明 細 書 樹脂ライニング鋼管およびその製造方法 技術分野 Description Resin-lined steel pipe and its manufacturing method Technical Field
本発明は、 給水、 給湯、 空調、 消火、 排水等の配管等に好適な樹 脂ライニング鋼管およびその製造方法に関するものである。 背景技術 The present invention relates to a resin-lined steel pipe suitable for pipes for water supply, hot water supply, air conditioning, fire extinguishing, drainage, and the like, and a method for manufacturing the same. Background art
鍛接鋼管ゃ電鏠鋼管等の鋼管は、 ポリ塩化ビニル、 ポリエチレン 、 ポリプロピレン、 ポリブテン等の熱可塑性の樹脂管と比較して、 機械的強度、 施工時の耐衝撃性、 交通の激しい道路下への埋設時の 耐圧縮性、 高温流体輸送時の耐圧強度、 耐燃焼性等に優れる。 一方 、 鋼管は、 樹脂管よりも耐食性に劣るため、 鋼の腐食が問題になる 用途では腐食が起こらない樹脂管を使用するか、 流体の濁り、 管路 の閉塞等を防止する必要がある。 Steel pipes such as forged steel pipes and electric steel pipes are more resistant to mechanical strength, impact resistance during construction, and under heavy traffic roads than thermoplastic resin pipes such as polyvinyl chloride, polyethylene, polypropylene, and polybutene. Excellent compression resistance when buried, high pressure strength when transporting high-temperature fluid, and excellent combustion resistance. On the other hand, steel pipes have poorer corrosion resistance than resin pipes, so it is necessary to use resin pipes that do not cause corrosion in applications where steel corrosion is a problem, or to prevent fluid turbidity and blockage of pipes.
そのため、 機械的特性と耐食性が要求される用途には鋼管と樹脂 管の両者の良い点を合わせ持つ、 鋼管の内面に樹脂管を挿入して防 食した樹脂ライニング鋼管が使用されている。 例えば、 給水管ゃ排 水管としては安価なポリ塩化ビニルからなる樹脂管を、 給湯管とし ては硬質ポリ塩化ビニルからなる樹脂管を、 鋼管の内面に接着した 樹脂ライニング鋼管が使用されている。 For this reason, resin-lined steel pipes are used for applications where mechanical properties and corrosion resistance are required, and have the advantages of both steel pipes and resin pipes. For example, a resin pipe made of inexpensive polyvinyl chloride is used as a water supply pipe or a drain pipe, and a resin lined steel pipe in which a resin pipe made of hard polyvinyl chloride is bonded to the inner surface of a steel pipe as a hot water pipe.
しかし、 ポリ塩化ビニルは不完全燃焼時にダイォキシンが発生す るため、 現地配管工事で発生した残材の焼却廃棄処理が問題になる ことがある。 したがって、 給水管、 給湯管、 排水管等にはポリ塩化 ビニルの代わりにダイォキシン発生という問題がないポリオレフィ ン樹脂や架橋ポリオレフィ ン樹脂からなる樹脂管を内面に接着した
樹脂ライニング鋼管が提案されている。 However, since polyvinyl chloride generates dioxin during incomplete combustion, incineration and disposal of residual materials generated during local piping work can be a problem. Therefore, instead of polyvinyl chloride, water pipes, hot water pipes, drain pipes, etc. are bonded to the inner surface with resin pipes made of polyolefin resin or cross-linked polyolefin resin that do not cause the problem of dioxin generation. Resin-lined steel pipes have been proposed.
従来、 屋内配管や屋外露出配管として使用する樹脂ライニング鋼 管は、 外面の耐食性を向上させるために、 鉄を犠牲防食する金属ま たは合金、 例えば亜鉛または亜鉛合金を内面および外面に溶融めつ きした鋼管にポリ塩化ビニルをライニングしていた。 しかし、 ポリ 塩化ビニルと比べ腐食因子である酸素の透過がはるかに大きいポリ ォレフィ ン樹脂や架橋ポリォレフィ ン樹脂を、 内外面を溶融亜鉛め つきした鋼管の内面にライニングすると、 長期間使用した際に、 溶 融亜鉛めつき層が腐食する。 そのため、 鋼管と樹脂管との接着界面 が劣化して接着力が弱まり、 樹脂管が鋼管の内面から剥離する。 Conventionally, resin-lined steel pipes used as indoor pipes or outdoor exposed pipes are made by melting a metal or alloy that sacrifices and protects iron, such as zinc or a zinc alloy, on the inner and outer surfaces to improve the corrosion resistance of the outer surface. Polyvinyl chloride was lined on the broken steel pipe. However, when lining the inner and outer surfaces of a steel pipe with a hot-dip galvanized polyolefin resin or cross-linked polyolefin resin, which has a much greater permeability of oxygen, which is a corrosive factor compared to polyvinyl chloride, when used for a long time Corrosion of the molten zinc plating layer. As a result, the adhesive interface between the steel pipe and the resin pipe deteriorates and the adhesive strength weakens, and the resin pipe peels from the inner surface of the steel pipe.
このような樹脂ライニング鋼管の内面からの樹脂層の剥離を防止 するために、 内面に溶融金属めつきを施さず、 外面のみに溶融金属 めっきを施した鋼管の内面にポリオレフイ ン樹脂や架橋ポリオレフ イ ン樹脂を接着した樹脂ライニング鋼管が、 例えば特開 2003— 2941 74号公報や国際公開 W02004— 01 123 1号公報に提案されている。 しか し、 鋼管の外面のみに溶融金属めつきを施すには複雑な工程や特殊 な設備が必要となり、 製造や設備にかかるコス トが高くなる。 また 、 鋼管の内外面に溶融金属めつきを施した後、 鋼管の内面の溶融金 属めっきを除去することも考えられる。 しかし、 ブラス ト処理では 溶融金属めつきを完全に除去することが難しい。 また、 鋼管の内面 のみを酸洗し、 溶融金属めつきを除去することも考えられるが、 こ れも複雑な工程や特殊な設備が必要となる。 In order to prevent such peeling of the resin layer from the inner surface of the resin-lined steel pipe, the inner surface of the steel pipe that has been subjected to molten metal plating only on the outer surface without applying molten metal plating is used on the inner surface of the polyolefin resin or cross-linked polyolefin. For example, JP 2003-29474 A and International Publication W02004-01 123 1 have proposed resin-lined steel pipes bonded with plastic resin. However, applying molten metal to only the outer surface of the steel pipe requires complicated processes and special equipment, which increases the manufacturing and equipment costs. It is also conceivable to remove the molten metal plating on the inner surface of the steel pipe after applying the molten metal plating to the inner and outer surfaces of the steel pipe. However, it is difficult to completely remove the molten metal plating by blasting. It is also conceivable to pickle only the inner surface of the steel pipe and remove the molten metal plating, but this also requires complicated processes and special equipment.
このように鋼管の外面のみに溶融金属めつきを施す方法は、 複雑 な工程や特殊な設備が必要となり、 製造や設備にかかるコス 卜が高 くなつてしまう。 さらに、 鋼管内面の腐食進行による内面樹脂ライ ニング層の剥離を抑制するためには鋼管に下地処理として化成処理 皮膜を施すことが必要となるが、 鋼管内面のみ化成処理皮膜を施す
には、 やはり複雑な工程や特殊な設備が必要となるといつた問題が あった。 As described above, the method of applying the molten metal plating only to the outer surface of the steel pipe requires a complicated process and special equipment, which increases the cost of manufacturing and equipment. Furthermore, in order to suppress the peeling of the inner resin lining layer due to the progress of corrosion on the inner surface of the steel pipe, it is necessary to apply a chemical conversion coating to the steel pipe as a base treatment, but the chemical conversion coating is applied only to the inner surface of the steel pipe. After all, there were problems when complicated processes and special equipment were required.
本発明は、 ポリ塩化ビニルの代わりに腐食因子である酸素の透過 が大きいポリオレフイ ン樹脂または架橋ポリオレフイ ン樹脂からな る樹脂管を鋼管の内面にライニングする場合でも、 鋼管の内面から の樹脂層の剥離を防止することを課題とする。 発明の開示 In the present invention, even when a resin pipe made of a polyolefin resin or a cross-linked polyolefin resin having a high permeability of oxygen, which is a corrosive factor, is used instead of polyvinyl chloride, the resin layer from the inner surface of the steel pipe is lined. It is an object to prevent peeling. Disclosure of the invention
本発明の要旨は次のとおりである。 The gist of the present invention is as follows.
( 1 ) 鋼管の少なく とも内面に、 粒径が 10 m以下のリ ン酸塩の結 晶からなる化成処理皮膜を設け、 前記鋼管の内面にポリオレフイ ン 樹脂または架橋ポリオレフィ ン樹脂からなる樹脂層を接着層を介し て密着させた後、 前記鋼管の外面に鉄よりも卑な金属または合金か らなる溶射層を設けたことを特徴とする樹脂ライニング鋼管。 (1) At least the inner surface of the steel pipe is provided with a chemical conversion film made of a phosphate crystal having a particle size of 10 m or less, and a resin layer made of a polyolefin resin or a crosslinked polyolefin resin is formed on the inner surface of the steel pipe. A resin-lined steel pipe, wherein a thermal spray layer made of a metal or an alloy that is lower than iron is provided on the outer surface of the steel pipe after being adhered through an adhesive layer.
( 2 ) 接着層が、 無水マレイン酸変性ポリオレフイ ン、 無水ィ夕コ ン酸変性ポリオレフイ ン、 エチレン · 無水マレイン酸共重合体、 ェ チレン · 無水マレイン酸 · アクリル酸共重合体、 エチレン · 無水マ レイン酸 · アクリル酸エステル共重合体、 エチレン · アクリル酸共 重合体、 エチレン · アクリル酸エステル共重合体、 エチレン ' メタ クリル酸共重合体、 エチレン , 酢酸ビニル共重合体、 アイオノマー のうち 1つまたは 2つ以上からなり、 かつ、 該接着層の融解終了温 度が、 15°C超であり、 かつ樹脂層の融解開始温度未満であることを 特徴とする上記 ( 1 ) に記載の樹脂ライニング鋼管。 (2) The adhesive layer is made of maleic anhydride modified polyolefin, anhydrous anhydride modified polyolefin, ethylene / maleic anhydride copolymer, ethylene / maleic anhydride / acrylic acid copolymer, ethylene / anhydride copolymer. One of the following: oleic acid / acrylic acid ester copolymer, ethylene / acrylic acid copolymer, ethylene / acrylic acid ester copolymer, ethylene / methacrylic acid copolymer, ethylene / vinyl acetate copolymer, ionomer The resin-lined steel pipe according to (1) above, wherein the melting end temperature of the adhesive layer is higher than 15 ° C and lower than the melting start temperature of the resin layer. .
( 3 ) 鋼管の内面と接着層との間にエポキシプライマ一層を有する ことを特徴とする上記 ( 1 ) または ( 2 ) に記載の樹脂ライニング 鋼管。 (3) The resin-lined steel pipe according to the above (1) or (2), which has an epoxy primer layer between the inner surface of the steel pipe and the adhesive layer.
( 4 ) 溶射層が亜鉛、 亜鉛 · アルミニウム混合物、 亜鉛 , アルミ二
ゥム合金の何れかであることを特徴とする上記 ( 1 ) 〜 ( 3 ) の何 れか 1項に記載の樹脂ライニング鋼管。 (4) Thermal spray layer is zinc, zinc-aluminum mixture, zinc, aluminum The resin-lined steel pipe according to any one of the above (1) to (3), wherein the resin-lined steel pipe is any one of rum alloys.
( 5 ) 溶射層がアルミニウムを 30%以下含有する亜鉛 · アルミニゥ ム混合物または亜鉛 · アルミニウム合金であることを特徴とする上 記 ( 4 ) に記載の樹脂ライニング鋼管。 (5) The resin-lined steel pipe according to (4) above, wherein the sprayed layer is a zinc-aluminum mixture or a zinc-aluminum alloy containing 30% or less of aluminum.
( 6 ) 外面に溶射層を設けた樹脂ライニング鋼管の鋼管と内面樹脂 層との押し抜き剪断接着力が、 当該樹脂ライニング鋼管において外 面に溶射層のない鋼管に比較して 10〜40%大きいことを特徴とする 上記 ( 1 ) 〜 ( 5 ) の何れか 1項に記載の樹脂ライニング鋼管。 (6) The punching shear adhesive force between the steel pipe of the resin-lined steel pipe with the thermal spray layer on the outer surface and the inner resin layer is 10 to 40% greater than that of the resin-lined steel pipe with no thermal spray layer on the outer surface. The resin-lined steel pipe according to any one of (1) to (5) above, wherein
( 7 ) 鋼管に下地処理を施して粒径が 10 m以下のリン酸塩の結晶 からなる化成処理皮膜を形成し、 前記鋼管の内径よりも小さい外径 を有し、 ポリオレフイ ン樹脂または架橋ポリオレフィ ン樹脂からな る樹脂管の外面に接着層を設け、 該樹脂管を前記鋼管に挿入し、 該 鋼管を絞ることにより樹脂管を鋼管の内面に前記接着層を介して密 着せしめ、 前記接着層の融解終了温度以上でかつ前記樹脂管の融解 開始温度未満で加熱して接着し、 前記鋼管の外面に鉄よりも卑な金 属または合金を溶射することを特徴とする樹脂ライニング鋼管の製 造方法。 (7) The steel pipe is subjected to a base treatment to form a chemical conversion film made of phosphate crystals having a particle size of 10 m or less, and has an outer diameter smaller than the inner diameter of the steel pipe, and is made of a polyolefin resin or a crosslinked polyolefin. An adhesive layer is provided on the outer surface of a resin pipe made of a resin, the resin pipe is inserted into the steel pipe, and the resin pipe is tightly adhered to the inner surface of the steel pipe via the adhesive layer by squeezing the steel pipe. The resin-lined steel pipe is manufactured by heating and bonding at a temperature equal to or higher than the melting end temperature of the layer and lower than the melting start temperature of the resin pipe, and spraying a metal or alloy lower than iron on the outer surface of the steel pipe. Manufacturing method.
( 8 ) 鋼管の内面に化成処理皮膜を形成した後'、 エポキシプライマ 一層を設けることを特徴とする上記 ( 7 ) に記載の樹脂ライニング 鋼管の製造方法。 (8) The method for producing a resin-lined steel pipe according to the above (7), wherein after the chemical conversion treatment film is formed on the inner surface of the steel pipe, an epoxy primer layer is provided.
( 9 ) 樹脂管の外径が 0.5〜 10%縮径されるように鋼管を絞ること を特徴とする上記 ( 7 ) または ( 8 ) に記載の樹脂ライニング鋼管 の製造方法。 (9) The method for producing a resin-lined steel pipe according to the above (7) or (8), wherein the steel pipe is narrowed so that the outer diameter of the resin pipe is reduced by 0.5 to 10%.
(10) 鋼管の外面に亜鉛、 亜鉛 · アルミニウム混合物、 亜鉛 , アル ミニゥム合金の何れかを溶射することを特徴とする上記 ( 7 ) 〜 ( 9 ) の何れか 1項に記載の樹脂ライニング鋼管の製造方法。
(11) 鋼管の外面にアルミニウムを 30%以下含有する亜鉛 · アルミ ニゥム混合物または亜鉛 · アルミニウム合金を溶射することを特徴 とする上記 (10) に記載の樹脂ライニング鋼管の製造方法。 発明を実施するための最良の形態 (10) The resin-lined steel pipe according to any one of the above (7) to (9), wherein any one of zinc, a zinc-aluminum mixture, zinc, and an aluminum alloy is thermally sprayed on the outer surface of the steel pipe. Production method. (11) The method for producing a resin-lined steel pipe according to (10) above, wherein the outer surface of the steel pipe is sprayed with a zinc / aluminum mixture or a zinc / aluminum alloy containing 30% or less of aluminum. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の樹脂ライニング鋼管の製造方法を説明する。 外径 10〜20 00mm、 好ましくは 20〜170mmの鋼管を脱脂し、 酸洗し、 必要に応じ てブラス ト処理を施して清浄にする。 次に、 鋼管の内面に化成処理 皮膜を形成させる。 この化成処理皮膜のリン酸塩の結晶は、 鋼管と ポリオレフィ ン樹脂または架橋ポリオレフィ ン樹脂からなる樹脂管 との接合強度を向上させるため、 粒径 10^ m以下の細粒にする必要 がある。 リ ン酸塩の結晶の粒径を 10 m以下にすると、 粒径が 10 m超である場合と比較して密着力が 3倍以上向上する。 A method for producing the resin-lined steel pipe of the present invention will be described. Degrease a steel pipe with an outer diameter of 10 to 2000 mm, preferably 20 to 170 mm, pickle it, and clean it by blasting if necessary. Next, a chemical conversion coating is formed on the inner surface of the steel pipe. The phosphate crystals of this chemical conversion coating must be made fine with a particle size of 10 ^ m or less in order to improve the joint strength between the steel pipe and the resin pipe made of polyolefin resin or cross-linked polyolefin resin. When the grain size of phosphate crystals is 10 m or less, the adhesion is improved by more than 3 times compared to the case where the grain size exceeds 10 m.
これにより、 長期間に渡って給水、 給湯、 空調、 消火、 排水等の 配管に使用しても鋼管の内面からの樹脂層の剥離を防止することが でき、 寒冷地で使用し、 樹脂層が収縮し、 剥離力が大きくなつても 、 化成処理皮膜が破壊されることがない。 This makes it possible to prevent the resin layer from peeling off from the inner surface of the steel pipe even when used for piping for water supply, hot water supply, air conditioning, fire extinguishing, drainage, etc. over a long period of time. Even if it shrinks and the peel force increases, the chemical conversion coating is not destroyed.
鋼管の内面への化成処理皮膜の付着量は l 〜10g /m2が好まし い。 化成処理皮膜の付着量が 1 g /m2未満では化成処理皮膜が鋼 管の内面を完全に覆っていないことがあり、 鋼管の内面の樹脂層の 耐水接着力が低下することがある。 また、 化成処理皮膜の付着量が 10g /m2超では、 化成処理皮膜に脆弱な二次結晶粒が成長するこ とがあり、 鋼管の内面と樹脂層との密着力や耐水接着力が低下する ことがある。 Deposition amount of the chemical conversion coating to the inner surface of the steel pipe is l to 10 g / m 2 is not preferable. If the amount of the chemical conversion coating is less than 1 g / m 2 , the chemical conversion coating may not completely cover the inner surface of the steel pipe, and the water-resistant adhesive strength of the resin layer on the inner surface of the steel pipe may be reduced. In addition, if the amount of chemical conversion coating is more than 10 g / m 2 , brittle secondary grains may grow on the chemical conversion coating, reducing the adhesion between the inner surface of the steel pipe and the resin layer and the water-resistant adhesive strength. There are things to do.
化成処理皮膜の結晶粒を微細化するためには、 化成処理を施す前 に、 鋼管にリン酸塩の結晶粒を微細化する金属を付着するか、 また は、 化成処理を施す際に、 鋼管にリン酸塩の結晶粒を微細化する金
属を先に析出すれば良い。 鋼管にリン酸塩の結晶粒を微細化する金 属を付着する処理と析出する処理は併用しても良い。 結晶粒微細化 処理および化成処理は鋼管の少なく とも内面に施せば良いが、 内面 および外面の両方に施しても良い。 In order to make the crystal grains of the chemical conversion coating finer, before the chemical conversion treatment, the metal that makes the phosphate crystal grains fine is attached to the steel pipe, or when the chemical conversion treatment is performed, the steel pipe Gold that refines phosphate grains The genus should be deposited first. The treatment for depositing metal to refine the phosphate crystal grains on the steel pipe and the treatment for precipitation may be used in combination. The crystal grain refinement treatment and chemical conversion treatment may be performed on at least the inner surface of the steel pipe, but may be performed on both the inner surface and the outer surface.
まず、 鋼管にリ ン酸塩の結晶粒を微細化する金属を付着する処理 について説明する。 鋼管の表面に、 例えばチタンコロイ ドを水に 1 〜 5 g / Lの範囲で分散させた処理液 (代表的なものとしはプレパ レン Z (日本パーカライジング社製) がある) を浸漬塗布またはス プレー塗装する。 First, a process for attaching a metal that refines phosphate crystal grains to a steel pipe will be described. For example, a treatment liquid (preparation Z (manufactured by Nihon Parkerizing Co., Ltd.)) in which titanium colloid is dispersed in water in the range of 1 to 5 g / L, for example, is dip-coated or sprayed on the surface of the steel pipe. Paint.
次に、 化成処理について説明する。 化成処理は、 鋼管の内外面に 化成処理液を浸漬塗布や鋼管の少なく とも内面にスプレー塗装した 後、 鋼管を水洗 · 湯洗し、 熱風加熱や高周波誘導加熱等で加熱 · 乾 燥し、 化成処理皮膜を形成するものである。 化成処理液として、 例 えばリン酸、 硝酸、 酸化亜鉛、 炭酸カルシウムと水からなり、 水酸 化ナトリウムで pHを調整した混合物 (リン酸亜鉛カルシウム処理液 ) を用いる。 特に、 リ ン酸亜鉛カルシウムは耐熱性に優れるため、 製造に加熱を伴う本発明に好適である。 これらの添加量の好ましい 範囲は、 リン酸イオンとして 8〜 15 g / L、 硝酸イオンとして 30〜 60 g / L、 亜鉛イオンとして 2〜 4 g / L、 カルシウムイオンとし て 5〜10 g / L、 pHは 2. 0〜2. 5であり、 これにより、 良好な耐水密 着性が得られる。 この組成に該当する代表的なリ ン酸亜鉛カルシゥ ム処理液としてはパルポンド P (日本パーカライジング社製) があ る。 Next, the chemical conversion treatment will be described. In the chemical conversion treatment, the chemical conversion solution is dip-applied on the inner and outer surfaces of the steel pipe or spray coated on at least the inner surface of the steel pipe, and then the steel pipe is washed with water and hot water, heated and dried by hot air heating, high-frequency induction heating, etc. A treatment film is formed. As a chemical conversion treatment solution, for example, a mixture (zinc calcium phosphate treatment solution) composed of phosphoric acid, nitric acid, zinc oxide, calcium carbonate and water and adjusted to pH with sodium hydroxide is used. In particular, since zinc calcium phosphate is excellent in heat resistance, it is suitable for the present invention that involves heating during production. The preferred ranges of these addition amounts are 8-15 g / L for phosphate ions, 30-60 g / L for nitrate ions, 2-4 g / L for zinc ions, and 5-10 g / L for calcium ions. The pH is 2.0 to 2.5, which provides good water tightness. Palpond P (manufactured by Nihon Parkerizing Co., Ltd.) is a typical zinc phosphate treatment solution corresponding to this composition.
また、 化成処理液に、 例えば塩基性炭酸ニッケルを、 ニッケルィ オンとして 0. 2〜1. 0 g Z Lの範囲で含有するように添加することに より、 鋼管にリン酸塩の結晶粒を微細化する金属を付着する処理を 省略しても、 化成処理皮膜のリン酸塩の結晶の粒径を 10 ^ m以下に
することができる。 このようなニッケルの添加は、 鋼管にリ ン酸塩 の結晶粒を微細化する金属を付着する処理後に化成処理をする場合 にも、 行うことができる。 In addition, by adding basic nickel carbonate, for example, in the range of 0.2 to 1.0 g ZL as a nickel ion, the phosphate crystal grains are refined in the steel pipe. Even if the treatment to attach the metal to be removed is omitted, the grain size of the phosphate crystals in the chemical conversion coating should be 10 ^ m or less. can do. Such addition of nickel can also be performed when chemical conversion treatment is performed after the treatment of attaching a metal for refining phosphate crystal grains to a steel pipe.
結晶粒微細化処理に用いるチタンコロイ ドやニッケルは、 化成処 理の際にリン酸塩の結晶粒析出の核となり、 チタンコロイ ドは鋼管 の表面に緻密に付着して、 ニッケルは鋼管の表面に緻密に析出して 結晶粒を微細化する。 これにより、 リン酸塩の結晶粒と鋼管との接 触面積が増大し、 密着力が向上する。 Titanium colloid and nickel used for grain refinement process become the core of phosphate crystal grain precipitation during chemical conversion, and titanium colloid adheres densely to the surface of the steel pipe, and nickel is dense on the surface of the steel pipe. To crystallize the crystal grains. This increases the contact area between the phosphate crystal grains and the steel pipe and improves the adhesion.
結晶粒微細化処理に使用するチタンコロイ ドが 1 gノ L未満、 ま たはニッケルイオンが 0. 2 g / L未満である場合は、 結晶粒微細化 の効果が低下することがある。 一方、 結晶粒微細化処理に使用する チタンコロイ ドが 5 g Z L超、 またはニッケルイオンが 1. 0 g Z L 超である場合は、 経済性が悪くなることがある。 If the titanium colloid used for the grain refinement treatment is less than 1 g / L or the nickel ion is less than 0.2 g / L, the effect of grain refinement may be reduced. On the other hand, if the titanium colloid used for grain refinement is more than 5 g Z L or the nickel ion is more than 1.0 g Z L, the economic efficiency may deteriorate.
鋼管の少なく とも内面に化成処理皮膜を形成した後、 さらに、 ェ ポキシプライマー層を設けることが好ましい。 鋼管の内面と接着層 との間にエポキシプライマー層を設けると、 樹脂ライニング鋼管を 使用する際に、 長期間に渡って良好な耐水密着性が得られる。 ェポ キシプライマー層は、 例えばエポキシ、 顔料、 添加剤と硬化剤から なる混合物 (エポキシ樹脂粉体プライマー) を塗布し、 加熱して硬 化させることによって形成することができる。 エポキシとしては、 例えばビスフエノール Aのジグリシジルエーエル、 ビスフエノール Fのジグリシジルェ一テルやフエノールノポラック型またはクレゾ ールノポラック型のグリシジルエーテル等を使用する。 It is preferable to provide an epoxy primer layer after the chemical conversion coating is formed on at least the inner surface of the steel pipe. When an epoxy primer layer is provided between the inner surface of the steel pipe and the adhesive layer, good water-resistant adhesion can be obtained over a long period of time when a resin-lined steel pipe is used. The epoxy primer layer can be formed, for example, by applying a mixture (epoxy resin powder primer) composed of an epoxy, a pigment, an additive and a curing agent, and curing it by heating. As the epoxy, for example, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, phenol nopolac-type or cresol nopolac-type glycidyl ether, or the like is used.
これらのエポキシは単独での使用も可能であるが、 それぞれの樹 脂を目的に応じて混合し、 使用することもできる。 顔料にはシリカ 、 硫酸バリウム、 炭酸カルシウム等の体質顔料類や酸化チタン、 力 一ポンプラック等の着色顔料類の微粒子粉末を利用する。 これらの
顔料の添加量は、 エポキシ 1 00重量部に対して 3〜 50重量部の範囲 とすることにより、 良好な耐水密着性が得られる。 添加剤は、 ァク リルオリゴマーゃ微粉末シリカ等を用いることができる。 These epoxies can be used alone, but each resin can be mixed and used according to the purpose. As pigments, fine powders of extender pigments such as silica, barium sulfate and calcium carbonate, and colored pigments such as titanium oxide and force pump racks are used. these By adding the pigment in an amount of 3 to 50 parts by weight with respect to 100 parts by weight of the epoxy, good water-resistant adhesion can be obtained. As the additive, acryl oligomer, fine powder silica or the like can be used.
硬化剤には、 ジシアンジアミ ド、 デカンジカルボン酸等の 2塩基 酸、 アジピン酸ジヒ ドラジド等のヒ ドラジン類、 テトラヒ ドロ無水 フ夕ル酸等の酸無水物、 ビスフエノール Aのジグリシジルエーテル にビスフエノール Aを付加したフエノール系硬化剤やビスフエノー ル Aのジグリシジルエーテルにジアミ ドジフエニルメタンを付加し たアミンァダク ト類等を使用できる。 硬化剤に 2塩基酸、 ヒ ドラジ ン類ゃフエノール系硬化剤を使用する場合は、 エポキシのエポキシ 当量と硬化剤の活性水素当量の比で、 硬化剤量を決定する。 当量比 としてはエポキシ当量 1. 0に対して活性水素当量を 0. 6〜1. 2の範囲 とすることが好ましい。 Hardeners include dibasic acids such as dicyandiamide and decanedicarboxylic acid, hydrazines such as adipic acid dihydrazide, acid anhydrides such as tetrahydrofuranic anhydride, bisphenol to diglycidyl ether of bisphenol A A phenolic curing agent to which A has been added or amine adducts to which diamide diphenylmethane has been added to diglycidyl ether of bisphenol A can be used. When dibasic acid or hydrazine phenolic curing agent is used as the curing agent, the amount of curing agent is determined by the ratio of epoxy equivalent of epoxy to active hydrogen equivalent of curing agent. As the equivalent ratio, the active hydrogen equivalent is preferably in the range of 0.6 to 1.2 with respect to the epoxy equivalent of 1.0.
硬化剤にジシアンジアミ ドを使用する場合は硬化温度を低減する ために、 硬化促進剤として変性イミダゾールを添加する。 この変性 イミダゾールとしては、 例えば 2 —メチルイミダゾ一ルゃ 2 —フエ 二ルイミダゾ一ル等を利用することができる。 この場合の硬化剤の 配合は、 エポキシ 1 00重量部に対してジシアンジアミ ドを 3〜 1 0重 量部、 変性ィミダゾ一ルを 0. 1〜 3重量部範囲で添加すると良好な 耐水密着性が得られる。 同様にフエノール系硬化剤を使用する場合 も、 硬化促進剤として変性ィミダゾールを使用するのが有効である 。 この組成に該当する代表的なエポキシ樹脂粉体塗料としてはパゥ ダックス E (日本ペイント社製) がある。 When dicyandiamide is used as the curing agent, modified imidazole is added as a curing accelerator to reduce the curing temperature. As this modified imidazole, for example, 2-methylimidazole 2-phenol imidazole and the like can be used. In this case, the curing agent is blended in an amount of 3 to 10 parts by weight of dicyandiamide and 0.1 to 3 parts by weight of modified imidazole with respect to 100 parts by weight of epoxy. can get. Similarly, when using a phenolic curing agent, it is effective to use modified imidazole as a curing accelerator. As a representative epoxy resin powder coating material corresponding to this composition, there is PUDAX E (manufactured by Nippon Paint Co., Ltd.).
エポキシプライマー層の形成は、 化成処理皮膜を形成した鋼管の 内面に、 常温〜 80 °C程度でエポキシ樹脂粉体プライマーを静電スプ レーや流動吸引により塗装した後、 鋼管を熱風加熱や高周波誘導加 熱等で 140〜220 °C程度に加熱し、 硬化させて行うと良い。 このェポ
キシプライマー層の厚みは 40〜 600 mが好ましい。 エポキシブラ イマ一層の膜厚を 40 m未満にすると、 粉体塗料の造膜限界以下に なる可能性があり、 連続被膜にならず、 鋼管の内面と樹脂層との耐 水接着力が低下することがある。 また、 作業性と経済性の点から、 エポキシプライマ一層の膜厚の上限は 600 m以下とすることが好 ましい。 The epoxy primer layer is formed by coating the inner surface of the steel tube with the chemical conversion coating on the inner surface of the steel tube at room temperature to 80 ° C by electrostatic spraying or fluid suction, and then heating the steel tube with hot air or high-frequency induction. It is good to carry out heating and heating to about 140-220 ° C and curing. This epo The thickness of the xyprimer layer is preferably 40 to 600 m. If the film thickness of one epoxy liner is less than 40 m, it may be less than the film-forming limit of the powder coating, and it will not be a continuous film, reducing the water-resistant adhesion between the inner surface of the steel pipe and the resin layer. Sometimes. From the viewpoint of workability and economy, the upper limit of the film thickness of the epoxy primer is preferably 600 m or less.
化成処理皮膜を形成し、 必要に応じてさらにエポキシプライマー 層を設けた鋼管の内面に、 ポリオレフイ ン樹脂または架橋ポリオレ フィ ン樹脂からなる樹脂管を、 接着層を介して密着させる。 ポリオ レフイ ン樹脂としては、 エチレン単独重合体、 あるいはエチレンと プロピレン、 1 —ブテン、 1 一へキセン、 1 ーォクテン等の CKーォ レフイ ンを共重合したエチレン一 ひ 一ォレフィ ン共重合体、 または これらの混合物に、 酸化防止剤、 紫外線吸収剤、 難燃剤、 顔料、 充 填剤、 滑剤、 帯電防止剤等の添加剤、 および他の樹脂等を混合した 混合物を用いることができる。 A chemical conversion film is formed, and if necessary, a resin tube made of a polyolefin resin or a crosslinked polyolefin resin is brought into close contact with the inner surface of the steel tube provided with an epoxy primer layer via an adhesive layer. Polyolefin resins include ethylene homopolymers, ethylene monoolefin copolymers obtained by copolymerizing ethylene and propylene, 1-butene, 1-hexene, 1-octene, and other CK-olefins, or A mixture in which an antioxidant, an ultraviolet absorber, a flame retardant, a pigment, a filler, a lubricant, an additive such as an antistatic agent, and other resins are mixed with these mixtures can be used.
架橋ポリオレフイ ン樹脂としては、 ラジカル発生剤を用いてポリ ォレフィ ン樹脂を架橋したもの、 またはシラン変性したポリオレフ イ ン樹脂を水架橋 (シラン架橋) したものを用いる。 ラジカル発生 剤としては、 例えばジクミルパ一オキサイ ド、 ベンゾィルパーォキ サイ ド、 ジ— t —ブチルバ一オキサイ ド、 2 , 5 —ジメチルー 2, 5—ジ ( t —ブチルパーォキシ) へキサン等の有機過酸化物を使用 することができる。 As the cross-linked polyolefin resin, a cross-linked polyolefin resin using a radical generator or a water-cross-linked (silane cross-linked) silane-modified polyolefin resin is used. Examples of radical generators include organic peroxides such as dicumyl peroxide, benzoyl peroxide, di-t-butyl baroxide, 2,5-dimethyl-2,5-di (t-butyl peroxide) hexane, and the like. Oxides can be used.
また、 上記有機過酸化物以外にもァゾイソプチロニトリル等のァ ゾ化合物を使用することもできる。 シラン変性は、 ラジカル発生剤 存在化でエチレン性不飽和シラン化合物を上記ポリオレフイ ン樹脂 にグラフ ト反応させることにより行われる。 ここで、 エチレン性不 飽和シラン化合物は、 下記一般式で表されるものである。
RS iR' n Y3 - n In addition to the above organic peroxides, azo compounds such as azoisoptyronitrile can also be used. Silane modification is performed by grafting an ethylenically unsaturated silane compound to the above-mentioned polyolefin resin in the presence of a radical generator. Here, the ethylenically unsaturated silane compound is represented by the following general formula. RS iR ' n Y 3 - n
(式中、 Rはエチレン性不飽和炭化水素基または炭化水素ォキシ基 、 R ' は脂肪族飽和炭化水素基、 Yは加水分解し得る有機基、 nは 0〜 2 を表す) (Wherein R represents an ethylenically unsaturated hydrocarbon group or hydrocarbon oxy group, R ′ represents an aliphatic saturated hydrocarbon group, Y represents a hydrolyzable organic group, and n represents 0 to 2)
具体的には、 ビニルトリメ トキシシラン、 ビニルトリエトキシシ ラン、 ビニルトリァセトキシシラン等を使用する。 ポリオレフイ ン 樹脂のシラン変性は、 予め押出機等で行っても良いし、 成形時にホ ッパーより各原料成分を投入し、 成形機の混練機部分で行う ことも できる。 架橋反応は押し出し成形時、 および Zまたは、 成形後に、 熱処理、 水処理等により行う。 シラン変性ポリオレフイ ン樹脂の場 合は架橋速度を向上させるために、 シラノール縮合触媒を併用する ことが好ましく、 成形時に配合しても成形後に塗布しても良い。 シ ラノール縮合触媒としては、 ジブチル錫ジラウレート、 ジォクチル 錫ジラウレート、 ナフテン酸コバルト、 トルエンスルホン酸等を使 用することができる。 本発明に使用する架橋ポリオレフイ ン樹脂は 、 必要に応じ酸化防止剤、 紫外線吸収剤、 難燃剤、 顔料、 充填剤、 滑剤、 帯電防止剤等の添加剤、 および他の樹脂等を加えることがで きる。 Specifically, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, etc. are used. The silane modification of the polyolefin resin may be performed in advance with an extruder or the like, or may be performed in the kneader portion of the molding machine by adding each raw material component from the hopper during molding. The cross-linking reaction is performed by heat treatment, water treatment, etc. during extrusion molding and after Z or molding. In the case of a silane-modified polyolefin resin, it is preferable to use a silanol condensation catalyst in combination in order to improve the crosslinking rate, and it may be blended during molding or applied after molding. As the styrene condensation catalyst, dibutyltin dilaurate, dioctyltin dilaurate, cobalt naphthenate, toluenesulfonic acid, or the like can be used. The crosslinked polyolefin resin used in the present invention can be added with additives such as antioxidants, ultraviolet absorbers, flame retardants, pigments, fillers, lubricants, antistatic agents, and other resins as necessary. wear.
本発明に使用するポリオレフイ ン樹脂または架橋ポリオレフイ ン 樹脂からなる樹脂管の製造方法としては、 ライニングしょうとする 鋼管の内径より小さな外径を有する丸ダイスより、 押出機等を用い て樹脂を押し出して円筒状に成形し、 その後、 冷却して形状を固定 する。 As a method for producing a resin pipe made of a polyolefin resin or a crosslinked polyolefin resin used in the present invention, a resin is extruded from a round die having an outer diameter smaller than the inner diameter of a steel pipe to be lined using an extruder or the like. Molded into a cylindrical shape, then cooled to fix the shape.
この樹脂管の厚みは必要に応じて任意に設定することができ、 特 に制限されるものではないが、 通常 0. 3〜10匪、 好ましくは、 0. 5〜 5 mmの範囲である。 さらに、 樹脂層と接着層との接着力を向上させ るため、 樹脂管を成形した後、 必要に応じて外面に市販プライマ一
塗布、 酸化処理、 または面粗しを施しても良い。 The thickness of the resin tube can be arbitrarily set as required, and is not particularly limited, but is usually in the range of 0.3 to 10 mm, preferably 0.5 to 5 mm. Furthermore, in order to improve the adhesive strength between the resin layer and the adhesive layer, after the resin tube is molded, a commercial primer is formed on the outer surface as necessary. Application, oxidation treatment, or surface roughening may be applied.
鋼管の内面とポリオレフイ ン樹脂または架橋ポリオレフイ ン樹脂 からなる樹脂層とはあまり接着性が良くないため、 化成処理皮膜と 樹脂層との間に接着層を設け、 鋼管と樹脂管とを接着層を介して密 着させることが必要である。 この接着層の厚みは必要に応じて任意 に設定することができ、 特に制限されるものではないが、 通常は 1 m〜 3 mmであり、 1 0 n!〜 1. 5 mmとすることが好ましい。 Since the adhesion between the inner surface of the steel pipe and the resin layer made of polyolefin resin or cross-linked polyolefin resin is not very good, an adhesive layer is provided between the chemical conversion coating and the resin layer, and the steel pipe and the resin pipe are bonded to each other. It is necessary to make them close together. The thickness of the adhesive layer can be arbitrarily set as required, and is not particularly limited, but is usually 1 m to 3 mm, and 10 n! It is preferable to be set to ~ 1.5 mm.
接着層は、 無水マレイン酸変性ポリオレフイ ン、 無水ィタコン酸 変性ポリオレフイ ン、 エチレン · 無水マレイン酸共重合体、 ェチレ ン · 無水マレイン酸 · アクリル酸共重合体、 エチレン · 無水マレイ ン酸 · アクリル酸エステル共重合体、 エチレン · アクリル酸共重合 体、 エチレン · アクリル酸エステル共重合体、 エチレン · メタクリ ル酸共重合体、 エチレン ' 酢酸ビニル共重合体、 アイオノマーのう ち 1つまたは 2つ以上からなる。 Adhesive layer is maleic anhydride modified polyolefin, itaconic anhydride modified polyolefin, ethylene / maleic anhydride copolymer, ethylene / maleic anhydride / acrylic acid copolymer, ethylene / maleic anhydride / acrylic acid ester Copolymer, ethylene / acrylic acid copolymer, ethylene / acrylic acid ester copolymer, ethylene / methacrylic acid copolymer, ethylene'vinyl acetate copolymer, or ionomer. .
接着層の融解終了温度は、 ポリオレフイ ン樹脂または架橋ポリオ レフィ ン樹脂の融解開始温度未満であることが必要である。 例えば 、 接着層を無水マレイン酸変性ポリオレフイ ンとする場合、 ポリオ レフイ ンとして、 融解終了温度 1 00 °Cの低結晶性エチレン系重合体 等を使用する。 接着層の融解終了温度がポリオレフイ ン樹脂または 架橋ポリオレフイ ン樹脂からなる樹脂管の融解開始温度以上である と、 接着力を発現させるための加熱を樹脂管の融解開始温度以上で 行う必要がある。 この場合、 樹脂管が軟化して膨張力が失われ、 冷 却工程では再結晶化による収縮力が生じ、 鋼管の内面に密着させよ う とする力が弱まり、 鋼管の内面と樹脂層との接着力が低下するこ とがある。 また、 接着層の融解終了温度が樹脂ライニング鋼管の標 準的な使用温度である 1 5 °C以下であると、 使用中に接着層が完全に 融解するため、 鋼管の内面と樹脂層との接着力が低下する。
樹脂管の外面への接着層の塗布は、 ライニングしょうとする鋼管 の内径より小さな外径を有する二層丸ダイスを用い、 内側のダイス からポリオレフイ ン樹脂または架橋ポリオレフイ ン樹脂を押し出し て樹脂管を成形し、 同時に外側のダイスより接着剤を押し出すこと によって行う ことができる。 あるいは丸ダイスを用い、 ポリオレフ イ ン樹脂または架橋ポリオレフイ ン樹脂からなる樹脂管を成形した 後、 丸ダイスまたは Tダイスを用い、 接着層を押し出し被覆しても 良い。 The melting end temperature of the adhesive layer needs to be lower than the melting start temperature of the polyolefin resin or cross-linked polyolefin resin. For example, when the adhesive layer is made of maleic anhydride-modified polyolefin, a low crystalline ethylene polymer having a melting end temperature of 100 ° C. is used as the polyolefin. When the melting end temperature of the adhesive layer is equal to or higher than the melting start temperature of the resin tube made of the polyolefin resin or the cross-linked polyolefin resin, it is necessary to perform the heating for expressing the adhesive force at a temperature higher than the melting start temperature of the resin tube. In this case, the resin tube softens and the expansion force is lost, and in the cooling process, a shrinking force is generated by recrystallization, and the force to adhere to the inner surface of the steel tube is weakened, and the inner surface of the steel tube and the resin layer are reduced. Adhesive strength may be reduced. If the melting end temperature of the adhesive layer is 15 ° C or less, which is the standard operating temperature for resin-lined steel pipes, the adhesive layer melts completely during use. Adhesive strength decreases. To apply the adhesive layer to the outer surface of the resin pipe, use a double-layer round die having an outer diameter smaller than the inner diameter of the steel pipe to be lined, and extrude the polyolefin resin or cross-linked polyolefin resin from the inner die to remove the resin pipe. This can be done by molding and extruding the adhesive from the outer die at the same time. Alternatively, after forming a resin pipe made of a polyolefin resin or a crosslinked polyolefin resin using a round die, the adhesive layer may be extruded and coated using a round die or a T die.
ポリオレフイ ン樹脂または架橋ポリオレフィ ン樹脂からなる樹脂 管の外径は鋼管の内径より小さく、 樹脂管の長さは鋼管の長さより 長いことが好ましい。 その後、 樹脂管を鋼管に挿入し、 樹脂管の外 径が 0. 5〜 10 %縮径されるように鋼管をロール絞り、 たたき絞りま たはダイス絞りすることにより、 鋼管の内面に樹脂管を密着させる 。 この際、 樹脂管の縮径率が 0. 5 %未満であると、 鋼管の内径に対 して樹脂管の外径が大きくなろうとする膨張力が小さくなる。 その ため、 鋼管の内面に樹脂管を密着させようとする力が弱まって、 鋼 管の内面への樹脂ライニング層の接着力が低下する。 一方、 樹脂管 の縮径率が 10 %超であると、 樹脂管が変形するため、 鋼管の内面へ の密着性が悪くなる。 The outer diameter of the resin pipe made of polyolefin resin or cross-linked polyolefin resin is preferably smaller than the inner diameter of the steel pipe, and the length of the resin pipe is preferably longer than the length of the steel pipe. After that, the resin pipe is inserted into the steel pipe, and the steel pipe is roll-squeezed so that the outer diameter of the resin pipe is reduced by 0.5 to 10%. Adhere. At this time, if the diameter reduction ratio of the resin pipe is less than 0.5%, the expansion force for increasing the outer diameter of the resin pipe becomes smaller than the inner diameter of the steel pipe. For this reason, the force to make the resin pipe adhere to the inner surface of the steel pipe is weakened, and the adhesive force of the resin lining layer to the inner surface of the steel pipe is reduced. On the other hand, when the diameter reduction ratio of the resin pipe is more than 10%, the resin pipe is deformed and the adhesion to the inner surface of the steel pipe is deteriorated.
鋼管を縮怪して内面に樹脂管を密着させた後、 さらに接着力を発 現させるため、 熱風加熱や高周波誘導加熱等により接着層の融解終 了温度以上、 ポリオレフイ ン樹脂または架橋ポリオレフイ ン樹脂か らなる樹脂管の融解開始温度未満で加熱する。 加熱温度が接着層の 融解終了温度未満であると、 接着層が完全に融解しないため、 内面 樹脂ライニング層の接着力が発現し難い。 After the steel pipe is shrunk and the resin pipe is brought into close contact with the inner surface, in order to further develop the adhesive force, hot air heating, high frequency induction heating, etc., the melting temperature of the adhesive layer is exceeded, whether it is a polyolefin resin or a crosslinked polyolefin resin. The resin tube is heated below the melting start temperature. When the heating temperature is lower than the melting end temperature of the adhesive layer, the adhesive layer does not melt completely, and thus the adhesive force of the inner surface resin lining layer is difficult to develop.
また、 加熱温度がポリオレフイ ン樹脂または架橋ポリオレフイ ン 樹脂からなる樹脂管の融解開始温度以上であると、 樹脂管が軟化し
て膨張力が失われ、 冷却工程では再結晶化による収縮力が生じ、 鋼 管の内面に密着させようとする力が弱まり、 鋼管の内面とライニン グした樹脂層との接着力が低下する。 In addition, if the heating temperature is equal to or higher than the melting start temperature of a resin tube made of a polyolefin resin or a crosslinked polyolefin resin, the resin tube softens. As a result, the expansion force is lost, and in the cooling process, a shrinking force is generated by recrystallization, and the force to adhere to the inner surface of the steel pipe is weakened, and the adhesive force between the inner surface of the steel pipe and the lining resin layer is reduced.
さらに、 樹脂ライニング鋼管の外面に金属または合金を溶射し、 溶射層を形成する。 溶射層としては、 例えば鉄を犠牲防食する、 鉄 よりも卑な金属である亜鉛、 亜鉛 , アルミニウム混合物、 亜鉛 ' ァ ルミニゥム合金を用いる。 Furthermore, a metal or alloy is sprayed on the outer surface of the resin-lined steel pipe to form a sprayed layer. As the thermal spray layer, for example, zinc, zinc, an aluminum mixture, or a zinc aluminum alloy that sacrifices and protects iron and is a base metal than iron is used.
亜鉛 · アルミニウム混合物や亜鉛 · アルミニウム合金の場合、 溶 射層が含有するアルミニウムを 30 %以下とすることが好ましい。 溶 射層が含有するアルミニウムが 30 %超であると、 現地配管工事で鋼 管にねじを切る際に生成するねじ切り機のチャック爪疵部から早期 に赤鯖が発生することがある。 これはねじ切り機のチャック爪で生 成するような鋼管に達する大きな疵ではアルミニウムのバリア作用 が十分に発揮されないためと推定される。 In the case of a zinc / aluminum mixture or a zinc / aluminum alloy, the aluminum content in the sprayed layer is preferably 30% or less. If the aluminum content of the sprayed layer exceeds 30%, red glaze may occur at an early stage from the chuck jaws of the threading machine that is generated when the steel pipe is threaded in the local piping work. This is presumably because the large barrier reaching the steel pipe generated by the chuck claws of the threading machine does not fully exhibit the barrier action of aluminum.
樹脂ライニング鋼管の外面に形成された溶射層の厚さは 100〜 400 とすることが好ましい。 溶射層の膜厚が 100 m未満では、 従 来の溶融金属めつきより耐食性が低下することがある。 これは溶射 層の空隙率が溶融めつき層よりも大きく、 密度が小さいためであり 、 溶融めつきの通常の厚さ 85 ^ mは、 溶射層の厚さ 100 / mに相当 する。 しかし、 溶融めつきでは鋼管との界面に、 耐食性に劣る鉄を 含む合金層が存在し、 耐食性に優れる純金属層が減少する。 そのた め、 溶射層の厚さを 100 mにすると、 厚さ 85 ^ mの溶融めつき層 よりも耐食性が向上する可能性がある。 また、 作業性と経済性の点 から、 溶射層の膜厚の上限は 400 m程度が良い。 さらに、 耐食性 を向上させるため、 溶射層を設けた後、 必要に応じ、 白鲭防止塗料 ゃ封孔処理剤等を塗装しても良い。 The thickness of the sprayed layer formed on the outer surface of the resin-lined steel pipe is preferably 100 to 400. If the thickness of the sprayed layer is less than 100 m, the corrosion resistance may be lower than with conventional molten metal plating. This is because the porosity of the sprayed layer is larger than that of the melted layer and the density is small. The normal thickness of 85 μm of the melted layer corresponds to the thickness of the sprayed layer of 100 / m. However, in fusion welding, there is an alloy layer containing iron that is inferior in corrosion resistance at the interface with the steel pipe, and the number of pure metal layers that are excellent in corrosion resistance is reduced. Therefore, if the thickness of the sprayed layer is 100 m, the corrosion resistance may be improved compared to the 85 mm thick welded layer. Also, from the viewpoint of workability and economy, the upper limit of the thickness of the sprayed layer should be about 400 m. Furthermore, in order to improve the corrosion resistance, a thermal spray layer may be provided, and then, if necessary, an anti-white paint or a sealing agent may be applied.
樹脂ライニング鋼管の外面に金属を溶射して溶射層を形成する前
に、 鋼管の外面を脱脂し、 ブラス ト処理して清浄にし、 粗面にする ことが好ましい。 この際、 樹脂管をライニングする前に下地処理に よって形成されたリン酸塩の結晶粒からなる化成処理皮膜が残留し ていても、 リン酸塩の結晶粒と鉄との密着力が大きく、 樹脂ライ二 ング鋼管の外面への溶射層の密着性を阻害しないことを見出した。 その後、 樹脂ライニング鋼管の外面に上記の亜鉛、 亜鉛 , アルミ ニゥム混合物、 亜鉛 ' アルミニウム合金の何れかをガス式フレーム 溶射、 電気式アーク溶射または電気式プラズマ溶射する。 この際、 樹脂ライニング鋼管の温度は 90 °C程度に上昇する。 この温度上昇に より、 溶射前に、 鋼管の内面に樹脂管を接着させるために加熱し、 接着後の冷却工程で接着層や樹脂層に生じたひずみが緩和されると 考えられる。 これにより、 樹脂ライニング鋼管の外面に金属を溶射 すると、 鋼管と内面樹脂層との押し抜き剪断接着力が、 溶射前に比 ベて 10〜40 %向上する。 実施例 Before spraying metal on the outer surface of a resin-lined steel pipe to form a sprayed layer In addition, the outer surface of the steel pipe is preferably degreased and cleaned by blasting to make it rough. At this time, even if a chemical conversion film consisting of phosphate crystal grains formed by the base treatment remains before lining the resin tube, the adhesion between the phosphate crystal grains and iron is large, It was found that the adhesion of the sprayed layer to the outer surface of the resin-lined steel pipe was not hindered. After that, any one of the above zinc, zinc, aluminum / nitrogen mixture, or zinc 'aluminum alloy is gas frame sprayed, electric arc sprayed or electric plasma sprayed on the outer surface of the resin-lined steel pipe. At this time, the temperature of the resin-lined steel pipe rises to about 90 ° C. This temperature rise is thought to reduce the strain generated in the adhesive layer and resin layer during the cooling process after bonding by heating in order to bond the resin tube to the inner surface of the steel tube before spraying. As a result, when metal is thermally sprayed on the outer surface of a resin-lined steel pipe, the punching shear adhesive force between the steel pipe and the inner surface resin layer is improved by 10 to 40% compared to before spraying. Example
以下、.本発明を実施例にもとづいて具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples.
(実施例 1 ) (Example 1)
外径 50. 8min、 厚さ 3. 3mm、 長さ 3930ππηの鋼管の内面および外面を 市販のアルカリ脱脂剤で脱脂し、 酸洗して除鯖した。 その後、 チタ ンコロイ ドを水に分散させた処理液 (日本パーカライジング社製プ レパレン Z ) 、 リン酸亜鉛カルシウム処理液 (日本パー力ライジン グ社製パルポンド P ) に順次鋼管を浸漬し、 熱風加熱により乾燥し て化成処理皮膜を形成した。 化成処理皮膜の付着量はクロム酸剥離 による重量法で測定した結果 4 g / m 2であり、 リ ン酸塩の結晶の 平均粒径は走査型電子顕微鏡で観察した結果 5 ΠΙ程度であった。 The inner and outer surfaces of a steel pipe having an outer diameter of 50.8 min, a thickness of 3.3 mm, and a length of 3930ππη were degreased with a commercially available alkaline degreasing agent, and pickled and removed. After that, the steel pipe is immersed in a treatment solution (preparene Z, manufactured by Nihon Parkerizing Co., Ltd.) and zinc calcium phosphate treatment solution (Palpond P, manufactured by Nihon Pariki Rising Co., Ltd.), and heated with hot air. It was dried to form a chemical conversion coating. The amount of chemical conversion coating deposited was 4 g / m 2 as measured by gravimetric method with chromic acid stripping, and the average grain size of phosphate crystals was about 5 mm as observed with a scanning electron microscope. .
次に、 二層丸ダイスを用い、 共押し出し法によって、 外径 42. 4匪
、 厚さ 1.5mm、 長さ 4040匪のポリエチレン樹脂管 (融解開始温度 120 °C) を成形し、 同時に無水マレイン酸変性ポリエチレンからなる接 着剤 (融解終了温度 100°C) をポリエチレン樹脂管の外面に被覆し 、 接着層を形成した。 接着層の厚みは 200 mであった。 Next, using a double-layered round die, the outer diameter is 42.4 mm by the coextrusion method. A polyethylene resin tube with a thickness of 1.5 mm and a length of 4040 mm was formed (melting start temperature 120 ° C), and at the same time, an adhesive made of maleic anhydride-modified polyethylene (melting end temperature 100 ° C) was applied to the polyethylene resin tube. The outer surface was coated with an adhesive layer. The thickness of the adhesive layer was 200 m.
その後、 ポリエチレン樹脂管を鋼管に挿入し、 ポリエチレン樹脂 管の外径が 1.4%縮径されるように鋼管をロール絞り し、 鋼管の内 面にポリエチレン樹脂管を密着させた。 その後、 熱風加熱炉内で樹 脂ライニング鋼管全体を Π 5°Cに加熱し、 鋼管の内面にポリエチレ ン樹脂管を接着した。 樹脂ライニング鋼管の端部よりはみ出したポ リエチレン樹脂管は切断した。 この樹脂ライニング鋼管の外面を巿 販のアル力リ脱脂剤で脱脂し、 グリ ッ トブラス ト処理して除鯖した 。 その後、 樹脂ライニング鋼管をターニンダロール上で回転させな がら電気式アーク法によって、 樹脂ライニング鋼管の外面に、 亜鉛 (72% ) , アルミニウム (28% ) 混合物を厚さが ΙΟΟ ΠΙになるよ うに溶射した。 さらに、 溶射層の外面に白鯖防止塗料を厚さが 10 mになるようにスプレー塗装した。 Thereafter, the polyethylene resin pipe was inserted into the steel pipe, the steel pipe was roll-drawn so that the outer diameter of the polyethylene resin pipe was reduced by 1.4%, and the polyethylene resin pipe was brought into close contact with the inner surface of the steel pipe. Thereafter, the entire resin-lined steel pipe was heated to 5 ° C in a hot-air heating furnace, and a polyethylene resin pipe was bonded to the inner surface of the steel pipe. The polyethylene resin pipe that protruded from the end of the resin-lined steel pipe was cut. The outer surface of this resin-lined steel pipe was degreased with a commercially available Al-powered degreasing agent and treated with a glint blast to remove it. Then, while rotating the resin-lined steel pipe on the turner roll, an electric arc method is used to apply a zinc (72%) and aluminum (28%) mixture on the outer surface of the resin-lined steel pipe so that the thickness becomes ΙΟΟΙΟΟ. Sprayed. In addition, white paint was applied to the outer surface of the sprayed layer to a thickness of 10 m.
(実施例 2 ) (Example 2)
実施例 1 と同様に、 鋼管の内面および外面に化成処理皮膜を形成 した。 次に、 静電スプレー法によって、 鋼管の内面に常温でェポキ シ樹脂粉体プライマ一 (日本ペイント社製パウダックス E ) を塗装 し、 熱風加熱炉内で全体を 155°Cに加熱してエポキシプライマ一層 を形成した。 エポキシプライマ一層の厚みは 100 i mであった。 As in Example 1, chemical conversion coatings were formed on the inner and outer surfaces of the steel pipe. Next, an epoxy resin powder primer (Powdax E made by Nippon Paint Co., Ltd.) was applied to the inner surface of the steel pipe at room temperature by electrostatic spraying, and the whole was heated to 155 ° C in a hot air heating furnace. One primer layer was formed. The thickness of the epoxy primer layer was 100 im.
さらに、 実施例 1 と同様にして、 鋼管の内面にポリエチレン樹脂 管をライニングし、 端部よりはみ出したポリエチレン樹脂管を切断 した。 この樹脂ライニング鋼管の外面を実施例 1 と同様に脱脂し、 除鑌した後、 電気式アーク法によって、 亜鉛、 亜鉛 (72%) · アル ミニゥム (28%) 混合物、 または亜鉛 (85%) , アルミニウム (15
%) 合金を溶射し、 さらに、 白鲭防止塗料をスプレー塗装した。Further, in the same manner as in Example 1, a polyethylene resin pipe was lined on the inner surface of the steel pipe, and the polyethylene resin pipe protruding from the end was cut. After degreasing and removing the outer surface of this resin-lined steel pipe in the same manner as in Example 1, zinc, zinc (72%) · aluminum (28%) mixture, or zinc (85%), Aluminum (15 %) The alloy was sprayed, and white paint was applied by spraying.
(実施例 3 ) (Example 3)
実施例 2 と同様に、 鋼管の内面および外面に化成処理皮膜を形成 し、 さらに鋼管の内面にエポキシプライマ一層を形成した。 次に、 実施例 1 と同様に、 二層丸ダイスを用い、 共押し出し法によって、 ポリエチレン樹脂管を成形し、 同時に融解終了温度 100°Cの無水ィ タコン酸変性ポリエチレン、 エチレン · 無水マレイン酸共重合体、 エチレン · 無水マレイン酸 · アクリル酸共重合体、 エチレン · 無水 マレイン酸 · アクリル酸エステル共重合体、 エチレン · アクリル酸 共重合体、 エチレン · アクリル酸エステル共重合体、 エチレン ' メ タクリル酸共重合体、 エチレン · 酢酸ビニル共重合体、 またはアイ オノマ一からなる接着剤をポリエチレン樹脂管の外面に被覆し、 接 着層を形成した。 As in Example 2, a chemical conversion coating was formed on the inner and outer surfaces of the steel pipe, and an epoxy primer layer was further formed on the inner surface of the steel pipe. Next, in the same manner as in Example 1, a polyethylene resin tube was formed by a coextrusion method using a double-layered round die, and at the same time, an itaconic anhydride-modified polyethylene having a melting end temperature of 100 ° C., an ethylene / maleic anhydride copolymer. Polymer, ethylene / maleic anhydride / acrylic acid copolymer, ethylene / maleic anhydride / acrylic acid ester copolymer, ethylene / acrylic acid copolymer, ethylene / acrylic acid ester copolymer, ethylene 'methacrylic acid An adhesive layer made of a copolymer, ethylene / vinyl acetate copolymer, or ionomer was coated on the outer surface of a polyethylene resin tube to form an adhesive layer.
さらに、 実施例 1 と同様にして、 鋼管の内面にポリエチレン樹脂 管をライニングし、 端部よりはみ出したポリエチレン樹脂管を切断 した。 この樹脂ライニング鋼管の外面を実施例 1 と同様に脱脂し、 除鯖した後、 電気式アーク法によって、 亜鉛 (72% ) · アルミニゥ ム (28%) 混合物を溶射し、 さらに、 白鲭防止塗料をスプレー塗装 した。 Further, in the same manner as in Example 1, a polyethylene resin pipe was lined on the inner surface of the steel pipe, and the polyethylene resin pipe protruding from the end was cut. The outer surface of this resin-lined steel pipe is degreased and degreased in the same manner as in Example 1, and then sprayed with a zinc (72%) / aluminum (28%) mixture by an electric arc method. Spray painted.
(実施例 4 ) (Example 4)
実施例 1 と同様に、 鋼管の内面および外面に化成処理皮膜を形成 した。 次に、 二層丸ダイスを用い、 共押し出し法によって、 外径 42 .4mm, 厚さ 1. 5M、 長さ 4040mmのポリプロピレン樹脂管 (融解開始 温度 155°C) を成形し、 同時に無水マレイン酸変性ポリプロピレン からなる接着剤 (融解終了温度 145°C) をポリプロピレン樹脂管の 外面に被覆し、 接着層を形成した。 接着層の厚みは 200 ^ mであつ た。
その後、 ポリプロピレン樹脂管を鋼管に挿入し、 実施例 1 と同様 にして、 鋼管の内面にポリプロピレン樹脂管を密着させた。 その後 、 熱風加熱炉内で樹脂ライニング鋼管全体を 1 50°Cに加熱し、 鋼管 の内面にポリプロピレン樹脂管を接着した。 樹脂ライニング鋼管の 端部よりはみ出したポリプロピレン樹脂管は切断した。 この樹脂ラ イニング鋼管の外面を実施例 1 と同様に脱脂し、 除鲭した後、 電気 式アーク法によって、 亜鉛 (72 % ) ' アルミニウム (28 % ) 混合物 を溶射し、 さらに、 白鯖防止塗料をスプレー塗装した。 As in Example 1, chemical conversion coatings were formed on the inner and outer surfaces of the steel pipe. Next, a two-layer round die was used to form a polypropylene resin tube (melting start temperature: 155 ° C) with an outer diameter of 42.4 mm, a thickness of 1.5 M, and a length of 4040 mm by the coextrusion method. An adhesive layer made of a modified polypropylene (melting end temperature: 145 ° C) was coated on the outer surface of the polypropylene resin tube to form an adhesive layer. The thickness of the adhesive layer was 200 ^ m. Thereafter, the polypropylene resin tube was inserted into the steel tube, and the polypropylene resin tube was brought into close contact with the inner surface of the steel tube in the same manner as in Example 1. Thereafter, the entire resin-lined steel pipe was heated to 150 ° C. in a hot air heating furnace, and a polypropylene resin pipe was bonded to the inner surface of the steel pipe. The polypropylene resin pipe protruding from the end of the resin-lined steel pipe was cut. The outer surface of the resin-lined steel pipe was degreased and degreased in the same manner as in Example 1, and then sprayed with zinc (72%) 'aluminum (28%) mixture by an electric arc method. Spray painted.
(実施例 5 ) (Example 5)
実施例 2 と同様に、 鋼管の内面および外面に化成処理皮膜を形成 し、 さらに鋼管の内面にエポキシプライマー層を形成した。 さらに 、 実施例 4と同様にして、 鋼管の内面にポリプロプレン樹脂管をラ イニングし、 端部よりはみ出したポリプロピレン樹脂管を切断した 。 この樹脂ライニング鋼管の外面を実施例 1 と同様に脱脂し、 除鲭 した後、 電気式アーク法によって、 亜鉛 (72 % ) ' アルミニウム ( 28 % ) 混合物を溶射し、 さらに、 白鲭防止塗料をスプレー塗装した As in Example 2, a chemical conversion coating was formed on the inner and outer surfaces of the steel pipe, and an epoxy primer layer was formed on the inner surface of the steel pipe. Further, in the same manner as in Example 4, a polypropylene resin pipe was lined on the inner surface of the steel pipe, and the polypropylene resin pipe protruding from the end was cut. The outer surface of the resin-lined steel pipe was degreased and degreased in the same manner as in Example 1, and then sprayed with zinc (72%) 'aluminum (28%) mixture by electric arc method, Spray painted
(実施例 6 ) (Example 6)
実施例 1 と同様に、 鋼管の内面および外面に化成処理皮膜を形成 した。 次に、 二層丸ダイスを用い、 共押し出し法によって、 外径 42 . 4mm, 厚さ 1. 5mm、 長さ 4040龍の架橋ポリエチレン樹脂管 (融解開 始温度 1 20 °C ) を成形し、 同時に無水マレイン酸変性ポリエチレン からなる接着剤 (融解終了温度 1 00 °C ) を架橋ポリエチレン樹脂管 の外面に被覆し、 接着層を形成した。 接着層の厚みは 200 mであ つた。 As in Example 1, chemical conversion coatings were formed on the inner and outer surfaces of the steel pipe. Next, a double-layer round die was used to form a cross-linked polyethylene resin tube (melting start temperature 120 ° C) with an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 dragons by co-extrusion. At the same time, an adhesive made of maleic anhydride-modified polyethylene (melting end temperature: 100 ° C.) was coated on the outer surface of the crosslinked polyethylene resin tube to form an adhesive layer. The thickness of the adhesive layer was 200 m.
その後、 架橋ポリエチレン樹脂管を鋼管に挿入し、 実施例 1 と同 様にして、 鋼管の内面に架橋ポリエチレン樹脂管を密着させた。 そ
の後、 熱風加熱炉内で樹脂ライニング鋼管全体を 115°Cに加熱し、 鋼管の内面に架橋ポリエチレン樹脂管を接着した。 樹脂ライニング 鋼管の端部よりはみ出した架橋ポリエチレン樹脂管は切断した。 こ の樹脂ライニング鋼管の外面を実施例 1 と同様に脱脂し、 除鯖した 後、 電気式アーク法によって、 亜鉛 (72% ) ' アルミニウム (28% ) 混合物を溶射し、 さらに、 白鲭防止塗料をスプレー塗装した。 Thereafter, the crosslinked polyethylene resin tube was inserted into the steel tube, and the crosslinked polyethylene resin tube was brought into close contact with the inner surface of the steel tube in the same manner as in Example 1. So Thereafter, the entire resin-lined steel pipe was heated to 115 ° C in a hot-air heating furnace, and a crosslinked polyethylene resin pipe was bonded to the inner surface of the steel pipe. Resin lining The cross-linked polyethylene resin pipe protruding from the end of the steel pipe was cut. The outer surface of this resin-lined steel pipe was degreased and degreased in the same manner as in Example 1, and then sprayed with a zinc (72%) 'aluminum (28%) mixture by an electric arc method. Spray painted.
(実施例 7 ) (Example 7)
実施例 2 と同様に、 鋼管の内面および外面に化成処理皮膜を形成 し、 さらに鋼管の内面にエポキシプライマー層を形成した。 さらに 、 実施例 6 と同様にして、 鋼管の内面に架橋ポリエチレン樹脂管を ライニングし、 端部よりはみ出した架橋ポリエチレン樹脂管を切断 した。 この樹脂ライニング鋼管の外面を実施例 1 と同様に脱脂し、 除鲭した後、 電気式アーク法によって、 亜鉛 (72% ) · アルミニゥ ム (28% ) 混合物を溶射し、 さらに、 白鲭防止塗料をスプレー塗装 した。 As in Example 2, a chemical conversion coating was formed on the inner and outer surfaces of the steel pipe, and an epoxy primer layer was formed on the inner surface of the steel pipe. Further, in the same manner as in Example 6, a cross-linked polyethylene resin pipe was lined on the inner surface of the steel pipe, and the cross-linked polyethylene resin pipe protruding from the end was cut. The outer surface of this resin-lined steel pipe is degreased and degreased in the same manner as in Example 1, and then sprayed with a zinc (72%) / aluminum (28%) mixture by an electric arc method, and further, a white anti-whitening paint Spray painted.
(比較例 1 ) (Comparative Example 1)
二層丸ダイスを用い、 共押し出し法によって、 外径 42.4mni、 厚さ 1. 5mm, 長さ 4040Mのポリ塩化ビニル管 (融解開始温度 120°C ) を成 形し、 同時にエチレン · 酢酸ビニル共重合体からなる接着剤 (融解 終了温度 100°C) をポリ塩化ビニル管の外面に被覆し、 接着層を形 成した。 接着層の厚みは 200 2 mであった。 次に、 ポリ塩化ビニル 管を内外面に溶融亜鉛めつき (厚さ 85 m) した外径 50. 8匪、 厚さ 3. 3mm, 長さ 3930匪の鋼管に挿入し、 ポリ塩化ビニル管の外径が 1.4 %縮径されるように鋼管をロール絞り し、 鋼管の内面にポリ塩化ビ 二ル管を密着させた。 その後、 熱風加熱炉内で樹脂ライニング鋼管 全体を 115°Cに加熱し、 溶融亜鉛めつき鋼管の内面にポリ塩化ビニ ル管を接着した。 樹脂ライニング鋼管の端部よりはみ出したポリ塩
化ビニル管は切断し、 外面には白鲭防止塗料を厚さが 10 ^ mになる ようにスプレー塗装した。 Using a double-layered round die, a co-extrusion method was used to form a polyvinyl chloride tube (melting start temperature 120 ° C) with an outer diameter of 42.4mni, a thickness of 1.5mm, and a length of 4040M. A polymer adhesive (melting end temperature 100 ° C) was coated on the outer surface of the polyvinyl chloride tube to form an adhesive layer. The thickness of the adhesive layer was 200 2 m. Next, a polyvinyl chloride pipe was inserted into a steel pipe with an outer diameter of 50.8 mm, a thickness of 3.3 mm, and a length of 3930 mm, which was galvanized (85 m thick) on the inner and outer surfaces. The steel pipe was roll-drawn so that the outer diameter was reduced by 1.4%, and the polyvinyl chloride pipe was brought into close contact with the inner surface of the steel pipe. Thereafter, the entire resin-lined steel pipe was heated to 115 ° C in a hot-air heating furnace, and a polyvinyl chloride pipe was bonded to the inner surface of the hot-dip galvanized steel pipe. Poly salt that protrudes from the end of a resin-lined steel pipe The vinyl chloride tube was cut, and the outer surface was spray-coated with white-white paint to a thickness of 10 ^ m.
(比較例 2 ) (Comparative Example 2)
二層丸ダイスを用い、 共押し出し法によって、 外径 42.4mm、 厚さ 1.5mm, 長さ 4040匪のポリエチレン樹脂管 (融解開始温度 120°C ) を 成形し、 同時に無水マレイン酸変性ポリエチレンからなる接着剤 ( 融解終了温度 100°C) をポリエチレン樹脂管の外面に被覆し、 接着 層を形成した。 接着層の厚みは 200/i mであった。 次に、 比較例 1 と同様にして、 ポリエチレン樹脂管を内外面に溶融亜鉛めつきした 鋼管に挿入し、 鋼管の内面にポリエチレン樹脂管を密着させた。 そ の後、 熱風加熱炉内で樹脂ライニング鋼管全体を 115°Cに加熱し、 溶融亜鉛めつき鋼管の内面にポリエチレン樹脂管を接着した。 樹脂 ライニング鋼管の端部よりはみ出したポリエチレン樹脂管は切断し 、 外面には比較例 1 と同様に白鲭防止塗料をスプレー塗装した。 Using a double-layer round die, a polyethylene resin tube (melting start temperature 120 ° C) with an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm is formed by co-extrusion method, and at the same time made of maleic anhydride modified polyethylene An adhesive (melting end temperature 100 ° C) was coated on the outer surface of the polyethylene resin tube to form an adhesive layer. The thickness of the adhesive layer was 200 / im. Next, in the same manner as in Comparative Example 1, the polyethylene resin pipe was inserted into a steel pipe having inner and outer surfaces galvanized, and the polyethylene resin pipe was brought into close contact with the inner surface of the steel pipe. Thereafter, the entire resin-lined steel pipe was heated to 115 ° C in a hot air heating furnace, and a polyethylene resin pipe was bonded to the inner surface of the hot-dip galvanized steel pipe. The polyethylene resin tube that protruded from the end of the resin-lined steel tube was cut, and the outer surface was spray-coated with a white-white preventing paint as in Comparative Example 1.
(比較例 3 ) (Comparative Example 3)
二層丸ダイスを用い、 共押し出し法によって、 外径 42.4mm、 厚さ 1.5mm, 長さ 4040匪のポリプロピレン樹脂管 (融解開始温度 155°C ) を成形し、 同時に無水マレイン酸変性ポリプロピレンからなる接着 剤 (融解終了温度 145°C) をポリプロピレン樹脂管の外面に被覆し 、 接着層を形成した。 接着層の厚みは 200 ^ mであった。 次に、 比 較例 1 と同様にして、 ポリプロピレン樹脂管を内外面に溶融亜鉛め つきした鋼管に挿入し、 鋼管の内面にポリプロピレン樹脂管を密着 させた。 その後、 熱風加熱炉内で樹脂ライニング鋼管全体を 150°C に加熱し、 溶融亜鉛めつき鋼管の内面にポリプロピレン樹脂管を接 着した。 樹脂ライニング鋼管の端部よりはみ出したポリプロピレン 樹脂管は切断し、 外面には比較例 1 と同様に白鲭防止塗料をスプレ 一塗装した。
(比較例 4 ) Using a double-layered round die, a polypropylene resin tube (melting start temperature: 155 ° C) with an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm is formed by coextrusion method. The adhesive (melting end temperature 145 ° C) was coated on the outer surface of the polypropylene resin tube to form an adhesive layer. The thickness of the adhesive layer was 200 ^ m. Next, in the same manner as in Comparative Example 1, the polypropylene resin tube was inserted into a steel tube having an inner and outer surface galvanized, and the polypropylene resin tube was brought into close contact with the inner surface of the steel tube. Thereafter, the entire resin-lined steel pipe was heated to 150 ° C in a hot air heating furnace, and a polypropylene resin pipe was attached to the inner surface of the hot-dip galvanized steel pipe. The polypropylene resin tube that protruded from the end of the resin-lined steel tube was cut, and the outer surface was spray-coated with white-white paint as in Comparative Example 1. (Comparative Example 4)
二層丸ダイスを用い、 共押し出し法によって、 外径 42. 4mm、 厚さ 1. 5mm, 長さ 4040mmの架橋ポリエチレン樹脂管 (融解開始温度 1 20 °C ) を成形し、 同時に無水マレイン酸変性ポリエチレンからなる接着 剤 (融解終了温度 1 00°C ) を架橋ポリエチレン樹脂管の外面に被覆 し、 接着層を形成した。 接着層の厚みは 200 mであった。 次に、 比較例 1 と同様にして、 架橋ポリエチレン樹脂管を内外面に溶融亜 鉛めつきした鋼管に挿入し、 鋼管の内面に架橋ポリエチレン樹脂管 を密着させた。 その後、 熱風加熱炉内で樹脂ライニング鋼管全体を 1 1 5 °Cに加熱し、 溶融亜鉛めつき鋼管の内面に架橋ポリエチレン樹 脂管を接着した。 樹脂ライニング鋼管の端部よりはみ出した架橋ポ リエチレン樹脂管は切断し、 外面には比較例 1 と同様に白鲭防止塗 料をスプレー塗装した。 Using a double-layered round die, a co-extrusion method was used to form a cross-linked polyethylene resin tube (melting start temperature 120 ° C) with an outer diameter of 42.4 mm, a thickness of 1.5 mm, and a length of 4040 mm, and simultaneously modified with maleic anhydride. An adhesive layer made of polyethylene (melting end temperature: 100 ° C) was coated on the outer surface of the cross-linked polyethylene resin tube to form an adhesive layer. The thickness of the adhesive layer was 200 m. Next, in the same manner as in Comparative Example 1, the cross-linked polyethylene resin pipe was inserted into a steel pipe whose inner and outer surfaces were melted with zinc, and the cross-linked polyethylene resin pipe was brought into close contact with the inner surface of the steel pipe. Thereafter, the entire resin-lined steel pipe was heated to 115 ° C in a hot air heating furnace, and a cross-linked polyethylene resin pipe was bonded to the inner surface of the hot-dip galvanized steel pipe. The cross-linked polyethylene resin tube that protruded from the end of the resin-lined steel tube was cut, and the outer surface was spray-coated with a white wrinkle-preventing coating as in Comparative Example 1.
実施例 1〜 7、 比較例 1〜 4の樹脂ライニング鋼管の、 鋼管と内 面の樹脂管との剪断接着力を測定した。 剪断接着力の測定は、 製造 した樹脂ライニング鋼管を 20匪長さに切断し、 治具を用いて鋼管部 分のみ支え、 内面の樹脂ライニング層のみを l Omm/ m i nの条件で押 し抜く ことにより行い、 この時の押し抜き力より剪断接着力を求め た。 サンプルは各樹脂ライニング鋼管から 3個ずつ採取し、 平均値 を求めた。 剪断接着力の単位は MP aである。 測定中の温度は一律 23 でとした。 樹脂ライニング鋼管に 40°Cの温水や 90°Cの熱水を 1年間 通水した後の剪断接着力も併せて測定した。 各例の条件と測定結果 を表 1 に示す。 The shear adhesive strength between the steel pipe and the inner resin pipe of the resin-lined steel pipes of Examples 1 to 7 and Comparative Examples 1 to 4 was measured. To measure the shear adhesive strength, cut the manufactured resin-lined steel pipe to a length of 20 mm, support only the steel pipe part using a jig, and push out only the resin-lined layer on the inner surface at l Omm / min. The shear adhesion force was obtained from the punching force at this time. Three samples were taken from each resin-lined steel pipe, and the average value was obtained. The unit of shear adhesion is MP a. The temperature during measurement was uniformly 23. Shear adhesion was also measured after passing 40 ° C hot water or 90 ° C hot water through a resin-lined steel pipe for 1 year. Table 1 shows the conditions and measurement results for each example.
実施例 1〜 7 の樹脂ライニング鋼管は、 初期および 40°C温水を 1 年間通水した後の剪断接着力が比較例 1〜 4に比べていずれも高く 、 90 :熱水を 1年間通水した後の剪断接着力が比較例 1 〜 4に比べ て著しく高い。 すなわち、 本発明の樹脂ライニング鋼管は、 従来の
溶融亜鉛めつき鋼管の内面にポリ塩化ビニル管をライニングした樹 脂ライニング鋼管より も、 長い期間に渡って給湯配管にも使用する ことができる.。 The resin-lined steel pipes of Examples 1 to 7 are higher in shear adhesive strength after passing the initial and 40 ° C hot water for one year than in Comparative Examples 1 to 4, 90: Hot water passed for one year After that, the shear adhesive strength is remarkably higher than those of Comparative Examples 1 to 4. That is, the resin-lined steel pipe of the present invention has a conventional structure. It can be used for hot water supply pipes for a longer period of time than a resin-lined steel pipe lined with a polyvinyl chloride pipe on the inner surface of a hot-dip zinc plated steel pipe.
さらに、 実施例、 比較例の樹脂ライニング鋼管について、 外面の 耐食性を調べるため塩水噴霧試験を行った。 塩水噴霧試験は、 製造 した樹脂ライニング鋼管を 150龍長さに切断し、 外面にねじ切り機 のチャック爪で鋼管に達する疵をつけた後、 J I S Z 237 1で規定され ている方法により行い、 上記疵部から赤鲭が発生するまでの時間を 測定した。 その測定結果も表 1 に示す。 Furthermore, a salt spray test was conducted on the resin-lined steel pipes of Examples and Comparative Examples in order to investigate the corrosion resistance of the outer surface. The salt spray test is performed by the method specified in JISZ 237 1 after cutting the manufactured resin-lined steel pipe to 150 dragon lengths and attaching a hook that reaches the steel pipe with the chuck claw of the threading machine on the outer surface. The time until the occurrence of red coral from the part was measured. The measurement results are also shown in Table 1.
実施例 1 〜 7の疵部から赤鲭が発生するまでの時間は、 従来の外 面に溶融亜鉛めつきを施した比較例 1〜 4に比べていずれも長く、 耐食性に優れていることがわかる。 '
The time from the heel portion of Examples 1 to 7 to the occurrence of red cocoon is longer than that of Comparative Examples 1 to 4 in which hot galvanizing is applied to the conventional outer surface, and the corrosion resistance is excellent. Recognize. '
表 1 table 1
鋼管内面 剪断接着力(MPa) 塩水噴霧試験(時間) 例 鋼管外面 40で温水 90*C熱水 備考 赤鲭が発生する 樹脂層 接着層 下地処理等 初期 1年間 1年間 Steel pipe inner surface Shear adhesive strength (MPa) Salt spray test (hours) Example Hot water 90 * C hot water on the outer surface of the steel pipe Remarks Red layer occurs Resin layer Adhesive layer Substrate treatment Initial 1 year 1 year
までの時間 Time to
通水後 通水後 After passing water After passing water
亜鉛 · アルミニウム Zinc / Aluminum
1 リン酸亜鉛カルシウム 5. 0 4. 6 4. 2 2300 1 Zinc calcium phosphate 5. 0 4. 6 4. 2 2300
混合物溶射 Mixture spraying
亜鉛溶射 5. 0 4. 8 4. 6 770 Zinc spraying 5. 0 4. 8 4. 6 770
無水 7レイン酸変性 7-Rainic acid modification
亜鉛 · アルミニウム Zinc / Aluminum
ホ°リ Iチレン H
2 5. 0 4. 8 4. 6 2300 2 5. 0 4. 8 4. 6 2300
混合物溶射 Mixture spraying
亜鉛 · アルミニウム Zinc / Aluminum
5. 0 4. 8 4. 6 2300 5. 0 4. 8 4. 6 2300
合金溶射 Alloy spraying
無水イタ:!ン酸変性 Itaic anhydride :! acid modification
5. 0 4. 8 4. 6 5. 0 4. 8 4. 6
ホ'リエチレン Polyethylene
エチレン · 無 (ぐマレイン酸 Ethylene · None (Gumaleic acid
5. 0 4. 8 4. 6 5. 0 4. 8 4. 6
共重合体 Copolymer
エチレン · 無水マレイン酸 - ホ。リエチレン 5. 0 4. 8 4. 6 Ethylene · Maleic anhydride-e. Liethylene 5. 0 4. 8 4. 6
アクリル酸共重合体 リン酸亜鉛カルシウム + Acrylic acid copolymer Zinc calcium phosphate +
エチレン · 無水マレイン酸 · エホ。キシ樹脂粉体フ°ライマ- Ethylene · Maleic anhydride · Eho. Xylene resin powder liner
5. 0 4. 8 4. 6 5. 0 4. 8 4. 6
アクリル酸 Iステル共重合体 Acrylic acid I Stell copolymer
3 本発明例 エチレン · アクリル酸 3 Invention Example Ethylene Acrylic acid
5. 0 4. 8 4. 6 5. 0 4. 8 4. 6
共重合体 Copolymer
エチレン · アクリル酸ヱステル Ethylene acrylate
亜鉛 · アルミニウム 5. 0 4. 8 4. 6 Zinc / Aluminum 5. 0 4. 8 4. 6
共重合体 2300 Copolymer 2300
混合物溶射 Mixture spraying
エチレン♦ メタクリル酸 Ethylene methacrylic acid
5. 0 4. 8 4. 6 5. 0 4. 8 4. 6
共重合体 Copolymer
エチレン · 酢酸ビニル Ethylene · Vinyl acetate
5. 0 4. 8 4. 6 5. 0 4. 8 4. 6
共重合体 Copolymer
アイオノマ- 5. 0 4. 8 4. 6 Ionoma-5. 0 4. 8 4. 6
4 リン酸亜鉛カルシウム 5. 0 4. 6 4. 2 4 Zinc calcium phosphate 5. 0 4. 6 4. 2
無水 7レイン酸変性 7-Rainic acid modification
ホ。リフ。 Dピレン リン酸亜鉛カルシウム + Ho. Riff. D-pyrene zinc calcium phosphate +
5 ホ°リフ'ロピレン 5. 0 4. 8 4. 6 5 ° riff lopyrene 5. 0 4. 8 4. 6
エホ。キシ樹脂粉体フ'ライマ- Jeho. Xi resin powder film
6 リン酸亜鉛カルシウム 5. 0 4. 6 4. 2 6 Calcium zinc phosphate 5. 0 4. 6 4. 2
無水 7レイン酸変性 7-Rainic acid modification
架橋ホ'リエチレン リン酸亜鉛カルシウム + Cross-linked polyethylene zinc calcium phosphate +
7 ホ'リエチレン 5. 0 4. 8 4. 6 7 Polyethylene 5. 0 4. 8 4. 6
エホ。キシ樹脂粉体フ'ライマ- エチレン · 酢酸!:'ニル Jeho. Xi resin powder film-ethylene · acetic acid! : 'Nil
1 ホ°リ塩化ビニル 4. 0 3. 6 1. 6 1 Polyvinyl chloride 4.0 0 3. 6 1. 6
共重合体 Copolymer
2 無水 7レイン酸変性 2 anhydrous 7 rain acid modification
ホ。リエチレン 4. 0 1. 8 0. 8 Ho. Liethylene 4. 0 1. 8 0. 8
ホ。リエチレン Ho. Liethylene
溶融亜鉛めつぎ 溶融亜鉛めつき 450 比較例 無水 7レイン酸変性 Hot-dip zinc soldering Hot-dip zinc plating 450 Comparative example Anhydrous 7-rain acid modification
3 ホ'リフ。 Dピレン 4. 0 1. 8 3 Ho riff. D-pyrene 4. 0 1. 8
ホ°リフ° Dピレン 0. 8 H ° Riff ° D-pyrene 0.8
無水 7レイン酸変性 7-Rainic acid modification
4 架橋ホ°リエチレン 4. 0 1. 8 4 Cross-linked polyethylene 4. 0 1. 8
ホ。リエチレン ϋ. 8
Ho. Reethylene ϋ. 8
産業上の利用可能性 Industrial applicability
本発明の樹脂ライニング鋼管は、 従来の内外面にめっき層を有す る溶融金属めつき鋼管にポリ塩化ビニルを内面ライニングした樹脂 ライニング鋼管の代わりに使用することができる。 また、 本発明に よれば、 従来よりもさらに長い期間に渡り、 給水、 給湯、 空調、 消 火、 排水等の配管等に使用可能な、 鋼管と樹脂管との密着性に優れ た樹脂ライニング鋼管およびその製造方法を提供することができる
The resin-lined steel pipe of the present invention can be used in place of a conventional resin-lined steel pipe in which polyvinyl chloride is lined on the inner surface of a molten metal-plated steel pipe having a plating layer on the inner and outer surfaces. In addition, according to the present invention, a resin-lined steel pipe with excellent adhesion between a steel pipe and a resin pipe that can be used for piping for water supply, hot water supply, air conditioning, fire extinguishing, drainage, etc. for a longer period of time than before. And its manufacturing method can be provided