JP5171678B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP5171678B2
JP5171678B2 JP2009028685A JP2009028685A JP5171678B2 JP 5171678 B2 JP5171678 B2 JP 5171678B2 JP 2009028685 A JP2009028685 A JP 2009028685A JP 2009028685 A JP2009028685 A JP 2009028685A JP 5171678 B2 JP5171678 B2 JP 5171678B2
Authority
JP
Japan
Prior art keywords
water
treatment
region
treated
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009028685A
Other languages
Japanese (ja)
Other versions
JP2010184175A (en
Inventor
俊彦 余合
顕治 吉岡
洋一郎 清水
高裕 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJICLEAN CO., LTD.
Original Assignee
FUJICLEAN CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJICLEAN CO., LTD. filed Critical FUJICLEAN CO., LTD.
Priority to JP2009028685A priority Critical patent/JP5171678B2/en
Publication of JP2010184175A publication Critical patent/JP2010184175A/en
Application granted granted Critical
Publication of JP5171678B2 publication Critical patent/JP5171678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、水処理技術に係り、詳しくは被処理水の浄化処理を行なう浄化処理部を処理槽本体に収容する水処理装置の構築技術に関する。   The present invention relates to a water treatment technique, and more particularly, to a construction technique of a water treatment apparatus that houses a purification treatment unit that performs purification treatment of water to be treated in a treatment tank body.

従来、一般家庭等から排出される生活排水や、産業廃水等の汚水などの被処理水を処理する種々の技術が提案されている。例えば、下記特許文献1には、被処理水を処理する機構として、好気性生物処理槽、浮上濾過槽、固液分離槽を含む構成の汚水処理装置が開示されている。
ところで、好気性生物処理槽のような好気処理領域を有するこの種の水処理装置においては、当該好気処理領域の所望の処理性能を確保するために、被処理水の流通水量や、被処理水の水理学的滞留時間(「HRT」ともいう)が重要な設計要素とされる。具体的には、好気処理領域において被処理水の硝化反応(被処理水中のアンモニアの硝化(酸化))を促進するためには、被処理水の流通水量を相対的に増やすことが必要とされ、またスカムの浮上を促進するためには、被処理水の滞留時間を長くするべく被処理水の流通水量を相対的に減らすことが必要とされる。
しかしながら、下記特許文献1に記載の汚水処理装置のように、互いに直列的に配設された各処理領域において被処理水が連続的に処理される流通経路に好気処理領域が配設される水処理装置にあっては、好気処理領域における被処理水の流通水量を相対的に増やすことと減らすことは相反することとなるため、被処理水の硝化反応促進と、スカムの浮上促進の両立を図るのが難しい。
特許第3699706号公報
Conventionally, various techniques for treating treated water such as domestic wastewater discharged from ordinary households and sewage such as industrial wastewater have been proposed. For example, Patent Document 1 below discloses a sewage treatment apparatus having a configuration including an aerobic biological treatment tank, a floating filtration tank, and a solid-liquid separation tank as a mechanism for treating the water to be treated.
By the way, in this type of water treatment apparatus having an aerobic treatment area such as an aerobic biological treatment tank, in order to ensure the desired treatment performance of the aerobic treatment area, Hydrological residence time of the treated water (also referred to as “HRT”) is an important design factor. Specifically, in order to promote the nitrification reaction of treated water (nitrification (oxidation) of ammonia in the treated water) in the aerobic treatment region, it is necessary to relatively increase the flow rate of the treated water. Moreover, in order to promote the rise of the scum, it is necessary to relatively reduce the amount of water to be treated to increase the residence time of the water to be treated.
However, as in the sewage treatment apparatus described in Patent Document 1 below, an aerobic treatment region is disposed in a flow path in which treated water is continuously treated in each treatment region disposed in series with each other. In a water treatment device, there is a conflict between relatively increasing and decreasing the amount of water to be treated in the aerobic treatment region, so that the nitrification reaction of treated water is promoted and the rise of scum is promoted. It is difficult to achieve both.
Japanese Patent No. 3699706

そこで本発明は、かかる点に鑑みてなされたものであり、被処理水の好気処理を行なう好気処理領域を備える水処理装置において、好気処理領域における被処理水の硝化反応促進と、被処理水からのスカム浮上促進の両立を図るのに有効な技術を提供することを課題とする。   Therefore, the present invention has been made in view of such points, and in a water treatment apparatus including an aerobic treatment region for performing aerobic treatment of water to be treated, nitrification reaction promotion of water to be treated in the aerobic treatment region, It is an object of the present invention to provide a technique effective for achieving both promotion of scum levitation promotion from treated water.

前記課題を解決するために、本発明が構成される。なお、本発明は、一般家庭等から排出される生活排水をはじめ、厨房排水、産業廃水等の各種の被処理水を処理する水処理装置の構築技術として好適に用いられる。   The present invention is configured to solve the above problems. In addition, this invention is used suitably as construction technology of the water treatment apparatus which processes various to-be-processed waters, such as domestic waste water discharged | emitted from a general household etc., kitchen waste_water | drain, industrial wastewater.

本発明にかかる水処理装置は、浄化処理部、流入部及び流出部を少なくとも備える。浄化処理部は、処理槽本体に収容され被処理水の浄化処理を行なう機能を有する。この浄化処理部は、1または複数の処理部分を適宜組み合わせることによって構成される。この浄化処理部として、典型的には被処理水中の夾雑物を除去する処理、被処理水の嫌気処理、被処理水の好気処理、被処理水の固液分離処理、被処理水の消毒処理を順次行なう第1の浄化処理部や、被処理水の嫌気処理、被処理水の好気処理、被処理水の固液分離処理、被処理水の消毒処理を順次行なう第2の浄化処理部を採用することができる。流入部は、原水が処理槽本体の槽外から浄化処理部に流入する部位として構成される。流出部は、浄化処理部において浄化処理された後の水が処理槽本体の槽外へ流出する部位として構成される。   The water treatment apparatus according to the present invention includes at least a purification treatment section, an inflow section, and an outflow section. The purification treatment unit has a function of carrying out purification treatment of water to be treated which is accommodated in the treatment tank body. This purification processing unit is configured by appropriately combining one or a plurality of processing parts. As this purification treatment unit, typically, a treatment for removing contaminants in the treated water, an anaerobic treatment of the treated water, an aerobic treatment of the treated water, a solid-liquid separation treatment of the treated water, and a disinfection of the treated water A first purification processing unit that sequentially performs processing; an anaerobic treatment of water to be treated; an aerobic treatment of water to be treated; a solid-liquid separation process of water to be treated; Part can be adopted. An inflow part is comprised as a site | part from which raw | natural water flows in into a purification process part from the tank outside a processing tank main body. An outflow part is comprised as a site | part from which the water after the purification process in a purification process part flows out of the tank of a processing tank main body.

特に本発明では、前記の浄化処理部は、更に流通経路、汚泥分離領域、好気処理領域、移送機構及び返送機構を含む構成とされる。
流通経路は、流入部から流入した原水が浄化処理されつつ流出部へと連続して流れる経路として構成される。
汚泥分離領域は、流通経路において被処理水中の汚泥が固液分離処理される領域として構成される。ここでいう汚泥分離領域に関しては、被処理水中の汚泥が固液分離処理される種々の領域が包含され、典型的には被処理水中の夾雑物を除去する夾雑物除去槽や嫌気ろ床を備える嫌気ろ床槽が、当該領域に相当する。
被処理水の好気処理領域は、流通経路から分岐して配設され、被処理水中の有機汚濁物質が好気処理される領域として構成される。典型的には、流動可能な担体が充填された担体流動濾過槽によって、当該領域が構成される。
Particularly in the present invention, the purification processing section further includes a flow path, a sludge separation area, an aerobic treatment area, a transfer mechanism, and a return mechanism.
The distribution path is configured as a path in which the raw water flowing in from the inflow part continuously flows to the outflow part while being purified.
The sludge separation region is configured as a region where sludge in the water to be treated is subjected to solid-liquid separation treatment in the distribution channel. The sludge separation area here includes various areas where the sludge in the treated water is subjected to solid-liquid separation treatment, and typically includes a contaminant removal tank or an anaerobic filter bed for removing the contaminants in the treated water. The anaerobic filter floor tank provided corresponds to the region.
The aerobic treatment region of the water to be treated is arranged so as to be branched from the distribution path, and is configured as a region where the organic pollutant in the water to be treated is aerobically treated. Typically, depending on the carrier flow filtration tank liquidity acceptable carrier is filled, the area is configured.

移送機構は、汚泥分離領域において汚泥の固液分離処理がなされた後の汚水の一部を流通経路から分岐させて好気処理領域に移送する機構として構成される。ここでいう「汚泥の固液分離処理がなされた後の汚水」とは、汚泥を含む水を固定分離処理することによって得られる水を広く包含する主旨であり、当該汚水が含有する固体、当該汚水に残留する固体の度合いに関しては限定されない。この移送機構は、流通経路から好気処理領域へと流れる水、すなわち固液分離処理後の汚水の移送を許容すればよく、エアリフトポンプや水中ポンプなどの移送ポンプによるポンプ移送によって汚水を移送する機構を用いて構成される。 The transfer mechanism is configured as a mechanism for branching a part of the sewage after the solid-liquid separation process of the sludge in the sludge separation region from the flow path to the aerobic treatment region. The “sewage after the sludge solid-liquid separation treatment” as referred to herein is a main idea widely including water obtained by fixed separation treatment of water containing sludge, and the solid contained in the sewage, There is no limitation on the degree of solids remaining in the sewage. The transfer mechanism, the water flows from the distribution channel into the aerobic treatment region, i.e. may be permitted to solid-liquid separation operation transportation of sewage after the wastewater by pumping by a transfer pump such as d A lift pump and water pump It is configured using a transport mechanism.

返送機構は、好気処理領域にて好気処理した後の水を流通経路へ返送する経路として構成される。この返送機構は、好気処理領域から流通経路への水の移送を許容すればよく、典型的には処理槽本体の槽壁や仕切り板等の内装材によって形成される返送流路を通じ、押し出し流れないしオーバーフローの原理によって水を返送させる機構や、エアリフトポンプや水中ポンプなどの移送ポンプによるポンプ移送によって水を移送する機構を用いて構成される。この返送機構は、流入部から流入した原水が浄化処理されつつ流出部へと連続して流れる流通経路上に設けられた各種の処理領域に接続可能とされ、典型的には汚泥分離領域に接続される。   The return mechanism is configured as a path for returning the water after the aerobic treatment in the aerobic treatment area to the distribution path. The return mechanism only needs to allow water to be transferred from the aerobic treatment area to the distribution path, and is typically extruded through a return flow path formed by interior materials such as a tank wall and a partition plate of the treatment tank body. It is configured using a mechanism for returning water by the principle of flow or overflow, and a mechanism for transferring water by pump transfer by a transfer pump such as an air lift pump or a submersible pump. This return mechanism can be connected to various treatment areas provided on the flow path where the raw water flowing in from the inflow part continuously flows to the outflow part while being purified, and is typically connected to the sludge separation area. Is done.

これにより、好気処理領域を流れる被処理水の水量が、流通経路を流れる被処理水の水量に対し独立して設定可能とされる。なおここでいう「独立して設定」とは、好気処理領域がメインフローである流通経路から外れた位置に配設されることで、流通経路から好気処理領域へと移送される汚水の移送水量、すなわち好気処理領域に流入する被処理水の水量(好気処理領域における処理水量)を、流通経路の水量に関係なく(依存することなく)移送ポンプのみによって調節することができるという主旨である。これに対し、流通経路上に好気処理領域が配設されている場合には、好気処理領域を流れる被処理水の水量は、流通経路の水量に依存することとなり独立した設定が難しい。 As a result, the amount of water to be treated flowing in the aerobic treatment region can be set independently of the amount of water to be treated flowing in the distribution path. Here, “independently set” means that the sewage transferred from the distribution path to the aerobic treatment area is disposed at a position outside the distribution path that is the main flow. The amount of transferred water, that is, the amount of treated water flowing into the aerobic treatment region (the amount of treated water in the aerobic treatment region) can be adjusted only by the transfer pump regardless of (without depending on) the amount of water in the flow path. The main point. On the other hand, when the aerobic treatment area is disposed on the distribution path, the amount of water to be treated flowing through the aerobic treatment area depends on the amount of water in the distribution path and is difficult to set independently.

本発明にかかる水処理装置のこのような構成によれば、好気処理領域での被処理水の滞留時間を独立して調節することが可能とされるため、例えば被処理水の硝化反応を促進するべく、好気処理領域における被処理水の流通水量を相対的に増やしたり、スカムの浮上を促進するべく、好気処理領域における被処理水の流通水量を相対的に減らして処理水の滞留時間を長くすることが可能となる。従って、好気処理領域における被処理水の硝化反応促進と、被処理水からのスカム浮上促進の両立を図ることが可能とされる。なお、ここでいう「スカム」とは、典型的には原水中の懸濁物質、繊維質、油脂質、細菌が浮上して、水表面にできるスポンジ質の厚い膜状の浮きかすが挙げられる。   According to such a configuration of the water treatment apparatus according to the present invention, since the residence time of the water to be treated in the aerobic treatment region can be adjusted independently, for example, the nitrification reaction of the water to be treated is performed. In order to promote, the flow rate of treated water in the aerobic treatment region is relatively increased, or the flow rate of treated water in the aerobic treatment region is relatively reduced to promote the rise of scum. It becomes possible to lengthen the residence time. Therefore, it is possible to achieve both the nitrification reaction promotion of the water to be treated in the aerobic treatment region and the promotion of scum levitation from the water to be treated. As used herein, “scum” typically includes a sponge-like thick film-like float that is formed on the water surface by suspending suspended matter, fibers, oil lipids, and bacteria in raw water.

また、汚泥が過剰に含まれるBOD負荷が高い状態の汚水は、硝化反応(被処理水中のアンモニアの硝化(酸化))が進行し難いことが知られているが、本発明では、汚泥の固液分離処理がなされた後の汚水を、好気処理領域へと移送して硝化を行なう構成ゆえ、固液分離によってある程度の固形分が分離されたBOD負荷の低い状態の汚水が硝化されることとなり、硝化反応の進行に関し有利とされる。従って、本発明によれば、被処理水の硝化反応を進行し易くするという点に関し、汚泥の固液分離処理が行なわれていない汚泥過剰の汚水を好気処理領域にて処理する場合では得られないような作用効果を奏することとなる。   Further, it is known that sewage containing a large amount of sludge and having a high BOD load is unlikely to undergo a nitrification reaction (nitrification (oxidation) of ammonia in the water to be treated). Since the sewage after the liquid separation treatment is transferred to the aerobic treatment area and nitrification is performed, the sewage with a low BOD load in which a certain solid content is separated by solid-liquid separation is nitrified. Thus, it is advantageous with respect to the progress of the nitrification reaction. Therefore, according to the present invention, in terms of facilitating the nitrification reaction of the water to be treated, it is obtained in the case where sludge excess sludge that has not been subjected to solid-liquid separation treatment of sludge is treated in the aerobic treatment region. The effect which cannot be performed will be produced.

また本発明にかかる水処理装置の更なる形態では、前記の浄化処理部は、被処理水中の夾雑物の除去処理がなされる夾雑物除去領域と、夾雑物除去領域にて夾雑物の除去処理がなされた後の水を嫌気処理しつつ被処理水中の汚泥を固液分離処理する嫌気処理領域とを備え、夾雑物除去領域によって汚泥分離領域が構成されるのが好ましい。また、本構成では、移送機構は、夾雑物除去領域において汚泥の固液分離処理がなされた後の汚水の一部を好気処理領域に移送する構成とされ、返送機構は、好気処理領域にて好気処理した後の水を夾雑物除去領域に返送する構成とされる。
このような構成によれば、夾雑物除去領域から好気処理領域へと流入して流れる被処理水の水量が、流通経路を流れる被処理水の水量に対し独立して設定可能とされる。
Moreover, in the further form of the water treatment apparatus concerning this invention, the said purification process part is a contaminant removal area | region where the removal process of the contaminant in a to-be-processed water is made, and a contaminant removal process in a contaminant removal area | region. And an anaerobic treatment region for subjecting the sludge in the water to be treated to solid-liquid separation while anaerobically treating the water after the treatment is performed, and the sludge separation region is preferably constituted by the contaminant removal region. Further, in this configuration, the transfer mechanism is configured to transfer a part of the sewage after the sludge solid-liquid separation process is performed in the contaminant removal area to the aerobic treatment area, and the return mechanism is the aerobic treatment area. It is set as the structure which returns the water after an aerobic process in (1) to a contaminant removal area | region.
According to such a configuration, the amount of water to be treated flowing from the contaminant removal region to the aerobic treatment region can be set independently of the amount of water to be treated flowing through the distribution path.

また本発明にかかる水処理装置の更なる形態では、前記の浄化処理部は、被処理水中の夾雑物の除去処理がなされる夾雑物除去領域と、夾雑物除去領域にて夾雑物の除去処理がなされた後の水を嫌気処理しつつ被処理水中の汚泥を固液分離処理する嫌気処理領域とを備え、嫌気処理領域によって汚泥分離領域が構成されるのが好ましい。また、本構成では、移送機構は、嫌気処理領域において汚泥の固液分離処理がなされた後の汚水の一部を好気処理領域に移送する構成とされ、返送機構は、好気処理領域にて好気処理した後の水を夾雑物除去領域に返送する構成とされる。
このような構成によれば、嫌気処理領域から好気処理領域へと流入して流れる被処理水の水量が、流通経路を流れる被処理水の水量に対し独立して設定可能とされる。
Moreover, in the further form of the water treatment apparatus concerning this invention, the said purification process part is a contaminant removal area | region where the removal process of the contaminant in a to-be-processed water is made, and a contaminant removal process in a contaminant removal area | region. And an anaerobic treatment region for subjecting the sludge in the water to be treated to solid-liquid separation while anaerobically treating the water after the treatment is performed, and the sludge separation region is preferably constituted by the anaerobic treatment region. Further, in this configuration, the transfer mechanism is configured to transfer a part of the sewage after solid-liquid separation processing of sludge in the anaerobic treatment region to the aerobic treatment region, and the return mechanism is configured to move to the aerobic treatment region. The water after aerobic treatment is returned to the contaminant removal area.
According to such a configuration, the amount of water to be treated flowing from the anaerobic treatment region to the aerobic treatment region can be set independently of the amount of water to be treated flowing through the distribution channel.

また本発明にかかる水処理装置の更なる形態では、前記の浄化処理部は、流通経路のうち前記嫌気処理領域の下流に、被処理水の好気処理を行なう第2の好気処理領域と、第2の好気処理領域で処理された水の固液分離処理を行なう固液分離処理領域と、固液分離処理領域で処理された水の消毒処理を行なう消毒処理領域とを順次備える構成であるのが好ましい。
このような構成によれば、好気処理領域にて好気処理され、流通経路へ返送された後の水は、嫌気処理領域の下流において、更に好気処理領域、固液分離処理領域及び消毒処理領域において順次処理される。
Moreover, in the further form of the water treatment apparatus concerning this invention, the said purification process part is the 2nd aerobic treatment area | region which performs aerobic treatment of to-be-processed water downstream of the said anaerobic treatment area | region among distribution channels. A structure sequentially including a solid-liquid separation processing region for performing solid-liquid separation processing of water processed in the second aerobic processing region, and a disinfection processing region for performing disinfection processing of water processed in the solid-liquid separation processing region Is preferred.
According to such a configuration, the water after being aerobically treated in the aerobic treatment region and returned to the distribution channel is further downstream in the anaerobic treatment region, the aerobic treatment region, the solid-liquid separation treatment region, and the disinfection. It is sequentially processed in the processing area.

また本発明にかかる水処理装置の更なる形態では、汚泥分離領域における浮上性スカムの厚さを測定する計測機構を備えており、前記の移送機構は、汚泥分離領域において汚泥の固液分離処理がなされた後の汚水の一部をポンプ移送によって好気処理領域に移送する移送ポンプと、計測機構が測定した汚泥分離領域における浮上性スカムの厚さに基づいて、移送ポンプによる移送水量を調節可能な調節機構を備える構成であり、またこの調節機構は、第1の調節モード及び第2の調節モードとを切り替える構成であるのが好ましい。第1の調節モードは、汚泥分離領域における浮上性スカムの厚さが規定よりも少ない場合に移送ポンプによる移送水量を相対的に減少させる移送モードとされる。一方、第1の調節モードは、汚泥分離領域における浮上性スカムの厚さが規定よりも多い場合に移送ポンプによる移送水量を相対的に増加させる移送モードとされる。このような構成によれば、第1の調節モード及び第2の調節モードを遂行することによって、好気処理領域における被処理水の硝化反応促進と、被処理水からのスカム浮上促進の両立を図ることが可能となる。   Further, in a further embodiment of the water treatment apparatus according to the present invention, the water treatment apparatus includes a measuring mechanism for measuring the thickness of the levitation scum in the sludge separation area, and the transfer mechanism is a sludge solid-liquid separation process in the sludge separation area. The amount of water transferred by the transfer pump is adjusted based on the transfer pump that transfers a part of the sewage after being discharged to the aerobic treatment area by pump transfer and the thickness of the floating scum in the sludge separation area measured by the measurement mechanism The adjustment mechanism is preferably configured, and the adjustment mechanism is preferably configured to switch between the first adjustment mode and the second adjustment mode. The first adjustment mode is a transfer mode in which the amount of water transferred by the transfer pump is relatively reduced when the thickness of the floating scum in the sludge separation region is smaller than a specified value. On the other hand, the first adjustment mode is a transfer mode in which the amount of water transferred by the transfer pump is relatively increased when the thickness of the levitation scum in the sludge separation region is larger than a specified value. According to such a configuration, by performing the first adjustment mode and the second adjustment mode, both the nitrification reaction promotion of the water to be treated in the aerobic treatment region and the promotion of scum levitation from the water to be treated are achieved. It becomes possible to plan.

以上のように、本発明によれば、被処理水の好気処理を行なう好気処理領域を備える水処理装置において、特に流入部から流入した原水が浄化処理されつつ流出部へと連続して流れる流通経路から分岐させて好気処理領域を配設し、当流通該経路の汚泥分離領域において汚泥の固液分離処理がなされた後の汚水の一部をこの好気処理領域において好気処理した後、再び流通経路へ返送する構成を採用することによって、汚泥分離領域から好気処理領域へと移送される汚水の移送水量、すなわち好気処理領域における被処理水の滞留時間を独立して設定することが可能となり、以って好気処理領域における被処理水の硝化反応促進と、被処理水からのスカム浮上促進の両立を図ることが可能となった。   As described above, according to the present invention, in the water treatment apparatus including the aerobic treatment region for performing the aerobic treatment of the water to be treated, the raw water flowing in from the inflow part is continuously purified and subjected to the outflow part. An aerobic treatment region is provided by branching from the flowing distribution route, and a part of the sewage after solid-liquid separation treatment of sludge is performed in the sludge separation region of the distribution route in the aerobic treatment region. After that, by adopting a configuration of returning to the distribution path again, the amount of sewage transferred from the sludge separation area to the aerobic treatment area, that is, the residence time of the water to be treated in the aerobic treatment area can be independently determined. Therefore, it is possible to achieve both the nitrification reaction promotion of the water to be treated in the aerobic treatment region and the promotion of scum floating from the water to be treated.

以下に、本発明における一実施の形態の水処理装置の構成等を図面に基づいて説明する。なお、本実施の形態は、一般家庭等から排出される排水(汚水)の処理を行う水処理装置について説明するものである。   Below, the structure of the water treatment apparatus of one Embodiment in this invention is demonstrated based on drawing. In addition, this Embodiment demonstrates the water treatment apparatus which processes the waste_water | drain (sewage) discharged | emitted from a general household etc. FIG.

本発明における「水処理装置」の一実施の形態である水処理装置100の概略構成に関しては図1が参照される。この図1に示すように、本実施の形態の水処理装置100は、槽状に成形された槽本体101の内部に各種の浄化処理機構を収容している。この浄化処理機構は、処理工程の順に対応して上流(図1中の左側)から一次処理部102及び二次処理部103を含む。外部から流入部101aを通じて槽本体101へと流入した原水は、一次処理部102において処理され、次いで二次処理部103で処理された後、流出部101bを通じて槽本体101の外部へと放流される。一次処理部102は、夾雑物除去槽110、好気処理槽120及び嫌気濾床槽130によって構成される。一方、二次処理部103は、好気処理槽140、固液分離処理槽150及び消毒槽160によって構成される。ここでいう槽本体101が本発明における「処理槽本体」に相当し、また槽本体101に収容される一次処理部102及び二次処理部103によって、本発明における「浄化処理部」が構成される。   FIG. 1 is referred to regarding a schematic configuration of a water treatment apparatus 100 which is an embodiment of a “water treatment apparatus” in the present invention. As shown in FIG. 1, the water treatment apparatus 100 of the present embodiment accommodates various purification treatment mechanisms inside a tank body 101 formed in a tank shape. The purification processing mechanism includes a primary processing unit 102 and a secondary processing unit 103 from the upstream (left side in FIG. 1) corresponding to the order of the processing steps. The raw water that has flowed into the tank main body 101 from the outside through the inflow portion 101a is processed in the primary processing unit 102, then processed in the secondary processing unit 103, and then discharged to the outside of the tank main body 101 through the outflow portion 101b. . The primary processing unit 102 includes a contaminant removal tank 110, an aerobic treatment tank 120, and an anaerobic filter bed tank 130. On the other hand, the secondary processing unit 103 includes an aerobic processing tank 140, a solid-liquid separation processing tank 150, and a disinfection tank 160. The tank body 101 here corresponds to the “processing tank body” in the present invention, and the “purification processing section” in the present invention is configured by the primary processing unit 102 and the secondary processing unit 103 accommodated in the tank body 101. The

夾雑物除去槽110は、本実施の形態においては槽本体101内の最上流部に配置されており、流入部101aを通じて当該夾雑物除去槽110に原水が流入する構成になっている。夾雑物除去槽110へのこの原水の流れが図1中の矢印10によって示される。ここでいう流入部101aが、本発明における「流入部」に相当する。この夾雑物除去槽110は、被処理水中に含まれる夾雑物を、流入バッフル(図示省略)などの固液分離手段を用いて被処理水から分離する処理を行う槽であり、被処理水の固液分離機能を果たす。この夾雑物除去槽110で処理された後の水は、一部が好気処理槽120に移流し、残りがその下流に配置された嫌気濾床槽130へと移流する。嫌気濾床槽130へのこの水の流れが図1中の矢印40によって示される。   In this embodiment, the contaminant removal tank 110 is arranged at the most upstream part in the tank body 101, and the raw water flows into the contaminant removal tank 110 through the inflow part 101a. The flow of this raw water to the contaminant removal tank 110 is shown by the arrow 10 in FIG. The inflow portion 101a referred to here corresponds to an “inflow portion” in the present invention. The contaminant removal tank 110 is a tank that performs a process of separating contaminants contained in the treated water from the treated water using solid-liquid separation means such as an inflow baffle (not shown). Performs solid-liquid separation function. A part of the water after being treated in the contaminant removal tank 110 is transferred to the aerobic treatment tank 120, and the rest is transferred to the anaerobic filter bed tank 130 disposed downstream thereof. This water flow to the anaerobic filter bed 130 is indicated by the arrow 40 in FIG.

好気処理槽120は、夾雑物除去槽110における固液分離処理によって生じた水、すなわち汚泥の固液分離処理がなされた後の汚水、具体的には夾雑物除去槽110の中間水位に滞留する水(「中間水」ないし「上澄み液」ともいう)を受け入れて処理する機能を果たす。より具体的には、夾雑物除去槽110から受け入れた中間水に含まれる有機汚濁物質を好気処理(被処理水中のアンモニアの「硝化」或いは「酸化」ともいう)する第1の処理と、夾雑物除去槽110において油脂や固形物の集まったスカムを浮上させ易くする第2の処理が、この好気処理槽120において遂行される。   The aerobic treatment tank 120 stays in the water generated by the solid-liquid separation process in the contaminant removal tank 110, that is, the sewage after the solid-liquid separation process of sludge, specifically, the intermediate water level of the contaminant removal tank 110. It functions to receive and treat water (also called “intermediate water” or “supernatant liquid”). More specifically, a first treatment for aerobic treatment (also referred to as “nitrification” or “oxidation” of ammonia in water to be treated) of organic pollutants contained in the intermediate water received from the contaminant removal tank 110; The aerobic treatment tank 120 performs a second process for facilitating the scum collection of oil and fat and solid matter in the contaminant removal tank 110.

この好気処理槽120の具体的な構成に関しては、ばっ気槽、接触ばっ気槽、担体流動槽等のうちの1または複数を適宜用いることができ、特には、汚泥等の固形物の閉塞の危険性が低い担体流動槽を用いて構成するのが好ましい。典型的には、この好気処理槽120は、夾雑物除去槽110の上流側に配設されるとともに、夾雑物除去槽110の中間水は、エアリフトポンプ等の移送ポンプ112によって好気処理槽120へとポンプ移送されるように構成されている。夾雑物除去槽110から好気処理槽120へのこの水の流れが図1中の矢印20によって示される。ここでいう移送ポンプ112及び後述の調節機構114が、本発明における「移送機構」を構成している。この移送機構は、夾雑物除去槽110から好気処理槽120への汚水の移送を許容すればよく、処理槽本体の槽壁や仕切り板等の内装材によって形成される移送流路を通じ、押し出し流れないしオーバーフローの原理によって汚水を移流させる機構として構成されてもよい。   Regarding the specific configuration of the aerobic treatment tank 120, one or more of an aeration tank, a contact aeration tank, a carrier fluidized tank, etc. can be used as appropriate, and in particular, clogging of solids such as sludge. It is preferable to use a carrier fluidized tank that has a low risk. Typically, the aerobic treatment tank 120 is disposed on the upstream side of the contaminant removal tank 110, and the intermediate water in the contaminant removal tank 110 is aerobic treatment tank by a transfer pump 112 such as an air lift pump. It is configured to be pumped to 120. The flow of this water from the contaminant removal tank 110 to the aerobic treatment tank 120 is shown by the arrow 20 in FIG. The transfer pump 112 and the adjusting mechanism 114 described later constitute the “transfer mechanism” in the present invention. This transfer mechanism only needs to allow the transfer of sewage from the contaminant removal tank 110 to the aerobic treatment tank 120, and is pushed out through a transfer channel formed by interior materials such as a tank wall and a partition plate of the treatment tank body. It may be configured as a mechanism for advancing sewage by the principle of flow or overflow.

また、この好気処理槽120において好気処理された後の水は、当該好気処理槽120から例えば押し出し流れないしオーバーフローの原理にしたがって夾雑物除去槽110へと返送されるように構成されている。好気処理槽120から夾雑物除去槽110へのこの水の流れが図1中の矢印30によって示される。従って、夾雑物除去槽110には、好気処理槽120との間で水の循環流れ(「還流」ともいう)が形成されることとなる。具体的には、好気処理槽120と夾雑物除去槽110との間に両領域を仕切る仕切り板が配設されており、好気処理槽120と夾雑物除去槽110との間の水位差によって、この仕切り板の上部に形成された移流開口を越えて、好気処理槽120から夾雑物除去槽110へと水が返送される返送機構を採用している。ここでいう返送機構が、本発明における「返送機構」に相当する。この返送機構は、好気処理槽120から夾雑物除去槽110への水の移送を許容すればよく、エアリフトポンプや水中ポンプなどの移送ポンプによって構成されてもよい。   Further, the water after the aerobic treatment in the aerobic treatment tank 120 is configured to be returned from the aerobic treatment tank 120 to the contaminant removal tank 110 in accordance with, for example, the extrusion flow or overflow principle. Yes. This flow of water from the aerobic treatment tank 120 to the contaminant removal tank 110 is indicated by an arrow 30 in FIG. Accordingly, a water circulation flow (also referred to as “reflux”) is formed between the contaminant removal tank 110 and the aerobic treatment tank 120. Specifically, a partition plate for partitioning both regions is disposed between the aerobic treatment tank 120 and the contaminant removal tank 110, and the water level difference between the aerobic treatment tank 120 and the contaminant removal tank 110. Therefore, a return mechanism is adopted in which water is returned from the aerobic treatment tank 120 to the contaminant removal tank 110 beyond the advection opening formed in the upper part of the partition plate. The return mechanism here corresponds to the “return mechanism” in the present invention. This return mechanism only needs to permit water transfer from the aerobic treatment tank 120 to the contaminant removal tank 110, and may be constituted by a transfer pump such as an air lift pump or a submersible pump.

また、本実施の形態では、移送ポンプ112による移送水量を調節可能な調節機構114を備える。典型的には、移送ポンプ112の一例としてのエアリフトポンプに関し、当該エアリフトポンプに供給されるエア量を自動ないし手動で調節可能な調節バルブ等によってこの調節機構114が構成される。この調節機構114によって、移送ポンプ112による移送水量が適宜調節される。移送ポンプ112による移送を連続的に行なう運転においては、調節バルブが開放状態とされ且つバルブ開度が適宜調整され、また移送ポンプ112による移送を間欠的に行なう運転においては、電磁バルブ等の調節バルブが開放状態或いは閉鎖状態に切り換え制御されるのが好ましい。ここでいう移送ポンプ112及び調節機構114がそれぞれ、本発明における「移送ポンプ」及び「調節機構」に相当する。   Moreover, in this Embodiment, the adjustment mechanism 114 which can adjust the amount of water transferred by the transfer pump 112 is provided. Typically, regarding an air lift pump as an example of the transfer pump 112, the adjustment mechanism 114 is configured by an adjustment valve or the like that can automatically or manually adjust the amount of air supplied to the air lift pump. The amount of water transferred by the transfer pump 112 is appropriately adjusted by the adjusting mechanism 114. In the operation in which the transfer by the transfer pump 112 is continuously performed, the adjustment valve is opened and the valve opening is appropriately adjusted. In the operation in which the transfer by the transfer pump 112 is performed intermittently, the adjustment of the electromagnetic valve or the like is performed. It is preferable that the valve is controlled to be switched between an open state and a closed state. The transfer pump 112 and the adjustment mechanism 114 here correspond to the “transfer pump” and the “adjustment mechanism” in the present invention, respectively.

嫌気濾床槽130は、夾雑物除去槽110から受け入れた被処理水中の有機汚濁物質を嫌気処理(還元)しつつ被処理水中の汚泥を固液分離処理する機能を有する処理槽であり、典型的には、有機汚濁物質を嫌気処理(還元)する嫌気性微生物が付着する所定量の濾材が濾床に充填される構成を有する。この嫌気処理によってBODの低減と汚泥物の減量化が図られる。この嫌気濾床槽130で処理された後の水は、その下流に配置された接触濾床槽140へと移流する。接触濾床槽140へのこの水の流れが図1中の矢印50によって示される。なお、この嫌気濾床槽130は、被処理水が上向流或いは下向流として流れる1室構造であってもよいし、或いは被処理水が上向流として流れる室と、被処理水が下向流として流れる室とを組み合わせた2室構造であってもよい。   The anaerobic filter bed tank 130 is a treatment tank having a function of solid-liquid separation treatment of sludge in the treated water while anaerobically treating (reducing) the organic pollutants in the treated water received from the contaminant removal tank 110. Specifically, the filter bed is filled with a predetermined amount of filter medium to which anaerobic microorganisms for anaerobic treatment (reduction) of organic pollutants are attached. This anaerobic treatment can reduce BOD and reduce sludge. The water after being treated in the anaerobic filter bed tank 130 is transferred to the contact filter bed tank 140 arranged downstream thereof. This water flow into the contact filter bed 140 is indicated by the arrow 50 in FIG. The anaerobic filter bed tank 130 may have a one-chamber structure in which the treated water flows as an upward flow or a downward flow, or a chamber in which the treated water flows as an upward flow and the treated water A two-chamber structure combining a chamber flowing as a downward flow may be used.

好気処理槽140は、被処理水の好気処理を行う機能を有し、前記の好気処理槽120とは別個に設けられる処理槽として構成される。この好気処理槽140は、典型的には好気性微生物の生物膜が付着する担体が流動可能に充填された担体流動槽や、接触ばっ気が行なわれる接触ばっ気槽とされ、いずれも槽底部に好気処理のためのエアを供給する散気装置が配置される。散気装置からエアが供給されたときに、被処理水中の有機汚濁物質が好気処理(酸化)される。この好気処理槽140で処理された後の水は、その下流に配置された固液分離処理槽150へと移流する。固液分離処理槽150へのこの水の流れが図1中の矢印60によって示される。ここでいう好気処理槽140が、本発明における「第2の好気処理領域」に相当する。   The aerobic treatment tank 140 has a function of performing aerobic treatment of water to be treated, and is configured as a treatment tank provided separately from the aerobic treatment tank 120. The aerobic treatment tank 140 is typically a carrier fluid tank in which a carrier to which a biofilm of aerobic microorganisms adheres is flowably filled, or a contact aeration tank in which contact aeration is performed. An air diffuser for supplying air for aerobic treatment is disposed at the bottom. When air is supplied from the air diffuser, the organic pollutants in the water to be treated are subjected to aerobic treatment (oxidation). The water that has been treated in the aerobic treatment tank 140 is transferred to a solid-liquid separation treatment tank 150 disposed downstream thereof. This water flow to the solid-liquid separation treatment tank 150 is indicated by an arrow 60 in FIG. The aerobic treatment tank 140 here corresponds to the “second aerobic treatment region” in the present invention.

固液分離処理槽150は、好気処理槽140において処理された水の固液分離処理を行なう機能を有する処理槽として構成される。この固液分離処理槽150は、典型的には担体、ろ材、フィルター等の充填材によるろ過によって固液分離処理を行なう処理槽や、沈降分離によって固液分離処理を行なう処理槽とされる。これにより被処理水中のSS(浮遊物質)が分離される。この固液分離処理槽150で処理された後の水は、その下流に配置された消毒槽160へと移流する。消毒槽160へのこの水の流れが図1中の矢印70によって示される。ここでいう固液分離処理槽150が、本発明における「固液分離処理領域」に相当する。   The solid-liquid separation treatment tank 150 is configured as a treatment tank having a function of performing solid-liquid separation treatment of the water treated in the aerobic treatment tank 140. The solid-liquid separation processing tank 150 is typically a processing tank that performs solid-liquid separation processing by filtration using a filler such as a carrier, a filter medium, or a filter, or a processing tank that performs solid-liquid separation processing by sedimentation separation. Thereby, SS (floating matter) in the for-treatment water is separated. The water that has been treated in the solid-liquid separation treatment tank 150 is transferred to a disinfection tank 160 disposed downstream thereof. This water flow into the disinfection tank 160 is indicated by the arrow 70 in FIG. The solid-liquid separation processing tank 150 here corresponds to the “solid-liquid separation processing region” in the present invention.

消毒槽160は、固液分離処理槽150から流入した水を消毒処理する機能を有する処理槽であり、本実施の形態においては槽本体101内の最下流部に配置されている。この消毒槽160は、その最上流部に消毒処理を行うための固形塩素剤(消毒剤)が充填された薬剤筒を備えている。この消毒槽160において、薬剤筒から溶出した固形塩素剤によって消毒処理(塩素消毒処理)された後の水は、流出部101bを通じて槽本体101の外部へ放流される。この水の流れが図1中の矢印80によって示される。ここでいう消毒槽160が、本発明における「消毒処理領域」に相当し、またここでいう流出部101bが、本発明における「流出部」に相当する。   The disinfection tank 160 is a treatment tank having a function of disinfecting water flowing from the solid-liquid separation treatment tank 150, and is disposed at the most downstream portion in the tank body 101 in the present embodiment. The disinfecting tank 160 includes a drug cylinder filled with a solid chlorine agent (disinfectant) for performing a disinfecting process at the most upstream part. In this disinfection tank 160, the water after the disinfection process (chlorine disinfection process) by the solid chlorine agent eluted from the medicine cylinder is discharged to the outside of the tank body 101 through the outflow part 101b. This water flow is indicated by the arrow 80 in FIG. The disinfection tank 160 here corresponds to the “disinfection treatment region” in the present invention, and the outflow portion 101b here corresponds to the “outflow portion” in the present invention.

ところで、上記好気処理槽120のような好気処理領域を有する水処理装置において、当該好気処理領域の所望の処理性能を確保するためには、被処理水の流通水量や、被処理水の水理学的滞留時間(「HRT」ともいう)が重要な設計要素とされる。具体的には、好気処理領域において被処理水の硝化反応(酸化)を促進するためには、被処理水の流通水量を相対的に増やすことが必要とされ、またスカムの浮上を促進するためには、被処理水の滞留時間を長くするべく被処理水の流通水量を相対的に減らすことが必要とされる。ところが、互いに直列的に配設された各処理領域において被処理水が連続的に処理される水処理装置にあっては、好気処理領域における被処理水の流通水量を相対的に増やすことと減らすことは相反することとなるため、被処理水の硝化反応促進と、被処理水からのスカム浮上促進の両立を図るのが難しい。なお、ここでいう「スカム」とは、典型的には原水中の懸濁物質、繊維質、油脂質、細菌が浮上して、水表面にできるスポンジ質の厚い膜状の浮きかすが挙げられる。   By the way, in a water treatment apparatus having an aerobic treatment region such as the aerobic treatment tank 120, in order to ensure the desired treatment performance of the aerobic treatment region, the amount of water to be treated and the amount of treated water The hydraulic retention time (also referred to as “HRT”) is an important design factor. Specifically, in order to promote the nitrification reaction (oxidation) of the water to be treated in the aerobic treatment region, it is necessary to relatively increase the amount of water to be treated, and to promote the rise of scum. Therefore, it is necessary to relatively reduce the amount of water to be treated in order to increase the residence time of the water to be treated. However, in a water treatment apparatus in which treated water is continuously treated in each treatment area arranged in series with each other, the flow rate of treated water in the aerobic treatment area is relatively increased. It is difficult to achieve both accelerating the nitrification reaction of the water to be treated and promoting the rise of scum from the water to be treated. As used herein, “scum” typically includes a sponge-like thick film-like float that is formed on the water surface by suspending suspended matter, fibers, oil lipids, and bacteria in raw water.

そこで、本実施の形態では、前述のように一次処理部102のメインフロー(二次処理部103及び水処理装置100のメインフローでもある)の夾雑物除去槽110から好気処理槽120を分岐させるように構成している。すなわち、本実施の形態では、この一次処理部102は、被処理水中の夾雑物の除去処理がなされる夾雑物除去槽110と、夾雑物除去槽110にて夾雑物の除去処理がなされた後の水を嫌気処理しつつ被処理水中の汚泥を固液分離処理する嫌気濾床槽130とを備え、夾雑物除去槽110によって汚泥分離領域が構成される。そして、そして、一次処理部102のメインフロー(夾雑物除去槽110)にて汚泥分離された後の汚水(「中間水」ないし「上澄液」)の一部は、前述の移送機構を介してインフローから分岐して好気処理槽120へと移送される一方、好気処理槽120にて好気処理された後の水は、前述の返送機構を介して再び夾雑物除去槽110へと返送されるように構成している。ここでいうメインフローは、流入部101aから流入した原水が浄化処理されつつ流出部101bへと連続して流れる流通経路であり、このメインフローが本発明における「流通経路」に相当する。また、ここでいう夾雑物除去槽110及び好気処理槽120がそれぞれ、本発明における「汚泥分離領域」及び「好気処理領域」に相当する。   Therefore, in the present embodiment, as described above, the aerobic treatment tank 120 is branched from the contaminant removal tank 110 of the main flow of the primary treatment unit 102 (also the main flow of the secondary treatment unit 103 and the water treatment apparatus 100). It is configured to make it. In other words, in the present embodiment, the primary processing unit 102 performs a contaminant removal tank 110 for removing contaminants in the water to be treated, and after the contaminant removal process is performed in the contaminant removal tank 110. An anaerobic filter bed tank 130 for subjecting the sludge in the water to be treated to solid-liquid separation while anaerobically treating the water, and the contaminant removal tank 110 constitutes a sludge separation region. Then, a part of the sewage (“intermediate water” or “supernatant”) after the sludge separation in the main flow (contaminant removal tank 110) of the primary processing unit 102 passes through the transfer mechanism described above. The water after being branched from the inflow and transferred to the aerobic treatment tank 120, the water after being subjected to the aerobic treatment in the aerobic treatment tank 120 is again returned to the contaminant removal tank 110 through the above-described return mechanism. It is configured to be returned. The main flow referred to here is a distribution path in which the raw water flowing in from the inflow section 101a flows continuously to the outflow section 101b while being purified, and this main flow corresponds to the “distribution path” in the present invention. Further, the contaminant removal tank 110 and the aerobic treatment tank 120 here correspond to the “sludge separation region” and the “aerobic treatment region” in the present invention, respectively.

このような構成においては、好気処理槽120がメインフローである流通経路から分岐して当該流通経路から外れた位置に配設されることとなり、夾雑物除去槽110から好気処理槽120へと移送される汚水の移送水量(従って好気処理槽120を流れる被処理水の水量(好気処理槽120における処理水量))を、流入部101aから流出部101bへと連続して流れる流通経路の移送水量に対して独立して設定することができる。すなわち、好気処理槽120を流れる被処理水の水量を、メインフローである流通経路の水量に関係なく(流通経路の水量に依存することなく)調節することができる。これに対し、流通経路上に好気処理槽120が配設されている場合には、好気処理槽120を流れる被処理水の水量は、流通経路の水量に依存することとなり独立した設定が難しい。これにより、好気処理槽120における被処理水の滞留時間が独立して設定可能とされる。このような構成によれば、好気処理槽120での被処理水の滞留時間を独立して調節することが可能とされるため、例えば被処理水の硝化反応を促進するべく、好気処理槽120における被処理水の流通水量を相対的に増やしたり、スカムの浮上を促進するべく、好気処理槽120における被処理水の流通水量を相対的に減らして処理水の滞留時間を長くすることが可能となる。   In such a configuration, the aerobic treatment tank 120 is arranged at a position branched from the flow path that is the main flow and deviated from the flow path, and from the contaminant removal tank 110 to the aerobic treatment tank 120. The flow path of the sewage transferred (and hence the amount of water to be treated flowing in the aerobic treatment tank 120 (the amount of treated water in the aerobic treatment tank 120)) flowing continuously from the inflow part 101a to the outflow part 101b It can be set independently for the amount of water transferred. That is, the amount of water to be treated flowing through the aerobic treatment tank 120 can be adjusted regardless of the amount of water in the distribution channel that is the main flow (without depending on the amount of water in the distribution channel). On the other hand, when the aerobic treatment tank 120 is disposed on the distribution path, the amount of water to be treated flowing in the aerobic treatment tank 120 depends on the amount of water in the distribution path and is set independently. difficult. Thereby, the residence time of the to-be-treated water in the aerobic treatment tank 120 can be set independently. According to such a configuration, since the residence time of the water to be treated in the aerobic treatment tank 120 can be adjusted independently, the aerobic treatment is performed to promote the nitrification reaction of the water to be treated, for example. In order to relatively increase the amount of water to be treated in the tank 120 and to promote the rise of scum, the amount of water to be treated in the aerobic treatment tank 120 is relatively decreased to increase the residence time of the treated water. It becomes possible.

ここで、上記構成の好気処理槽120において、被処理水の流通水量を独立して設定する具体的な調整モードに関し説明する。この好気処理槽120は、前述のように被処理水の流通水量を独立して設定可能なスカム浮上モード及び硝化モードを備える。なお、必要に応じては、これらスカム浮上モード及び硝化モードに加えて、更なる調節モードを設定することもできる。   Here, the specific adjustment mode which sets independently the flow volume of to-be-processed water in the aerobic treatment tank 120 of the said structure is demonstrated. As described above, the aerobic treatment tank 120 includes a scum levitation mode and a nitrification mode in which the amount of water to be treated can be set independently. If necessary, in addition to these scum levitation mode and nitrification mode, a further adjustment mode can be set.

スカム浮上モードでは、夾雑物除去槽110から好気処理槽120へと移送される移送水量を、スカムの浮上促進に必要な水理学的滞留時間を優先した移送水量に調節する。具体的には、夾雑物除去槽110における浮上性スカムの滞留量が規定よりも少ない場合に、調節機構114によって移送ポンプ112による移送水量を相対的に減少させる調節を行なう。これにより、夾雑物除去槽110と好気処理槽120との間で循環される被処理水の水理学的滞留時間が長くなり、夾雑物除去槽110においてスカムが浮上し易くなる。ここでいうスカム浮上モードが、本発明における「第1の調節モード」に相当する。   In the scum levitation mode, the amount of water transferred from the contaminant removal tank 110 to the aerobic treatment tank 120 is adjusted to the amount of water transferred giving priority to the hydraulic residence time required to promote scum levitation. Specifically, when the retention amount of the floating scum in the contaminant removal tank 110 is less than a specified amount, the adjustment mechanism 114 performs adjustment to relatively reduce the amount of water transferred by the transfer pump 112. Thereby, the hydraulic residence time of the to-be-processed water circulated between the contaminant removal tank 110 and the aerobic treatment tank 120 becomes long, and the scum easily floats in the contaminant removal tank 110. The scum levitation mode here corresponds to the “first adjustment mode” in the present invention.

一方、硝化モードでは、夾雑物除去槽110から好気処理槽120へと移送される移送水量を、被処理水の硝化に重点をおいて調節する。具体的には、夾雑物除去槽110における浮上性スカムの滞留量が規定よりも多い場合に、調節機構114によって移送ポンプ112による移送水量を相対的に増加させる調節を行なう。これにより、夾雑物除去槽110と好気処理槽120との間で循環される循環水量が増加され、好気処理槽120における被処理水の硝化が促進され、結果として硝化量が増えることとなる。ここでいう硝化モードが、本発明における「第2の調節モード」に相当する。   On the other hand, in the nitrification mode, the amount of water transferred from the contaminant removal tank 110 to the aerobic treatment tank 120 is adjusted with emphasis on nitrification of the water to be treated. Specifically, when the retention amount of the floating scum in the contaminant removal tank 110 is larger than a specified amount, the adjustment mechanism 114 performs adjustment to relatively increase the amount of water transferred by the transfer pump 112. Thereby, the amount of circulating water circulated between the contaminant removal tank 110 and the aerobic treatment tank 120 is increased, nitrification of the water to be treated in the aerobic treatment tank 120 is promoted, and as a result, the amount of nitrification increases. Become. The nitrification mode here corresponds to the “second adjustment mode” in the present invention.

なお、上記スカム浮上モード及び硝化モードにおける移送水量の調節に関しては、移送ポンプ112の負荷が調節機構114によって調節される。この場合、単に移送ポンプ112の負荷が調節されてもよいし、或いはフィードバック制御によって、実際の移送水量に関する情報を検出しつつ実際の移送水量を所望の移送水量に合致させるように移送ポンプ112の負荷が調節されてもよい。また、夾雑物除去槽110における浮上性スカムの滞留量が規定よりも少ない或いは規定よりも多いという判定に関しては、夾雑物除去槽110に実際に発生している浮上性スカムのスカム厚みを検出するのが好ましい。この検出結果に基づいて、移送ポンプ112の調節機構114が手動ないし自動で調節され、スカム浮上モード或いは硝化モードが遂行される。簡便な方法においてこの検出を行なう場合には、作業者が槽内に設けられたスケール或いは別途準備したスケールによって浮上性スカムのスカム厚みを測定することができる。   In addition, regarding the adjustment of the transfer water amount in the scum levitation mode and the nitrification mode, the load of the transfer pump 112 is adjusted by the adjustment mechanism 114. In this case, the load of the transfer pump 112 may simply be adjusted, or the information on the actual transfer water amount is detected by feedback control, and the transfer pump 112 is adjusted so that the actual transfer water amount matches the desired transfer water amount. The load may be adjusted. Further, regarding the determination that the retention amount of the floating scum in the contaminant removal tank 110 is less than or greater than the regulation, the scum thickness of the floating scum actually generated in the contaminant removal tank 110 is detected. Is preferred. Based on the detection result, the adjustment mechanism 114 of the transfer pump 112 is adjusted manually or automatically, and the scum levitation mode or the nitrification mode is performed. When this detection is performed by a simple method, the scum thickness of the levitation scum can be measured by the operator using a scale provided in the tank or a separately prepared scale.

以上のように、本実施の形態によれば、夾雑物除去槽110、嫌気濾床槽130、好気処理槽140、固液分離処理槽150及び消毒槽160によって順次流れるメインの流通経路から外れて好気処理槽120を配設することによって、メインの流通経路の流通水量に対し、好気処理槽120における被処理水の流通水量を独立して設定することが可能となる。この構成において特に、スカム浮上モード及び硝化モードを遂行することによって、好気処理槽120における被処理水の硝化反応促進と、被処理水からのスカム浮上促進の両立を図ることが可能となる。   As described above, according to the present embodiment, the contaminant removal tank 110, the anaerobic filter bed tank 130, the aerobic treatment tank 140, the solid-liquid separation treatment tank 150, and the disinfection tank 160 deviate from the main flow path. By disposing the aerobic treatment tank 120, it is possible to independently set the flow amount of the water to be treated in the aerobic treatment tank 120 with respect to the flow amount of the main flow path. In this configuration, in particular, by performing the scum levitation mode and the nitrification mode, it is possible to achieve both the nitrification reaction promotion of the water to be treated in the aerobic treatment tank 120 and the promotion of scum levitation from the water to be treated.

また、本実施の形態によれば、汚泥の固液分離処理がなされた後の汚水を、好気処理槽120へと移送して硝化(被処理水中のアンモニアの硝化(酸化))を行なう構成ゆえ、固液分離によってある程度の固形分が分離されたBOD負荷の低い状態の汚水が硝化されることとなり、硝化反応の進行に関し有利とされる。これに対し、汚泥が過剰に含まれるBOD負荷が高い状態の汚水は、硝化反応が進行し難いことが知られている。従って、本実施の形態によれば、被処理水の硝化反応を進行し易くするという点に関し、汚泥の固液分離処理が行なわれていない汚泥過剰の汚水を好気処理領域にて処理する場合では得られないような作用効果を奏することとなる。   Moreover, according to this Embodiment, the structure which transfers the sewage after the solid-liquid separation process of sludge is made to the aerobic treatment tank 120, and performs nitrification (nitrification (oxidation) of ammonia in to-be-processed water) Therefore, sewage with a low BOD load from which a certain amount of solid content has been separated by solid-liquid separation is nitrified, which is advantageous for the progress of the nitrification reaction. In contrast, it is known that sewage containing a large amount of sludge and having a high BOD load is unlikely to undergo a nitrification reaction. Therefore, according to the present embodiment, in terms of facilitating the nitrification reaction of the water to be treated, when sludge excess sewage in which sludge is not subjected to solid-liquid separation is treated in the aerobic treatment region. In this way, there will be effects that cannot be obtained.

また、本実施の形態によれば、夾雑物除去槽110を流れる被処理水の一部を好気処理槽120において処理する構成であるため、夾雑物除去槽110の下流の嫌気濾床槽130への被処理水の水質負荷(例えばBODなど)が抑えられ、嫌気への負荷低減による処理性能向上及び濾過性能向上が図られる。   In addition, according to the present embodiment, since the aerobic treatment tank 120 treats part of the water to be treated flowing in the contaminant removal tank 110, the anaerobic filter bed tank 130 downstream of the contaminant removal tank 110 is used. The water quality load (for example, BOD etc.) of to-be-processed water is suppressed, and the processing performance improvement and the filtration performance improvement by the load reduction to anaerobic are aimed at.

また、本実施の形態によれば、メインの流通経路から好気処理槽120を分岐させることによって、他の処理槽に対し好気処理槽120の容量を独立して設定することが可能となり、例えば好気処理槽120をコンパクト化することによって水処理装置100全体のコンパクト化を図ることが可能となる。   Further, according to the present embodiment, it is possible to independently set the capacity of the aerobic treatment tank 120 with respect to other treatment tanks by branching the aerobic treatment tank 120 from the main distribution path, For example, by making the aerobic treatment tank 120 compact, the water treatment apparatus 100 as a whole can be made compact.

〔他の実施の形態〕
なお、本発明は上記の実施の形態のみに限定されるものではなく、種々の応用や変形が考えられる。例えば、上記実施の形態を応用した次の各形態を実施することもできる。
[Other Embodiments]
In addition, this invention is not limited only to said embodiment, A various application and deformation | transformation can be considered. For example, each of the following embodiments to which the above embodiment is applied can be implemented.

上記実施の形態では、夾雑物除去槽110、好気処理槽120及び嫌気濾床槽130によって一次処理部102が構成され、好気処理槽140、固液分離処理槽150及び消毒槽160によって二次処理部103が構成される場合について記載したが、本発明では、流入部101aから流入した原水が浄化処理されつつ流出部101bへと連続して流れる流通経路上に、夾雑物除去槽110や嫌気濾床槽130のような汚泥分離領域を少なくとも備え、またこの流通経路から分岐した経路に好気処理槽120のような好気処理領域を少なくとも備える構成であればよく、一次処理部102及び二次処理部103を構成する各処理槽の数や種類を適宜選択することが可能である。   In the above embodiment, the primary treatment unit 102 is configured by the contaminant removal tank 110, the aerobic treatment tank 120, and the anaerobic filter bed tank 130, and the aerobic treatment tank 140, the solid-liquid separation treatment tank 150, and the disinfection tank 160 are the second. Although the case where the next processing unit 103 is configured has been described, in the present invention, the contaminant removal tank 110 and the raw water flowing in from the inflow unit 101a continuously flow into the outflow unit 101b while being purified. Any structure may be used as long as it has at least a sludge separation region such as an anaerobic filter bed tank 130 and at least an aerobic treatment region such as an aerobic treatment tank 120 in a path branched from the flow path. It is possible to appropriately select the number and type of each processing tank constituting the secondary processing unit 103.

例えば、一次処理部102及び二次処理部103によって、被処理水中の夾雑物を除去する処理、被処理水の嫌気処理、被処理水の好気処理、被処理水の固液分離処理、被処理水の消毒処理が順次行なわれる構成や、被処理水の嫌気処理、被処理水の好気処理、被処理水の固液分離処理、被処理水の消毒処理が順次行なわれる構成を採用することができる。   For example, the primary processing unit 102 and the secondary processing unit 103 remove impurities in the water to be treated, anaerobic treatment of the water to be treated, aerobic treatment of the water to be treated, solid-liquid separation treatment of the water to be treated, A configuration in which treated water is sterilized sequentially, an anaerobic treatment of treated water, an aerobic treatment of treated water, a solid-liquid separation process of treated water, and a sterilized treatment of treated water are adopted sequentially. be able to.

また、上記実施の形態では、好気処理槽120は、夾雑物除去槽110からの汚水を受け入れて処理し、その後に夾雑物除去槽110に返送する場合について記載したが、好気処理槽120への水の受け入れ元及び処理後の水の移送先に関しては、夾雑物除去槽110以外の領域を必要に応じて適宜選択することもできる。この変更例に関しては、図2及び図3が参照される。なお、これら図2及び図3において、図1に示す要素と同一の要素には同一の符号を付しており、当該同一の構成要素に関する説明は省略するものとする。   Moreover, although the aerobic treatment tank 120 described the case where the aerobic treatment tank 120 receives and processes the sewage from the contaminant removal tank 110, and returns to the contaminant removal tank 110 after that, it was described. Regarding the water receiving source and the treated water transfer destination, an area other than the contaminant removal tank 110 can be appropriately selected as necessary. Reference is made to FIGS. 2 and 3 for this modification. 2 and 3, the same elements as those shown in FIG. 1 are denoted by the same reference numerals, and the description of the same components is omitted.

図2には別実施の形態の一次処理部202の概略構成が示される。図2に示すこの一次処理部202では、嫌気濾床槽130にて汚泥が固液分離処理された、汚泥の固液分離処理がなされた後の汚水を好気処理槽120に受け入れて処理し、処理後の水を夾雑物除去槽110に移送する構成とされる。すなわち、この一次処理部202は、被処理水中の夾雑物の除去処理がなされる夾雑物除去槽110と、夾雑物除去槽110にて夾雑物の除去処理がなされた後の水を嫌気処理しつつ被処理水中の汚泥を固液分離処理する嫌気濾床槽130とを備え、嫌気濾床槽130によって汚泥分離領域が構成される。そして、嫌気濾床槽130において汚泥の固液分離処理がなされた後の汚水の一部は、移送機構によって好気処理槽120に移送され、好気処理槽120にて好気処理した後の水は、返送機構によって夾雑物除去槽110に返送される。ここでいう夾雑物除去槽110が、本発明における「夾雑物除去領域」に相当し、またここでいう嫌気濾床槽130が、本発明における「汚泥分離領域」及び「嫌気処理領域」に相当する。   FIG. 2 shows a schematic configuration of the primary processing unit 202 of another embodiment. In the primary processing unit 202 shown in FIG. 2, the sludge is subjected to solid-liquid separation processing in the anaerobic filter bed tank 130, and the sludge after the sludge solid-liquid separation processing is received in the aerobic treatment tank 120 and processed. The treated water is transferred to the contaminant removal tank 110. That is, the primary treatment unit 202 anaerobically treats the contaminant removal tank 110 that is subjected to the removal process of contaminants in the water to be treated, and the water after the contaminant removal process is performed in the contaminant removal tank 110. An anaerobic filter bed tank 130 for solid-liquid separation treatment of sludge in the water to be treated is provided, and the anaerobic filter bed tank 130 constitutes a sludge separation region. And a part of the sewage after the solid-liquid separation process of the sludge was made in the anaerobic filter bed tank 130 is transferred to the aerobic treatment tank 120 by the transfer mechanism, and after the aerobic treatment in the aerobic treatment tank 120 The water is returned to the contaminant removal tank 110 by the return mechanism. The contaminant removal tank 110 here corresponds to the “contamination removal area” in the present invention, and the anaerobic filter bed tank 130 here corresponds to the “sludge separation area” and the “anaerobic treatment area” in the present invention. To do.

また、図3には別実施の形態の二次処理部302の概略構成が示される。図3に示すこの一次処理部302では、嫌気濾床槽130にて汚泥が固液分離処理された水、すなわち汚泥の固液分離処理がなされた後の汚水を好気処理槽120に受け入れて処理し、処理後の水を再び嫌気濾床槽130に返送する構成とされる。すなわち、この一次処理部302は、被処理水中の夾雑物の除去処理がなされる夾雑物除去槽110と、夾雑物除去槽110にて夾雑物の除去処理がなされた後の水を嫌気処理しつつ被処理水中の汚泥を固液分離処理する嫌気濾床槽130とを備え、嫌気濾床槽130によって汚泥分離領域が構成される。そして、嫌気濾床槽130において汚泥の固液分離処理がなされた後の汚水の一部は、移送機構によって好気処理槽120に移送され、好気処理槽120にて好気処理した後の水は、返送機構によって再び嫌気濾床槽130に返送される。   FIG. 3 shows a schematic configuration of the secondary processing unit 302 according to another embodiment. In this primary processing unit 302 shown in FIG. 3, the aerobic treatment tank 120 receives the water in which the sludge is subjected to the solid-liquid separation process in the anaerobic filter bed tank 130, that is, the sludge after the sludge is subjected to the solid-liquid separation process. It is set as the structure which processes and returns the water after a process to the anaerobic filter bed tank 130 again. That is, the primary processing unit 302 performs anaerobic treatment on the contaminant removal tank 110 in which the contaminants in the water to be treated are removed, and the water after the contaminant removal treatment is performed in the contaminant removal tank 110. An anaerobic filter bed tank 130 for solid-liquid separation treatment of sludge in the water to be treated is provided, and the anaerobic filter bed tank 130 constitutes a sludge separation region. And a part of the sewage after the solid-liquid separation process of the sludge was made in the anaerobic filter bed tank 130 is transferred to the aerobic treatment tank 120 by the transfer mechanism, and after the aerobic treatment in the aerobic treatment tank 120 The water is returned again to the anaerobic filter bed tank 130 by the return mechanism.

図2及び図3に示すような構成によっても、図1に示す一次処理部102と同様に、メインの流通経路の流通水量に対し、好気処理槽120における被処理水の流通水量を独立して設定することが可能となり、以って好気処理槽120における被処理水の硝化反応促進と、被処理水からのスカム浮上促進の両立を図ることができるという作用効果を奏することとなる。また、汚泥の固液分離処理がなされた後の汚水を、好気処理槽120へと移送して硝化することで、BOD負荷の低い状態の汚水が硝化されることとなり、硝化反応の進行に関し有利とされる。   2 and FIG. 3, the flow rate of the water to be treated in the aerobic treatment tank 120 is independent of the flow rate of the main flow path as in the primary processing unit 102 shown in FIG. Therefore, it is possible to achieve both the enhancement of the nitrification reaction of the water to be treated in the aerobic treatment tank 120 and the promotion of scum levitation from the water to be treated. In addition, by transferring the sewage after the sludge solid-liquid separation treatment to the aerobic treatment tank 120 and nitrifying, the sewage with a low BOD load is nitrified, and the progress of the nitrification reaction It is advantageous.

また、上記実施の形態では、家庭用の水処理装置について記載したが、本発明は、家庭用の水処理装置のみならず、工場などに設置される各種の水処理装置に対しても同様に適用可能な技術である。   Moreover, in the said embodiment, although the household water treatment apparatus was described, this invention applies not only to a household water treatment apparatus but to various water treatment apparatuses installed in a factory etc. similarly. Applicable technology.

本発明における「水処理装置」の一実施の形態である水処理装置100の概略構成を示す図である。It is a figure which shows schematic structure of the water treatment apparatus 100 which is one Embodiment of the "water treatment apparatus" in this invention. 別実施の形態の一次処理部202の概略構成を示す図である。It is a figure which shows schematic structure of the primary processing part 202 of another embodiment. 別実施の形態の一次処理部302の概略構成を示す図である。It is a figure which shows schematic structure of the primary processing part 302 of another embodiment.

100…水処理装置
101…槽本体
101a…流入部
101b…流出部
102…一次処理部
103…二次処理部
110…夾雑物除去槽
112…移送ポンプ
114…調節機構
120…好気処理槽
130…嫌気濾床槽
140…好気処理槽
150…固液分離処理槽
160…消毒槽
DESCRIPTION OF SYMBOLS 100 ... Water treatment apparatus 101 ... Tank main body 101a ... Inflow part 101b ... Outflow part 102 ... Primary processing part 103 ... Secondary processing part 110 ... Contaminant removal tank 112 ... Transfer pump 114 ... Adjustment mechanism 120 ... Aerobic processing tank 130 ... Anaerobic filter bed tank 140 ... Aerobic tank 150 ... Solid-liquid separation tank 160 ... Disinfection tank

Claims (5)

処理槽本体に収容され被処理水の浄化処理を行なう浄化処理部と、原水が前記処理槽本体の槽外から前記浄化処理部に流入する流入部と、前記浄化処理部において浄化処理された後の水が前記処理槽本体の槽外へ流出する流出部と、
を有する水処理装置であって、
前記浄化処理部は、前記流入部から流入した原水が浄化処理されつつ前記流出部へと連続して流れる流通経路と、前記流通経路において被処理水中の汚泥が固液分離処理される汚泥分離領域と、前記流通経路から分岐して配設される被処理水の好気処理領域と、前記汚泥分離領域において汚泥の固液分離処理がなされた後の汚水の一部を前記流通経路から分岐させて前記好気処理領域に移送する移送ポンプを有する移送機構と、前記好気処理領域にて好気処理した後の水を前記流通経路に返送する返送機構と、を含み、
前記好気処理領域は、担体が流動する担体流動領域として構成されており、
前記好気処理領域に流入する被処理水の水量が前記流通経路を流れる被処理水の水量に依存することなく独立して、前記移送ポンプのみによって設定可能に構成されており、
前記浄化処理部は、前記流通経路において、被処理水中の夾雑物の除去処理がなされる夾雑物除去領域と、前記夾雑物除去領域にて夾雑物の除去処理がなされた後の水を嫌気処理しつつ被処理水中の汚泥を固液分離処理する嫌気処理領域とを備え、前記夾雑物除去領域によって前記汚泥分離領域が構成され、
前記移送機構は、前記夾雑物除去領域において汚泥の固液分離処理がなされた後の汚水の一部を前記好気処理領域に移送する構成であり、
前記返送機構は、前記好気処理領域にて好気処理した後の水を前記夾雑物除去領域に返送する構成であることを特徴とする水処理装置。
A purification treatment unit that performs purification treatment of water to be treated contained in the treatment tank main body, an inflow part where raw water flows into the purification treatment part from outside the tank of the treatment tank main body, and after purification treatment in the purification treatment part An outflow part from which the water flows out of the tank of the treatment tank body,
A water treatment device comprising:
The purification treatment unit includes a flow path that continuously flows to the outflow part while the raw water flowing in from the inflow part is purified, and a sludge separation region in which sludge in the water to be treated is subjected to solid-liquid separation treatment in the flow path. And an aerobic treatment area of the water to be treated that is branched from the distribution path, and a part of the sewage after the solid-liquid separation treatment of the sludge is performed in the sludge separation area. A transfer mechanism having a transfer pump for transferring to the aerobic treatment region, and a return mechanism for returning water after aerobic treatment in the aerobic treatment region to the flow path,
The aerobic treatment region is configured as a carrier flow region where the carrier flows,
The amount of water to be treated flowing into the aerobic treatment region is configured independently of the amount of water to be treated flowing through the flow path, and can be set only by the transfer pump .
The purification treatment unit anaerobically treats the contaminant removal region in which the contaminants in the treated water are removed in the distribution channel and the water after the contaminant removal treatment is performed in the contaminant removal region. An anaerobic treatment region for solid-liquid separation treatment of sludge in the water to be treated, and the sludge separation region is constituted by the contaminant removal region,
The transfer mechanism is configured to transfer a part of sewage after solid-liquid separation processing of sludge in the contaminant removal region to the aerobic treatment region,
The water return apparatus, wherein the return mechanism is configured to return water after aerobic treatment in the aerobic treatment region to the contaminant removal region.
処理槽本体に収容され被処理水の浄化処理を行なう浄化処理部と、原水が前記処理槽本体の槽外から前記浄化処理部に流入する流入部と、前記浄化処理部において浄化処理された後の水が前記処理槽本体の槽外へ流出する流出部と、
を有する水処理装置であって、
前記浄化処理部は、前記流入部から流入した原水が浄化処理されつつ前記流出部へと連続して流れる流通経路と、前記流通経路において被処理水中の汚泥が固液分離処理される汚泥分離領域と、前記流通経路から分岐して配設される被処理水の好気処理領域と、前記汚泥分離領域において汚泥の固液分離処理がなされた後の汚水の一部を前記流通経路から分岐させて前記好気処理領域に移送する移送ポンプを有する移送機構と、前記好気処理領域にて好気処理した後の水を前記流通経路に返送する返送機構と、を含み、
前記好気処理領域は、担体が流動する担体流動領域として構成されており、
前記好気処理領域に流入する被処理水の水量が前記流通経路を流れる被処理水の水量に依存することなく独立して、前記移送ポンプのみによって設定可能に構成されており、
前記浄化処理部は、前記流通経路において、被処理水中の夾雑物の除去処理がなされる夾雑物除去領域と、前記夾雑物除去領域にて夾雑物の除去処理がなされた後の水を嫌気処理しつつ被処理水中の汚泥を固液分離処理する嫌気処理領域とを備え、前記嫌気処理領域によって前記汚泥分離領域が構成され、
前記移送機構は、前記嫌気処理領域において汚泥の固液分離処理がなされた後の汚水の一部を前記好気処理領域に移送する構成であり、
前記返送機構は、前記好気処理領域にて好気処理した後の水を前記夾雑物除去領域に返送する構成であることを特徴とする水処理装置。
A purification treatment unit that performs purification treatment of water to be treated contained in the treatment tank main body, an inflow part where raw water flows into the purification treatment part from outside the tank of the treatment tank main body, and after purification treatment in the purification treatment part An outflow part from which the water flows out of the tank of the treatment tank body,
A water treatment device comprising:
The purification treatment unit includes a flow path that continuously flows to the outflow part while the raw water flowing in from the inflow part is purified, and a sludge separation region in which sludge in the water to be treated is subjected to solid-liquid separation treatment in the flow path. And an aerobic treatment area of the water to be treated that is branched from the distribution path, and a part of the sewage after the solid-liquid separation treatment of the sludge is performed in the sludge separation area. A transfer mechanism having a transfer pump for transferring to the aerobic treatment region, and a return mechanism for returning water after aerobic treatment in the aerobic treatment region to the flow path,
The aerobic treatment region is configured as a carrier flow region where the carrier flows,
The amount of water to be treated flowing into the aerobic treatment region is configured independently of the amount of water to be treated flowing through the flow path, and can be set only by the transfer pump .
The purification treatment unit anaerobically treats the contaminant removal region in which the contaminants in the treated water are removed in the distribution channel and the water after the contaminant removal treatment is performed in the contaminant removal region. An anaerobic treatment region for solid-liquid separation treatment of sludge in the treated water, the sludge separation region is constituted by the anaerobic treatment region,
The transfer mechanism is configured to transfer a portion of sewage after solid-liquid separation processing of sludge is performed in the anaerobic processing region to the aerobic processing region,
The water return apparatus, wherein the return mechanism is configured to return water after aerobic treatment in the aerobic treatment region to the contaminant removal region.
請求項1または2に記載の水処理装置であって、
前記浄化処理部は、前記流通経路のうち前記嫌気処理領域の下流に、被処理水の好気処理を行なう第2の好気処理領域と、前記第2の好気処理領域で処理された水の固液分離処理を行なう固液分離処理領域と、前記固液分離処理領域で処理された水の消毒処理を行なう消毒処理領域とを順次備える構成であることを特徴とする水処理装置。
The water treatment device according to claim 1 or 2,
The purification treatment unit includes a second aerobic treatment region that performs aerobic treatment of water to be treated and a water treated in the second aerobic treatment region downstream of the anaerobic treatment region in the flow path. A water treatment apparatus comprising: a solid-liquid separation treatment region for performing solid-liquid separation treatment; and a disinfection treatment region for performing disinfection treatment of water treated in the solid-liquid separation treatment region.
請求項1から3のうちのいずれか1項に記載の水処理装置であって、
前記汚泥分離領域における浮上性スカムの厚さを測定する計測機構を備え、
前記移送機構は、前記汚泥分離領域において汚泥の固液分離処理がなされた後の前記汚水の一部をポンプ移送によって前記好気処理領域に移送する移送ポンプと、前記計測機構が測定した前記汚泥分離領域における浮上性スカムの厚さに基づいて、前記移送ポンプによる移送水量を調節可能な調節機構と、を備え、
前記調節機構は、前記汚泥分離領域における浮上性スカムの厚さが規定よりも少ない場合に前記移送ポンプによる移送水量を相対的に減少させる第1の調節モードと、前記汚泥分離領域における浮上性スカムの厚さが規定よりも多い場合に前記移送ポンプによる移送水量を相対的に増加させる第2の調節モードとを切り替える構成であることを特徴とする水処理装置。
The water treatment device according to any one of claims 1 to 3,
Comprising a measuring mechanism for measuring the thickness of the levitating scum in the sludge separation region,
The transfer mechanism includes a transfer pump that transfers a part of the sewage after solid-liquid separation processing of sludge in the sludge separation region to the aerobic treatment region by pump transfer, and the sludge measured by the measurement mechanism. An adjustment mechanism capable of adjusting the amount of water transferred by the transfer pump based on the thickness of the floating scum in the separation region,
The adjustment mechanism includes a first adjustment mode for relatively reducing the amount of water transferred by the transfer pump when the thickness of the floating scum in the sludge separation region is less than a specified value, and the floating scum in the sludge separation region. When the thickness of the water is greater than a specified value, the water treatment apparatus is configured to switch between the second adjustment mode for relatively increasing the amount of water transferred by the transfer pump.
処理槽本体に収容され被処理水の浄化処理を行なう浄化処理部と、原水が前記処理槽本体の槽外から前記浄化処理部に流入する流入部と、前記浄化処理部において浄化処理された後の水が前記処理槽本体の槽外へ流出する流出部と、
を有する水処理装置であって、
前記浄化処理部は、前記流入部から流入した原水が浄化処理されつつ前記流出部へと連続して流れる流通経路と、前記流通経路において被処理水中の汚泥が固液分離処理される汚泥分離領域と、前記流通経路から分岐して配設される被処理水の好気処理領域と、前記汚泥分離領域において汚泥の固液分離処理がなされた後の汚水の一部を前記流通経路から分岐させて前記好気処理領域に移送する移送機構と、前記好気処理領域にて好気処理した後の水を前記流通経路に返送する返送機構と、を含み、
前記好気処理領域を流れる被処理水の水量が前記流通経路を流れる被処理水の水量に依存することなく独立して設定可能に構成されており、
前記汚泥分離領域における浮上性スカムの厚さを測定する計測機構を備え、
前記移送機構は、前記汚泥分離領域において汚泥の固液分離処理がなされた後の前記汚水の一部をポンプ移送によって前記好気処理領域に移送する移送ポンプと、前記計測機構が測定した前記汚泥分離領域における浮上性スカムの厚さに基づいて、前記移送ポンプによる移送水量を調節可能な調節機構と、を備え、
前記調節機構は、前記汚泥分離領域における浮上性スカムの厚さが規定よりも少ない場合に前記移送ポンプによる移送水量を相対的に減少させる第1の調節モードと、前記汚泥分離領域における浮上性スカムの厚さが規定よりも多い場合に前記移送ポンプによる移送水量を相対的に増加させる第2の調節モードとを切り替える構成であることを特徴とする水処理装置。

A purification treatment unit that performs purification treatment of water to be treated contained in the treatment tank main body, an inflow part where raw water flows into the purification treatment part from outside the tank of the treatment tank main body, and after purification treatment in the purification treatment part An outflow part from which the water flows out of the tank of the treatment tank body,
A water treatment device comprising:
The purification treatment unit includes a flow path that continuously flows to the outflow part while the raw water flowing in from the inflow part is purified, and a sludge separation region in which sludge in the water to be treated is subjected to solid-liquid separation treatment in the flow path. And an aerobic treatment area of the water to be treated that is branched from the distribution path, and a part of the sewage after the solid-liquid separation treatment of the sludge is performed in the sludge separation area. A transfer mechanism for transferring to the aerobic treatment region, and a return mechanism for returning the water after aerobic treatment in the aerobic treatment region to the flow path,
The amount of water to be treated flowing in the aerobic treatment region is configured to be set independently without depending on the amount of water to be treated flowing in the distribution path,
Comprising a measuring mechanism for measuring the thickness of the levitating scum in the sludge separation region,
The transfer mechanism includes a transfer pump that transfers a part of the sewage after solid-liquid separation processing of sludge in the sludge separation region to the aerobic treatment region by pump transfer, and the sludge measured by the measurement mechanism. An adjustment mechanism capable of adjusting the amount of water transferred by the transfer pump based on the thickness of the floating scum in the separation region,
The adjustment mechanism includes a first adjustment mode for relatively reducing the amount of water transferred by the transfer pump when the thickness of the floating scum in the sludge separation region is less than a specified value, and the floating scum in the sludge separation region. When the thickness of the water is greater than a specified value, the water treatment apparatus is configured to switch between the second adjustment mode for relatively increasing the amount of water transferred by the transfer pump.

JP2009028685A 2009-02-10 2009-02-10 Water treatment equipment Active JP5171678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028685A JP5171678B2 (en) 2009-02-10 2009-02-10 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028685A JP5171678B2 (en) 2009-02-10 2009-02-10 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2010184175A JP2010184175A (en) 2010-08-26
JP5171678B2 true JP5171678B2 (en) 2013-03-27

Family

ID=42765168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028685A Active JP5171678B2 (en) 2009-02-10 2009-02-10 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP5171678B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013225U (en) * 1994-12-28 1995-07-11 啓雄 藤井 Sewage septic tank with liquid fertilizer extractor
JP4109492B2 (en) * 2002-05-09 2008-07-02 三菱化工機株式会社 Sludge treatment method
JP4413077B2 (en) * 2004-05-21 2010-02-10 フジクリーン工業株式会社 Water treatment equipment
JP4945110B2 (en) * 2005-10-14 2012-06-06 フジクリーン工業株式会社 Water treatment equipment
JP4702749B2 (en) * 2006-07-07 2011-06-15 株式会社ハウステック Water treatment equipment
JP4702750B2 (en) * 2006-07-07 2011-06-15 株式会社ハウステック Water treatment equipment
JP4702748B2 (en) * 2006-07-07 2011-06-15 株式会社ハウステック Water treatment equipment
JP4940415B2 (en) * 2006-07-10 2012-05-30 株式会社ハウステック Aerobic digester and sewage septic tank equipped with this aerobic digester
JP4787133B2 (en) * 2006-11-08 2011-10-05 フジクリーン工業株式会社 Water treatment apparatus and water treatment method

Also Published As

Publication number Publication date
JP2010184175A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP4787133B2 (en) Water treatment apparatus and water treatment method
KR101638970B1 (en) Apparatus for sewage treatment of ship using moving bed bio reactor
JP2010247051A (en) Water treatment apparatus
JP4413077B2 (en) Water treatment equipment
KR100940123B1 (en) Floating catalysis sewage disposal facility system
JP5189688B1 (en) Wastewater treatment system and treatment method
CN114269695B (en) System and method for removing ammonium from a wastewater stream
JP2007117908A (en) Septic tank
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
KR101799993B1 (en) Advanced sewage treatment apparatus for vessel
KR0126883Y1 (en) Facilities for treating waste water on a large scale
JP5171678B2 (en) Water treatment equipment
Mandal et al. Development in wastewater treatment plant design
KR20100104297A (en) A treatment system for food wastes
KR100491900B1 (en) Apparatus for sewage and wastewater treatment and method for sewage and wastewater treatment using the same
KR101634292B1 (en) Wastewater treatment system using carrier based on modified a2o
KR20150016775A (en) Advanced water treatment system with improved treatment efficiency for concentrated sludge
JP5259502B2 (en) Water treatment equipment
KR101032068B1 (en) Sewage-wastewater treating system and method the same, using high-effciency sequencing batch reactor process
JP2006218435A (en) Activated sludge treatment system
CN206089326U (en) MBR bio -membrane process integration sewage treatment device
KR840001104B1 (en) Apparatus for treating waste water, or sewage by aerobic processes
JP2005305295A (en) Sewage purification tank
JP2011190693A (en) Water transfer pump and water treatment device
RU2164500C1 (en) Plant for biologically cleaning natural and sewage water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250