JP2006144038A - Resin lining steel pipe and method for producing the same - Google Patents

Resin lining steel pipe and method for producing the same Download PDF

Info

Publication number
JP2006144038A
JP2006144038A JP2004332259A JP2004332259A JP2006144038A JP 2006144038 A JP2006144038 A JP 2006144038A JP 2004332259 A JP2004332259 A JP 2004332259A JP 2004332259 A JP2004332259 A JP 2004332259A JP 2006144038 A JP2006144038 A JP 2006144038A
Authority
JP
Japan
Prior art keywords
steel pipe
resin
polyolefin resin
pipe
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004332259A
Other languages
Japanese (ja)
Inventor
Shinichi Funatsu
真一 船津
Hiroyuki Mimura
博幸 三村
Yoshihisa Kayazono
義久 仮屋園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004332259A priority Critical patent/JP2006144038A/en
Priority to PCT/JP2005/021309 priority patent/WO2006054731A1/en
Priority to TW094140311A priority patent/TWI298774B/en
Publication of JP2006144038A publication Critical patent/JP2006144038A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • F16L9/147Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups comprising only layers of metal and plastics with or without reinforcement
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2254/00Tubes
    • B05D2254/02Applying the material on the exterior of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2254/00Tubes
    • B05D2254/04Applying the material on the interior of the tube

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin lining steel pipe used as piping for water supply, hot water supply, air-conditioning, fire fighting, drainage or the like, even in the case a polyolefin resin or a crosslinking polyolefin resin in which the penetration of oxygen as a corrosion factor is high is applied as inside lining, which is usable instead of the conventional resin lining steel pipe obtained by inside-lining polyvinyl chloride to an inside-outside hot dip metal plated steel pipe without requiring complicated stages and special equipment, and in which the adhesion between the steel pipe and the inside resin lining layer is excellent over a long period, and to provide a method for producing the same. <P>SOLUTION: In the resin lining steel pipe, the inside of a steel pipe is provided with an adhesive layer, the further inside thereof is provided with a polyolefin resin layer or a crosslinked polyolefin resin layer, the steel pipe is beforehand subjected to substrate treatment, as the substrate treatment, a chemical conversion treatment coating of phosphate subjected to crystal grain refining treatment is applied, preferably, the space between the steel pipe and the adhesive layer is provided with an epoxy primer layer, and the outside of the steel pipe is provided with a metal sprayed coating. The production method uses the same. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、給水、給湯、空調、消火、排水等の配管等に用いる樹脂ライニング鋼管およびその製造方法に関し、詳しく言えば、複雑な工程や特殊な設備を必要とすることなく、ポリ塩化ビニルの代わりに腐食因子である酸素の透過が大きいポリオレフィン樹脂や架橋ポリオレフィン樹脂を内面ライニングする場合でも、従来の内外面溶融金属めっき鋼管にポリ塩化ビニルを内面ライニングした樹脂ライニング鋼管の代わりに使用することができ、長い期間に渡って鋼管と内面樹脂ライニング層との密着性に優れた樹脂ライニング鋼管およびその製造方法に関するものである。   The present invention relates to a resin-lined steel pipe used for piping for water supply, hot water supply, air conditioning, fire extinguishing, drainage, and the like, and more specifically, without requiring a complicated process or special equipment. Instead, it can be used in place of conventional resin-lined steel pipes with inner surface lining of polyvinyl chloride on inner and outer surface hot-dip metal-plated steel pipes, even when polyolefin resin or cross-linked polyolefin resin with large oxygen permeability, which is a corrosive factor, is used. The present invention relates to a resin-lined steel pipe having excellent adhesion between the steel pipe and the inner surface resin-lined layer over a long period of time, and a method for manufacturing the same.

水等を輸送する配管材料としては鍛接鋼管や電縫鋼管等の鋼管の他に、ポリ塩化ビニル、ポリエチレン、ポリプロピレンやポリブテン等の熱可塑性の樹脂管が単体で使用されている。鋼管は、これらの樹脂管に比較して機械的強度が大きいので施工時の耐衝撃性や交通の激しい道路下の埋設等でも耐圧縮性が優れ、輸送する流体の温度が高い場合でも樹脂管に比較すると耐圧強度は十分大きく優れ、樹脂管と異なり燃焼し難いので屋内の用途に使用しても火災で延焼することもなく優れる。   In addition to steel pipes such as forged steel pipes and ERW steel pipes, thermoplastic resin pipes such as polyvinyl chloride, polyethylene, polypropylene and polybutene are used alone as pipe materials for transporting water and the like. Steel pipes have higher mechanical strength than these resin pipes, so they have excellent impact resistance during construction and compression resistance even when buried under heavy traffic roads, and even when the temperature of the fluid being transported is high. Compared to, the pressure strength is sufficiently large and excellent, and unlike resin tubes, it is difficult to burn, so even if it is used for indoor applications, it is excellent without being spread by fire.

しかし、鋼の腐食による流体の濁り防止や管路の閉塞防止が必要な用途では、腐食が起こらない樹脂管が使用される。両者の良い点を合わせ持つ配管材料としては、鋼管の内面に樹脂管を挿入して防食した樹脂と鋼の複合管が知られている。例えば給水管や排水管としては安価なポリ塩化ビニルを活用した鋼と軟質ポリ塩化ビニルの複合管が、給湯管としては鋼と硬質ポリ塩化ビニルの複合管が各々広く使用されている。   However, resin pipes that do not cause corrosion are used in applications that require prevention of turbidity of fluid due to corrosion of steel and prevention of blockage of pipes. As a piping material having both of the good points, a composite pipe of resin and steel obtained by inserting a resin pipe into the inner surface of a steel pipe to prevent corrosion is known. For example, steel and soft polyvinyl chloride composite pipes using inexpensive polyvinyl chloride are widely used as water supply pipes and drain pipes, and steel and hard polyvinyl chloride composite pipes are widely used as hot water supply pipes.

しかしながら、ポリ塩化ビニル材料を使用する場合、現地配管工事で発生した複合管残材の焼却廃棄処理時にダイオキシンが発生するという問題もある。従って、給水管、給湯管、排水管等に使用される複合管としてはポリ塩化ビニルを使用しないものが望まれていた。そこで、ポリ塩化ビニルの代わりにダイオキシン発生という問題がないポリオレフィン樹脂や架橋ポリオレフィン樹脂を内面ライニングした、給水、給湯、空調、消火、排水等の配管等に用いる樹脂ライニング鋼管が提案されている。   However, when a polyvinyl chloride material is used, there is also a problem that dioxins are generated at the time of incineration disposal of the composite pipe residue generated in the local piping work. Accordingly, it has been desired that a composite pipe used for a water supply pipe, a hot water supply pipe, a drain pipe, etc. does not use polyvinyl chloride. Therefore, a resin-lined steel pipe has been proposed which is used for piping for water supply, hot water supply, air conditioning, fire extinguishing, drainage, etc., which is internally lined with a polyolefin resin or a cross-linked polyolefin resin that does not have the problem of generating dioxins instead of polyvinyl chloride.

ところが、上記樹脂ライニング鋼管のうち屋内配管や屋外露出配管として使用するものについては、従来のポリ塩化ビニルのように鉄を犠牲防食する金属を内外面溶融めっきした鋼管にポリオレフィン樹脂や架橋ポリオレフィン樹脂を内面ライニングすると、ポリオレフィン樹脂や架橋ポリオレフィン樹脂はポリ塩化ビニルと比べ腐食因子である酸素の透過がはるかに大きいので長い期間に渡って給水、給湯、空調、消火、排水等の配管に使用すると鋼管内面の溶融金属めっきが腐食し、鋼管と内面樹脂ライニング層の接着界面が劣化して接着力が弱まるため、内面樹脂ライニング層が鋼管から剥離することがわかった。   However, among the resin-lined steel pipes that are used as indoor pipes or outdoor exposed pipes, polyolefin resin or cross-linked polyolefin resin is applied to steel pipes that have been hot-plated with a metal that sacrifices and protects against iron like conventional polyvinyl chloride. When inner lining is used, polyolefin resin and cross-linked polyolefin resin have much larger permeability of oxygen, which is a corrosive factor than polyvinyl chloride, so when used for piping for water supply, hot water supply, air conditioning, fire extinguishing, drainage, etc. It was found that the inner surface resin lining layer was peeled off from the steel pipe because the molten metal plating was corroded and the adhesive interface between the steel pipe and the inner surface resin lining layer was deteriorated and the adhesive strength was weakened.

そこで、剥離防止のためには、例えば特開2003−294174号公報(特許文献1)や国際公開WO2004−011231号公報(特許文献2)に開示されているような、内面に溶融金属めっきを施さず外面のみに溶融金属めっきを施した鋼管にポリオレフィン樹脂や架橋ポリオレフィン樹脂を内面ライニングした鋼管がある。しかし、鋼管外面のみ溶融金属めっきを施すには複雑な工程や特殊な設備が必要となり、製造や設備にかかるコストが高くなる。一方、従来の溶融金属めっき設備を使用して、一旦鋼管内外面に溶融金属めっきを施し、その後鋼管内面のみの溶融金属めっきを除去することも考えられるが、ブラスト処理では溶融金属めっきを完全に除去することが難しい。また、鋼管内面のみ酸洗して除去することも考えられるが、これも複雑な工程や特殊な設備が必要となる。   Therefore, in order to prevent peeling, for example, molten metal plating is applied to the inner surface as disclosed in Japanese Patent Application Laid-Open No. 2003-294174 (Patent Document 1) and International Publication WO 2004-011231 (Patent Document 2). There is a steel pipe whose inner surface is lined with a polyolefin resin or a cross-linked polyolefin resin on a steel pipe whose outer surface is plated with molten metal. However, in order to perform the molten metal plating only on the outer surface of the steel pipe, a complicated process and special equipment are required, and the cost for manufacturing and equipment increases. On the other hand, it is possible to use a conventional molten metal plating facility to temporarily apply the molten metal plating to the inner and outer surfaces of the steel pipe, and then remove the molten metal plating only on the inner surface of the steel pipe. Difficult to remove. Moreover, it is conceivable that only the inner surface of the steel pipe is pickled and removed, but this also requires a complicated process and special equipment.

このように鋼管外面のみ溶融金属めっきを施す方法では複雑な工程や特殊な設備が必要となり、製造や設備にかかるコストが高くなってしまう。さらに、前述のようにポリオレフィン樹脂や架橋ポリオレフィン樹脂はポリ塩化ビニルと比べ酸素の透過がはるかに大きいので、鋼管内面の腐食進行による内面樹脂ライニング層の剥離を抑制するためには鋼管に下地処理として化成処理皮膜を施すことが必要となるが、鋼管内面のみ化成処理皮膜を施すには、やはり複雑な工程や特殊な設備が必要となるといった問題があった。   As described above, the method of performing the molten metal plating only on the outer surface of the steel pipe requires a complicated process and special equipment, and the cost for manufacturing and equipment increases. Furthermore, as mentioned above, polyolefin resin and cross-linked polyolefin resin have much larger oxygen transmission than polyvinyl chloride. Therefore, in order to suppress the peeling of the inner resin lining layer due to the progress of corrosion on the inner surface of the steel pipe, Although it is necessary to apply a chemical conversion coating, there is a problem that a complicated process and special equipment are also required to apply a chemical conversion coating only to the inner surface of a steel pipe.

特開2003−294174号公報JP 2003-294174 A 国際公開WO2004−011231号公報International Publication No. WO2004-011231

本発明は、上記課題に鑑み、ポリ塩化ビニルの代わりに腐食因子である酸素の透過が大きいポリオレフィン樹脂や架橋ポリオレフィン樹脂を内面ライニングする場合でも、従来の内外面溶融金属めっき鋼管にポリ塩化ビニルを内面ライニングした樹脂ライニング鋼管の代わりに使用することができ、長い期間に渡って鋼管と内面樹脂ライニング層との密着性に優れた給水、給湯、空調、消火、排水等の配管等に用いる樹脂ライニング鋼管およびその製造方法を提供するものである。   In view of the above-mentioned problems, the present invention can be applied to conventional inner and outer surface molten metal-plated steel pipes even when lining a polyolefin resin or a cross-linked polyolefin resin, which has a large oxygen permeability as a corrosion factor, instead of polyvinyl chloride. Resin lining that can be used in place of internally lined resin-lined steel pipes and has excellent adhesion between the steel pipe and internal resin lining layer over a long period of time, such as pipes for water supply, hot water supply, air conditioning, fire extinguishing, drainage, etc. A steel pipe and a method for manufacturing the steel pipe are provided.

発明者らは、ポリ塩化ビニルの代わりにダイオキシン発生という問題がないポリオレフィン樹脂や架橋ポリオレフィン樹脂を内面ライニングした、屋内配管や屋外露出配管として使用する樹脂ライニング鋼管について、鉄を犠牲防食する金属を内外面溶融めっきした鋼管に内面ライニングしないことを発明した。すなわち、ポリオレフィン樹脂や架橋ポリオレフィン樹脂はポリ塩化ビニルと比べ腐食因子である酸素の透過がはるかに大きいので、長い期間に渡って給水、給湯、空調、消火、排水等の配管に使用すると鋼管内面の溶融金属めっきが腐食し、鋼管と内面樹脂ライニング層の接着界面が劣化して接着力が弱まるため、内面樹脂ライニング層が鋼管から剥離する。   The inventors of the present invention have used a metal that sacrifices and protects against iron for resin-lined steel pipes that are internally lined with polyolefin resin or crosslinked polyolefin resin that does not have the problem of generating dioxin instead of polyvinyl chloride, and are used as indoor pipes or outdoor exposed pipes. Invented not to line the inner surface of the outer surface hot-plated steel pipe. In other words, polyolefin resin and cross-linked polyolefin resin have much greater penetration of oxygen, which is a corrosive factor, than polyvinyl chloride, so when used for piping for water supply, hot water supply, air conditioning, fire extinguishing, drainage, etc. Since the molten metal plating is corroded and the adhesive interface between the steel pipe and the inner surface resin lining layer is deteriorated and the adhesive force is weakened, the inner surface resin lining layer is peeled off from the steel pipe.

本発明は、内外面溶融金属めっき鋼管の代わりに結晶粒微細化処理を行ったリン酸塩の化成処理皮膜を施した鋼管を用い、接着層を介してポリオレフィン樹脂層または架橋ポリオレフィン樹脂層を内面ライニングし、必要に応じエポキシプライマー層を設け、さらに外面には金属溶射皮膜を設けることによって、複雑な工程や特殊な設備を必要とすることなく、ポリ塩化ビニルの代わりに腐食因子である酸素の透過が大きいポリオレフィン樹脂や架橋ポリオレフィン樹脂を内面ライニングする場合でも、従来の内外面溶融金属めっき鋼管にポリ塩化ビニルを内面ライニングした樹脂ライニング鋼管の代わりに使用することができ、長い期間に渡って鋼管と内面樹脂ライニング層との密着性に優れた給水、給湯、空調、消火、排水等の配管等に用いる樹脂ライニング鋼管が可能なことを見出すことによりなされたもので、その要旨とするところは次のとおりである。   The present invention uses a steel pipe coated with a phosphate chemical conversion film that has been subjected to grain refinement treatment instead of an inner and outer surface hot-dip metal-plated steel pipe, and a polyolefin resin layer or a cross-linked polyolefin resin layer is attached to the inner surface via an adhesive layer. By lining, providing an epoxy primer layer if necessary, and providing a metal spray coating on the outer surface, oxygen is a corrosive factor instead of polyvinyl chloride without requiring complicated processes and special equipment. Even when polyolefin resin or cross-linked polyolefin resin with high permeation is lined internally, it can be used in place of conventional resin-lined steel pipes with inner surface lining of polyvinyl chloride for inner and outer surface hot-dip metal-plated steel pipes. For water supply, hot water supply, air conditioning, fire extinguishing, drainage, etc. piping with excellent adhesion between the inner surface and the resin lining layer Those are plastic lined steel pipe is made by finding that it is possible, and has as its gist is as follows.

(1)鋼管の内面に接着層を有し、さらにその内側にポリオレフィン樹脂層または架橋ポリオレフィン樹脂層を有し、前記鋼管が予め下地処理した鋼管であり、前記下地処理として、結晶粒微細化処理を行ったリン酸塩の化成処理皮膜を施し、前記鋼管の外面には金属溶射皮膜を有することを特徴とする樹脂ライニング鋼管。 (1) A steel pipe having an adhesive layer on the inner surface of the steel pipe and further having a polyolefin resin layer or a cross-linked polyolefin resin layer on the inner side, and the steel pipe is pretreated in advance. A resin-lined steel pipe, characterized in that a phosphate chemical conversion coating is applied and a metal spray coating is provided on the outer surface of the steel pipe.

(2)前記接着層が、無水マレイン酸変性ポリオレフィン、無水イタコン酸変性ポリオレフィン、エチレン・無水マレイン酸共重合体、エチレン・無水マレイン酸・アクリル酸共重合体、エチレン・無水マレイン酸・アクリル酸エステル共重合体、エチレン・アクリル酸共重合体、エチレン・アクリル酸エステル共重合体、エチレン・メタクリル酸共重合体、エチレン・酢酸ビニル共重合体、アイオノマーのうち1つまたは2つ以上よりなり、且つ、当該接着層の融解終了温度が、前記ポリオレフィン樹脂層または架橋ポリオレフィン樹脂層の使用温度超で融解開始温度未満であることを特徴とする前記(1)に記載の樹脂ライニング鋼管。 (2) The adhesive layer is a maleic anhydride modified polyolefin, an itaconic anhydride modified polyolefin, an ethylene / maleic anhydride copolymer, an ethylene / maleic anhydride / acrylic acid copolymer, an ethylene / maleic anhydride / acrylic acid ester. A copolymer, an ethylene / acrylic acid copolymer, an ethylene / acrylic acid ester copolymer, an ethylene / methacrylic acid copolymer, an ethylene / vinyl acetate copolymer, or an ionomer, and The resin-lining steel pipe according to (1), wherein the melting end temperature of the adhesive layer is higher than the use temperature of the polyolefin resin layer or the crosslinked polyolefin resin layer and lower than the melting start temperature.

(3)前記鋼管と前記接着層との間にエポキシプライマー層を有することを特徴とする前記(1)または(2)に記載の樹脂ライニング鋼管。
(4)前記樹脂ライニング鋼管を製造するに際し、鋼管に下地処理を施し、あるいは鋼管に下地処理を施し次にエポキシプライマー層を施し、鋼管内径よりも小さい外径の外面に接着層を有したポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプを前記鋼管に挿入し、当該鋼管を絞ることによりポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプを鋼管内面に密着せしめ、そして接着層の融解終了温度以上で且つポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの融解開始温度未満で加熱して接着することを特徴とする前記(1)〜(3)のいずれか一項に記載の樹脂ライニング鋼管の製造方法。
(3) The resin-lined steel pipe according to (1) or (2), wherein an epoxy primer layer is provided between the steel pipe and the adhesive layer.
(4) When manufacturing the resin-lined steel pipe, a polyolefin having a base treatment on the steel pipe or a base treatment on the steel pipe and then an epoxy primer layer, and having an adhesive layer on the outer surface smaller than the inner diameter of the steel pipe A resin pipe or a cross-linked polyolefin resin pipe is inserted into the steel pipe, the polyolefin pipe or cross-linked polyolefin resin pipe is brought into close contact with the inner surface of the steel pipe by squeezing the steel pipe, and the melting point of the adhesive layer is higher than the melting end temperature and the polyolefin resin pipe or cross-link The method for producing a resin-lined steel pipe according to any one of (1) to (3), wherein the bonding is performed by heating at a temperature lower than a melting start temperature of the polyolefin resin pipe.

(5)前記鋼管を絞る際に、ポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの外径が0.5〜10%縮径されるように当該鋼管を絞ることを特徴とする前記(4)に記載の樹脂ライニング鋼管の製造方法にある。 (5) When the steel pipe is squeezed, the steel pipe is squeezed so that the outer diameter of the polyolefin resin pipe or the crosslinked polyolefin resin pipe is reduced by 0.5 to 10%. It is in the manufacturing method of a resin lined steel pipe.

本発明によれば、内外面溶融金属めっき鋼管の代わりに結晶粒微細化処理を行ったリン酸塩の化成処理皮膜を施した鋼管を用い、接着層を介してポリオレフィン樹脂層または架橋ポリオレフィン樹脂層を内面ライニングし、必要に応じエポキシプライマー層を設け、さらに外面には金属溶射皮膜を設けることによって、複雑な工程や特殊な設備を必要とすることなくポリ塩化ビニルの代わりに腐食因子である酸素の透過が大きいポリオレフィン樹脂や架橋ポリオレフィン樹脂を内面ライニングする場合でも、従来の内外面溶融金属めっき鋼管にポリ塩化ビニルを内面ライニングした樹脂ライニング鋼管の代わりに使用することができ、長い期間に渡って鋼管と内面樹脂ライニング層との密着性に優れた給水、給湯、空調、消火、排水等の配管等に用いる樹脂ライニング鋼管を提供することができる。   According to the present invention, instead of the inner and outer surface hot-dip metal-plated steel pipe, a steel pipe coated with a phosphate chemical conversion film subjected to grain refinement treatment is used, and a polyolefin resin layer or a cross-linked polyolefin resin layer is interposed via an adhesive layer. The inner surface lining is provided with an epoxy primer layer as required, and the outer surface is provided with a metal spray coating, so that oxygen, which is a corrosive factor, can be used instead of polyvinyl chloride without the need for complicated processes or special equipment. Even when polyolefin resin or cross-linked polyolefin resin with large permeation of the inner surface is lined, it can be used in place of the conventional resin-lined steel pipe with inner surface lining of polyvinyl chloride on the inner and outer surface molten metal-plated steel pipe. Piping for water supply, hot water supply, air conditioning, fire extinguishing, drainage, etc. with excellent adhesion between steel pipe and inner resin lining layer It is possible to provide a resin lining steel pipe used in the.

本発明の樹脂ライニング鋼管は、その製造に際し、まず、鋼管表面を脱脂し、酸洗やブラスト処理して清浄にする。外径は10〜2000mm程度、通常20〜170mm程度のものを用いる。次に、鋼管の下地処理として、結晶粒微細化処理を行い密着力を強化したリン酸塩の化成処理皮膜を施すと、長い期間に渡って給水、給湯、空調、消火、排水等の配管に使用しても内面樹脂ライニング層が鋼管から剥離することがないばかりか、寒冷地でさらに内面樹脂ライニング層が収縮しようとして剥離力が大きくなってもそれに化成処理皮膜が耐えきれず破壊してしまうことがないことを見出した。   In producing the resin-lined steel pipe of the present invention, first, the surface of the steel pipe is degreased and cleaned by pickling or blasting. The outer diameter is about 10 to 2000 mm, usually about 20 to 170 mm. Next, as a base treatment for steel pipes, applying a chemical conversion treatment film of phosphate that has been refined with crystal grains and enhanced adhesion, it can be applied to piping for water supply, hot water supply, air conditioning, fire extinguishing, drainage, etc. over a long period of time. Even if it is used, the inner surface resin lining layer will not peel off from the steel pipe, and even if the inner surface resin lining layer shrinks further in a cold region and the peel force increases, the chemical conversion coating film cannot withstand it and breaks down. I found that there was nothing.

また、化成処理皮膜のリン酸塩の結晶が細粒であるほど接合強度が向上することを見出した。化成処理液としては、例えばリン酸、硝酸、酸化亜鉛、炭酸カルシウムと水からなり、水酸化ナトリウムでpHを調整した混合物(リン酸亜鉛カルシウム処理液)を用いる。リン酸亜鉛カルシウムは耐熱性に優れるため製造に加熱を伴う本発明に好適である。これらの添加量はリン酸イオンとして8〜15g/L、硝酸イオンとして30〜60g/L、亜鉛イオンとして2〜4g/L、カルシウムイオンとして5〜10g/L、pHは2.0〜2.5の範囲で、良好な耐水密着性が得られる。上記組成に該当する代表的なリン酸亜鉛カルシウム処理液としてはパルボンドP(日本パーカライジング社製)がある。   Moreover, it discovered that joining strength improved, so that the crystal | crystallization of the phosphate of a chemical conversion treatment film was finer. As the chemical conversion treatment solution, for example, a mixture (zinc calcium phosphate treatment solution) composed of phosphoric acid, nitric acid, zinc oxide, calcium carbonate and water and adjusted in pH with sodium hydroxide is used. Since zinc calcium phosphate is excellent in heat resistance, it is suitable for the present invention involving heating during production. These addition amounts are 8-15 g / L as phosphate ions, 30-60 g / L as nitrate ions, 2-4 g / L as zinc ions, 5-10 g / L as calcium ions, and pH is 2.0-2. In the range of 5, good water-resistant adhesion can be obtained. A typical zinc calcium phosphate treatment solution corresponding to the above composition is Palbond P (manufactured by Nippon Parkerizing Co., Ltd.).

化成処理皮膜の塗布は、鋼管の表面に上記化成処理液を浸漬塗布やスプレー塗装した後、鋼管を水洗・湯洗し熱風加熱や高周波誘導加熱等で加熱・乾燥して行うと良い。この化成処理皮膜の付着量は1〜10g/m2 程度が良い。その付着量が1g/m2 未満では化成処理皮膜が鉄表面を完全に覆っていないため、内面樹脂ライニング層の耐水接着力が低下する。また、その付着量が10g/m2 超では化成処理皮膜に脆弱な二次結晶粒が成長しているため、内面樹脂ライニング層の密着力や耐水接着力が低下する。 The chemical conversion coating is preferably applied by dip coating or spray coating the chemical conversion treatment liquid on the surface of the steel pipe, and then washing and washing the steel pipe with water and heating and drying with hot air heating or high frequency induction heating. Adhesion amount of the chemical conversion film 1 to 10 g / m 2 about good. If the adhesion amount is less than 1 g / m 2 , the chemical conversion coating does not completely cover the iron surface, so that the water-resistant adhesive strength of the inner surface resin lining layer is reduced. On the other hand, if the amount of adhesion exceeds 10 g / m 2 , brittle secondary crystal grains grow in the chemical conversion film, so that the adhesion and water-resistant adhesion of the inner surface resin lining layer are reduced.

結晶粒微細化処理は、化成処理皮膜を塗布する前に、鋼管の表面に例えばチタンコロイドを水に1〜5g/Lの範囲で分散させた処理液(代表的なものとしてはプレパレンZ(日本パーカライジング社製)がある)を浸漬塗布もしくはスプレー塗装すること、および/または、上記化成処理液に例えば塩基性炭酸ニッケルをニッケルイオンとして0.2〜1.0g/Lの範囲で添加することにより行う。チタンやニッケルはリン酸塩の結晶粒析出の核となり、鉄表面に緻密に付着して結晶粒を微細化するため、結晶粒と鉄との接触面積が増大し、密着力が向上する。結晶粒微細化処理を行わないと10μm超の大きさの結晶粒が発生するが、結晶粒微細化処理を行うと結晶粒の大きさが10μm以下に微細化されるため、密着力が3倍以上向上する。これらの添加量が下限値未満では結晶粒微細化の効果が低下し、上限値超では経済性が悪くなる。   Before applying the chemical conversion coating, the crystal grain refining treatment is a treatment liquid in which, for example, titanium colloid is dispersed in water in the range of 1 to 5 g / L on the surface of the steel pipe (typically, Preparen Z (Japan By dip coating or spray coating, and / or by adding, for example, basic nickel carbonate as nickel ions to the chemical conversion solution in the range of 0.2 to 1.0 g / L. Do. Titanium or nickel serves as a nucleus for precipitation of phosphate crystal grains, and finely adheres to the iron surface to refine the crystal grains, increasing the contact area between the crystal grains and iron and improving the adhesion. If the crystal grain refinement process is not performed, crystal grains with a size of more than 10 μm are generated. However, if the crystal grain refinement process is performed, the crystal grain size is refined to 10 μm or less. It improves more. If the amount of addition is less than the lower limit, the effect of crystal grain refinement will be reduced, and if it exceeds the upper limit, the economy will deteriorate.

その後、鋼管内径より小さい外径を持ち、さらに鋼管の長さより長いポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプを鋼管に挿入し、ポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの外径が0.5〜10%縮径されるように鋼管をロール絞り、たたき絞りまたはダイス絞りすることにより、鋼管内面にポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプを密着させる。このポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの縮径率が0.5%未満であると、鋼管の内径に対してポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの外径が大きくなろうとする膨張力が小さくなるため、鋼管内面に密着させようとする力が弱まって、内面樹脂ライニング層の接着力が低下する。ポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの縮径率が10%超であると、ポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプが変形するため、鋼管内面への密着性が悪くなる。   Thereafter, a polyolefin resin pipe or a crosslinked polyolefin resin pipe having an outer diameter smaller than the inner diameter of the steel pipe and longer than the length of the steel pipe is inserted into the steel pipe, and the outer diameter of the polyolefin resin pipe or the crosslinked polyolefin resin pipe is reduced by 0.5 to 10%. A polyolefin resin pipe or a cross-linked polyolefin resin pipe is brought into close contact with the inner surface of the steel pipe by roll drawing, tapping drawing or die drawing so that the diameter of the steel pipe is reduced. When the diameter reduction ratio of the polyolefin resin pipe or the cross-linked polyolefin resin pipe is less than 0.5%, the expansion force for increasing the outer diameter of the polyolefin resin pipe or the cross-linked polyolefin resin pipe with respect to the inner diameter of the steel pipe is reduced. For this reason, the force to adhere to the inner surface of the steel pipe is weakened, and the adhesive force of the inner surface resin lining layer is reduced. If the diameter reduction ratio of the polyolefin resin pipe or the cross-linked polyolefin resin pipe is more than 10%, the polyolefin resin pipe or the cross-linked polyolefin resin pipe is deformed, resulting in poor adhesion to the inner surface of the steel pipe.

ポリオレフィン樹脂としては、エチレン単独重合体、あるいはエチレンとプロピレン、1−ブテン、1−ヘキセン、1−オクテン等のα−オレフィンを共重合したエチレン−α−オレフィン共重合体、またはこれらの混合物に、本発明の性能を損なわない範囲で、必要に応じ酸化防止剤、紫外線吸収剤、難燃剤、顔料、充填剤、滑剤、帯電防止剤等の添加剤、および他の樹脂等を混合した混合物を用いる。   Examples of polyolefin resins include ethylene homopolymers, ethylene-α-olefin copolymers obtained by copolymerizing ethylene and α-olefins such as propylene, 1-butene, 1-hexene, and 1-octene, or mixtures thereof. As long as the performance of the present invention is not impaired, a mixture in which an additive such as an antioxidant, an ultraviolet absorber, a flame retardant, a pigment, a filler, a lubricant, an antistatic agent, and other resins and the like are mixed is used. .

架橋ポリオレフィン樹脂としては、ラジカル発生剤を用いて上記ポリオレフィン樹脂を架橋したもの、またはシラン変性した上記ポリオレフィン樹脂を水架橋(シラン架橋)したものを用いる。ラジカル発生剤としては、例えばジクミルパーオキサイド、ベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン等の有機過酸化物を使用する。   As the crosslinked polyolefin resin, one obtained by crosslinking the polyolefin resin using a radical generator, or one obtained by water-crosslinking (silane crosslinking) the silane-modified polyolefin resin is used. Examples of the radical generator include organic peroxides such as dicumyl peroxide, benzoyl peroxide, di-t-butyl peroxide, and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane. use.

また、上記有機過酸化物以外にもアゾイソブチロニトリル等のアゾ化合物を使用することもできる。シラン変性は、ラジカル発生剤存在化でエチレン性不飽和シラン化合物を上記ポリオレフィン樹脂にグラフト反応させることにより行われる。ここで、エチレン性不飽和シラン化合物は、下記一般式で表されるものである。
RSiR’n 3-n
(式中、Rはエチレン性不飽和炭化水素基または炭化水素オキシ基、R’は脂肪族飽和炭化水素基、Yは加水分解し得る有機基、nは0〜2を表す)
In addition to the above organic peroxides, azo compounds such as azoisobutyronitrile can also be used. Silane modification is performed by graft reaction of the ethylenically unsaturated silane compound to the polyolefin resin in the presence of a radical generator. Here, the ethylenically unsaturated silane compound is represented by the following general formula.
RSiR ' n Y 3-n
(Wherein R represents an ethylenically unsaturated hydrocarbon group or hydrocarbon oxy group, R ′ represents an aliphatic saturated hydrocarbon group, Y represents a hydrolyzable organic group, and n represents 0 to 2).

具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン等を使用する。このシラン変性は、予め押出機等で行っても良いし、成形時にホッパーより各原料成分を投入し、成形機の混練機部分で行うこともできる。架橋反応は押し出し成形時、および/または、成形後に、熱処理、水処理等により行う。シラン変性ポリオレフィン樹脂の場合は架橋速度を向上させるために、シラノール縮合触媒を併用することが望ましい。これは成形時に配合しても成形後に塗布しても良い。シラノール縮合触媒としては、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ナフテン酸コバルト、トルエンスルホン酸等が使用できる。本発明に使用する架橋ポリオレフィン樹脂は、本発明の性能を損なわない範囲で、必要に応じ酸化防止剤、紫外線吸収剤、難燃剤、顔料、充填剤、滑剤、帯電防止剤等の添加剤、および他の樹脂等を加えることができる。   Specifically, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, or the like is used. This silane modification may be performed in advance with an extruder or the like, or may be performed in the kneader part of the molding machine by introducing each raw material component from the hopper during molding. The cross-linking reaction is performed by heat treatment, water treatment or the like at the time of extrusion molding and / or after molding. In the case of a silane-modified polyolefin resin, it is desirable to use a silanol condensation catalyst in combination in order to improve the crosslinking rate. This may be blended during molding or applied after molding. As the silanol condensation catalyst, dibutyltin dilaurate, dioctyltin dilaurate, cobalt naphthenate, toluenesulfonic acid and the like can be used. The crosslinked polyolefin resin used in the present invention is an additive such as an antioxidant, an ultraviolet absorber, a flame retardant, a pigment, a filler, a lubricant, an antistatic agent, and the like, as long as the performance of the present invention is not impaired. Other resins can be added.

本発明に使用するポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの作製方法としては、ライニングしようとする鋼管の内径より小さな外径を有する丸ダイスより、パイプ状に樹脂を、押出機等を用いて押し出し、その後、冷やし、形状を固定する。このポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの厚みは必要に応じて任意に設定することができ、特に制限されるものではないが、通常0.3mm以上10mm以下、好ましくは、0.5mm以上5mm以下が用いられる。さらに、接着層との接着力を向上させるため、ポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプを成形した後必要に応じ、外面に市販プライマー塗布、酸化処理、または面粗しを施しても良い。   As a method for producing a polyolefin resin pipe or a cross-linked polyolefin resin pipe used in the present invention, the resin is extruded into a pipe shape by using an extruder or the like from a round die having an outer diameter smaller than the inner diameter of the steel pipe to be lined, Then, it is cooled and the shape is fixed. The thickness of this polyolefin resin pipe or cross-linked polyolefin resin pipe can be arbitrarily set as required and is not particularly limited, but is usually 0.3 mm or more and 10 mm or less, preferably 0.5 mm or more and 5 mm or less. Is used. Furthermore, in order to improve the adhesive strength with the adhesive layer, a commercial primer application, oxidation treatment, or surface roughening may be applied to the outer surface as necessary after molding the polyolefin resin pipe or the crosslinked polyolefin resin pipe.

鋼管とポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプとはあまり接着性がないため、間に接着層を有することが望ましい。特に、接着層は、無水マレイン酸変性ポリオレフィン、無水イタコン酸変性ポリオレフィン、エチレン・無水マレイン酸共重合体、エチレン・無水マレイン酸・アクリル酸共重合体、エチレン・無水マレイン酸・アクリル酸エステル共重合体、エチレン・アクリル酸共重合体、エチレン・アクリル酸エステル共重合体、エチレン・メタクリル酸共重合体、エチレン・酢酸ビニル共重合体、アイオノマーのうち1つまたは2つ以上よりなり、融解終了温度がポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの融解開始温度未満使用温度超である材料で形成することにより、他のものよりも格段に優れた接着力を発現することを見出した。   Since the steel pipe and the polyolefin resin pipe or the cross-linked polyolefin resin pipe are not very adhesive, it is desirable to have an adhesive layer between them. In particular, the adhesive layer comprises maleic anhydride modified polyolefin, itaconic anhydride modified polyolefin, ethylene / maleic anhydride copolymer, ethylene / maleic anhydride / acrylic acid copolymer, ethylene / maleic anhydride / acrylic acid ester copolymer Combining, ethylene / acrylic acid copolymer, ethylene / acrylic acid ester copolymer, ethylene / methacrylic acid copolymer, ethylene / vinyl acetate copolymer, or ionomer, melting end temperature Has been found to exhibit significantly better adhesive strength than other materials by forming it with a material that is less than the melting start temperature of the polyolefin resin pipe or the crosslinked polyolefin resin pipe and exceeds the operating temperature.

無水マレイン酸変性ポリオレフィンよりなる接着層のポリオレフィンとしては、例えば融解終了温度100℃の低結晶性エチレン系重合体等を使用する。これらの融解終了温度がポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの融解開始温度以上であると、接着力を発現させるための加熱をポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの融解開始温度以上で行う必要があるため、ポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプが軟化して膨張力が失われるとともに冷却工程では再結晶化による収縮力が生じ、鋼管内面に密着させようとする力が弱まって、内面樹脂ライニング層の接着力が低下する。また、これらの融解終了温度がポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの使用温度以下であると、使用中に接着層が完全に融解するため、内面樹脂ライニング層の接着力が低下する。   As the polyolefin of the adhesive layer made of maleic anhydride-modified polyolefin, for example, a low crystalline ethylene polymer having a melting end temperature of 100 ° C. is used. When the melting end temperature is equal to or higher than the melting start temperature of the polyolefin resin pipe or the cross-linked polyolefin resin pipe, it is necessary to perform heating for expressing the adhesive force at a temperature higher than the melting start temperature of the polyolefin resin pipe or the cross-linked polyolefin resin pipe. Therefore, the polyolefin resin pipe or the cross-linked polyolefin resin pipe is softened and the expansion force is lost, and the shrinking force due to recrystallization is generated in the cooling process, and the force to adhere to the inner surface of the steel pipe is weakened. Adhesive strength decreases. Further, when the melting end temperature is equal to or lower than the use temperature of the polyolefin resin pipe or the cross-linked polyolefin resin pipe, since the adhesive layer is completely melted during use, the adhesive force of the inner surface resin lining layer is lowered.

上記接着層の塗布は、ポリオレフィン樹脂パイプ外面または架橋ポリオレフィン樹脂パイプ外面にライニングしようとする鋼管の内径より小さな外径を有する二層丸ダイスを用い、ポリオレフィン樹脂パイプ成形時または架橋ポリオレフィン樹脂パイプ成形時に接着層を共押し出し被覆する、あるいは丸ダイスやTダイスを用い、ポリオレフィン樹脂パイプ成形後または架橋ポリオレフィン樹脂パイプ成形後に接着層を押し出し被覆して行う。   The adhesive layer is applied by using a two-layer round die having an outer diameter smaller than the inner diameter of the steel pipe to be lined on the outer surface of the polyolefin resin pipe or the outer surface of the crosslinked polyolefin resin pipe. The adhesive layer is coextruded and coated, or a round die or a T die is used to extrude and coat the adhesive layer after molding a polyolefin resin pipe or after forming a crosslinked polyolefin resin pipe.

さらに、接着力を発現させるため、鋼管をロール絞り、たたき絞りやダイス絞りした後、熱風加熱や高周波誘導加熱等により接着層の融解終了温度以上ポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの融解開始温度未満で加熱する。加熱温度が接着層の融解終了温度未満であると、接着層が完全に融解しないため、内面樹脂ライニング層の接着力が発現しない。   Furthermore, in order to develop adhesive force, after steel pipe is roll-drawn, tapping-drawn or die-drawn, it is higher than the melting end temperature of the adhesive layer by hot air heating or high-frequency induction heating, etc. and below the melting start temperature of polyolefin resin pipe or cross-linked polyolefin resin pipe Heat with. When the heating temperature is lower than the melting end temperature of the adhesive layer, the adhesive layer is not completely melted, so that the adhesive force of the inner surface resin lining layer is not exhibited.

また、加熱温度がポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの融解開始温度以上であると、ポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプが軟化して膨張力が失われるとともに冷却工程では再結晶化による収縮力が生じ、鋼管内面に密着させようとする力が弱まって内面樹脂ライニング層の接着力が低下する。この接着層の厚みは必要に応じて任意に設定することができ、特に制限されるものではないが、通常1μm以上3mm以下、好ましくは、10μm以上1.5mm以下が用いられる。   If the heating temperature is equal to or higher than the melting start temperature of the polyolefin resin pipe or cross-linked polyolefin resin pipe, the polyolefin resin pipe or cross-linked polyolefin resin pipe softens and loses its expansion force. As a result, the force to adhere to the inner surface of the steel pipe is weakened and the adhesive force of the inner surface resin lining layer is reduced. The thickness of the adhesive layer can be arbitrarily set as necessary, and is not particularly limited, but is usually 1 μm or more and 3 mm or less, preferably 10 μm or more and 1.5 mm or less.

鋼管と接着層との間にエポキシプライマー層を有すると良好な耐水密着性が得られるので望ましい。エポキシプライマー層としては、例えばエポキシ、顔料、添加剤と硬化剤からなる混合物(エポキシ樹脂粉体プライマー)を用いる。エポキシとしては、例えばビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテルやフェノールノボラック型またはクレゾールノボラック型のグリシジルエーテル等を使用する。   It is desirable to have an epoxy primer layer between the steel pipe and the adhesive layer because good water-resistant adhesion can be obtained. As the epoxy primer layer, for example, a mixture (epoxy resin powder primer) composed of epoxy, pigment, additive and curing agent is used. As the epoxy, for example, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, phenol novolac type or cresol novolac type glycidyl ether, or the like is used.

これらのエポキシは単独での使用も可能であるが、それぞれの樹脂を目的に応じ混合して使用することもできる。顔料にはシリカ、硫酸バリウム、炭酸カルシウム等の体質顔料類や酸化チタン、カーボンブラック等の着色顔料類の微粒子粉末を利用する。これらの顔料の添加量はエポキシ100重量部に対して3〜50重量部の範囲で良好な耐水密着性が得られる。添加剤はアクリルオリゴマーや微粉末シリカ等を用いることができる。   These epoxies can be used alone, but the respective resins can be mixed and used according to the purpose. As the pigment, fine powders of extender pigments such as silica, barium sulfate and calcium carbonate, and colored pigments such as titanium oxide and carbon black are used. The amount of these pigments to be added is in the range of 3 to 50 parts by weight with respect to 100 parts by weight of the epoxy, and good water-resistant adhesion can be obtained. An acrylic oligomer, fine powder silica, etc. can be used for an additive.

硬化剤には、ジシアンジアミド、デカンジカルボン酸等の2塩基酸、アジピン酸ジヒドラジド等のヒドラジン類、テトラヒドロ無水フタル酸等の酸無水物、ビスフェノールAのジグリシジルエーテルにビスフェノールAを付加したフェノール系硬化剤やビスフェノールAのジグリシジルエーテルにジアミドジフェニルメタンを付加したアミンアダクト類等が使用できる。硬化剤に2塩基酸、ヒドラジン類やフェノール系硬化剤を使用する場合は、エポキシのエポキシ当量と硬化剤の活性水素当量の比で、硬化剤量を決定する。当量比としてはエポキシ当量1.0に対して活性水素当量0.6〜1.2が良好である。   Curing agents include dibasic acids such as dicyandiamide and decanedicarboxylic acid, hydrazines such as adipic acid dihydrazide, acid anhydrides such as tetrahydrophthalic anhydride, and phenolic curing agents in which bisphenol A is added to diglycidyl ether of bisphenol A. Also, amine adducts obtained by adding diamide diphenylmethane to diglycidyl ether of bisphenol A can be used. When dibasic acids, hydrazines or phenolic curing agents are used as the curing agent, the amount of the curing agent is determined by the ratio of the epoxy equivalent of epoxy to the active hydrogen equivalent of the curing agent. As an equivalent ratio, an active hydrogen equivalent of 0.6 to 1.2 is good with respect to an epoxy equivalent of 1.0.

硬化剤にジシアンジアミドを使用する場合は硬化温度を低減するために、硬化促進剤として変性イミダゾールを添加する。この変性イミダゾールとしては、例えば2−メチルイミダゾールや2−フェニルイミダゾール等が利用できる。この場合の硬化剤の配合は、エポキシ100重量部に対してジシアンジアミドを3〜10重量部、変性イミダゾールを0.1〜3重量部範囲で添加すると良好な耐水密着性が得られる。同様にフェノール系硬化剤を使用する場合も、硬化促進剤として変性イミダゾールを使用するのが有効である。上記組成に該当する代表的なエポキシ樹脂粉体塗料としてはパウダックスE(日本ペイント社製)がある。   When dicyandiamide is used as the curing agent, modified imidazole is added as a curing accelerator in order to reduce the curing temperature. As this modified imidazole, for example, 2-methylimidazole or 2-phenylimidazole can be used. In this case, when the curing agent is added in an amount of 3 to 10 parts by weight of dicyandiamide and 0.1 to 3 parts by weight of modified imidazole with respect to 100 parts by weight of epoxy, good water-resistant adhesion can be obtained. Similarly, when a phenolic curing agent is used, it is effective to use a modified imidazole as a curing accelerator. As a representative epoxy resin powder coating material corresponding to the above composition, there is Powderx E (manufactured by Nippon Paint Co., Ltd.).

上記エポキシプライマー層の塗布は、鋼管の内面に常温〜80℃程度でエポキシプライマー層を静電スプレー塗装や流動吸引塗装した後、鋼管を熱風加熱や高周波誘導加熱等で140〜220℃程度に加熱・硬化して行うと良い。このエポキシプライマー層の厚みは40〜600μm程度が良い。その膜厚が40μm未満では粉体塗料の造膜限界以下になる可能性があるので連続被膜にならないため、内面樹脂ライニング層の耐水接着力が低下する。また、作業性と経済性の点から、該膜厚の上限は600μm程度が良い。   The epoxy primer layer is applied to the inner surface of the steel pipe at normal temperature to about 80 ° C., after the epoxy primer layer is electrostatic spray-painted or fluidly sucked, and then heated to about 140-220 ° C. by hot air heating or high-frequency induction heating. -It should be done after curing. The thickness of the epoxy primer layer is preferably about 40 to 600 μm. If the film thickness is less than 40 μm, it may be less than the film-forming limit of the powder coating material, so that it does not become a continuous film, so the water-resistant adhesive strength of the inner surface resin lining layer is reduced. From the viewpoint of workability and economy, the upper limit of the film thickness is preferably about 600 μm.

内面樹脂ライニング鋼管の外面には、従来の溶融金属めっきの代わりに金属溶射皮膜を施す。金属溶射皮膜としては、例えば鉄を犠牲防食する金属である亜鉛、アルミニウム、亜鉛・アルミニウム合金、アルミニウム・マグネシウム合金を用いる。金属溶射皮膜の塗布は、まず、鋼管外面を脱脂し、ブラスト処理して清浄にする。この際、鋼管外面の結晶粒微細化処理を行ったリン酸塩の化成処理皮膜が残っていても鉄との密着力が大きいため、金属溶射皮膜の密着性を低下させることがないことを見出した。   A metal spray coating is applied to the outer surface of the inner surface resin-lined steel pipe instead of the conventional molten metal plating. As the metal spray coating, for example, zinc, aluminum, zinc / aluminum alloy, and aluminum / magnesium alloy, which are metals that sacrifice and prevent iron, are used. In applying the metal spray coating, first, the outer surface of the steel pipe is degreased and cleaned by blasting. At this time, it has been found that the adhesion of the metal sprayed coating is not lowered because the adhesion to the iron is large even if the phosphate chemical conversion coating that has undergone grain refinement treatment on the outer surface of the steel pipe remains. It was.

その後、鋼管の外面に上記金属溶射皮膜をガス式フレーム溶射、電気式アーク溶射または電気式プラズマ溶射する。この金属溶射皮膜の厚さは100〜400μm程度が良い。その膜厚が100μm未満では、従来の溶融金属めっきより耐食性が低下する。これは両者の密度の違いから、一般的に溶融金属めっきの通常の厚さ85μmは金属溶射皮膜の厚さ100μmに相当すると言われていることによる。しかし、溶融金属めっきでは鋼管との界面に鉄を含む耐食性に劣る合金層が必ず存在し、その分耐食性に優れる純金属層が金属溶射皮膜より薄くなるため、金属溶射皮膜の厚さ100μmは溶融金属めっきの厚さ85μmより耐食性が向上する可能性がある。また、作業性と経済性の点から、該膜厚の上限は400μm程度が良い。さらに、耐食性を向上させるため、金属溶射皮膜を塗布した後必要に応じ、白錆防止塗料や封孔処理剤等を塗装しても良い。   Thereafter, the metal sprayed coating is applied to the outer surface of the steel pipe by gas flame spraying, electric arc spraying, or electric plasma spraying. The thickness of the metal spray coating is preferably about 100 to 400 μm. If the film thickness is less than 100 μm, the corrosion resistance is lower than that of conventional molten metal plating. This is because, due to the difference in density between the two, it is generally said that the normal thickness of 85 μm of the molten metal plating is equivalent to the thickness of the metal spray coating of 100 μm. However, in molten metal plating, there is always an alloy layer containing iron at the interface with the steel pipe that is inferior in corrosion resistance, and the pure metal layer with excellent corrosion resistance is thinner than the metal sprayed coating, so the thickness of the metal sprayed coating is 100 μm. Corrosion resistance may be improved from the metal plating thickness of 85 μm. From the viewpoint of workability and economy, the upper limit of the film thickness is preferably about 400 μm. Further, in order to improve the corrosion resistance, a white rust preventive paint or a sealing agent may be applied as necessary after applying the metal spray coating.

以下、本発明を実施例にもとづいて具体的に説明する。
(実施例1)
外径50.8mm、厚さ3.3mm、長さ3930mmの鋼管表面を市販のアルカリ脱脂剤で脱脂し、酸洗して除錆した後、チタンコロイドを水に分散させた処理液(日本パーカライジング社製プレパレンZ)、リン酸亜鉛カルシウム処理液(日本パーカライジング社製パルボンドP)に順次鋼管を浸漬し、熱風加熱により乾燥して化成処理皮膜を形成した。該化成処理皮膜の付着量は4g/m2 であり、その平均粒径は5μm程度であった。次に、二層丸ダイスを用い、外径42.4mm、厚さ1.5mm、長さ4040mmのポリエチレン樹脂パイプ(融解開始温度120℃)成形時に外面に無水マレイン酸変性ポリエチレンよりなる接着剤(融解終了温度100℃)を共押し出し法によって被覆し、接着層を形成した。該接着層の厚みは200μmであった。
Hereinafter, the present invention will be specifically described based on examples.
Example 1
A steel pipe surface with an outer diameter of 50.8 mm, a thickness of 3.3 mm, and a length of 3930 mm is degreased with a commercially available alkaline degreasing agent, pickled and derusted, and then a treatment liquid in which titanium colloid is dispersed in water (Nippon Parkerizing) Steel pipes were sequentially dipped in a preparene Z) and zinc calcium phosphate treatment solution (Palbond P, manufactured by Nihon Parkerizing Co., Ltd.) and dried by hot air heating to form a chemical conversion coating. The adhesion amount of the chemical conversion film was 4 g / m 2 and the average particle size was about 5 μm. Next, using a two-layer round die, an adhesive made of maleic anhydride-modified polyethylene on the outer surface at the time of molding a polyethylene resin pipe (melting start temperature 120 ° C.) having an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm ( A melting end temperature of 100 ° C. was coated by a coextrusion method to form an adhesive layer. The thickness of the adhesive layer was 200 μm.

その後、上記ポリエチレン樹脂パイプを上記鋼管に挿入し、ポリエチレン樹脂パイプの外径が1.4%縮径されるように鋼管をロール絞りすることにより、鋼管内面にポリエチレン樹脂パイプを密着させた後、熱風加熱炉内で全体を115℃に加熱して接着した。鋼管端部よりはみ出したポリエチレン樹脂パイプは切断した。この内面樹脂ライニング鋼管の外面を市販のアルカリ脱脂剤で脱脂し、グリットブラスト処理して除錆した後、亜鉛(85%)・アルミニウム(15%)合金を電気式アーク法によって厚さ100μm溶射し、さらに、白錆防止塗料を厚さ10μm塗装した。   Thereafter, the polyethylene resin pipe is inserted into the steel pipe, and after the steel pipe is roll-drawn so that the outer diameter of the polyethylene resin pipe is reduced by 1.4%, the polyethylene resin pipe is brought into close contact with the inner surface of the steel pipe, The whole was heated to 115 ° C. in a hot air heating furnace and bonded. The polyethylene resin pipe protruding from the end of the steel pipe was cut. The outer surface of this inner surface resin-lined steel pipe is degreased with a commercially available alkaline degreasing agent, grit blasted to remove rust, and then zinc (85%) / aluminum (15%) alloy is sprayed to a thickness of 100 μm by an electric arc method. Furthermore, a 10 μm thick rust preventive paint was applied.

(実施例2)
外径50.8mm、厚さ3.3mm、長さ3930mmの鋼管表面を市販のアルカリ脱脂剤で脱脂し、酸洗して除錆した後、チタンコロイドを水に分散させた処理液(日本パーカライジング社製プレパレンZ)、リン酸亜鉛カルシウム処理液(日本パーカライジング社製パルボンドP)に順次鋼管を浸漬し、熱風加熱により乾燥して化成処理皮膜を形成した。該化成処理皮膜の付着量は4g/m2 であり、その平均粒径は5μm程度であった。次に、鋼管内面に常温でエポキシ樹脂粉体プライマー(日本ペイント社製パウダックスE)を静電スプレー法によって塗装し、熱風加熱炉内で全体を155℃に加熱してエポキシプライマー層を形成した。該エポキシプライマー層の厚みは100μmであった。さらに、二層丸ダイスを用い、外径42.4mm、厚さ1.5mm、長さ4040mmのポリエチレン樹脂パイプ(融解開始温度120℃)成形時に外面に無水マレイン酸変性ポリエチレンよりなる接着剤(融解終了温度100℃)を共押し出し法によって被覆し、接着層を形成した。該接着層の厚みは200μmであった。
(Example 2)
A steel pipe surface with an outer diameter of 50.8 mm, a thickness of 3.3 mm, and a length of 3930 mm is degreased with a commercially available alkaline degreasing agent, pickled and derusted, and then a treatment liquid in which titanium colloid is dispersed in water (Nippon Parkerizing) Steel pipes were sequentially dipped in a preparene Z) and zinc calcium phosphate treatment solution (Palbond P, manufactured by Nihon Parkerizing Co., Ltd.) and dried by hot air heating to form a chemical conversion coating. The adhesion amount of the chemical conversion film was 4 g / m 2 and the average particle size was about 5 μm. Next, an epoxy resin powder primer (Nippon Paint Co., Ltd., Powderx E) was applied to the inner surface of the steel pipe at room temperature by an electrostatic spray method, and the whole was heated to 155 ° C. in a hot air heating furnace to form an epoxy primer layer. . The thickness of the epoxy primer layer was 100 μm. Furthermore, using a double-layer round die, an adhesive made of maleic anhydride-modified polyethylene (melting) on the outer surface during molding of a polyethylene resin pipe (melting start temperature 120 ° C.) having an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm An end temperature of 100 ° C.) was coated by a coextrusion method to form an adhesive layer. The thickness of the adhesive layer was 200 μm.

その後、上記ポリエチレン樹脂パイプを上記鋼管に挿入し、ポリエチレン樹脂パイプの外径が1.4%縮径されるように鋼管をロール絞りすることにより、鋼管内面にポリエチレン樹脂パイプを密着させた後、熱風加熱炉内で全体を115℃に加熱して接着した。鋼管端部よりはみ出したポリエチレン樹脂パイプは切断した。この内面樹脂ライニング鋼管の外面を市販のアルカリ脱脂剤で脱脂し、グリットブラスト処理して除錆した後、亜鉛を電気式アーク法によって厚さ100μm溶射し、さらに、白錆防止塗料を厚さ10μm塗装した。   Thereafter, the polyethylene resin pipe is inserted into the steel pipe, and after the steel pipe is roll-drawn so that the outer diameter of the polyethylene resin pipe is reduced by 1.4%, the polyethylene resin pipe is brought into close contact with the inner surface of the steel pipe, The whole was heated to 115 ° C. in a hot air heating furnace and bonded. The polyethylene resin pipe protruding from the end of the steel pipe was cut. The outer surface of this inner surface resin-lined steel pipe is degreased with a commercially available alkaline degreasing agent, grit blasted to remove rust, and then zinc is sprayed to a thickness of 100 μm by an electric arc method. Further, a white rust prevention paint is formed to a thickness of 10 μm. Painted.

(実施例3)
金属溶射皮膜として、アルミニウム溶射を用いた以外は実施例2と同様にして樹脂ライニング鋼管を得た。
(Example 3)
A resin-lined steel pipe was obtained in the same manner as in Example 2 except that aluminum spray was used as the metal spray coating.

(実施例4)
金属溶射皮膜として、亜鉛(85%)・アルミニウム(15%)合金溶射を用いた以外は実施例2と同様にして樹脂ライニング鋼管を得た。
Example 4
A resin-lined steel pipe was obtained in the same manner as in Example 2 except that zinc (85%) / aluminum (15%) alloy spray was used as the metal spray coating.

(実施例5)
金属溶射皮膜として、アルミニウム(95%)・マグネシウム(5%)合金溶射を用いた以外は実施例2と同様にして樹脂ライニング鋼管を得た。
(Example 5)
A resin-lined steel pipe was obtained in the same manner as in Example 2 except that aluminum (95%) / magnesium (5%) alloy spray was used as the metal spray coating.

(実施例6)
接着層として、無水イタコン酸変性ポリエチレンよりなる接着剤(融解終了温度100℃)を用いた以外は実施例4と同様にして樹脂ライニング鋼管を得た。
(Example 6)
A resin-lined steel pipe was obtained in the same manner as in Example 4 except that an adhesive made of itaconic anhydride-modified polyethylene (melting completion temperature: 100 ° C.) was used as the adhesive layer.

(実施例7)
接着層として、エチレン・無水マレイン酸共重合体よりなる接着剤(融解終了温度100℃)を用いた以外は実施例4と同様にして樹脂ライニング鋼管を得た。
(Example 7)
A resin-lined steel pipe was obtained in the same manner as in Example 4 except that an adhesive made of an ethylene / maleic anhydride copolymer (melting completion temperature: 100 ° C.) was used as the adhesive layer.

(実施例8)
接着層として、エチレン・無水マレイン酸・アクリル酸共重合体よりなる接着剤(融解終了温度100℃)を用いた以外は実施例4と同様にして樹脂ライニング鋼管を得た。
(Example 8)
A resin-lined steel pipe was obtained in the same manner as in Example 4 except that an adhesive composed of an ethylene / maleic anhydride / acrylic acid copolymer (melting completion temperature: 100 ° C.) was used as the adhesive layer.

(実施例9)
接着層として、エチレン・無水マレイン酸・アクリル酸エステル共重合体よりなる接着剤(融解終了温度100℃)を用いた以外は実施例4と同様にして樹脂ライニング鋼管を得た。
Example 9
A resin-lined steel pipe was obtained in the same manner as in Example 4 except that an adhesive made of an ethylene / maleic anhydride / acrylic acid ester copolymer (melting completion temperature: 100 ° C.) was used as the adhesive layer.

(実施例10)
接着層として、エチレン・アクリル酸共重合体よりなる接着剤(融解終了温度100℃)を用いた以外は実施例4と同様にして樹脂ライニング鋼管を得た。
(Example 10)
A resin-lined steel pipe was obtained in the same manner as in Example 4 except that an adhesive made of an ethylene / acrylic acid copolymer (melting completion temperature: 100 ° C.) was used as the adhesive layer.

(実施例11)
接着層として、エチレン・アクリル酸エステル共重合体よりなる接着剤(融解終了温度100℃)を用いた以外は実施例4と同様にして樹脂ライニング鋼管を得た。
(Example 11)
A resin-lined steel pipe was obtained in the same manner as in Example 4 except that an adhesive made of an ethylene / acrylic acid ester copolymer (melting end temperature: 100 ° C.) was used as the adhesive layer.

(実施例12)
接着層として、エチレン・メタクリル酸共重合体よりなる接着剤(融解終了温度100℃)を用いた以外は実施例4と同様にして樹脂ライニング鋼管を得た。
(Example 12)
A resin-lined steel pipe was obtained in the same manner as in Example 4 except that an adhesive made of an ethylene / methacrylic acid copolymer (melting end temperature: 100 ° C.) was used as the adhesive layer.

(実施例13)
接着層として、エチレン・酢酸ビニル共重合体よりなる接着剤(融解終了温度100℃)を用いた以外は実施例4と同様にして樹脂ライニング鋼管を得た。
(Example 13)
A resin-lined steel pipe was obtained in the same manner as in Example 4 except that an adhesive composed of an ethylene / vinyl acetate copolymer (melting completion temperature: 100 ° C.) was used as the adhesive layer.

(実施例14)
接着層として、アイオノマーよりなる接着剤(融解終了温度100℃)を用いた以外は実施例4と同様にして樹脂ライニング鋼管を得た。
(Example 14)
A resin-lined steel pipe was obtained in the same manner as in Example 4 except that an adhesive made of ionomer (melting end temperature: 100 ° C.) was used as the adhesive layer.

(実施例15)
外径50.8mm、厚さ3.3mm、長さ3930mmの鋼管表面を市販のアルカリ脱脂剤で脱脂し、酸洗して除錆した後、チタンコロイドを水に分散させた処理液(日本パーカライジング社製プレパレンZ)、リン酸亜鉛カルシウム処理液(日本パーカライジング社製パルボンドP)に順次鋼管を浸漬し、熱風加熱により乾燥して化成処理皮膜を形成した。該化成処理皮膜の付着量は4g/m2 であり、その平均粒径は5μm程度であった。次に、二層丸ダイスを用い、外径42.4mm、厚さ1.5mm、長さ4040mmのポリプロピレン樹脂パイプ(融解開始温度155℃)成形時に外面に無水マレイン酸変性ポリプロピレンよりなる接着剤(融解終了温度145℃)を共押し出し法によって被覆し、接着層を形成した。該接着層の厚みは200μmであった。
(Example 15)
A steel pipe surface with an outer diameter of 50.8 mm, a thickness of 3.3 mm, and a length of 3930 mm is degreased with a commercially available alkaline degreasing agent, pickled and derusted, and then a treatment liquid in which titanium colloid is dispersed in water (Nippon Parkerizing) Steel pipes were sequentially dipped in a preparene Z) and zinc calcium phosphate treatment solution (Palbond P, manufactured by Nihon Parkerizing Co., Ltd.) and dried by hot air heating to form a chemical conversion coating. The adhesion amount of the chemical conversion film was 4 g / m 2 and the average particle size was about 5 μm. Next, using a two-layer round die, an adhesive made of maleic anhydride-modified polypropylene on the outer surface at the time of molding a polypropylene resin pipe (melting start temperature 155 ° C.) having an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm ( The melting end temperature (145 ° C.) was coated by a coextrusion method to form an adhesive layer. The thickness of the adhesive layer was 200 μm.

その後、上記ポリプロピレン樹脂パイプを上記鋼管に挿入し、ポリプロピレン樹脂パイプの外径が1.4%縮径されるように鋼管をロール絞りすることにより、鋼管内面にポリプロピレン樹脂パイプを密着させた後、熱風加熱炉内で全体を150℃に加熱して接着した。鋼管端部よりはみ出したポリプロピレン樹脂パイプは切断した。この内面樹脂ライニング鋼管の外面を市販のアルカリ脱脂剤で脱脂し、グリットブラスト処理して除錆した後、亜鉛(85%)・アルミニウム(15%)合金を電気式アーク法によって厚さ100μm溶射し、さらに、白錆防止塗料を厚さ10μm塗装した。   Thereafter, the polypropylene resin pipe is inserted into the steel pipe, and after the steel pipe is roll-drawn so that the outer diameter of the polypropylene resin pipe is reduced by 1.4%, the polypropylene resin pipe is brought into close contact with the inner surface of the steel pipe, The whole was heated to 150 ° C. in a hot air heating furnace and bonded. The polypropylene resin pipe protruding from the end of the steel pipe was cut. The outer surface of this inner surface resin-lined steel pipe is degreased with a commercially available alkaline degreasing agent, grit blasted to remove rust, and then zinc (85%) / aluminum (15%) alloy is sprayed to a thickness of 100 μm by an electric arc method. Furthermore, a 10 μm thick rust preventive paint was applied.

(実施例16)
外径50.8mm、厚さ3.3mm、長さ3930mmの鋼管表面を市販のアルカリ脱脂剤で脱脂し、酸洗して除錆した後、チタンコロイドを水に分散させた処理液(日本パーカライジング社製プレパレンZ)、リン酸亜鉛カルシウム処理液(日本パーカライジング社製パルボンドP)に順次鋼管を浸漬し、熱風加熱により乾燥して化成処理皮膜を形成した。該化成処理皮膜の付着量は4g/m2 であり、その平均粒径は5μm程度であった。次に、鋼管内面に常温でエポキシ樹脂粉体プライマー(日本ペイント社製パウダックスE)を静電スプレー法によって塗装し、熱風加熱炉内で全体を155℃に加熱してエポキシプライマー層を形成した。該エポキシプライマー層の厚みは100μmであった。さらに、二層丸ダイスを用い、外径42.4mm、厚さ1.5mm、長さ4040mmのポリプロピレン樹脂パイプ(融解開始温度155℃)成形時に外面に無水マレイン酸変性ポリプロピレンよりなる接着剤(融解終了温度145℃)を共押し出し法によって被覆し、接着層を形成した。該接着層の厚みは200μmであった。
(Example 16)
A steel pipe surface with an outer diameter of 50.8 mm, a thickness of 3.3 mm, and a length of 3930 mm is degreased with a commercially available alkaline degreasing agent, pickled and derusted, and then a treatment liquid in which titanium colloid is dispersed in water (Nippon Parkerizing) Steel pipes were sequentially dipped in a preparene Z) and zinc calcium phosphate treatment solution (Palbond P, manufactured by Nihon Parkerizing Co., Ltd.) and dried by hot air heating to form a chemical conversion coating. The adhesion amount of the chemical conversion film was 4 g / m 2 and the average particle size was about 5 μm. Next, an epoxy resin powder primer (Nippon Paint Co., Ltd., Powderx E) was applied to the inner surface of the steel pipe at room temperature by an electrostatic spray method, and the whole was heated to 155 ° C. in a hot air heating furnace to form an epoxy primer layer. . The thickness of the epoxy primer layer was 100 μm. Furthermore, using a double-layer round die, an adhesive made of maleic anhydride-modified polypropylene (melting) on the outer surface at the time of molding a polypropylene resin pipe (melting start temperature 155 ° C.) having an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm (End temperature 145 ° C.) was coated by a coextrusion method to form an adhesive layer. The thickness of the adhesive layer was 200 μm.

その後、上記ポリプロピレン樹脂パイプを上記鋼管に挿入し、ポリプロピレン樹脂パイプの外径が1.4%縮径されるように鋼管をロール絞りすることにより、鋼管内面にポリプロピレン樹脂パイプを密着させた後、熱風加熱炉内で全体を150℃に加熱して接着した。鋼管端部よりはみ出したポリプロピレン樹脂パイプは切断した。この内面樹脂ライニング鋼管の外面を市販のアルカリ脱脂剤で脱脂し、グリットブラスト処理して除錆した後、亜鉛(85%)・アルミニウム(15%)合金を電気式アーク法によって厚さ100μm溶射し、さらに、白錆防止塗料を厚さ10μm塗装した。   Thereafter, the polypropylene resin pipe is inserted into the steel pipe, and the steel pipe is roll-drawn so that the outer diameter of the polypropylene resin pipe is reduced by 1.4%, thereby bringing the polypropylene resin pipe into close contact with the inner surface of the steel pipe, The whole was heated to 150 ° C. in a hot air heating furnace and bonded. The polypropylene resin pipe protruding from the end of the steel pipe was cut. The outer surface of this inner surface resin-lined steel pipe is degreased with a commercially available alkaline degreasing agent, grit blasted to remove rust, and then zinc (85%) / aluminum (15%) alloy is sprayed to a thickness of 100 μm by an electric arc method. Furthermore, a 10 μm thick rust preventive paint was applied.

(実施例17)
外径50.8mm、厚さ3.3mm、長さ3930mmの鋼管表面を市販のアルカリ脱脂剤で脱脂し、酸洗して除錆した後、チタンコロイドを水に分散させた処理液(日本パーカライジング社製プレパレンZ)、リン酸亜鉛カルシウム処理液(日本パーカライジング社製パルボンドP)に順次鋼管を浸漬し、熱風加熱により乾燥して化成処理皮膜を形成した。該化成処理皮膜の付着量は4g/m2 であり、その平均粒径は5μm程度であった。次に、二層丸ダイスを用い、外径42.4mm、厚さ1.5mm、長さ4040mmの架橋ポリエチレン樹脂パイプ(融解開始温度120℃)成形時に外面に無水マレイン酸変性ポリエチレンよりなる接着剤(融解終了温度100℃)を共押し出し法によって被覆し、接着層を形成した。該接着層の厚みは200μmであった。
(Example 17)
A steel pipe surface with an outer diameter of 50.8 mm, a thickness of 3.3 mm, and a length of 3930 mm is degreased with a commercially available alkaline degreasing agent, pickled and derusted, and then a treatment liquid in which titanium colloid is dispersed in water (Nippon Parkerizing) Steel pipes were sequentially dipped in a preparene Z) and zinc calcium phosphate treatment solution (Palbond P, manufactured by Nihon Parkerizing Co., Ltd.) and dried by hot air heating to form a chemical conversion coating. The adhesion amount of the chemical conversion film was 4 g / m 2 and the average particle size was about 5 μm. Next, an adhesive made of maleic anhydride-modified polyethylene on the outer surface at the time of molding a cross-linked polyethylene resin pipe (melting start temperature 120 ° C.) having an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm using a two-layer round die (A melting end temperature of 100 ° C.) was coated by a coextrusion method to form an adhesive layer. The thickness of the adhesive layer was 200 μm.

その後、上記架橋ポリエチレン樹脂パイプを上記鋼管に挿入し、架橋ポリエチレン樹脂パイプの外径が1.4%縮径されるように鋼管をロール絞りすることにより、鋼管内面に架橋ポリエチレン樹脂パイプを密着させた後、熱風加熱炉内で全体を115℃に加熱して接着した。鋼管端部よりはみ出した架橋ポリエチレン樹脂パイプは切断した。この内面樹脂ライニング鋼管の外面を市販のアルカリ脱脂剤で脱脂し、グリットブラスト処理して除錆した後、亜鉛(85%)・アルミニウム(15%)合金を電気式アーク法によって厚さ100μm溶射し、さらに、白錆防止塗料を厚さ10μm塗装した。   Thereafter, the cross-linked polyethylene resin pipe is inserted into the steel pipe and the steel pipe is roll-squeezed so that the outer diameter of the cross-linked polyethylene resin pipe is reduced by 1.4%, thereby bringing the cross-linked polyethylene resin pipe into close contact with the inner surface of the steel pipe. After that, the whole was heated to 115 ° C. in a hot air heating furnace and bonded. The cross-linked polyethylene resin pipe protruding from the end of the steel pipe was cut. The outer surface of this inner surface resin-lined steel pipe is degreased with a commercially available alkaline degreasing agent, grit blasted to remove rust, and then zinc (85%) / aluminum (15%) alloy is sprayed to a thickness of 100 μm by an electric arc method. Furthermore, a 10 μm thick rust preventive paint was applied.

(実施例18)
外径50.8mm、厚さ3.3mm、長さ3930mmの鋼管表面を市販のアルカリ脱脂剤で脱脂し、酸洗して除錆した後、チタンコロイドを水に分散させた処理液(日本パーカライジング社製プレパレンZ)、リン酸亜鉛カルシウム処理液(日本パーカライジング社製パルボンドP)に順次鋼管を浸漬し、熱風加熱により乾燥して化成処理皮膜を形成した。該化成処理皮膜の付着量は4g/m2 であり、その平均粒径は5μm程度であった。次に、鋼管内面に常温でエポキシ樹脂粉体プライマー(日本ペイント社製パウダックスE)を静電スプレー法によって塗装し、熱風加熱炉内で全体を155℃に加熱してエポキシプライマー層を形成した。該エポキシプライマー層の厚みは100μmであった。さらに、二層丸ダイスを用い、外径42.4mm、厚さ1.5mm、長さ4040mmの架橋ポリエチレン樹脂パイプ(融解開始温度120℃)成形時に外面に無水マレイン酸変性ポリエチレンよりなる接着剤(融解終了温度100℃)を共押し出し法によって被覆し、接着層を形成した。該接着層の厚みは200μmであった。
(Example 18)
A steel pipe surface with an outer diameter of 50.8 mm, a thickness of 3.3 mm, and a length of 3930 mm is degreased with a commercially available alkaline degreasing agent, pickled and derusted, and then a treatment liquid in which titanium colloid is dispersed in water (Nippon Parkerizing) Steel pipes were sequentially dipped in a preparene Z) and zinc calcium phosphate treatment solution (Palbond P, manufactured by Nihon Parkerizing Co., Ltd.) and dried by hot air heating to form a chemical conversion coating. The adhesion amount of the chemical conversion film was 4 g / m 2 and the average particle size was about 5 μm. Next, an epoxy resin powder primer (Nippon Paint Co., Ltd., Powderx E) was applied to the inner surface of the steel pipe at room temperature by an electrostatic spray method, and the whole was heated to 155 ° C. in a hot air heating furnace to form an epoxy primer layer. . The thickness of the epoxy primer layer was 100 μm. Furthermore, using a double-layer round die, an adhesive made of maleic anhydride-modified polyethylene on the outer surface at the time of molding a crosslinked polyethylene resin pipe (melting start temperature 120 ° C.) having an outer diameter of 42.4 mm, a thickness of 1.5 mm and a length of 4040 mm ( A melting end temperature of 100 ° C. was coated by a coextrusion method to form an adhesive layer. The thickness of the adhesive layer was 200 μm.

その後、上記架橋ポリエチレン樹脂パイプを上記鋼管に挿入し、架橋ポリエチレン樹脂パイプの外径が1.4%縮径されるように鋼管をロール絞りすることにより、鋼管内面に架橋ポリエチレン樹脂パイプを密着させた後、熱風加熱炉内で全体を115℃に加熱して接着した。鋼管端部よりはみ出した架橋ポリエチレン樹脂パイプは切断した。この内面樹脂ライニング鋼管の外面を市販のアルカリ脱脂剤で脱脂し、グリットブラスト処理して除錆した後、亜鉛(85%)・アルミニウム(15%)合金を電気式アーク法によって厚さ100μm溶射し、さらに、白錆防止塗料を厚さ10μm塗装した。   Thereafter, the cross-linked polyethylene resin pipe is inserted into the steel pipe and the steel pipe is roll-squeezed so that the outer diameter of the cross-linked polyethylene resin pipe is reduced by 1.4%, thereby bringing the cross-linked polyethylene resin pipe into close contact with the inner surface of the steel pipe. After that, the whole was heated to 115 ° C. in a hot air heating furnace and bonded. The cross-linked polyethylene resin pipe protruding from the end of the steel pipe was cut. The outer surface of this inner surface resin-lined steel pipe is degreased with a commercially available alkaline degreasing agent, grit blasted to remove rust, and then zinc (85%) / aluminum (15%) alloy is sprayed to a thickness of 100 μm by an electric arc method. Furthermore, a 10 μm thick rust preventive paint was applied.

(比較例1)
二層丸ダイスを用い、外径42.4mm、厚さ1.5mm、長さ4040mmのポリ塩化ビニルパイプ(融解開始温度120℃)成形時に外面にエチレン・酢酸ビニル共重合体よりなる接着剤(融解終了温度100℃)を共押し出し法によって被覆し、接着層を形成した。該接着層の厚みは200μmであった。次に、上記ポリ塩化ビニルパイプを内外面に溶融亜鉛めっき(厚さ85μm)が施された外径50.8mm、厚さ3.3mm、長さ3930mmの鋼管に挿入し、ポリ塩化ビニルパイプの外径が1.4%縮径されるように鋼管をロール絞りすることにより、鋼管内面にポリ塩化ビニルパイプを密着させた後、熱風加熱炉内で全体を115℃に加熱して接着した。鋼管端部よりはみ出したポリ塩化ビニルパイプは切断した。この内面樹脂ライニング鋼管の外面には白錆防止塗料を厚さ10μm塗装した。
(Comparative Example 1)
Using a double-layered round die, an adhesive made of an ethylene / vinyl acetate copolymer on the outer surface when molding a polyvinyl chloride pipe (melting start temperature 120 ° C.) having an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm ( A melting end temperature of 100 ° C. was coated by a coextrusion method to form an adhesive layer. The thickness of the adhesive layer was 200 μm. Next, the polyvinyl chloride pipe was inserted into a steel pipe having an outer diameter of 50.8 mm, a thickness of 3.3 mm, and a length of 3930 mm, the inner and outer surfaces of which were hot dip galvanized (thickness 85 μm). By rolling the steel pipe so that the outer diameter was reduced by 1.4%, the polyvinyl chloride pipe was brought into close contact with the inner surface of the steel pipe, and then the whole was heated to 115 ° C. and bonded in a hot air heating furnace. The polyvinyl chloride pipe protruding from the end of the steel pipe was cut. The outer surface of this inner surface resin-lined steel pipe was coated with a 10 μm thick antirust paint.

(比較例2)
二層丸ダイスを用い、外径42.4mm、厚さ1.5mm、長さ4040mmのポリエチレン樹脂パイプ(融解開始温度120℃)成形時に外面に無水マレイン酸変性ポリエチレンよりなる接着剤(融解終了温度100℃)を共押し出し法によって被覆し、接着層を形成した。該接着層の厚みは200μmであった。次に、上記ポリエチレン樹脂パイプを内外面に溶融亜鉛めっき(厚さ85μm)が施された外径50.8mm、厚さ3.3mm、長さ3930mmの鋼管に挿入し、ポリエチレン樹脂パイプの外径が1.4%縮径されるように鋼管をロール絞りすることにより、鋼管内面にポリエチレン樹脂パイプを密着させた後、熱風加熱炉内で全体を115℃に加熱して接着した。鋼管端部よりはみ出したポリエチレン樹脂パイプは切断した。この内面樹脂ライニング鋼管の外面には白錆防止塗料を厚さ10μm塗装した。
(Comparative Example 2)
Adhesive made of maleic anhydride-modified polyethylene (melting end temperature) on the outer surface when molding a polyethylene resin pipe (melting start temperature 120 ° C.) having an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm, using a two-layer round die 100 ° C.) was coated by a coextrusion method to form an adhesive layer. The thickness of the adhesive layer was 200 μm. Next, the polyethylene resin pipe is inserted into a steel pipe having an outer diameter of 50.8 mm, a thickness of 3.3 mm, and a length of 3930 mm, the inner and outer surfaces of which are hot dip galvanized (thickness 85 μm). After the steel pipe was roll-drawn so that the diameter was reduced by 1.4%, the polyethylene resin pipe was brought into close contact with the inner surface of the steel pipe, and then the whole was heated to 115 ° C. and bonded in a hot air heating furnace. The polyethylene resin pipe protruding from the end of the steel pipe was cut. The outer surface of this inner surface resin-lined steel pipe was coated with a 10 μm thick antirust paint.

(比較例3)
二層丸ダイスを用い、外径42.4mm、厚さ1.5mm、長さ4040mmのポリプロピレン樹脂パイプ(融解開始温度155℃)成形時に外面に無水マレイン酸変性ポリプロピレンよりなる接着剤(融解終了温度145℃)を共押し出し法によって被覆し、接着層を形成した。該接着層の厚みは200μmであった。次に、上記ポリプロピレン樹脂パイプを内外面に溶融亜鉛めっき(厚さ85μm)が施された外径50.8mm、厚さ3.3mm、長さ3930mmの鋼管に挿入し、ポリプロピレン樹脂パイプの外径が1.4%縮径されるように鋼管をロール絞りすることにより、鋼管内面にポリプロピレン樹脂パイプを密着させた後、熱風加熱炉内で全体を150℃に加熱して接着した。鋼管端部よりはみ出したポリプロピレン樹脂パイプは切断した。この内面樹脂ライニング鋼管の外面には白錆防止塗料を厚さ10μm塗装した。
(Comparative Example 3)
Adhesive (melting end temperature) made of maleic anhydride-modified polypropylene on the outer surface when forming a polypropylene resin pipe (melting start temperature 155 ° C.) having an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm using a two-layer round die 145 ° C.) was coated by a coextrusion method to form an adhesive layer. The thickness of the adhesive layer was 200 μm. Next, the polypropylene resin pipe is inserted into a steel pipe having an outer diameter of 50.8 mm, a thickness of 3.3 mm, and a length of 3930 mm, the inner and outer surfaces of which are hot dip galvanized (thickness 85 μm). After rolling the steel pipe so that the diameter of the steel pipe was reduced by 1.4%, the polypropylene resin pipe was brought into close contact with the inner surface of the steel pipe, and then the whole was heated to 150 ° C. and bonded in a hot air heating furnace. The polypropylene resin pipe protruding from the end of the steel pipe was cut. The outer surface of this inner surface resin-lined steel pipe was coated with a 10 μm thick antirust paint.

(比較例4)
二層丸ダイスを用い、外径42.4mm、厚さ1.5mm、長さ4040mmの架橋ポリエチレン樹脂パイプ(融解開始温度120℃)成形時に外面に無水マレイン酸変性ポリエチレンよりなる接着剤(融解終了温度100℃)を共押し出し法によって被覆し、接着層を形成した。該接着層の厚みは200μmであった。次に、上記架橋ポリエチレン樹脂パイプを内外面に溶融亜鉛めっき(厚さ85μm)が施された外径50.8mm、厚さ3.3mm、長さ3930mmの鋼管に挿入し、架橋ポリエチレン樹脂パイプの外径が1.4%縮径されるように鋼管をロール絞りすることにより、鋼管内面に架橋ポリエチレン樹脂パイプを密着させた後、熱風加熱炉内で全体を115℃に加熱して接着した。鋼管端部よりはみ出した架橋ポリエチレン樹脂パイプは切断した。この内面樹脂ライニング鋼管の外面には白錆防止塗料を厚さ10μm塗装した。
(Comparative Example 4)
Adhesive made of maleic anhydride-modified polyethylene on the outer surface at the time of molding a cross-linked polyethylene resin pipe (melting start temperature 120 ° C.) having an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm, using a two-layer round die A temperature of 100 ° C.) was coated by a co-extrusion method to form an adhesive layer. The thickness of the adhesive layer was 200 μm. Next, the cross-linked polyethylene resin pipe is inserted into a steel pipe having an outer diameter of 50.8 mm, a thickness of 3.3 mm, and a length of 3930 mm, the inner and outer surfaces of which are hot dip galvanized (thickness 85 μm). The steel pipe was roll-drawn so that the outer diameter was reduced by 1.4%, thereby bringing the crosslinked polyethylene resin pipe into close contact with the inner surface of the steel pipe, and then the whole was heated to 115 ° C. and bonded in a hot air heating furnace. The cross-linked polyethylene resin pipe protruding from the end of the steel pipe was cut. The outer surface of this inner surface resin-lined steel pipe was coated with a 10 μm thick antirust paint.

実施例1〜18、比較例1〜4の樹脂ライニング鋼管について、鋼管と内面の樹脂パイプとの剪断接着力を測定した。剪断接着力の測定は、製造した樹脂ライニング鋼管を20mm長さに切断し、治具を用いて鋼管部分のみ支え、内面の樹脂ライニング層のみを10mm/minの条件で押し抜くことにより行い、この時の押し抜き力より剪断接着力を求めた。サンプルは各樹脂ライニング鋼管から3個ずつ採取し、平均値を求めた。剪断接着力の単位はMPaである。測定中の温度は一律23℃とした。樹脂ライニング鋼管に40℃の温水や90℃の熱水を1年間通水した後の剪断接着力も併せて測定した。各例の条件と測定結果を表1に示す。   For the resin-lined steel pipes of Examples 1 to 18 and Comparative Examples 1 to 4, the shear adhesive force between the steel pipe and the resin pipe on the inner surface was measured. The shear adhesive force is measured by cutting the produced resin-lined steel pipe into a length of 20 mm, supporting only the steel pipe part using a jig, and extruding only the resin-lining layer on the inner surface under the condition of 10 mm / min. The shear adhesive strength was determined from the punching force at the time. Three samples were taken from each resin-lined steel pipe, and the average value was obtained. The unit of the shear adhesive force is MPa. The temperature during the measurement was uniformly 23 ° C. The shear adhesive strength after passing hot water of 40 ° C. or hot water of 90 ° C. through the resin-lined steel pipe for one year was also measured. Table 1 shows the conditions and measurement results of each example.

実施例1〜18の40℃温水を1年間通水した後の剪断接着力は、従来の内外面溶融亜鉛めっき鋼管にポリ塩化ビニルを内面ライニングした比較例1と同等の値を示しており、比較例2〜4に比べては高いことがわかる。また、実施例1〜18の90℃熱水を1年間通水した後の剪断接着力は、従来の内外面溶融亜鉛めっき鋼管にポリ塩化ビニルを内面ライニングした比較例1に比べて高い値を示しており、比較例2〜4に比べては著しく高いことがわかり、長い期間に渡って給湯配管にも使用することができる。   The shear adhesive force after passing 40 ° C. warm water of Examples 1 to 18 for one year shows a value equivalent to that of Comparative Example 1 in which polyvinyl chloride is lined on the inner surface of a conventional inner and outer surface hot-dip galvanized steel pipe, It turns out that it is high compared with Comparative Examples 2-4. Moreover, the shear adhesive force after passing 90 degreeC hot water of Examples 1-18 for one year is a high value compared with the comparative example 1 which inner surface lined polyvinyl chloride to the conventional inner and outer surface hot-dip galvanized steel pipe. It can be seen that it is significantly higher than Comparative Examples 2 to 4, and can also be used for hot water supply piping over a long period of time.

さらに、実施例、比較例の樹脂ライニング鋼管について、外面の耐食性を調べるため塩水噴霧試験を行った。塩水噴霧試験は、製造した樹脂ライニング鋼管を150mm長さに切断し、外面にねじ切り機のチャック爪で鋼管に達する疵をつけた後、JIS Z 2371で規定されている方法により行い、上記疵部から赤錆が発生するまでの時間を測定した。その測定結果も表1に示す。
実施例1〜18の疵部から赤錆が発生するまでの時間は、従来の外面に溶融亜鉛めっきを施した比較例1〜4に比べていずれも長く、耐食性に優れていることがわかる。
Furthermore, a salt spray test was conducted on the resin-lined steel pipes of Examples and Comparative Examples in order to investigate the corrosion resistance of the outer surface. The salt spray test is performed by the method defined in JIS Z 2371 after cutting the manufactured resin-lined steel pipe to a length of 150 mm and attaching a ridge that reaches the steel pipe with a chuck claw of a screw cutter on the outer surface. The time until red rust was generated was measured. The measurement results are also shown in Table 1.
It can be seen that the time until red rust is generated from the heel portion of each of Examples 1 to 18 is longer than those of Comparative Examples 1 to 4 in which hot dip galvanizing is performed on the conventional outer surface, and is excellent in corrosion resistance.

Figure 2006144038
Figure 2006144038

この表から、本発明の樹脂ライニング鋼管については、複雑な工程や特殊な設備を必要とすることなく、ポリ塩化ビニルの代わりに腐食因子である酸素の透過が大きいポリオレフィン樹脂や架橋ポリオレフィン樹脂を内面ライニングする場合でも、従来の内外面溶融金属めっき鋼管にポリ塩化ビニルを内面ライニングした樹脂ライニング鋼管の代わりに使用することができ、長い期間に渡って鋼管と内面樹脂ライニング層との密着性に優れていることが判明した。


特許出願人 新日本製鐵株式会社
代理人 弁理士 椎 名 彊 他1
From this table, for the resin-lined steel pipe of the present invention, a polyolefin resin or a cross-linked polyolefin resin having a large permeation of oxygen, which is a corrosive factor, is used instead of polyvinyl chloride without the need for complicated processes and special equipment. Even in the case of lining, it can be used in place of the conventional resin lining steel pipe with inner surface lining of polyvinyl chloride on the inner and outer surface molten metal plated steel pipe, and it has excellent adhesion between the steel pipe and the inner surface resin lining layer for a long period of time. Turned out to be.


Patent applicant: Nippon Steel Corporation
Attorney Attorney Shiina and others 1

Claims (5)

鋼管の内面に接着層を有し、さらにその内側にポリオレフィン樹脂層または架橋ポリオレフィン樹脂層を有し、前記鋼管が予め下地処理した鋼管であり、前記下地処理として、結晶粒微細化処理を行ったリン酸塩の化成処理皮膜を施し、前記鋼管の外面には金属溶射皮膜を有することを特徴とする樹脂ライニング鋼管。   The steel pipe has an adhesive layer on the inner surface, and further has a polyolefin resin layer or a cross-linked polyolefin resin layer on the inner side, and the steel pipe is a pre-treated steel pipe, and the grain refinement process was performed as the base process. A resin-lined steel pipe, which is provided with a chemical conversion coating of phosphate and has a metal spray coating on the outer surface of the steel pipe. 前記接着層が、無水マレイン酸変性ポリオレフィン、無水イタコン酸変性ポリオレフィン、エチレン・無水マレイン酸共重合体、エチレン・無水マレイン酸・アクリル酸共重合体、エチレン・無水マレイン酸・アクリル酸エステル共重合体、エチレン・アクリル酸共重合体、エチレン・アクリル酸エステル共重合体、エチレン・メタクリル酸共重合体、エチレン・酢酸ビニル共重合体、アイオノマーのうち1つまたは2つ以上よりなり、且つ、当該接着層の融解終了温度が、前記ポリオレフィン樹脂層または架橋ポリオレフィン樹脂層の使用温度超で融解開始温度未満であることを特徴とする請求項1に記載の樹脂ライニング鋼管。   The adhesive layer is a maleic anhydride modified polyolefin, an itaconic anhydride modified polyolefin, an ethylene / maleic anhydride copolymer, an ethylene / maleic anhydride / acrylic acid copolymer, an ethylene / maleic anhydride / acrylic acid ester copolymer. , An ethylene / acrylic acid copolymer, an ethylene / acrylic acid ester copolymer, an ethylene / methacrylic acid copolymer, an ethylene / vinyl acetate copolymer, an ionomer, and the adhesive 2. The resin-lined steel pipe according to claim 1, wherein a melting end temperature of the layer is higher than a use temperature of the polyolefin resin layer or the crosslinked polyolefin resin layer and lower than a melting start temperature. 前記鋼管と前記接着層との間にエポキシプライマー層を有することを特徴とする請求項1または2に記載の樹脂ライニング鋼管。   The resin-lined steel pipe according to claim 1 or 2, further comprising an epoxy primer layer between the steel pipe and the adhesive layer. 前記樹脂ライニング鋼管を製造するに際し、鋼管に下地処理を施し、あるいは鋼管に下地処理を施し次にエポキシプライマー層を施し、鋼管内径よりも小さい外径の外面に接着層を有したポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプを前記鋼管に挿入し、当該鋼管を絞ることによりポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプを鋼管内面に密着せしめ、そして接着層の融解終了温度以上で且つポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの融解開始温度未満で加熱して接着することを特徴とする請求項1〜3のいずれか一項に記載の樹脂ライニング鋼管の製造方法。   In producing the resin-lined steel pipe, a polyolefin resin pipe having an adhesive layer on the outer surface smaller than the inner diameter of the steel pipe, or a base treatment is applied to the steel pipe, or a base treatment is applied to the steel pipe and then an epoxy primer layer is applied. A cross-linked polyolefin resin pipe is inserted into the steel pipe, and the steel pipe is squeezed so that the polyolefin resin pipe or the cross-linked polyolefin resin pipe is brought into close contact with the inner surface of the steel pipe. The method for producing a resin-lined steel pipe according to any one of claims 1 to 3, wherein the bonding is performed by heating at a temperature lower than the melting start temperature. 前記鋼管を絞る際に、ポリオレフィン樹脂パイプまたは架橋ポリオレフィン樹脂パイプの外径が0.5〜10%縮径されるように当該鋼管を絞ることを特徴とする請求項4に記載の樹脂ライニング鋼管の製造方法。   5. The resin-lined steel pipe according to claim 4, wherein when the steel pipe is squeezed, the steel pipe is squeezed so that the outer diameter of the polyolefin resin pipe or the cross-linked polyolefin resin pipe is reduced by 0.5 to 10%. Production method.
JP2004332259A 2004-11-16 2004-11-16 Resin lining steel pipe and method for producing the same Pending JP2006144038A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004332259A JP2006144038A (en) 2004-11-16 2004-11-16 Resin lining steel pipe and method for producing the same
PCT/JP2005/021309 WO2006054731A1 (en) 2004-11-16 2005-11-15 Steel pipe with resin lining and process for producing the same
TW094140311A TWI298774B (en) 2004-11-16 2005-11-16 Resin lining steel pipe and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332259A JP2006144038A (en) 2004-11-16 2004-11-16 Resin lining steel pipe and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006144038A true JP2006144038A (en) 2006-06-08

Family

ID=36407267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332259A Pending JP2006144038A (en) 2004-11-16 2004-11-16 Resin lining steel pipe and method for producing the same

Country Status (3)

Country Link
JP (1) JP2006144038A (en)
TW (1) TWI298774B (en)
WO (1) WO2006054731A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074685A (en) * 2007-08-31 2009-04-09 Jfe Steel Kk Inner surface coated steel pipe for water piping
WO2009081825A1 (en) * 2007-12-21 2009-07-02 Taiho Kogyo Co., Ltd. Sliding member for thrust bearing
JP2011031460A (en) * 2009-07-31 2011-02-17 Jfe Steel Corp Inner surface coated steel pipe for water piping
US8557750B2 (en) * 2009-03-31 2013-10-15 Nippon Steel & Sumitomo Metal Corporation Threaded joint for pipes
CN104455780A (en) * 2014-10-22 2015-03-25 中国水利水电第十工程局有限公司 Pressure backfill-type anti-corrosion pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266783A1 (en) * 2009-04-15 2010-10-21 Hot Dip Solutions, Llc Method of coating a substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294174A (en) * 2001-05-22 2003-10-15 Nippon Steel Corp Resin lining steel pipe and manufacture method
JP2003183855A (en) * 2001-10-05 2003-07-03 Nippon Steel Corp Piping and piping member for plain water
JP3864148B2 (en) * 2002-06-13 2006-12-27 日本ペイント株式会社 Zinc phosphate-containing surface conditioner, phosphate chemical conversion steel sheet and coated steel sheet, and zinc phosphate dispersion
JP2004149896A (en) * 2002-10-31 2004-05-27 Nippon Parkerizing Co Ltd Composition for surface treatment, treatment liquid for surface treatment, surface treatment method, and product comprising metal material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074685A (en) * 2007-08-31 2009-04-09 Jfe Steel Kk Inner surface coated steel pipe for water piping
WO2009081825A1 (en) * 2007-12-21 2009-07-02 Taiho Kogyo Co., Ltd. Sliding member for thrust bearing
US8557750B2 (en) * 2009-03-31 2013-10-15 Nippon Steel & Sumitomo Metal Corporation Threaded joint for pipes
JP2011031460A (en) * 2009-07-31 2011-02-17 Jfe Steel Corp Inner surface coated steel pipe for water piping
CN104455780A (en) * 2014-10-22 2015-03-25 中国水利水电第十工程局有限公司 Pressure backfill-type anti-corrosion pipe

Also Published As

Publication number Publication date
WO2006054731A1 (en) 2006-05-26
TWI298774B (en) 2008-07-11
TW200624701A (en) 2006-07-16

Similar Documents

Publication Publication Date Title
JP4295216B2 (en) Resin-lined steel pipe and manufacturing method thereof
JP2006010063A (en) Resin lined steel pipe with end corrosive protection core and its manufacturing method
US5520223A (en) Extruded multiple plastic layer coating bonded to the outer surface of a metal tube having an optical non-reactive inner layer and process for making the same
US4606953A (en) Polypropylene coated steel pipe
EP0759136B1 (en) Extruded multiple plastic layer coating bonded to a metal tube and process for making the same
TWI298774B (en) Resin lining steel pipe and production method thereof
JP4859861B2 (en) Polyolefin coated steel
JPS622870B2 (en)
KR100533359B1 (en) Fusion bonded Epoxy powder coating for multilayer system
CN100545497C (en) The plastic lined steel pipe of pipe end band corrosive protection core
JP2003294174A (en) Resin lining steel pipe and manufacture method
JP2000143899A (en) Adhesive resin composition
JP2007268796A (en) Inner surface coated steel pipe for water piping
JP5359098B2 (en) Inner coated steel pipe for water piping
JP4228874B2 (en) Manufacturing method for internally lined steel pipe
JP2002286169A (en) Resin-clad steel pipe
JP2618438B2 (en) Metal surface coating method
JP2000044909A (en) Adhesive resin composition
JPS59150575A (en) Coating method for metal surface
JPH09262903A (en) Polyamide resin coated aluminum pipe and its production
JP2004052073A (en) Lithium silicate based lubrication treated steel strip
JP2004160991A (en) Inner surface lining steel pipe and its manufacturing method
JPH0329588B2 (en)
JPH07268306A (en) Adhesive for layering polyolefin on metal
JPH07329244A (en) Polyolefin resin coated steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811