JP5172222B2 - Calcia material and method for producing the same - Google Patents

Calcia material and method for producing the same Download PDF

Info

Publication number
JP5172222B2
JP5172222B2 JP2007158051A JP2007158051A JP5172222B2 JP 5172222 B2 JP5172222 B2 JP 5172222B2 JP 2007158051 A JP2007158051 A JP 2007158051A JP 2007158051 A JP2007158051 A JP 2007158051A JP 5172222 B2 JP5172222 B2 JP 5172222B2
Authority
JP
Japan
Prior art keywords
cao
atm
atmosphere
solid solution
calcia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007158051A
Other languages
Japanese (ja)
Other versions
JP2008285393A (en
Inventor
栄司 飯田
▲リン▼ 林
明良 山口
準治 隠明寺
恭夫 溝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2007158051A priority Critical patent/JP5172222B2/en
Publication of JP2008285393A publication Critical patent/JP2008285393A/en
Application granted granted Critical
Publication of JP5172222B2 publication Critical patent/JP5172222B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、耐水和性の高いカルシア質材料およびその製造方法に関する。 The present invention relates to a calciatic material having high hydration resistance and a method for producing the same.

カルシア(CaO)は、自然界に豊富にあり、耐火度が高く、塩基性溶融スラグなどの溶融物に対する耐食性も良いなどの優れた特性を有するため、製鋼用耐火物やセメント製造用耐火物などの耐火物の製造分野に原料として使用することができるが、水和しやすい欠点があるため、その実用が制限されている。 Calcia (CaO) is abundant in nature, has high fire resistance, and has excellent properties such as good corrosion resistance against melts such as basic molten slag. Although it can be used as a raw material in the field of refractory production, its practical use is limited due to the drawback of being easily hydrated.

カルシアの耐水和性を改善すべく、従来から種々の検討がなされている。例えば、カルシアにAl、Cr、Ti、Zr、Fe、Y、W、NiおよびCuの金属またはB、SiおよびCの半金属をコーティングし、大気雰囲気、酸化雰囲気、カーボン雰囲気、一酸化炭素雰囲気、窒素雰囲気またはシリコン雰囲気のいずれか の雰囲気中で加熱処理することによりカルシア原料に金属反応物の被覆層を形成させる方法が特許文献1に開示されている。また、カルシア質原料の表面にチタン系有機金属化合物またはコロイド状チタニアを被覆、乾燥、熱処理する方法が特許文献2に開示されている。 Various studies have been made to improve the hydration resistance of calcia. For example, calcia is coated with Al, Cr, Ti, Zr, Fe, Y, W, Ni and Cu metals or B, Si and C metalloids, air atmosphere, oxidizing atmosphere, carbon atmosphere, carbon monoxide atmosphere, Patent Document 1 discloses a method of forming a coating layer of a metal reactant on a calcia raw material by heat treatment in either a nitrogen atmosphere or a silicon atmosphere. Further, Patent Document 2 discloses a method in which a surface of a calcia material is coated with a titanium-based organometallic compound or colloidal titania, dried, and heat-treated.

特開平8−104574号公報JP-A-8-104574 特開平10−245284号公報JP-A-10-245284

以上に述べた従来の水和防止技術では、添加物の被覆効果が不十分で、カルシアに十分な耐水和性を付与することが困難である。さらに、高価な添加物の使用でコストが高い問題も含まれている。 With the conventional hydration prevention techniques described above, the coating effect of the additive is insufficient, and it is difficult to impart sufficient hydration resistance to calcia. Furthermore, the problem of high cost due to the use of expensive additives is also included.

本発明は、従来の水和防止技術が有していた課題を解決しようとするものであり、安価な添加物を使用し、カルシアに十分な耐水和性を付与する方法および高耐水和性カルシア質材料を実現することを目的とするものである。 The present invention seeks to solve the problems of conventional hydration prevention techniques, and uses a low-cost additive to provide sufficient hydration resistance to calcia and a high hydration resistance calcia. The purpose is to realize a quality material.

本発明は、鉄成分およびカルシウム成分を含む出発原料からなる混合物に対して段階的な熱処理を行うことにより、CaO−FeO系固溶体を形成させた後、固溶体にCaO−Fe−Fe系化合物を析出させ、最終的にはCaO−FeO系固溶体表面に2CaO・Fe の結晶相からなる被覆層を形成させ製造方法およびそれから得られる高耐水和性のカルシア質材料とすることを特徴とする。 In the present invention, a CaO—FeO-based solid solution is formed by performing a stepwise heat treatment on a mixture of starting materials including an iron component and a calcium component, and then the CaO—Fe 2 O 3 —Fe 3 is formed in the solid solution. the O 4 compound to precipitate, eventually high water miscible calcia material obtained from the manufacturing method and it Ru to form a coating layer comprising a crystal phase of 2CaO · Fe 2 O 3 to CaO-FeO-based solid solution surface characterized by a.

すなわち、本発明に係る製造方法は、鉄成分およびカルシウム成分を含む出発原料からなる混合物として、炭酸カルシウムの粉体に酸化鉄の粉体をFe換算で[Fe/(CaO+Fe)]×100%=0.3〜15質量%の比率で添加混合した後、所定の形状に成形し、得られた成形物を酸素分圧が10−30〜0.1atmの雰囲気で全圧力は1atm中において800〜2500℃の範囲で前段階熱処理をすることにより、CaO−FeO系固溶体を生成させ、次に、酸素分圧が10−25〜1atmの雰囲気で全圧力は1atm中において800〜2500℃の範囲で前記固溶体生成条件の前段階と異なる雰囲気および/又は加熱温度下で後段階熱処理をして、CaO−Fe−Fe系化合物を前記固溶体表面に析出させたのち冷却して、2CaO・Feの結晶相からなる被覆層を形成させることを特徴とする高耐水和性のカルシア質材料の製造方法である。 That is, in the production method according to the present invention, as a mixture of starting materials including an iron component and a calcium component, iron oxide powder is converted into [Fe 2 O 3 / (CaO + Fe] in terms of Fe 2 O 3 as a calcium carbonate powder. 2 O 3 )] × 100% = 0.3 to 15% by mass, and after mixing and molding into a predetermined shape, the resulting molded product has an oxygen partial pressure of 10 −30 to 0.1 atm. Then, a pre-stage heat treatment is performed in the range of 800 to 2500 ° C. at 1 atm to generate a CaO—FeO-based solid solution, and then the total pressure is 1 atm in an atmosphere having an oxygen partial pressure of 10 −25 to 1 atm. In the range of 800 to 2500 ° C., post-stage heat treatment is performed under an atmosphere and / or heating temperature different from the pre-stage of the solid solution generation conditions, and the CaO—Fe 2 O 3 —Fe 3 O 4 -based compound This is a method for producing a highly hydration resistant calcia material, wherein a product is deposited on the surface of the solid solution and then cooled to form a coating layer composed of a crystal phase of 2CaO · Fe 2 O 3 .

また、上記の製造方法により製造され、熱処理後のカルシア質材料中の酸化鉄含有量がFe 換算で0.3〜15質量%であることを特徴とする高耐水和性のカルシア質材料が得られるFurther, the highly hydrated calcia having a ferric oxide content of 0.3 to 15% by mass in terms of Fe 2 O 3 produced by the above-described production method and after heat treatment A material is obtained .

上述したように本発明の水和防止技術は、安価な添加物を使用し、カルシアに十分な耐水和性を付与することができ、耐水和性の高いカルシア質材料を提供できる。 As described above, the hydration prevention technology of the present invention can provide a calciaaceous material having high hydration resistance by using an inexpensive additive and imparting sufficient hydration resistance to calcia.

以下、本発明の実施の形態について説明する。本発明において、鉄成分およびカルシウム成分を含む出発原料からなる混合物を段階的に熱処理するところに特徴がある。 Embodiments of the present invention will be described below. The present invention is characterized in that a mixture of starting materials containing an iron component and a calcium component is heat-treated stepwise.

鉄成分含有の出発原料としては、金属鉄および鉄化合物の中の1種または2種以上を用いることができる。鉄化合物には、鉄の酸化物、炭化物、窒化物、硫化物、塩化物やフッ化物などが含まれる。ただし、低コスト面から酸化鉄が好ましい。また、鉄成分含有原料以外の原料中の鉄成分、例えば炭酸カルシウム原料中の酸化鉄不純物も含まれる。カルシウム成分含有の出発原料としては、カルシア、炭酸カルシウムや水酸化カルシウムなどを用いることができる。 As a starting material containing an iron component, one or more of metallic iron and iron compounds can be used. Iron compounds include iron oxides, carbides, nitrides, sulfides, chlorides and fluorides. However, iron oxide is preferable from the viewpoint of low cost. Moreover, the iron component in raw materials other than an iron component containing raw material, for example, the iron oxide impurity in a calcium carbonate raw material, is also contained. As a starting material containing a calcium component, calcia, calcium carbonate, calcium hydroxide, or the like can be used.

前段階の熱処理として、上述した出発原料からなる混合物を加熱し、Ca、FeおよびO元素が均一に分布するCaO−FeO系固溶体を形成させる。加熱温度 を800〜2500℃の範囲にすることが好ましく、加熱温度が800℃未満であると、CaO−FeO系固溶体の形成速度が遅く、FeO固溶量も小さすぎる。温度が2500℃を超えると、鉄成分の蒸発が問題となる。 As a heat treatment in the previous stage, the mixture composed of the above starting materials is heated to form a CaO—FeO-based solid solution in which Ca, Fe and O elements are uniformly distributed. The heating temperature is preferably in the range of 800 to 2500 ° C. If the heating temperature is less than 800 ° C, the formation rate of the CaO-FeO solid solution is slow and the FeO solid solution amount is too small. When the temperature exceeds 2500 ° C., evaporation of the iron component becomes a problem.

また、雰囲気中の酸素分圧を10−30〜0.1atmの範囲にすることが好ましく、酸素分圧が10−30atm未満であると、あるいは0.1atmを超えると、FeOが不安定となり、CaO−FeO系固溶体は形成されない可能性がある。 The oxygen partial pressure in the atmosphere is preferably in the range of 10 −30 to 0.1 atm. If the oxygen partial pressure is less than 10 −30 atm or exceeds 0.1 atm, FeO becomes unstable. The CaO—FeO solid solution may not be formed.

後段階の熱処理においては、前段階の熱処理で得られたCaO−FeO系固溶体を前段階と異なる雰囲気および/又は加熱温度下で熱処理し、固溶体中のFeOを雰囲気中の酸素と反応させ、CaO−Fe−Fe系化合物で析出させる。雰囲気と接する固溶体粒の表面にその化合物が優先的に生成するため、表面被覆層が形成する。 In the subsequent heat treatment, the CaO—FeO-based solid solution obtained in the previous heat treatment is heat-treated at an atmosphere and / or a heating temperature different from that in the previous step, and the FeO in the solid solution is reacted with oxygen in the atmosphere, thereby causing CaO Precipitation is performed with a -Fe 2 O 3 -Fe 3 O 4 -based compound. Since the compound is preferentially generated on the surface of the solid solution particles in contact with the atmosphere, a surface coating layer is formed.

また、その表面被覆層を介して粒の内部へ拡散する酸素が結晶粒間の界面へ集積しやすいため、結晶粒界にもCaO−Fe−Fe系化合物の被覆層が生じる。 Further, since oxygen diffusing into the grains through the surface coating layer easily accumulates at the interface between the crystal grains, a coating layer of the CaO—Fe 2 O 3 —Fe 3 O 4 compound is also present at the crystal grain boundary. Arise.

CaO−Fe−Fe系化合物は、熱処理中において液相または固相を呈し室温まで冷却されると2CaO・FeやCaO・Feなどの結晶相または非結晶相となる。このように形成される耐水和性が高いCaO−Fe−Fe系化合物の被覆層により、良い被覆効果が現れ、得られるカルシア質材料が高い耐水和性を示す。ただし、後段階の熱処理では、前段階と同様に加熱温度が800〜2500℃の範囲であることが好ましい。 The CaO—Fe 2 O 3 —Fe 3 O 4 -based compound exhibits a liquid phase or a solid phase during the heat treatment, and when cooled to room temperature, a crystalline phase such as 2CaO · Fe 2 O 3 or CaO · Fe 2 O 3 It becomes a crystalline phase. The coating layer of the CaO—Fe 2 O 3 —Fe 3 O 4 -based compound having high hydration resistance formed in this way exhibits a good coating effect, and the resulting calcia material exhibits high hydration resistance. However, in the subsequent heat treatment, it is preferable that the heating temperature is in the range of 800 to 2500 ° C. as in the previous step .

また、雰囲気中の酸素分圧を10−25〜1atmの範囲にすることが好ましい。加熱温度は前段階の温度範囲が800℃未満であると、CaO−Fe−Fe系化合物の析出が遅すぎ、2500℃を超えると、鉄成分の蒸発が問題となる。 In addition, the oxygen partial pressure in the atmosphere is preferably in the range of 10 −25 to 1 atm. When the heating temperature is less than 800 ° C. in the previous stage, precipitation of the CaO—Fe 2 O 3 —Fe 3 O 4 compound is too slow, and when it exceeds 2500 ° C., evaporation of the iron component becomes a problem.

さらに、酸素分圧が10−25atm未満になると、CaO−Fe−Fe系化合物が析出せず、1atmを超えると、CaO−Fe−Fe系化合物は析出するが、耐高圧処理装置が必要となり処理コストが高くなる。 Further, when the oxygen partial pressure is less than 10 −25 atm, the CaO—Fe 2 O 3 —Fe 3 O 4 compound does not precipitate, and when it exceeds 1 atm, the CaO—Fe 2 O 3 —Fe 3 O 4 compound Is deposited, but a high-pressure-resistant processing apparatus is required, which increases the processing cost.

なお、熱処理で得られるカルシア質材料中酸化鉄の含有量が0.3〜15質量%であることが好ましい。0.3質量%未満であると、均一なCaO−Fe−Fe系化合物の被覆層が生成できず、あるいはその層の厚みが薄すぎるため、カルシア質材料の耐水和性が低下する可能性がある。 In addition, it is preferable that content of the iron oxide in the calcia material obtained by heat processing is 0.3-15 mass%. If it is less than 0.3% by mass, a uniform coating layer of CaO—Fe 2 O 3 —Fe 3 O 4 compound cannot be formed, or the thickness of the layer is too thin. May be reduced.

酸化鉄の含有量が15質量%を超えると、その量が多すぎてカルシア材料の耐食性などの特性が損なわれる可能性がある。 If the content of iron oxide exceeds 15% by mass, the amount is too large, and properties such as corrosion resistance of the calcia material may be impaired.

[実施例1]
炭酸カルシウムの粉体に酸化鉄(Fe)の粉体を[Fe/(CaO+Fe)]×100%=5質量%の比率で添加し、混合した後、直径25mm×高さ10mmの円柱体に成形した。円柱体を酸素分圧が10−6atmの(Ar+O)雰囲気(全圧力は1atm)中において1600℃で5時間加熱し、CaO−FeO固溶体を生成させた。次に、雰囲気を大気(酸素分圧が約0.2atm)に変更し温度を変更せずに5時間加熱して、CaO−Fe−Fe系化合物を前記固溶体表面に析出させた。室温まで冷却するとき、2CaO・Feの結晶相からなる被覆層が生じた。熱処理後のカルシア質材料を温度が70℃、湿度が90%の恒温恒湿装置の中に48時間静置し、質量増加率から耐水和性を評価した。質量増加率が小さいほど耐水和性が良くなる。
[Example 1]
The powder of iron oxide (Fe 2 O 3 ) was added to the calcium carbonate powder at a ratio of [Fe 2 O 3 / (CaO + Fe 2 O 3 )] × 100% = 5% by mass, and after mixing, the diameter was 25 mm. X Molded into a cylindrical body having a height of 10 mm. The cylindrical body was heated at 1600 ° C. for 5 hours in an (Ar + O 2 ) atmosphere (total pressure: 1 atm) with an oxygen partial pressure of 10 −6 atm to generate a CaO—FeO solid solution. Next, the atmosphere is changed to air (oxygen partial pressure is about 0.2 atm) and heated for 5 hours without changing the temperature, so that the CaO—Fe 2 O 3 —Fe 3 O 4 -based compound is deposited on the surface of the solid solution. I let you. When cooled to room temperature, a coating layer composed of a crystalline phase of 2CaO · Fe 2 O 3 was formed. The calcia material after the heat treatment was allowed to stand for 48 hours in a constant temperature and humidity apparatus having a temperature of 70 ° C. and a humidity of 90%, and the hydration resistance was evaluated from the mass increase rate. The smaller the mass increase rate, the better the hydration resistance.

[実施例2]
炭酸カルシウムの粉体に酸化鉄(Fe)の粉体を[Fe/(CaO+Fe)]×100%=5質量%の比率で添加し、混合した後、直径25mm×高さ10mmの円柱体に成形した。円柱体を酸素分圧が10−5atmの(Ar+O)雰囲気(全圧力は1atm)中において1600℃で5時間加熱し、CaO−FeO固溶体を生成させた後、雰囲気を変更せずに温度を1200℃まで下げて5時間保持し、2CaO・Fe結晶相の被覆層を形成させた。熱処理後のカルシア質材料を実施例1に示した方法で耐水和性を評価した。
[Example 2]
The powder of iron oxide (Fe 2 O 3 ) was added to the calcium carbonate powder at a ratio of [Fe 2 O 3 / (CaO + Fe 2 O 3 )] × 100% = 5% by mass, and after mixing, the diameter was 25 mm. X Molded into a cylindrical body having a height of 10 mm. The cylindrical body was heated at 1600 ° C. for 5 hours in an (Ar + O 2 ) atmosphere with an oxygen partial pressure of 10 −5 atm (total pressure is 1 atm) to form a CaO—FeO solid solution, and then the temperature was changed without changing the atmosphere. The temperature was lowered to 1200 ° C. and held for 5 hours to form a coating layer of 2CaO · Fe 2 O 3 crystal phase. The calcia material after the heat treatment was evaluated for hydration resistance by the method shown in Example 1.

[比較例1]
酸化鉄が添加されていない炭酸カルシウムの粉体を直径25mm×高さ10mmの円柱体に成形した後、円柱体を大気雰囲気中において1600℃で5時間加熱した。熱処理後のカルシア材料を実施例1に示した方法で耐水和性を評価した。
[Comparative Example 1]
After forming calcium carbonate powder to which iron oxide was not added into a cylindrical body having a diameter of 25 mm and a height of 10 mm, the cylindrical body was heated in air at 1600 ° C. for 5 hours. The calcia material after the heat treatment was evaluated for hydration resistance by the method shown in Example 1.

[比較例2]
炭酸カルシウムの粉体に酸化鉄(Fe)の粉体を[Fe/(CaO+Fe)]×100%=5質量%の比率で添加し、混合した後、直径25mm×高さ10mmの円柱体に成形した。円柱体を大気雰囲気中において1600℃で5時間加熱した。加熱後の試料中酸化鉄は、2CaO・Fe粒の状態でCaO粒の間に分布した。熱処理後のカルシア質材料を実施例1に示した方法で耐水和性を評価した。
[Comparative Example 2]
The powder of iron oxide (Fe 2 O 3 ) was added to the calcium carbonate powder at a ratio of [Fe 2 O 3 / (CaO + Fe 2 O 3 )] × 100% = 5% by mass, and after mixing, the diameter was 25 mm. X Molded into a cylindrical body having a height of 10 mm. The cylinder was heated at 1600 ° C. for 5 hours in an air atmosphere. The iron oxide in the sample after heating was distributed among the CaO grains in the form of 2CaO · Fe 2 O 3 grains. The calcia material after the heat treatment was evaluated for hydration resistance by the method shown in Example 1.

実施例1、2および比較例1、2に対する水和試験結果を図1に示す。図中の水和指数は、水和テスト前後における各材料の質量増加率と比較例1のカルシア材料のそれとの比である。図1から本発明のカルシア質材料は高い耐水和性を示すことがわかる。これは、段階的熱処理によりCaO−FeO固溶体に被覆効果の良いCaO−Fe−Fe系化合物の被覆層を析出させたためで、この被覆層が冷却により高耐水和性の2CaO・Fe の結晶相からなる被覆層が形成された結果である。 The hydration test results for Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIG . The hydration index in the figure is the ratio between the mass increase rate of each material before and after the hydration test and that of the calcia material of Comparative Example 1. 1 that the calcia material of the present invention exhibits high hydration resistance. This is because to precipitate a coating layer of CaO-FeO good solid solution coating effect CaO-Fe 2 O 3 -Fe 3 O 4 compounds by stepwise heat treatment, 2CaO the coating layer is highly water-dispersible by cooling This is a result of the formation of a coating layer made of a crystal phase of Fe 2 O 3 .

本発明のカルシア質材料は、浸漬ノズルなどの製鉄・製鋼用耐火物へ応用できるし、セメント製造用耐火物などの分野にも応用できる。 The calcia material of the present invention can be applied to refractories for iron and steel making such as immersion nozzles, and can also be applied to fields such as refractories for cement production.

実施例および比較例のカルシア質材料の水和指数である。It is a hydration index of the calcia material of an Example and a comparative example.

Claims (2)

鉄成分およびカルシウム成分を含む出発原料からなる混合物として、炭酸カルシウムの粉体に酸化鉄の粉体をFe換算で[Fe/(CaO+Fe)]×100%=0.3〜15質量%の比率で添加混合した後、所定の形状に成形し、
得られた成形物を酸素分圧が10−30〜0.1atmの雰囲気で全圧力は1atm中において800〜2500℃の範囲で前段階熱処理をすることにより、CaO−FeO系固溶体を生成させ、次に、酸素分圧が10−25〜1atmの雰囲気で全圧力は1atm中において800〜2500℃の範囲で前記固溶体生成条件の前段階と異なる雰囲気および/又は加熱温度下で後段階熱処理をして、CaO−Fe−Fe系化合物を前記固溶体表面に析出させたのち冷却して、
2CaO・Feの結晶相からなる被覆層を形成させることを特徴とする高耐水和性のカルシア質材料の製造方法。
[Fe 2 O 3 / (CaO + Fe 2 O 3 )] × 100% = 0 in terms of Fe 2 O 3 , as a mixture of starting materials including an iron component and a calcium component. After adding and mixing at a ratio of 3 to 15% by mass, it is molded into a predetermined shape,
The obtained molded product is subjected to pre-stage heat treatment in an atmosphere with an oxygen partial pressure of 10 −30 to 0.1 atm and a total pressure of 800 to 2500 ° C. in 1 atm to generate a CaO—FeO-based solid solution, Next, post-stage heat treatment is performed in an atmosphere having an oxygen partial pressure of 10 −25 to 1 atm and a total pressure in the range of 800 to 2500 ° C. in 1 atm and under an atmosphere and / or heating temperature different from the previous stage of the solid solution generation conditions. Then, the CaO—Fe 2 O 3 —Fe 3 O 4 -based compound is deposited on the surface of the solid solution and then cooled,
A method for producing a highly hydration resistant calcia material, characterized in that a coating layer comprising a crystal phase of 2CaO · Fe 2 O 3 is formed.
請求項1記載の製造方法により製造され、酸化鉄をFe換算で0.3〜15質量%含有することを特徴とする高耐水和性のカルシア質材料。 Produced by the method of claim 1 wherein the high water miscible calcia material, characterized in that it contains 0.3 to 15 wt% of iron oxide calculated as Fe 2 O 3.
JP2007158051A 2007-05-18 2007-05-18 Calcia material and method for producing the same Expired - Fee Related JP5172222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158051A JP5172222B2 (en) 2007-05-18 2007-05-18 Calcia material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158051A JP5172222B2 (en) 2007-05-18 2007-05-18 Calcia material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008285393A JP2008285393A (en) 2008-11-27
JP5172222B2 true JP5172222B2 (en) 2013-03-27

Family

ID=40145483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158051A Expired - Fee Related JP5172222B2 (en) 2007-05-18 2007-05-18 Calcia material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5172222B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093552A1 (en) * 2007-02-01 2008-08-07 Konica Minolta Medical & Graphic, Inc. Scintillator panel
CN104072167A (en) * 2014-06-30 2014-10-01 沈阳化工大学 Treatment method for hydration prevention of CaO

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595614A (en) * 1979-07-30 1980-07-21 Hitachi Ltd Manufacture of slaking resistant calcia clinker
JPS5935060A (en) * 1982-08-17 1984-02-25 羽鶴ドロマイト工業株式会社 Digestion-resistant calcia clinker and manufacture
US6245315B1 (en) * 1999-03-19 2001-06-12 Council Of Scientific & Industrial Research Process for the production of high density hydration resistant lime sinter
JP2002241207A (en) * 2001-02-15 2002-08-28 Yahashi Kogyo Kk Slime-preventing agent and antimicrobial agent

Also Published As

Publication number Publication date
JP2008285393A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP2008195986A (en) Powder of soft magnetic metal, green compact thereof, and method for manufacturing powder of soft magnetic metal
CN105926029A (en) Method for quick synthesis of zinc oxide whiskers by means of microwaves
JP5172222B2 (en) Calcia material and method for producing the same
JPH04329861A (en) Production of heat resistant alloy
KR100415491B1 (en) Nickel fine powder and process for producing the same
JP2014028742A (en) Anticorrosion brick and production method of the same
JP2006327846A (en) Barium titanate powder, method of preparing the same and barium titanate sintered compact
Omid et al. Synthesis and comparison of MgAl2O4–Ti (C, N) composites using aluminothermic-carbothermal reduction and molten salts routes
KR20050120115A (en) Method for manufacturing metal-coated amorphous powder
CN1166585C (en) Production process of magnesia-alumina spinel titanium nitride composite material
JP5540225B2 (en) Molten metal contact material and coating film
Sen et al. Preparation of nano-sized calcium, magnesium, and zinc chromite powder through metalo-organic precursor solutions
CN115477544B (en) Corrosion-resistant refractory material and preparation method thereof
KR101666058B1 (en) Refractory for installation producing alloy steel containing manganese and manufacturing method thereof
CN116102337B (en) Hydration-resistant magnesia spinel brick and preparation method thereof
JPH08217530A (en) Aluminous sintered compact and its production
JPS5843353B2 (en) How to fire magnesia
JP4031267B2 (en) Steel wire for spring and manufacturing method thereof
JPH03173702A (en) Production of sintered body
CN104072167A (en) Treatment method for hydration prevention of CaO
KR100276253B1 (en) Manufacturing method of sintered magnesia
JPS5891074A (en) Manufacture of silicon nitride sintered body
JP3176836B2 (en) Irregular refractories
KR100276976B1 (en) Manufacturing method of electrolytic dolomite
JP2007284330A (en) Calcia clinker excellent in hydration resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

LAPS Cancellation because of no payment of annual fees