decomposition temperature of the chemical foaming agent. Although the drying of the solvent and the foaming process may be performed simultaneously, in the case of a chemical foaming agent, the foaming is performed more clearly when the foaming process is performed after the solvent has been volatilized first. In the present invention, an unfoamed resin-coated laminated metal plate is also included.

以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲の変更実施は本発明に含まれる。なお以下特にことわりのない場合、「%」は「質量%」を、「部」は「質量部」をそれぞれ示すものとする。   The present invention will be described in more detail with reference to the following examples. However, the following examples are not intended to limit the present invention, and modifications within the scope of the present invention are included in the present invention. Unless otherwise specified, “%” indicates “mass%” and “part” indicates “part by mass”.

〔金属板〕
原板には、板厚0.5mmの電気亜鉛めっき鋼板を用いた。めっきは金属板の両面に行い、付着量は片面20g/m2ずつとした。また、めっき鋼板には、日本パーカライジング社製の「CTE−213」を用いた下地処理を付着量100mg/m2となるように行った。
[Metal plate]
An electrogalvanized steel plate having a thickness of 0.5 mm was used as the original plate. Plating was performed on both surfaces of the metal plate, and the adhesion amount was 20 g / m 2 on each side. The plated steel sheet was subjected to a ground treatment using “CTE-213” manufactured by Nihon Parkerizing Co., Ltd. so that the adhesion amount was 100 mg / m 2 .

〔マトリックス樹脂〕
マトリックス樹脂としては、東洋紡績社製のポリエステル樹脂「バイロン(登録商標)BX10SS」を用いた。この樹脂は、トルエン・メチルエチルケトン溶液であり、固形分は30%である。
[Matrix resin]
As the matrix resin, a polyester resin “Byron (registered trademark) BX10SS” manufactured by Toyobo Co., Ltd. was used. This resin is a toluene-methyl ethyl ketone solution and has a solid content of 30%.

〔架橋剤〕
メラミン樹脂(「スミマール(登録商標)M−40S」:住友化学社製:キシレン溶液;固形分80%)を用いた。
[Crosslinking agent]
Melamine resin (“Sumimar (registered trademark) M-40S”: manufactured by Sumitomo Chemical Co., Ltd .: xylene solution; solid content 80%) was used.

〔金属微粒子〕
ニッケル粉A(山石金属社製「HCA−1」:平均粒子径15〜20μm)、ニッケル粉B(日興リカ社製「#123」;平均粒子径3〜7μm)、またはニッケル粉C(JFEミネラル社製「401S」;平均粒子径0.4μm)を用いた。
[Metal fine particles]
Nickel powder A (“HCA-1” manufactured by Yamaishi Metal Co., Ltd .: average particle size 15-20 μm), nickel powder B (“# 123” manufactured by Nikko Rica Co., Ltd .; average particle size 3-7 μm), or nickel powder C (JFE mineral) “401S” (average particle size: 0.4 μm) was used.

〔発泡樹脂塗膜用原料組成物の調製〕
上記ポリエステル樹脂44.8部、上記メラミン樹脂11.2部、熱膨張性カプセルとして前記した「エクスパンセル920−40」(日本フィライト社製)を14部(樹脂と架橋剤とカプセルの合計100%中では20%に相当する)、表1および表2に示した種類と量の金属微粒子をよく混合した。金属微粒子は、樹脂、架橋剤、カプセルおよび金属微粒子の合計100%中の百分率を示した。なお、比較例1と2は金属微粒子の粒径が小さすぎる例、比較例3と4は金属微粒子自体を用いていない例、比較例5〜8は熱膨張性カプセルを用いていない例、比較例9は金属微粒子が少ない例、比較例10は金属微粒子が多すぎる例である。
[Preparation of raw material composition for foamed resin coating film]
44.8 parts of the above polyester resin, 11.2 parts of the above melamine resin, 14 parts of “Expansel 920-40” (manufactured by Nippon Philite Co., Ltd.) as a thermally expandable capsule (total of resin, crosslinking agent and capsule 100 % Corresponds to 20%), and the types and amounts of metal fine particles shown in Tables 1 and 2 were mixed well. The metal fine particles showed a percentage in a total of 100% of the resin, the cross-linking agent, the capsule and the metal fine particles. Comparative Examples 1 and 2 are examples in which the particle size of the metal fine particles is too small, Comparative Examples 3 and 4 are examples in which the metal fine particles themselves are not used, Comparative Examples 5 to 8 are examples in which no thermally expandable capsules are used, Example 9 is an example in which there are few metal fine particles, and Comparative Example 10 is an example in which there are too many metal fine particles.

〔発泡樹脂塗膜積層金属板の作製〕
発泡樹脂塗膜用原料組成物を、表1および表2に示したバーでコーティングし、熱風乾燥炉内で、180℃で120秒間焼き付け(到達板温180℃)して、発泡樹脂塗膜積層金属板を作製した。未膨張時の膜厚は、切断面をSEM観察することで決定した。膨張後の膜厚は、前記した方法で、デジタルマイクロスコープにより測定した値である。
[Production of foamed resin coated metal sheet]
The foam resin coating material composition is coated with the bar shown in Table 1 and Table 2, and baked at 180 ° C. for 120 seconds in a hot air drying oven (final plate temperature 180 ° C.) to laminate the foam resin coating layer A metal plate was produced. The film thickness when not expanded was determined by SEM observation of the cut surface. The film thickness after expansion is a value measured with a digital microscope by the method described above.

〔見掛け密度〕
ポリエステル樹脂の質量、金属微粒子の質量、および膨張後の膜厚から、計算によって求めた。
[Apparent density]
It calculated | required by calculation from the mass of the polyester resin, the mass of metal microparticles, and the film thickness after expansion | swelling.

〔溶接性の測定および評価基準〕
発泡樹脂塗膜積層金属板の発泡樹脂塗膜面と、前記した原板と同じ電気亜鉛めっき鋼板とを合わせ、溶接を行った。溶接条件は以下の通りとした。
抵抗溶接電極先端径:6mm
加圧力:200kgf
通電時間:14サイクル
溶接電流:5.0A、7.5A、10A、12.5Aの4種類
[Measurement and evaluation criteria for weldability]
The foamed resin coating film surface of the foamed resin coating film laminated metal plate was combined with the same electrogalvanized steel sheet as the original plate described above and welded. The welding conditions were as follows.
Resistance welding electrode tip diameter: 6 mm
Applied pressure: 200kgf
Energizing time: 14 cycles Welding current: 4 types: 5.0A, 7.5A, 10A, 12.5A

溶接後、破断荷重(N)をJIS Z 3136に準じて測定し、表1および表2に示した。なお、評価基準は下記の通りとした。
○:すべての溶接電流において、適正な溶接が可能であった。
△:一部の溶接電流では、適正な溶接ができなかった。
×:すべての溶接電流において、適正な溶接ができなかった。
After welding, the breaking load (N) was measured according to JIS Z 3136 and shown in Tables 1 and 2. The evaluation criteria were as follows.
○: Appropriate welding was possible at all welding currents.
Δ: Some welding currents could not be properly welded.
X: Appropriate welding could not be performed at all welding currents.

〔制振性:損失係数の測定〕
ブリュエル・ケアー社製の複素弾性係数測定装置を用いて、片持ちはり法で、25℃で損失係数を測定した。
[Vibration control: measurement of loss factor]
A loss coefficient was measured at 25 ° C. by a cantilever method using a complex elastic modulus measuring apparatus manufactured by Brüel & Kjær.

Figure 0005172416
Figure 0005172416

Figure 0005172416
Figure 0005172416

実施例1で得られた発泡樹脂塗膜積層金属板の発泡樹脂塗膜の上に、直径40mmの円柱状錘(500g)を載せ、23℃、65%RHの雰囲気下で1週間保持した後に、錘を外したところ、凹みなどは全く認められず、弾性回復力に優れていることがわかった。   After a cylindrical weight (500 g) having a diameter of 40 mm was placed on the foamed resin coating film of the foamed resin coating laminated metal plate obtained in Example 1, and held for 1 week in an atmosphere of 23 ° C. and 65% RH. When the weight was removed, no dents were observed and it was found that the elastic resilience was excellent.

本発明の発泡樹脂塗膜積層金属板は、制振性に優れている上に、抵抗加熱溶接が可能なため、家電製品、事務機器、オーディオ製品、自動車等の移動体等の制振性や吸音性が必要とされる各種部材に適用することができる。   The foamed resin coated metal sheet of the present invention has excellent vibration damping properties and resistance heating welding is possible, so that the vibration damping properties of moving objects such as home appliances, office equipment, audio products, automobiles, etc. The present invention can be applied to various members that require sound absorption.

Claims (4)

金属板の表面に金属微粒子を含有する発泡樹脂塗膜が積層された溶接可能な発泡樹脂塗膜積層金属板であって、
発泡樹脂塗膜は、見掛け密度が0.02〜1.1g/cm3で、膜厚が0.1〜5mmであり、
金属微粒子は、平均粒子径が1〜30μmで、発泡樹脂塗膜中10〜70質量%含まれていることを特徴とする発泡樹脂塗膜積層金属板。
A weldable foamed resin coating laminated metal plate in which a foamed resin coating containing metal fine particles is laminated on the surface of a metal plate,
The foamed resin coating film has an apparent density of 0.02 to 1.1 g / cm 3 and a film thickness of 0.1 to 5 mm.
The metal fine particles have an average particle diameter of 1 to 30 μm and are contained in the foamed resin coating film in an amount of 10 to 70% by mass.
発泡樹脂塗膜中の気泡は、熱膨張後の熱膨張性カプセルである請求項1に記載の発泡樹脂塗膜積層金属板。   The foamed resin-coated laminated metal plate according to claim 1, wherein the bubbles in the foamed resin-coated film are thermally expandable capsules after thermal expansion. 発泡樹脂塗膜中の気泡は、化学発泡剤が揮発して形成されたものである請求項1または2に記載の発泡樹脂塗膜積層金属板。   The foamed resin-coated laminated metal plate according to claim 1 or 2, wherein the bubbles in the foamed resin-coated film are formed by volatilization of the chemical foaming agent. 金属板の表面に、金属微粒子を含有する未発泡樹脂塗膜が積層された未発泡樹脂塗膜積層金属板であって、
未発泡樹脂塗膜は、熱膨張性カプセルおよび/または化学発泡剤を含むと共に、平均粒子径が1〜30μmの金属微粒子を10〜70質量%含むことを特徴とする未発泡樹脂塗膜積層金属板。
An unfoamed resin coating laminated metal plate in which an unfoamed resin coating containing metal fine particles is laminated on the surface of the metal plate,
The unfoamed resin coating film comprises a thermally expandable capsule and / or a chemical foaming agent, and contains 10 to 70% by mass of metal fine particles having an average particle diameter of 1 to 30 μm. Board.
JP2008083775A 2008-03-27 2008-03-27 Foamed resin coated metal sheet and unfoamed resin coated metal sheet Expired - Fee Related JP5172416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008083775A JP5172416B2 (en) 2008-03-27 2008-03-27 Foamed resin coated metal sheet and unfoamed resin coated metal sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083775A JP5172416B2 (en) 2008-03-27 2008-03-27 Foamed resin coated metal sheet and unfoamed resin coated metal sheet

Publications (2)

Publication Number Publication Date
JP2009234069A JP2009234069A (en) 2009-10-15
JP5172416B2 true JP5172416B2 (en) 2013-03-27

Family

ID=41248636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083775A Expired - Fee Related JP5172416B2 (en) 2008-03-27 2008-03-27 Foamed resin coated metal sheet and unfoamed resin coated metal sheet

Country Status (1)

Country Link
JP (1) JP5172416B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5778962B2 (en) * 2011-03-30 2015-09-16 株式会社神戸製鋼所 Foamed resin coated metal sheet and method for producing the same
JP5629253B2 (en) * 2011-10-19 2014-11-19 株式会社神戸製鋼所 Precoated metal plate having excellent vibration damping properties and method for producing the same
JP6049276B2 (en) * 2012-03-14 2016-12-21 株式会社東芝 Secondary battery device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626082B2 (en) * 1988-10-03 1994-04-06 共同技研化学株式会社 Method for manufacturing conductive tape-shaped sealing material
JPH03244514A (en) * 1990-02-23 1991-10-31 Nippon Steel Corp Production of composite laminated thick steel sheet with excellent vibrationproof property
JP2515186B2 (en) * 1991-05-20 1996-07-10 ニチアス株式会社 Composite type damping material
JP3954766B2 (en) * 1999-12-22 2007-08-08 新日本製鐵株式会社 Organic composite coated metal plate with excellent corrosion resistance and press formability that can be resistance welded
JP2004042649A (en) * 2002-07-05 2004-02-12 Kobe Steel Ltd Expanded resin laminated soundproof sheet and its manufacturing process
JP4783184B2 (en) * 2006-03-20 2011-09-28 株式会社神戸製鋼所 Expandable resin laminated metal sheet

Also Published As

Publication number Publication date
JP2009234069A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP6477967B1 (en) Battery packaging material, manufacturing method thereof, and battery
JP3376006B2 (en) Painted metal plate for positive electrode can of alkaline dry battery
JP2005139218A (en) Resin composition for reinforcing steel plate, sheet for reinforcing steel plate and method for reinforcing steel plate
JP5172416B2 (en) Foamed resin coated metal sheet and unfoamed resin coated metal sheet
JP5699428B2 (en) Foam wallpaper
WO2016178954A1 (en) Weldable laminated structure and method of welding
CN100540291C (en) Reinforcing sheet for steel plate
JP5753443B2 (en) Laminated plate and composite molded body obtained using the laminated plate
JP4980269B2 (en) Resin coated metal plate
JP5778962B2 (en) Foamed resin coated metal sheet and method for producing the same
JPH05111973A (en) Panel reinforcing sheet material and vehicle outer panel structure using the same
EP4129496A1 (en) Pre-coated metal sheet, burn prevention cover, and method for manufacturing pre-coated metal sheet
CN106068182A (en) Electronic equipment thermal conductivity laminated body
WO2001015894A1 (en) Surface treated steel sheet
JP5629253B2 (en) Precoated metal plate having excellent vibration damping properties and method for producing the same
JP2006241512A (en) Protective film for rust prevention and rust prevention method for metallic material using the same
JP2013202871A (en) Coated plate of aluminum alloy
JP2019001030A (en) Flame-retardant laminate
JP5128156B2 (en) Aluminum resin composite board
JP2009208355A (en) Fire proof resin foaming laminate
JPH0561100B2 (en)
CN101579954A (en) Reinforcing sheet for steel plate
JP2006144038A (en) Resin lining steel pipe and method for producing the same
JP6619222B2 (en) Flame retardant laminate
JP2013018855A (en) Undercoat composition for automobile, and method for coating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

LAPS Cancellation because of no payment of annual fees