JP2019001030A - Flame-retardant laminate - Google Patents

Flame-retardant laminate Download PDF

Info

Publication number
JP2019001030A
JP2019001030A JP2017116538A JP2017116538A JP2019001030A JP 2019001030 A JP2019001030 A JP 2019001030A JP 2017116538 A JP2017116538 A JP 2017116538A JP 2017116538 A JP2017116538 A JP 2017116538A JP 2019001030 A JP2019001030 A JP 2019001030A
Authority
JP
Japan
Prior art keywords
core material
flame
flame retardant
foamed
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017116538A
Other languages
Japanese (ja)
Inventor
俊輔 柳井
Toshisuke Yanai
俊輔 柳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Jushi Corp
Sekisui Jushi Plametal Corp
Original Assignee
Sekisui Jushi Corp
Sekisui Jushi Plametal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Jushi Corp, Sekisui Jushi Plametal Corp filed Critical Sekisui Jushi Corp
Priority to JP2017116538A priority Critical patent/JP2019001030A/en
Publication of JP2019001030A publication Critical patent/JP2019001030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a flame-retardant laminate which is lightweight and has high flame retardancy performance.SOLUTION: A flame-retardant laminate 1 has metal plates laminated on both surfaces of a core material 2 containing 25-40 wt.% of a polyolefin resin and 60-70 wt.% of a flame-retardant material, where the flame-retardant material is formed of magnesium hydroxide or an inorganic material containing magnesium hydroxide as a main component. The core material 2 is foamed by a foaming material, configured such that a diameter of a foamed part formed by foaming is 500 μm or less, a specific gravity of the core material 2 is 0.6 or more, and the total calorific value when a heat-buildup test is performed is 8 MJ/square meter or less.SELECTED DRAWING: Figure 2

Description

本発明は、樹脂と難燃材としての金属水酸化物とを含む樹脂板からなる芯材に金属板を積層して形成される難燃性積層体に関する。   The present invention relates to a flame retardant laminate formed by laminating a metal plate on a core material made of a resin plate containing a resin and a metal hydroxide as a flame retardant.

主に樹脂からなる樹脂板に金属板を接合することにより形成されたカナッペ状やサンドイッチ構造の積層体は、単なる樹脂板と比較して、極めて高い強度や弾性を具備しつつ、金属板と比較して軽量で且つ曲げ加工性が優れており、一般的に広く用いられている。また、この樹脂板に金属水酸化物や難燃剤を配合することにより難燃性能を具備させた難燃性積層体も提案されている。   A canapé-like or sandwich-structured laminate formed by joining a metal plate to a resin plate mainly made of resin has extremely high strength and elasticity compared to a simple resin plate, but compared to a metal plate. It is lightweight and has excellent bending workability, and is generally used widely. In addition, a flame-retardant laminate having flame retardancy by adding a metal hydroxide or a flame retardant to the resin plate has been proposed.

難燃性能を付与するために難燃剤は、従来から様々なものが用いられている。その中で、廃棄の際に、難燃剤そのもの、あるいは難燃材に含まれる有害物質が問題となることがあり、水酸化アルミニウムや水酸化マグネシウムのような金属水酸化物が難燃剤として用いられる。しかしながら、金属水酸化物は、一般的な樹脂より比重が重いため難燃性積層体が重くなり、持ち運びや取り扱いの点で難があった。   Conventionally, various flame retardants have been used to impart flame retardancy. Among them, the flame retardant itself or harmful substances contained in the flame retardant may become a problem during disposal, and metal hydroxides such as aluminum hydroxide and magnesium hydroxide are used as the flame retardant. . However, since the metal hydroxide has a higher specific gravity than a general resin, the flame retardant laminate becomes heavy, and it is difficult to carry and handle.

それらの問題を解決するために、例えば特許文献1では、ポリオレフィン系樹脂シートの両面にアルミニウム板を貼合された難燃性能複合板において、燃焼試験後にアルミニウム板表面に塗布した塗料が所定の面積以上剥離又は白化するようにすることによって、難燃性能を向上させている。   In order to solve these problems, for example, in Patent Document 1, in a flame retardant composite plate in which an aluminum plate is bonded to both surfaces of a polyolefin-based resin sheet, the paint applied to the surface of the aluminum plate after a combustion test has a predetermined area. As described above, the flame retardancy is improved by peeling or whitening.

また、本出願人においても、樹脂板に接着剤を介して金属板を接合する積層体において、その接着剤にも金属水酸化物を含ませることによって、難燃性能を向上させた難燃性積層体を提案している。   In addition, in the present applicant, in the laminated body in which the metal plate is bonded to the resin plate via the adhesive, the flame retardancy is improved by including the metal hydroxide in the adhesive. A laminate is proposed.

特開2007−125715号公報JP 2007-125715 A 特開2004−358772号公報Japanese Patent Laid-Open No. 2004-358772

ところで、特許文献1に記載の難燃性能複合板は、アルミニウム表面に塗布する塗料が制限されるため、塗料の種類、塗布方法や塗布条件、塗膜の構成や塗膜厚にも制限を受けるおそれがあった。   By the way, the flame-retardant performance composite plate described in Patent Document 1 is limited in the type of coating, the coating method and coating conditions, the coating film configuration, and the coating thickness because the coating applied to the aluminum surface is limited. There was a fear.

一方、上記のような難燃性能複合板において、芯材を発泡させれば芯材の比重が下がるので重量が軽くなるが、樹脂の絶対量が減ると芯材の形状を維持できなくなるおそれがある。   On the other hand, in the flame retardant composite plate as described above, if the core material is foamed, the specific gravity of the core material is reduced and the weight is reduced. However, if the absolute amount of resin is reduced, the shape of the core material may not be maintained. is there.

本発明は、前記の如き問題点を解消し、軽量で難燃性能が高い難燃性積層体を提供するものである。   The present invention solves the above problems and provides a flame retardant laminate that is lightweight and has high flame retardancy.

上記課題を解決するために、本発明者は鋭意研究した結果、樹脂板を軽量化するために発泡剤によって発泡させたものとする際、発泡の状態の所定の状態に保持することによって、軽量で難燃性能の高い難燃性積層体となすことができることを知得し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, when the resin plate is made to be foamed with a foaming agent in order to reduce the weight, by maintaining the foamed state in a predetermined state, the weight is reduced. Thus, it was learned that a flame retardant laminate having high flame retardant performance can be obtained, and the present invention has been completed.

すなわち、本発明に係る難燃性積層体は、25〜40重量%のポリオレフィン系樹脂と、60〜70重量%の難燃材とを含む芯材の両面に積層された金属板とを備えた難燃性積層体であって、前記難燃材は、水酸化マグネシウム又は水酸化マグネシウムを主成分とする無機材料からなり、前記芯材は、発泡材によって発泡したものであって、前記発泡によって形成された発泡部の直径は500μm以下であり、前記芯材の比重が0.6〜1.1であり、発熱性試験を行ったときの総発熱量が8MJ/平方メートル以下であることを特徴とするものである。   That is, the flame retardant laminate according to the present invention includes a metal plate laminated on both surfaces of a core material including 25 to 40% by weight of a polyolefin-based resin and 60 to 70% by weight of a flame retardant. A flame retardant laminate, wherein the flame retardant is made of magnesium hydroxide or an inorganic material mainly composed of magnesium hydroxide, and the core material is foamed by a foam material, The formed foamed portion has a diameter of 500 μm or less, a specific gravity of the core material of 0.6 to 1.1, and a total calorific value when the exothermic test is performed is 8 MJ / square meter or less. It is what.

前記芯材の比重は、0.7〜1.1とすることが更に好ましい。   More preferably, the core has a specific gravity of 0.7 to 1.1.

本発明によれば、芯材において、発泡材によって形成された中空部の直径を制御しつつ、かつ、所定の比重を超えるようにすることによって、難燃性を保持し、軽量とすることができるので、輸送効率や施工性に優れたものとなる。   According to the present invention, in the core material, while controlling the diameter of the hollow portion formed by the foam material and exceeding the predetermined specific gravity, the flame retardancy can be maintained and the weight can be reduced. Because it can, it will be excellent in transport efficiency and workability.

前記芯材の比重は、0.7〜1.1とすることによって、難燃性をより発現しやすくなる。   By setting the specific gravity of the core material to 0.7 to 1.1, it becomes easier to express flame retardancy.

本発明に係る難燃性積層体の実施の一形態を示す斜視図である。It is a perspective view which shows one Embodiment of the flame-retardant laminated body which concerns on this invention. 図1のA−A断面における拡大詳細断面である。It is an expansion detailed cross section in the AA cross section of FIG. 本発明に係る難燃性積層体の実施例及び比較例を示す表である。It is a table | surface which shows the Example and comparative example of a flame-retardant laminated body which concern on this invention. 実施例1で作成した芯材において破断部の一部の顕微鏡写真(図面代用写真)ある。FIG. 2 is a micrograph (drawing substitute photograph) of a part of a fractured portion in the core material created in Example 1. FIG. 実施例2で得られた難燃性積層体の芯材において破断部の一部の顕微鏡写真(図面代用写真)ある。FIG. 3 is a micrograph (drawing substitute photograph) of a part of a fracture portion in the core material of the flame-retardant laminate obtained in Example 2. FIG. 比較例1で作成した芯材において破断部の一部の顕微鏡写真(図面代用写真)ある。2 is a micrograph (drawing substitute photograph) of a part of a fractured portion in the core material created in Comparative Example 1; 比較例2で作成した芯材において破断部の一部の顕微鏡写真(図面代用写真)ある。FIG. 4 is a micrograph (drawing substitute photograph) of a part of a fracture portion in a core material prepared in Comparative Example 2. FIG. 比較例3で得られた積層体の芯材において破断部の一部の顕微鏡写真(図面代用写真)ある。6 is a micrograph (drawing substitute photograph) of a part of a fractured portion in the core material of the laminate obtained in Comparative Example 3.

本発明の実施の形態にについて、図面に基づき以下に具体的に説明する。なお、本発明は、これらの実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。   Embodiments of the present invention will be specifically described below with reference to the drawings. Note that the present invention is not limited to these embodiments. The present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention.

図1は本発明に係る難燃性積層体の実施の一形態を示す断面図、図2は図1のA−A断面における拡大詳細断面図である。難燃性積層体1は、板状の芯材2の表裏に金属板3が積層されて、金属板3、3の間に芯材2が配された構造となっており、芯材2と金属板3とを接着するために接着層4が設けられている。難燃性積層体1の厚さは、1〜5mm程度が好適であり、芯材2の厚さは0.5〜4mm、金属板3の厚さは0.1〜1mmが好適である。   FIG. 1 is a cross-sectional view showing an embodiment of the flame-retardant laminate according to the present invention, and FIG. 2 is an enlarged detailed cross-sectional view taken along the line AA of FIG. The flame retardant laminate 1 has a structure in which metal plates 3 are laminated on the front and back of a plate-like core material 2, and the core material 2 is arranged between the metal plates 3 and 3. An adhesive layer 4 is provided for bonding the metal plate 3. The thickness of the flame retardant laminate 1 is preferably about 1 to 5 mm, the thickness of the core material 2 is preferably 0.5 to 4 mm, and the thickness of the metal plate 3 is preferably 0.1 to 1 mm.

芯材2は、難燃材とポリオレフィン系樹脂とを含むものである。難燃材は、水酸化マグネシウムを主成分とするものである。具体的には、ブルーサイトのような水酸化マグネシウムを主成分とする天然鉱石を粉砕したものや、海水に含まれるマグネシウム成分から水酸化マグネシウムを合成したもの、水酸化ナトリウム水溶液にマグネシウム塩を加えて、沈澱した水酸化マグネシウムのコロイドを原料として用いるもの等を挙げることができる。このうち、海水由来のものは、不純物の含有量を比較的少なく、粒径を揃えやすいので、好適に利用することができる。難燃材の粒径は、小さいほど単位表面積が増えるので難燃性能が効果的に発現されるとされるが、粒径が小さくなるほどポリオレフィン系樹脂への分散性が低下する傾向があり、芯材2の成形性が低下するおそれがある。したがって、難燃材の粒径は、その平均粒径が1〜10μmが好ましい。   The core material 2 includes a flame retardant material and a polyolefin-based resin. The flame retardant is mainly composed of magnesium hydroxide. Specifically, pulverized natural ore composed mainly of magnesium hydroxide such as brucite, synthesized magnesium hydroxide from magnesium components contained in seawater, added magnesium salt to aqueous sodium hydroxide solution And the like using a colloid of precipitated magnesium hydroxide as a raw material. Among these, those derived from seawater can be suitably used because they have a relatively small impurity content and are easily uniform in particle size. The smaller the particle size of the flame retardant is, the more the unit surface area increases, so the flame retardant performance is effectively expressed. However, the smaller the particle size, the lower the dispersibility in the polyolefin resin, and the core There is a possibility that the formability of the material 2 may decrease. Accordingly, the average particle size of the flame retardant is preferably 1 to 10 μm.

ポリオレフィン系樹脂は、エチレン、プロピレン、ブテン等のα―オレフィンの重合体を用いてもよく、エチレンにα―オレフィンを重合させたものなどを用いてもよく、他にはエチレンに酢酸ビニル、メタクリル酸またはそのエステル、アクリル酸またはそのエステルを共重合させたもの、ポリエチレン末端を無水マレイン酸等で修飾したもの等を用いてもよい。更に、これらの樹脂を単独で用いてもよく、2種類以上を用いてもよい。一般に、難燃剤に含まれる水酸化マグネシウムは250℃から分解が始まるとされており、それより低い温度で成形可能な樹脂が好ましく、ポリエチレン又はポリエチレンを主成分とするものが好適に用いられる。ポリエチレン樹脂を用いた場合には、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン及び直鎖状低密度ポリエチレンを単一で用いてもよく、複数用いてもよい。   The polyolefin resin may be an α-olefin polymer such as ethylene, propylene, or butene, or may be a polymer obtained by polymerizing an α-olefin with ethylene. An acid or its ester, a copolymer of acrylic acid or its ester, a polyethylene terminal modified with maleic anhydride or the like may be used. Further, these resins may be used alone or in combination of two or more. In general, magnesium hydroxide contained in a flame retardant is said to start decomposing at 250 ° C., and a resin that can be molded at a temperature lower than that is preferable, and polyethylene or polyethylene-based material is preferably used. When a polyethylene resin is used, high density polyethylene, medium density polyethylene, low density polyethylene, and linear low density polyethylene may be used alone or in combination.

また、芯材2において、金属水酸化物の分散性を向上させるために、分散剤を用いてもよく、分散剤により金属水酸化物を樹脂中に均一に分散させやすくなり、難燃性能を向上させることができる。分散剤としては、例えば、ステアリン酸亜鉛等の飽和脂肪酸金属塩などを用いることができる。また、芯材2の成形性や平滑性を向上させるために、滑剤を用いても良く、飽和脂肪酸のエステルやアミドが用いられる。   Moreover, in the core material 2, in order to improve the dispersibility of a metal hydroxide, you may use a dispersing agent, it becomes easy to disperse | distribute a metal hydroxide uniformly in resin by a dispersing agent, and flame retardance performance. Can be improved. As the dispersant, for example, a saturated fatty acid metal salt such as zinc stearate can be used. Moreover, in order to improve the moldability and smoothness of the core material 2, a lubricant may be used, and an ester or amide of a saturated fatty acid is used.

芯材2の発泡に用いる発泡剤としては、加熱分解や化学反応により窒素ガスや炭酸ガス等を放出する化学発泡剤、熱により体積膨張するものを挙げることができる。前者の化学発泡剤において無機系化学発泡剤としては、炭酸ナトリウム等の重炭酸塩、亜硝酸ナトリウム等の亜硝酸塩等を挙げることができ、有機系化学発泡剤としては、アゾ化合物、ヒドラジド系化合物等を挙げることができ、更に具体的には、アゾ化合物である2,2’−アゾビスイソブチロニトリルやアゾジカルボンアミド、アゾヘキサヒドロベンゾニトリル、ヒドラジド系化合物であるベンゼンスルホニルヒドラジドやジフェニルスルホン−3,3’−ジスルホニルヒドラジドを挙げることができる。後者としては、熱膨張性マイクロカプセルを挙げることができる。   Examples of the foaming agent used for foaming the core material 2 include a chemical foaming agent that releases nitrogen gas, carbon dioxide gas, and the like by thermal decomposition and chemical reaction, and a material that expands by heat. Examples of the inorganic chemical foaming agent in the former chemical foaming agent include bicarbonates such as sodium carbonate and nitrites such as sodium nitrite. Organic chemical foaming agents include azo compounds and hydrazide compounds. More specifically, azo compounds such as 2,2′-azobisisobutyronitrile, azodicarbonamide, azohexahydrobenzonitrile, hydrazide compounds such as benzenesulfonyl hydrazide and diphenyl sulfone -3,3'-disulfonylhydrazide. Examples of the latter include thermally expandable microcapsules.

芯材2における難燃材の配合比率は60重量%以上が好ましい。難燃材の配合比率が60重量%未満となると、難燃性が安定的に発現しにくくなる。一方、ポリオレフィン系樹脂の配合比率は25重量%以上が好ましい。ポリオレフィン系樹脂の配合比が25重量%未満となると、成形性が低下する。ポリオレフィン系樹脂の配合比率は30重量%以上が更に好ましい。   The blending ratio of the flame retardant in the core material 2 is preferably 60% by weight or more. When the blending ratio of the flame retardant is less than 60% by weight, the flame retardancy is hardly stably exhibited. On the other hand, the blending ratio of the polyolefin resin is preferably 25% by weight or more. If the blending ratio of the polyolefin resin is less than 25% by weight, the moldability is lowered. The blending ratio of the polyolefin resin is more preferably 30% by weight or more.

熱膨張性マイクロカプセルは、通常、殻体に熱膨張性物質を封入したものである。殻体としては、塩化ビニリデン、アクリロニトリル、アクリロニトリルと塩化ビニリデンとの共重合体、アクリロニトリルやメタクリロニトリル等のニトリル系樹脂とメチルメタクリレートやエチルメタクリレート等のメタクリル酸エステルとの共重合物、ニトリル系樹脂とメチルアクリレートやエチルアクリレート等のアクリル酸エステルとの共重合体等が用いられる。また熱膨張性物質としては、イソブタン、ノルマルブタン、ノルマルペンタン、イソペンタン、石油エーテル系の低沸点炭化水素が用いられる。また熱膨張性マイクロカプセルの、発泡前の平均粒径は、15〜50μm程度である。
熱膨張性マイクロカプセルの市販品としては、松本油脂製薬株式会社製「マツモトマイクロスフェアー」、株式会社クレハ製「マイクロスフェアー」、日本フィライト株式会社製「Expancel」、積水化学工業株式会社製「アドバンセル」等が挙げられる。
Thermally expandable microcapsules are usually those in which a thermally expandable substance is enclosed in a shell. Shells include vinylidene chloride, acrylonitrile, copolymers of acrylonitrile and vinylidene chloride, copolymers of nitrile resins such as acrylonitrile and methacrylonitrile and methacrylate esters such as methyl methacrylate and ethyl methacrylate, and nitrile resins. And a copolymer of acrylic acid ester such as methyl acrylate and ethyl acrylate. As the thermally expandable substance, isobutane, normal butane, normal pentane, isopentane, petroleum ether-based low-boiling hydrocarbons are used. Moreover, the average particle diameter before foaming of a thermally expansible microcapsule is about 15-50 micrometers.
Commercially available products of thermally expandable microcapsules include “Matsumoto Microsphere” manufactured by Matsumoto Yushi Seiyaku Co., Ltd., “Microsphere” manufactured by Kureha Co., Ltd., “Expancel” manufactured by Nippon Philite Co., Ltd., “Sekisui Chemical Co., Ltd.” Advancel ”and the like.

発泡剤において、熱膨張性マイクロカプセルは、殻体の軟化温度又は溶融温度を芯材2に含まれるポリオレフィン樹脂より高くすることにより、膨張した後の形状を保持しやすいので好ましい。すなわち、ポリオレフィン樹脂が溶融温度以上であり、かつ、殻体は軟化温度又は溶融温度以下の状態を容易形成することができる。そのため、溶融状態の芯材2を曲げたり、溶融状態の芯材2に金属板3を貼り合わせたりする作業により、芯材2に圧力が加わったとしても、殻体は容易には変形しないので、熱膨張性マイクロカプセルが壊れることなく、芯材2の発泡倍率の低下を抑えることができる。また、殻体同士の合泡が生じにくいので、部分的に大きな発泡が生じたり、芯材2の表裏面や側面からの発泡ガスが流出したりすることを抑えることができる。   In the foaming agent, the heat-expandable microcapsules are preferable because the shape after expansion is easily maintained by making the softening temperature or melting temperature of the shell higher than that of the polyolefin resin contained in the core material 2. That is, the polyolefin resin is at or above the melting temperature, and the shell can easily form a state at the softening temperature or below the melting temperature. Therefore, even if pressure is applied to the core material 2 by bending the molten core material 2 or attaching the metal plate 3 to the molten core material 2, the shell body does not easily deform. And the fall of the expansion ratio of the core material 2 can be suppressed, without a thermally expansible microcapsule breaking. In addition, since it is difficult for bubbles to form each other between the shells, it is possible to suppress the occurrence of partial foaming or the outflow of foaming gas from the front and back surfaces and side surfaces of the core material 2.

芯材2は、独立気泡構造を有することが好ましい。独立気泡構造とは、芯材2を発泡させる発泡剤として熱膨張性マイクロカプセルを用いて芯材2中で独立した発泡部が形成されたものか、化学発泡剤を用いた場合においては、芯材2中で発泡した発泡部があまり合泡しておらず、独立気泡様の形態を有するものである。   The core material 2 preferably has a closed cell structure. The closed cell structure means that a foaming agent for foaming the core material 2 is formed by using a thermally expandable microcapsule and an independent foaming portion is formed in the core material 2 or a chemical foaming agent is used. The foamed part foamed in the material 2 does not form much foam and has a closed cell-like form.

この芯材2の両面に金属板3を積層した難燃性積層体は、後述の発熱性試験において、所定の性能を有することができる。   The flame retardant laminate in which the metal plates 3 are laminated on both surfaces of the core material 2 can have predetermined performance in the exothermic test described later.

金属板3は、一般には、アルミニウム合金、ステンレス鋼、鉄、チタン等が用いられる。芯材2の表裏の金属板3は通常は同じものを用いるが、設置場所や用途等を考慮して、別種類の金属板を表裏に用いてもよい。   The metal plate 3 is generally made of an aluminum alloy, stainless steel, iron, titanium, or the like. The metal plates 3 on the front and back sides of the core material 2 are usually the same, but different types of metal plates may be used on the front and back sides in consideration of the installation location and application.

接着層4は、芯材2と金属板3とを接着するためのものであり、芯材2の成形時もしくは成形後に、ウレタン系、エポキシ系等の接着剤を塗布して形成するものでもよいが、芯材2としてポリエチレンを用いる場合は、ポリオレフィン系樹脂又はポリオレフィン系樹脂との相溶性の高い樹脂をベースとして、金属板3との接着力を付与させた変性樹脂を用いて芯材2の成形時に同時に押出成形することで形成させてもよい。   The adhesive layer 4 is for adhering the core material 2 and the metal plate 3, and may be formed by applying an adhesive such as urethane or epoxy during or after the core material 2 is molded. However, when polyethylene is used as the core material 2, the core material 2 is made of a modified resin that has been imparted with an adhesive force to the metal plate 3 based on a polyolefin resin or a resin highly compatible with the polyolefin resin. You may form by carrying out extrusion molding simultaneously at the time of shaping | molding.

発熱性試験は、ISO5660−1に基づく試験方法で、試験体を99mm±1mmの正方形状とし、試験体表面に輻射熱を照射し電気スパークを作動させる試験を一定時間行って総発熱量を測定するものである。総発熱量に関しては、建築基準法第2条第9号、及び同法施行令第108条の2に基準が規定されており、かかる発熱性試験を20分間行い、総発熱量が8MJ/平方メートルを超えていなければ、いわゆる、不燃性材料としての1つの基準を満足できるというものである。   The exothermic test is a test method based on ISO5660-1, and the test body is made into a square shape of 99 mm ± 1 mm, and the test for irradiating the surface of the test body with radiant heat and operating the electric spark is performed for a certain period of time to measure the total heat generation amount Is. Regarding the total calorific value, the standards are stipulated in Article 2-9 of the Building Standards Act and Article 108-2 of the Law Enforcement Ordinance, and the exothermic test is conducted for 20 minutes, and the total calorific value is 8 MJ / square meter. If it does not exceed, one standard as a so-called nonflammable material can be satisfied.

芯材2は、芯材2の比重は0.6以上が好ましく、更に好ましくは0.7以上である。比重が0.6未満となると、芯材2中に占める発泡部の体積が大きくなり過ぎて、発泡部が破泡したり、発泡部同士が合泡したりして、芯材2中の難燃材の分布に粗密が生じて、難燃性積層体1の難燃性が低下したり、場所による難燃性の偏りが大きくなったりするおそれがある。また、芯材の成形性も低下しやすくなる。芯材2の比重を0.7以上とすることによって、より難燃性能を発現しやすくなるので、更に好ましい。   The core material 2 has a specific gravity of preferably 0.6 or more, more preferably 0.7 or more. When the specific gravity is less than 0.6, the volume of the foamed portion in the core material 2 becomes too large, the foamed portion breaks bubbles, or the foamed portions join each other, resulting in difficulty in the core material 2. There is a possibility that the distribution of the fuel material becomes dense and the flame retardancy of the flame retardant laminate 1 is lowered, or that the uneven flame retardance depending on the location is increased. Moreover, the moldability of the core material is likely to be lowered. By setting the specific gravity of the core material 2 to 0.7 or more, flame retardancy is more easily exhibited, and therefore, more preferable.

一方、芯材2の比重は1.1以下が好ましい。比重が1.1を超えると、芯材2を構成するポリオレフィン系樹脂の含有量が相対的に減少して、熱膨張性マイクロカプセルを均一に分散させにくく、熱膨張性マイクロカプセル自体の発泡の径もある程度分布をもっているので、これらが相まって、芯材2の場所による樹脂の比重の振れ幅が大きくなりやすい。更に、軽量感を実感しにくい。   On the other hand, the specific gravity of the core material 2 is preferably 1.1 or less. When the specific gravity exceeds 1.1, the content of the polyolefin resin constituting the core material 2 is relatively reduced, and it is difficult to uniformly disperse the heat-expandable microcapsules. Since the diameters also have a certain distribution, they combine to easily increase the amplitude of the specific gravity of the resin depending on the location of the core material 2. Furthermore, it is difficult to realize a light feeling.

芯材2が独立気泡構造を有するためには、発泡部の直径は500μm以下が好ましい。発泡部の直径が500μmを超えると、発泡部が破泡したり、発泡部同士が合泡したりして大きな直径となりやすく、難燃性積層体1の成型時に発泡部が潰れやすく、想定していた比重ほど下がりにくくなる。また、局所的に発泡が多い箇所と、逆に少ない箇所が生じやすく、強度や難燃性能が低下したり、金属板の表面の平滑性等の表面性状が悪化したりするおそれがある。なお、発泡部において、1つの発泡部が大きくなったのか、複数の発泡部が合泡したのかは、表面観察では必ずしも判然としないので、これらは区別せずに1つの発泡部と見なす。更に好ましくは、発泡部の直径は300μm以下である。   In order for the core material 2 to have a closed cell structure, the diameter of the foamed portion is preferably 500 μm or less. If the diameter of the foamed part exceeds 500 μm, the foamed part breaks up, or the foamed parts tend to form a large diameter, and the foamed part tends to collapse when the flame retardant laminate 1 is molded. The specific gravity is less likely to drop. Moreover, the location where there is much foaming locally and the location where few are conversely easily occur, there is a possibility that strength and flame retardancy are lowered, or surface properties such as the smoothness of the surface of the metal plate are deteriorated. In the foamed part, whether one foamed part has become larger or a plurality of foamed parts have been combined is not always clear by surface observation, and these are regarded as one foamed part without distinction. More preferably, the diameter of the foamed portion is 300 μm or less.

以下、本発明の実施例及び比較例を挙げて本発明の構成及び効果をさらに説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, although the example and comparative example of the present invention are given and the composition and effect of the present invention are further explained, the present invention is not limited to these examples.

(実施例1)
水酸化マグネシウム(キンセイマテック株式会社製:MagShield S、平均粒径:3〜5μm)65重量%と、
ポリオレフィン系樹脂(日本ポリエチレン株式会社製:UR951 直鎖状低密度ポリエチレン、MFR=3.5(g/10min))32重量%と、
滑材としてステアリン酸亜鉛(日本油脂株式会社製:ジンクステアレートG)0.75重量%、エチレンビスステアロアミド(コグニスジャパン株式会社製:LOXAMID)2.25重量%との混合物を混練して粒状体を作成した。
次にこの粒状体を基本配合として、粒状体100重量部に対して発泡剤として熱膨張性マイクロカプセル(積水化学工業株式会社製:アドバンセルP403M1)を2重量部混合して、単軸押出機でシリンダー温度:140〜160℃、Tダイの温度:140℃としてシート状に押出成形し、芯材2を作成した。
この芯材2を用いて、続いて接着層として芯材2の両面に変性ポリエチレン樹脂シートを配して、更に金属板として厚さ0.2mmのアルミニウム板を配して、加熱接着により総厚4mmの積層体を作成した。なお、芯材2中の難燃材の配合量は、発泡剤の添加により減少するので、芯材2に含まれる難燃材の配合量も図3に記載した。
Example 1
65% by weight of magnesium hydroxide (Kinsei Matec Co., Ltd .: MagShield S, average particle size: 3-5 μm),
32% by weight of polyolefin resin (manufactured by Nippon Polyethylene Co., Ltd .: UR951 linear low density polyethylene, MFR = 3.5 (g / 10 min)),
As a lubricant, a mixture of 0.75% by weight of zinc stearate (manufactured by NOF Corporation: Zinc stearate G) and 2.25% by weight of ethylene bisstearamide (manufactured by Cognis Japan: LOXAMID) was kneaded. Granules were created.
Next, 2 parts by weight of thermally expandable microcapsules (manufactured by Sekisui Chemical Co., Ltd .: Advancel P403M1) as a foaming agent are mixed with 100 parts by weight of the granules as a basic blend, and a single screw extruder is mixed. Then, the core material 2 was prepared by extrusion molding into a sheet at a cylinder temperature of 140 to 160 ° C. and a T-die temperature of 140 ° C.
Using this core material 2, subsequently, a modified polyethylene resin sheet is disposed on both sides of the core material 2 as an adhesive layer, and an aluminum plate having a thickness of 0.2 mm is further disposed as a metal plate. A 4 mm laminate was created. In addition, since the compounding quantity of the flame retardant in the core material 2 reduces by addition of a foaming agent, the compounding quantity of the flame retardant contained in the core material 2 is also described in FIG.

(比重)
芯材2の比重は、得られた積層体から金属板を除去して芯材2を取り出し、比重測定器(新光電子株式会社:DME−220H)を用いて測定した。測定結果を図3に示す。なお、後述において、積層板を作成しない比較例については、得られた芯材の比重を測定した。
(specific gravity)
The specific gravity of the core material 2 was measured using a specific gravity measuring device (Shinko Denshi Co., Ltd .: DME-220H) after removing the metal plate from the obtained laminate and taking out the core material 2. The measurement results are shown in FIG. In addition, in the below-mentioned comparative example which does not produce a laminated board, specific gravity of the obtained core material was measured.

(芯材の成形性)
得られた芯材2は、難燃材の配合割合が比較的多いので、特に押出成形時に、表面の平滑性が低下するおそれがある。一方、芯材は難燃材の分散性を高めるために分散剤を含み、表面の平滑性を高めるために滑剤を含むものとしてもよいが、分散剤、滑剤は芯材2と金属板との積層構成とする際、本形態のように接着剤を用いて芯材2と金属板とを接着する際に接着を阻害するおそれがある。本形態においては、前記分散剤及び滑剤の配合であれば接着を阻害しないことが分かっており、本形態において、芯材2の押出成形時に金属板と積層する積層面の平滑性として、目視観察において、明らかな凹凸が認められず、ほぼ平滑である場合は「○」、明らかに凹凸が認められる場合は「×」とした。成形性の評価結果を図3に示す。
(Formability of core material)
Since the obtained core material 2 has a relatively high blending ratio of the flame retardant, the smoothness of the surface may be deteriorated particularly during extrusion molding. On the other hand, the core material may contain a dispersant to enhance the dispersibility of the flame retardant, and may contain a lubricant to improve the smoothness of the surface, but the dispersant and lubricant are a combination of the core material 2 and the metal plate. When setting it as a laminated structure, there exists a possibility that adhesion | attachment may be inhibited when the core material 2 and a metal plate are adhere | attached using an adhesive agent like this form. In this embodiment, it is known that the blending of the dispersant and the lubricant does not inhibit the adhesion. In this embodiment, the smoothness of the laminated surface laminated with the metal plate during the extrusion molding of the core material 2 is visually observed. In FIG. 1, “◯” was given when no obvious irregularities were observed and the surface was almost smooth, and “X” was given when obvious irregularities were observed. The evaluation results of formability are shown in FIG.

(芯材の発泡状態)
得られた芯材2又は積層体を図2に示されるような断面が現れる方向に、積層板を厚さ方向に破断して、顕微鏡(株式会社ハイロックス社製マイクロスコープ、品番:KH−1300)にて破断面を観察した。芯材2の破断部の一部の顕微鏡写真を図4に示す。表面観察の結果、破断により形成される一対の破断面をそれぞれ観察し、直径(芯材2の厚さ方向、図4において上下方向)が500μmを超える発泡部が観察されない場合は、発泡状態の評価を「○」とし、500μmを超える発泡部が観察された場合は、発泡状態の評価を「×」とした。成形性の評価結果を図3に示す。
(Foamed state of core material)
The obtained core material 2 or laminate is broken in the thickness direction in a direction in which a cross section as shown in FIG. 2 appears, and a microscope (a microscope manufactured by Hilox Co., Ltd., product number: KH-1300) is obtained. ) To observe the fracture surface. A micrograph of a part of the fractured portion of the core material 2 is shown in FIG. As a result of surface observation, a pair of fractured surfaces formed by fracture are observed, and when a foamed portion having a diameter (thickness direction of the core material 2, vertical direction in FIG. 4) exceeding 500 μm is not observed, When the evaluation was “◯” and a foamed part exceeding 500 μm was observed, the evaluation of the foamed state was “X”. The evaluation results of formability are shown in FIG.

(難燃性能)
得られた積層体の難燃性能を評価する試験として前記発熱性試験を実施した。具体的には、得られた積層体から10cm角の試料を3個作成し、3個ともに発熱性試験20分後の総発熱量が8MJ/平方メートルを超えなければ高い難燃性能を備えており合格と判断して評価を「○」とし、総発熱量が基準を超えた試料が一つでもあれば、難燃性能にばらつきがあるか、難燃性能が不足しており、不合格と判断して評価を「×」とした。この難燃性能の評価結果を図3に示す。
(Flame retardant performance)
The exothermic test was performed as a test for evaluating the flame retardancy of the obtained laminate. Specifically, three 10 cm square samples were prepared from the obtained laminate, and all three had high flame retardancy if the total calorific value after 20 minutes of exothermic test did not exceed 8 MJ / square meter. Judgment is acceptable and the evaluation is “○”, and if there is even one sample whose total calorific value exceeds the standard, the flame retardant performance varies or the flame retardant performance is insufficient, and it is judged as rejected. The evaluation was “x”. The evaluation results of this flame retardant performance are shown in FIG.

(曲げ強度試験)
得られた積層体の一部を切り出し、JIS K7171 プラスチック−曲げ特性の求め方に基づいて曲げ試験を実施した。試料は5個作成し、測定値の平均値を曲げ強度とした。曲げ強度試験による曲げ強度を図3に示す
(Bending strength test)
A part of the obtained laminate was cut out and subjected to a bending test based on JIS K7171 plastic-bending method. Five samples were prepared, and the average value of the measured values was taken as the bending strength. The bending strength by the bending strength test is shown in FIG.

(実施例2)
実施例1において、金属板として厚さ0.1mmのアルミニウム板を用い、総厚3mmとした以外は実施例1と同様にして積層体を得た。実施例1と同様に、芯材2の比重の測定結果、芯材2の成形性の評価結果、芯材2の発泡状態の観察結果、難燃性能の評価結果、曲げ強度試験の結果を図1に示す。また、積層体における芯材2の破断部の一部の顕微鏡写真を図5に示す。
(Example 2)
In Example 1, a laminate was obtained in the same manner as in Example 1 except that an aluminum plate having a thickness of 0.1 mm was used as the metal plate and the total thickness was 3 mm. As in Example 1, the measurement results of the specific gravity of the core material 2, the evaluation results of the moldability of the core material 2, the observation results of the foamed state of the core material 2, the evaluation results of the flame retardant performance, and the results of the bending strength test are shown. It is shown in 1. Moreover, the micrograph of a part of fracture | rupture part of the core material 2 in a laminated body is shown in FIG.

(比較例1)
実施例1において、発泡剤として有機系化学発泡剤(三協化成株式会社製:セルマイク)を2部混合した以外は実施例1と同様にして芯材2を得た。実施例1と同様に、芯材2の比重の測定結果、芯材2の成形性の評価結果、芯材2の発泡状態の観察結果を示す。なお、芯材2の成形性の評価は「×」であったため成形性不良と判断し、積層体を作成していない。そのため、難燃性能の評価結果、曲げ強度試験は実施しなかった。積層体作成前の2芯材の破断部の一部の顕微鏡写真を図6に示す。
(Comparative Example 1)
In Example 1, a core material 2 was obtained in the same manner as in Example 1 except that 2 parts of an organic chemical foaming agent (manufactured by Sankyo Kasei Co., Ltd .: Cellmic) was mixed as the foaming agent. Similar to Example 1, measurement results of the specific gravity of the core material 2, evaluation results of moldability of the core material 2, and observation results of the foamed state of the core material 2 are shown. In addition, since the evaluation of the moldability of the core material 2 was “x”, it was determined that the moldability was poor and a laminate was not created. Therefore, the evaluation results of flame retardancy and the bending strength test were not performed. FIG. 6 shows a micrograph of a part of the fractured portion of the two-core material before the laminate is created.

(比較例2)
実施例1において、発泡剤として無機系化学発泡剤(大日精化工業株式会社製:ファインセルマスター)を2部混合した以外は実施例1と同様にして芯材2を得た。実施例1と同様に、芯材2の比重の測定結果、芯材2の成形性の評価結果、芯材2の発泡状態の観察結果を示す。なお、芯材2の成形性の評価は「×」であったため成形性不良と判断し、積層体を作成していない。そのため、難燃性能の評価結果、曲げ強度試験は実施しなかった。積層体作成前の芯材2の破断部の一部の顕微鏡写真を図7に示す。
(Comparative Example 2)
In Example 1, a core material 2 was obtained in the same manner as in Example 1 except that 2 parts of an inorganic chemical foaming agent (manufactured by Dainichi Seika Kogyo Co., Ltd .: Fine Cell Master) was mixed as the foaming agent. Similar to Example 1, measurement results of the specific gravity of the core material 2, evaluation results of moldability of the core material 2, and observation results of the foamed state of the core material 2 are shown. In addition, since the evaluation of the moldability of the core material 2 was “x”, it was determined that the moldability was poor and a laminate was not created. Therefore, the evaluation results of flame retardancy and the bending strength test were not performed. FIG. 7 shows a micrograph of a part of the broken portion of the core material 2 before the laminate is produced.

(比較例3)
実施例1において、発泡剤として無機系化学発泡剤(大日精化工業株式会社製:ファインセルマスター)を2部混合した以外は実施例1と同様にして芯材2を得た。なお、芯材2の成形性の評価は「×」であったが、比較のために、金属板として厚さ0.1mmのアルミニウム板を用いて総厚3mmとした以外は実施例1と同様にして難燃性積層体を得た。芯材2の比重の測定結果、芯材2の成形性の評価結果、芯材2の発泡状態の観察結果、難燃性能の評価結果、曲げ強度試験の結果を図3に示す。また、積層体作成後の芯材2の破断部の一部の顕微鏡写真を図8に示す。
(Comparative Example 3)
In Example 1, a core material 2 was obtained in the same manner as in Example 1 except that 2 parts of an inorganic chemical foaming agent (manufactured by Dainichi Seika Kogyo Co., Ltd .: Fine Cell Master) was mixed as the foaming agent. The evaluation of the formability of the core material 2 was “x”, but for comparison, the same as in Example 1 except that the total thickness was 3 mm using an aluminum plate having a thickness of 0.1 mm as a metal plate. Thus, a flame retardant laminate was obtained. The measurement result of the specific gravity of the core material 2, the evaluation result of the moldability of the core material 2, the observation result of the foamed state of the core material 2, the evaluation result of the flame retardant performance, and the result of the bending strength test are shown in FIG. Moreover, the one part microscope picture of the fracture | rupture part of the core material 2 after laminated body preparation is shown in FIG.

実施例1と実施例2を比較すると、芯材2の比重としては差があるが、芯材2の発泡状態の観察からすると、いずれも50〜150μm程度の発泡部が観察されており、直径が300μmを超える発泡部は観察されなかった。また、難燃性能の評価結果から、高い難燃性能を備えていることが分かった。一方、実施例2と比較例1〜3とを比較すると、比重は同程度であるが、図5〜図8を比較すると、芯材2の成形性や発泡状態が大きく異なっており、図6〜図8においては、発泡部の直径が500μmを超えているものが観察され、芯材の配合として、ポリオレフィン系樹脂が25〜40重量%では、比較例1〜3で用いられている分解型の発泡剤では芯材2の成形性が低下するものと考えられる。   When Example 1 and Example 2 are compared, there is a difference in the specific gravity of the core material 2, but from the observation of the foamed state of the core material 2, in each case, a foamed portion of about 50 to 150 μm is observed, and the diameter No foaming part exceeding 300 μm was observed. Moreover, it turned out that it has high flame retardance performance from the evaluation result of flame retardance performance. On the other hand, when Example 2 and Comparative Examples 1 to 3 are compared, the specific gravity is about the same, but when FIGS. 5 to 8 are compared, the moldability and foaming state of the core material 2 are greatly different. In FIG. 8, a foamed part having a diameter exceeding 500 μm is observed, and as a core material composition, polyolefin resin is 25 to 40% by weight, and the decomposition type used in Comparative Examples 1 to 3 This foaming agent is considered to reduce the moldability of the core material 2.

本発明に係る難燃性積層体によれば、高い難燃性能を保持しつつ、軽量化を図ることができるので、建築物の内装材、外装材、天井材として好適に利用することができる。   According to the flame-retardant laminate according to the present invention, it is possible to reduce the weight while maintaining high flame-retardant performance, so that it can be suitably used as an interior material, exterior material, and ceiling material of a building. .

1 難燃性積層体
2 芯材
3 金属板
4 接着層
1 Flame Retardant Laminate 2 Core Material 3 Metal Plate 4 Adhesive Layer

Claims (2)

25〜40重量%のポリオレフィン系樹脂と、60〜70重量%の難燃材とを含む芯材の両面に積層された金属板とを備えた難燃性積層体であって、
前記難燃材は、水酸化マグネシウム又は水酸化マグネシウムを主成分とする無機材料からなり、
前記芯材は、発泡材によって発泡したものであって、前記発泡によって形成された発泡部の直径は500μm以下であり、
前記芯材の比重が0.6〜1.1であり、
発熱性試験を行ったときの総発熱量が8MJ/平方メートル以下であることを特徴とする難燃性積層体。
A flame retardant laminate comprising a metal plate laminated on both surfaces of a core material comprising 25 to 40% by weight of a polyolefin-based resin and 60 to 70% by weight of a flame retardant,
The flame retardant is made of magnesium hydroxide or an inorganic material mainly composed of magnesium hydroxide,
The core material is foamed by a foam material, and the diameter of the foamed portion formed by the foaming is 500 μm or less,
The core has a specific gravity of 0.6 to 1.1,
A flame-retardant laminate having a total calorific value of 8 MJ / square meter or less when the exothermic test is conducted.
前記芯材の比重は、0.7〜1.1であることを特徴とする請求項1に記載の難燃性積層体。   The flame retardant laminate according to claim 1, wherein the core material has a specific gravity of 0.7 to 1.1.
JP2017116538A 2017-06-14 2017-06-14 Flame-retardant laminate Pending JP2019001030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017116538A JP2019001030A (en) 2017-06-14 2017-06-14 Flame-retardant laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017116538A JP2019001030A (en) 2017-06-14 2017-06-14 Flame-retardant laminate

Publications (1)

Publication Number Publication Date
JP2019001030A true JP2019001030A (en) 2019-01-10

Family

ID=65004660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116538A Pending JP2019001030A (en) 2017-06-14 2017-06-14 Flame-retardant laminate

Country Status (1)

Country Link
JP (1) JP2019001030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193520A (en) * 2019-05-30 2020-12-03 阪神高速技術株式会社 Thermally peelable epoxy resin primer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245963A (en) * 1992-03-06 1993-09-24 Mitsubishi Kasei Corp Fire-retardant composite material and production thereof
JP2004358772A (en) * 2003-06-04 2004-12-24 Sekisui Jushi Co Ltd Flame retardant laminate
JP2007125715A (en) * 2005-11-01 2007-05-24 Furukawa Electric Co Ltd:The Fire retardant composite panel
US20080248278A1 (en) * 2007-04-02 2008-10-09 General Electric Company Fiber reinforced thermoplastic sheets with surface coverings and methods of making
WO2010062113A2 (en) * 2008-11-25 2010-06-03 Jinyoungtech Co., Ltd Heat-expandable flame-retardant polyolefin resin composition and flame-retardant composite panel using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245963A (en) * 1992-03-06 1993-09-24 Mitsubishi Kasei Corp Fire-retardant composite material and production thereof
JP2004358772A (en) * 2003-06-04 2004-12-24 Sekisui Jushi Co Ltd Flame retardant laminate
JP2007125715A (en) * 2005-11-01 2007-05-24 Furukawa Electric Co Ltd:The Fire retardant composite panel
US20080248278A1 (en) * 2007-04-02 2008-10-09 General Electric Company Fiber reinforced thermoplastic sheets with surface coverings and methods of making
WO2010062113A2 (en) * 2008-11-25 2010-06-03 Jinyoungtech Co., Ltd Heat-expandable flame-retardant polyolefin resin composition and flame-retardant composite panel using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADVANCELL EM [ONLINE], JPN7021000518, 24 November 2017 (2017-11-24), JP, ISSN: 0004449563 *
EXPANCEL [ONLINE], JPN7021000519, 14 September 2013 (2013-09-14), JP, ISSN: 0004449564 *
クレハマイクロスフェアー [ONLINE], JPN7021000521, 31 March 2017 (2017-03-31), JP, ISSN: 0004449562 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193520A (en) * 2019-05-30 2020-12-03 阪神高速技術株式会社 Thermally peelable epoxy resin primer

Similar Documents

Publication Publication Date Title
CN106046483A (en) Sound absorption and thermal insulation polyolefin foamed sheet and preparation method thereof
JP6620387B2 (en) Propylene-based resin expanded particles and expanded molded articles
JP5699428B2 (en) Foam wallpaper
JP5927343B2 (en) Propylene-based resin expanded particles and expanded molded articles
WO2006027943A1 (en) Styrene-modified polyethylene resin beads, styrene -modified polyethylene resin expandable beads, processes for production of both, pre-expanded beads, and products of expansion molding
JP2019001030A (en) Flame-retardant laminate
JP2019065162A (en) Thermally conductive foam
JP4609854B2 (en) Flame retardant composite board
JP6619222B2 (en) Flame retardant laminate
JP6755767B2 (en) Flame-retardant laminate
JP4158880B2 (en) Composite fire plate
JP2007069347A (en) Flame-retardant composite panel
JP2019172903A (en) Thermally conductive foam and thermally conductive foam adhesive sheet
JP5128156B2 (en) Aluminum resin composite board
KR20220140839A (en) Composite Material Laminate
WO1999014266A1 (en) Resin material for foam molding, foamed sheet obtained therefrom, and process for producing the same
JP6854671B2 (en) Foamable thermoplastic resin particles and their manufacturing method
JP2017025151A (en) Resin sheet, laminated sheet and foamed wall paper
JPH09314734A (en) Flame retardant metal resin composite plate
JP5915017B2 (en) Method for producing extruded foam excellent in heat insulation performance
JP2013035196A (en) Extrusion foam with excellent heat insulation performance
JP7294852B2 (en) Wallpaper and its manufacturing method
JP5526855B2 (en) Heat insulation material made of extruded foam with excellent heat insulation performance
EP4331831A1 (en) Fire-resistant article
JP2023145171A (en) Foamable polystyrenic resin particle and production method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210914