JP5170689B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5170689B2
JP5170689B2 JP2009005783A JP2009005783A JP5170689B2 JP 5170689 B2 JP5170689 B2 JP 5170689B2 JP 2009005783 A JP2009005783 A JP 2009005783A JP 2009005783 A JP2009005783 A JP 2009005783A JP 5170689 B2 JP5170689 B2 JP 5170689B2
Authority
JP
Japan
Prior art keywords
urea water
nox
amount
abnormality
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009005783A
Other languages
Japanese (ja)
Other versions
JP2010163923A (en
Inventor
俊祐 利岡
富久 小田
正明 佐藤
慎也 浅浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009005783A priority Critical patent/JP5170689B2/en
Publication of JP2010163923A publication Critical patent/JP2010163923A/en
Application granted granted Critical
Publication of JP5170689B2 publication Critical patent/JP5170689B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の排出する排気ガスに含まれる窒素酸化物(NOx)を浄化する排気浄化装置として、尿素選択還元排気浄化装置が知られている(例えば、特許文献1参照)。この排気浄化装置は、排気通路に選択還元触媒(SCR)を備える触媒コンバータと、その上流側に設けられた尿素水添加弁とを備える。選択還元触媒は、その触媒担体に、酸化バナジウムなどの触媒金属を担持している。排気通路に尿素水を添加すると、排気ガスの熱により、尿素水が加水分解されてアンモニアが生成され、このアンモニアとNOxが選択還元触媒においてNOxと脱硝反応して窒素と水が生成される。   A urea selective reduction exhaust purification device is known as an exhaust purification device that purifies nitrogen oxides (NOx) contained in exhaust gas discharged from an internal combustion engine (see, for example, Patent Document 1). This exhaust purification device includes a catalytic converter including a selective reduction catalyst (SCR) in an exhaust passage, and a urea water addition valve provided upstream thereof. The selective reduction catalyst carries a catalyst metal such as vanadium oxide on its catalyst carrier. When urea water is added to the exhaust passage, the urea water is hydrolyzed and ammonia is generated by the heat of the exhaust gas, and this ammonia and NOx undergo a denitration reaction with NOx in the selective reduction catalyst to generate nitrogen and water.

特開2003−301737号公報JP 2003-301737 A

ところで、尿素選択還元排気浄化装置においては、NOxの浄化率が一定の範囲に保たれていることを常時監視する必要がある。このため、例えば、NOx濃度を検出するNOxセンサを排気通路の触媒コンバータの下流側に設け、NOxを浄化した後の排気ガスのNOx濃度をモニターし、NOxの浄化率が低下した場合には、異常と判断する。   By the way, in the urea selective reduction exhaust purification apparatus, it is necessary to constantly monitor that the NOx purification rate is maintained within a certain range. For this reason, for example, when a NOx sensor for detecting the NOx concentration is provided downstream of the catalytic converter in the exhaust passage, the NOx concentration of the exhaust gas after purifying NOx is monitored, and the NOx purification rate decreases, Judge as abnormal.

しかしながら、上記のようにNOx浄化率の異常を触媒コンバータの下流側に配置したNOxセンサで検出する方法では、NOx浄化率の異常の原因が、選択還元触媒の異常、尿素水の濃度異常又は尿素水添加量の異常(すなわち、尿素添加弁の異常)かどうかを個別に検出することが困難であった。   However, in the method of detecting an abnormality in the NOx purification rate with the NOx sensor arranged on the downstream side of the catalytic converter as described above, the cause of the abnormality in the NOx purification rate is an abnormality of the selective reduction catalyst, an abnormal concentration of urea water, or urea. It was difficult to individually detect whether the amount of water addition was abnormal (that is, whether the urea addition valve was abnormal).

本発明は、上記問題に鑑みてなされたものであって、その目的は、NOx浄化率の異常が発生した際に、その異常原因を検出可能な尿素選択還元タイプの排気浄化装置を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a urea selective reduction type exhaust purification device capable of detecting the cause of abnormality when an abnormality in the NOx purification rate occurs. It is in.

本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路に設けられ、排気ガスに含まれるNOxを尿素水が加水分解されて生成されるアンモニアを還元剤として選択的に還元する選択還元触媒と、前記排気通路の前記選択還元触媒の上流側から前記選択還元触媒に向けて尿素水を添加する尿素水添加弁とを備える内燃機関の排気浄化装置であって、前記選択還元触媒のNOx浄化率が低下したときの異常原因を検出するために、前記排気通路の前記尿素水添加弁の下流側でかつ前記選択還元触媒の上流側にNOxセンサが設けられている。   An exhaust gas purification apparatus for an internal combustion engine according to the present invention is provided in an exhaust passage of an internal combustion engine, and selectively reduces NOx contained in exhaust gas selectively using ammonia produced by hydrolysis of urea water as a reducing agent. An exhaust purification device for an internal combustion engine, comprising: a catalyst; and a urea water addition valve that adds urea water toward the selective reduction catalyst from an upstream side of the selective reduction catalyst in the exhaust passage, wherein the NOx of the selective reduction catalyst In order to detect the cause of the abnormality when the purification rate decreases, a NOx sensor is provided downstream of the urea water addition valve in the exhaust passage and upstream of the selective reduction catalyst.

上記構成において、前記NOxセンサの検出信号を利用して、前記選択還元触媒のNOx浄化率の低下及びその異常原因を検出する異常検出手段をさらに有する、構成を採用できる。   In the above configuration, it is possible to employ a configuration that further includes abnormality detection means for detecting a decrease in the NOx purification rate of the selective reduction catalyst and the cause of the abnormality using the detection signal of the NOx sensor.

上記構成において、前記異常検出手段は、前記NOxセンサの検出信号と、検出した又は推定した前記選択還元触媒の下流側のNOx濃度とに基いて、前記選択還元触媒のNOx浄化率の低下を検出する、構成を採用できる。   In the above configuration, the abnormality detection means detects a decrease in the NOx purification rate of the selective reduction catalyst based on the detection signal of the NOx sensor and the detected or estimated NOx concentration downstream of the selective reduction catalyst. The configuration can be adopted.

上記構成において、前記異常検出手段は、前記選択還元触媒のNOx浄化率の低下を検出した際に、前記NOxセンサの検出信号と、検出した又は推定した前記尿素水添加弁の上流側のNOx濃度とに基いて、前記選択還元触媒へ供給されるアンモニア量を推定し、推定したアンモニア量に基いて、尿素水添加量の異常及び添加される尿素水濃度の異常を検出する、構成を採用できる。   In the above configuration, when the abnormality detecting unit detects a decrease in the NOx purification rate of the selective reduction catalyst, the NOx sensor detection signal and the detected or estimated upstream NOx concentration of the urea water addition valve are detected. Based on the above, it is possible to estimate the amount of ammonia supplied to the selective reduction catalyst, and based on the estimated amount of ammonia, detect an abnormality in the urea water addition amount and an abnormality in the concentration of the added urea water. .

上記構成において、前記異常検出手段は、尿素水濃度が正常な場合に、推定した前記アンモニア量に基いて、尿素添加量が正常かを判断し、異常と判断した場合には、前記尿素水添加弁の尿素水の添加量を補正する、構成を採用できる。   In the above configuration, when the urea water concentration is normal, the abnormality detection means determines whether the urea addition amount is normal based on the estimated ammonia amount. A configuration that corrects the amount of urea water added to the valve can be adopted.

上記構成において、前記尿素水添加弁の尿素水の添加量を補正した後にNOx浄化率が正常化されない場合には、前記選択還元触媒が異常と判断する、構成を採用できる。   In the above configuration, when the NOx purification rate is not normalized after correcting the urea water addition amount of the urea water addition valve, it is possible to adopt a configuration in which the selective reduction catalyst is determined to be abnormal.

上記構成において、前記異常検出手段は、尿素水の添加量が正常な場合に、推定したアンモニア量に基いて、尿素水の濃度が正常かを判別し、当該尿素水の濃度が正常な場合には、前記選択還元触媒が異常と判断する、構成を採用できる。   In the above configuration, the abnormality detection means determines whether the concentration of urea water is normal based on the estimated ammonia amount when the addition amount of urea water is normal, and when the concentration of urea water is normal Can adopt a configuration in which the selective catalytic reduction catalyst is determined to be abnormal.

上記前記異常検出手段は、尿素水が加水分解されてアンモニアが生成されるための所定の条件を満たす場合に、前記アンモニア量を推定する、構成を採用できる。   The abnormality detection unit may employ a configuration in which the ammonia amount is estimated when a predetermined condition is satisfied for hydrolysis of urea water to generate ammonia.

本発明によれば、尿素選択還元型の排気浄化装置において、NOx浄化率の異常が検出された際に、その異常原因を検出可能となる。   According to the present invention, when an abnormality in the NOx purification rate is detected in the urea selective exhaust purification device, the cause of the abnormality can be detected.

本発明の一実施形態に係る内燃機関の排気浄化装置の構成図である。1 is a configuration diagram of an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention. ECUによる排気浄化装置の異常検出処理の一例を示すフローチャートである。It is a flowchart which shows an example of the abnormality detection process of the exhaust gas purification apparatus by ECU. ECUによる排気浄化装置の異常検出処理の他の例を示すフローチャートである。6 is a flowchart showing another example of an abnormality detection process of the exhaust gas purification apparatus by the ECU.

以下、本発明の好適一実施形態を添付図面に基づいて詳述する。
図1は本発明の一実施形態に係る内燃機関の排気浄化装置の構成図である。
図1において、内燃機関1は、例えば、ディーゼルエンジンである。この内燃機関1の排気通路10には、上流側から、酸化触媒コンバータ30、ディーゼルパティキュレートフィルタ(DPF)40、尿素水添加弁62及び選択還元触媒コンバータ50が設けられている。また、排気通路10には、排気ガスEG中の窒素酸化物(NOx)の濃度を検出するNOxセンサ70A,70B及び70Cが設けられている。NOxセンサ70Aは、尿素水添加弁62の下流側でかつ選択還元触媒コンバータ50の上流側に設けられている。NOxセンサ70Bは、選択還元触媒コンバータ50の下流側に設けられている。NOxセンサ70Cは、尿素水添加弁62の上流側に設けられている。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention.
In FIG. 1, the internal combustion engine 1 is, for example, a diesel engine. In the exhaust passage 10 of the internal combustion engine 1, an oxidation catalyst converter 30, a diesel particulate filter (DPF) 40, a urea water addition valve 62, and a selective reduction catalyst converter 50 are provided from the upstream side. The exhaust passage 10 is provided with NOx sensors 70A, 70B and 70C for detecting the concentration of nitrogen oxide (NOx) in the exhaust gas EG. The NOx sensor 70A is provided on the downstream side of the urea water addition valve 62 and on the upstream side of the selective catalytic reduction converter 50. The NOx sensor 70B is provided on the downstream side of the selective catalytic reduction converter 50. The NOx sensor 70 </ b> C is provided on the upstream side of the urea water addition valve 62.

酸化触媒コンバータ30は、後段のDPF40等に供給される排気ガスEGの温度を昇温させるために排気ガスEG中の未燃燃料等を酸化する触媒金属等からなる酸化触媒を担持している。   The oxidation catalyst converter 30 carries an oxidation catalyst made of a catalyst metal or the like that oxidizes unburned fuel or the like in the exhaust gas EG in order to raise the temperature of the exhaust gas EG supplied to the DPF 40 or the like at the subsequent stage.

DPF40は、排気ガスEGに含まれる粒子状物質(PM)を捕集するフィルタである。DPF40の構造は、周知のように、例えば、金属やセラミクス製のハニカム体で構成されている。DPF40は、PMが所定量堆積すると再生処理が必要である。具体的には、たとえば、酸化触媒コンバータ30を昇温により活性化させ、酸化触媒コンバータ30の酸化作用により昇温された排気ガスEGをDPF40に供給する。これにより、捕集したPMが燃焼処理され、フィルタ機能が再生される。また、DPF40は、触媒金属からなる酸化触媒を担持する構成としてもよい。   The DPF 40 is a filter that collects particulate matter (PM) contained in the exhaust gas EG. As is well known, the structure of the DPF 40 is composed of, for example, a honeycomb body made of metal or ceramics. The DPF 40 needs to be regenerated when a predetermined amount of PM is deposited. Specifically, for example, the oxidation catalyst converter 30 is activated by raising the temperature, and the exhaust gas EG heated by the oxidation action of the oxidation catalyst converter 30 is supplied to the DPF 40. As a result, the collected PM is burned and the filter function is regenerated. The DPF 40 may be configured to carry an oxidation catalyst made of a catalyst metal.

尿素水添加弁62は、尿素タンク60に接続され、尿素タンク60から供給された所定の濃度の尿素水63を選択還元触媒コンバータ50に向けて排気通路10に添加する。尿素水添加弁62は、電子制御ユニット(ECU)100からの制御指令に応じた添加量を添加するようになっている。排気通路10に添加された尿素水は、排気ガスEGの熱により、加水分解されてアンモニアが生成される。   The urea water addition valve 62 is connected to the urea tank 60 and adds a predetermined concentration of urea water 63 supplied from the urea tank 60 toward the selective reduction catalytic converter 50 to the exhaust passage 10. The urea water addition valve 62 is configured to add an addition amount according to a control command from the electronic control unit (ECU) 100. The urea water added to the exhaust passage 10 is hydrolyzed by the heat of the exhaust gas EG to generate ammonia.

選択還元触媒コンバータ50は、尿素水添加弁62から添加される尿素水から生成されるアンモニアを還元剤として用いて、排気ガスEGに含まれるNOxを選択的に還元して窒素ガスと水にする。この選択還元触媒コンバータ50は、周知の構造であり、例えば、Si、O、Alを主成分とすると共にFeイオンを含むゼオライトから構成されたものや、例えば、酸化アルミニウムアルミナからなる基材の表面にバナジウム触媒(V)などの触媒金属を担持させたものなどを用いることができるが、特に、これらに限定されるわけではない。 The selective reduction catalytic converter 50 selectively reduces NOx contained in the exhaust gas EG into nitrogen gas and water using ammonia generated from the urea water added from the urea water addition valve 62 as a reducing agent. . This selective reduction catalytic converter 50 has a well-known structure, for example, a material composed of zeolite containing Si, O, and Al as main components and containing Fe ions, or a surface of a base material made of aluminum oxide alumina, for example. In addition, a catalyst on which a catalyst metal such as a vanadium catalyst (V 2 O 5 ) is supported can be used, but it is not particularly limited thereto.

ECU100は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、EEPROM(Electronically Erasable and Programmable Read Only Memory)等のバックアップ用メモリ、A/D変換器やバッファ等を含む入力インターフェース回路、駆動回路等を含む出力インターフェース回路を含むハードウエアと所要のソフトウエアで構成される。このECU100には、3つのNOxセンサ70A〜70Cの検出信号が入力されるとともに、尿素水添加弁62に制御信号を出力する。なお、ECU100の処理内容については後述する。   The ECU 100 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a backup memory such as an EEPROM (Electronically Erasable and Programmable Read Only Memory), an A / D converter, a buffer, and the like. It comprises hardware including an output interface circuit including an input interface circuit, a drive circuit, etc., and necessary software. The ECU 100 receives detection signals from the three NOx sensors 70 </ b> A to 70 </ b> C and outputs a control signal to the urea water addition valve 62. The processing content of the ECU 100 will be described later.

次に、ECU100による排気浄化装置の異常検出処理の一例について図2に示すフローチャートを参照して説明する。なお、図2に示す処理ルーチンは、内燃機関1の始動後に、例えば、所定時間毎に実行される。   Next, an example of the abnormality detection process of the exhaust purification device by the ECU 100 will be described with reference to the flowchart shown in FIG. Note that the processing routine shown in FIG. 2 is executed, for example, every predetermined time after the internal combustion engine 1 is started.

先ず、選択還元触媒コンバータ50で浄化された排気ガスEGのNOx浄化率が所定範囲よりも低下しているかを判断する(ステップS1)。これは、たとえば、選択還元触媒コンバータ50の下流側のNOxセンサ70Bの検出値と、選択還元触媒コンバータ50の上流側のNOxセンサ70A又は70Cの検出値とから判断することができる。すなわち、選択還元触媒コンバータ50の上流側と下流側のNOx濃度を検出することにより、排気浄化装置のNOxの浄化率を算出でき、この値が所定範囲に収まっているかにより判断できる。   First, it is determined whether the NOx purification rate of the exhaust gas EG purified by the selective reduction catalytic converter 50 is lower than a predetermined range (step S1). This can be determined, for example, from the detected value of the NOx sensor 70B on the downstream side of the selective catalytic reduction converter 50 and the detected value of the NOx sensor 70A or 70C on the upstream side of the selective catalytic reduction converter 50. That is, by detecting the NOx concentration on the upstream side and downstream side of the selective catalytic reduction converter 50, the NOx purification rate of the exhaust purification device can be calculated, and it can be determined whether this value is within a predetermined range.

ステップS1において、NOx浄化率が所定範囲にある場合には、処理を終了し、NOx浄化率が低下して所定範囲外にあると判断したときは、排気浄化装置に異常が発生したと判断し、この異常原因を検出するために、先ず、尿素水添加弁62から添加される尿素水63の濃度が正常かを判断する(ステップS2)。尿素水濃度の異常を検出するには、例えば、尿素タンク60等に尿素水異常センサを設けることができるが、装置の簡素化のために、例えば、尿素タンク60への尿素水補充直後、尿素タンク60の交換直後などにおいて、NOx浄化率が低下していないか判断することにより、尿素水濃度が正常か否かを判断できる。   In step S1, when the NOx purification rate is within the predetermined range, the process is terminated, and when it is determined that the NOx purification rate falls and falls outside the predetermined range, it is determined that an abnormality has occurred in the exhaust purification device. In order to detect the cause of the abnormality, first, it is determined whether the concentration of the urea water 63 added from the urea water addition valve 62 is normal (step S2). In order to detect an abnormality in the urea water concentration, for example, a urea water abnormality sensor can be provided in the urea tank 60 or the like. For simplification of the apparatus, for example, immediately after the urea water is replenished in the urea tank 60, urea is added. It can be determined whether or not the urea water concentration is normal by determining whether or not the NOx purification rate has decreased immediately after replacement of the tank 60 or the like.

ステップS2において、尿素水濃度が異常と判断した場合には、尿素水異常を検出する(ステップS9)。すなわち、NOx浄化率の低下の原因が、尿素水濃度の異常と判断される。   If it is determined in step S2 that the urea water concentration is abnormal, the urea water abnormality is detected (step S9). That is, it is determined that the cause of the decrease in the NOx purification rate is an abnormal urea water concentration.

ステップS2において、尿素水濃度が正常と判断した場合には、尿素水添加弁62の下流側と上流側のNOxセンサ70A,70Cの検出信号を用いて、現在選択還元触媒コンバータ50に添加されているアンモニア量を推定する(ステップS3)。ここで、尿素水添加弁62の下流側のNOxセンサ70Aは、排気ガスEGに含まれるNOxと、尿素水の加水分解により生成されたアンモニアの双方を検出する。一方、尿素水添加弁62の上流側のNOxセンサ70Cは、排気ガスEGに含まれるNOxのみを検出する。したがって、NOxセンサ70Aの検出値とNOxセンサ70Cの検出値との差から、選択還元触媒コンバータ50に添加されるアンモニアの量を推定できる。なお、選択還元触媒コンバータ50に添加されるアンモニアの量をより精度良く推定するためには、尿素水63の加水分解が十分に進んだ状態におけるNOxセンサ70Aの検出値を用いることが好ましい。尿素水63の加水分解が十分に進んだ状態とは、例えば、排気ガスEGの温度が加水分解に必要な所定温度を超えた状態などである。   If it is determined in step S2 that the urea water concentration is normal, the urea water concentration is added to the currently selective catalytic reduction converter 50 using the detection signals of the downstream and upstream NOx sensors 70A and 70C of the urea water addition valve 62. The amount of ammonia present is estimated (step S3). Here, the NOx sensor 70A on the downstream side of the urea water addition valve 62 detects both NOx contained in the exhaust gas EG and ammonia generated by hydrolysis of the urea water. On the other hand, the NOx sensor 70C on the upstream side of the urea water addition valve 62 detects only NOx contained in the exhaust gas EG. Therefore, the amount of ammonia added to the selective catalytic reduction converter 50 can be estimated from the difference between the detected value of the NOx sensor 70A and the detected value of the NOx sensor 70C. In order to estimate the amount of ammonia added to the selective catalytic reduction converter 50 with higher accuracy, it is preferable to use the detection value of the NOx sensor 70A in a state where the hydrolysis of the urea water 63 has sufficiently progressed. The state in which the hydrolysis of the urea water 63 has sufficiently progressed is, for example, a state in which the temperature of the exhaust gas EG exceeds a predetermined temperature necessary for hydrolysis.

次いで、ステップS3において推定されたアンモニア量を用いて、尿素水添加弁62から添加されている実尿素水添加量を算出する(ステップS4)。すなわち、推定されたアンモニア量と尿素水63の濃度とに基いて、実尿素水添加量が算出される。   Next, the actual urea water addition amount added from the urea water addition valve 62 is calculated using the ammonia amount estimated in step S3 (step S4). That is, the actual urea water addition amount is calculated based on the estimated ammonia amount and the concentration of the urea water 63.

次いで、ステップS4において算出した実尿素水添加量と尿素水添加弁62に対するECU100からの添加指示値との差を算出し、この差と所定の閾値とを比較する(ステップS5)。実尿素水添加量と添加指示値との差が所定の閾値よりも小さい場合には、実尿素水添加量は正常と判断し、後述するステップS7の処理を実行する。   Next, the difference between the actual urea water addition amount calculated in step S4 and the addition instruction value from the ECU 100 for the urea water addition valve 62 is calculated, and this difference is compared with a predetermined threshold value (step S5). If the difference between the actual urea water addition amount and the addition instruction value is smaller than the predetermined threshold value, it is determined that the actual urea water addition amount is normal, and the process of step S7 described later is executed.

ステップS5において、実尿素水添加量と添加指示値との差が所定の閾値よりも大きい場合には、尿素水63の添加量異常と判断する。すなわち、尿素水添加弁62の誤作動等により、適切な量の尿素水が添加されていないと判断する。このため、実尿素水添加量と添加指示値との差に基いて、実尿素水添加量が適正な量になるように尿素水の添加指示値を補正する(ステップS6)。   In step S5, when the difference between the actual urea water addition amount and the addition instruction value is larger than a predetermined threshold value, it is determined that the urea water 63 addition amount is abnormal. That is, it is determined that an appropriate amount of urea water is not added due to malfunction of the urea water addition valve 62 or the like. Therefore, based on the difference between the actual urea water addition amount and the addition instruction value, the urea water addition instruction value is corrected so that the actual urea water addition amount becomes an appropriate amount (step S6).

次いで、排気浄化装置で浄化された排気ガスEGのNOx浄化率が正常化したかを判断する(ステップS7)。これは、ステップS1で説明したのと同様の方法で判断できる。ステップS6における実尿素水添加量の補正により、排気ガスEGのNOx浄化率が正常化した場合には、尿素水添加量の異常は解消されたと判断でき、処理を終了する。   Next, it is determined whether or not the NOx purification rate of the exhaust gas EG purified by the exhaust purification device has been normalized (step S7). This can be determined by the same method as described in step S1. If the NOx purification rate of the exhaust gas EG has been normalized by correcting the actual urea water addition amount in step S6, it can be determined that the abnormality in the urea water addition amount has been resolved, and the processing is terminated.

ステップS7において、排気ガスEGのNOx浄化率が正常化しない場合には、選択還元触媒コンバータ50の異常を検出する(ステップS8)。すなわち、尿素水の濃度が正常であり、かつ、尿素水の添加量が正常であるにも関わらず、排気ガスEGのNOx浄化率が正常化しない場合には、選択還元触媒コンバータ50に異常が存在すると判断できる。   If the NOx purification rate of the exhaust gas EG is not normalized in step S7, an abnormality in the selective catalytic reduction converter 50 is detected (step S8). That is, if the concentration of urea water is normal and the amount of urea water added is normal, but the NOx purification rate of the exhaust gas EG does not normalize, there is an abnormality in the selective catalytic reduction converter 50. It can be judged that it exists.

本実施形態では、NOx浄化率の低下及びその異常原因を検出するために、NOxセンサ70Aを尿素水添加弁62の下流でかつ選択還元触媒コンバータ50の上流に配置し、選択還元触媒コンバータ50に供給されるアンモニア量を推定することにより、NOx浄化率が低下する異常の原因を特定することが可能になる。   In the present embodiment, a NOx sensor 70A is disposed downstream of the urea water addition valve 62 and upstream of the selective catalytic reduction converter 50 in order to detect a decrease in the NOx purification rate and the cause of the abnormality. By estimating the amount of ammonia to be supplied, it is possible to identify the cause of the abnormality that reduces the NOx purification rate.

本実施形態では、選択還元触媒コンバータ50の下流及び尿素水添加弁62の上流にもNOxセンサ70B,70Cを配置する構成としたが、これらの代わりに、ECU100においてNOx推定モデルを構成し、選択還元触媒コンバータ50の下流及び/又は尿素水添加弁62の上流のNOx濃度を推定する構成とする構成とすることも可能である。   In the present embodiment, the NOx sensors 70B and 70C are also arranged downstream of the selective catalytic reduction converter 50 and upstream of the urea water addition valve 62. Instead, the ECU 100 constructs a NOx estimation model and selects it. A configuration in which the NOx concentration downstream of the reduction catalytic converter 50 and / or upstream of the urea water addition valve 62 is estimated may be employed.

次に、ECU100による排気浄化装置の異常検出処理の他の例について図3に示すフローチャートを参照して説明する。なお、図3に示す処理ルーチンは、内燃機関1の始動後に、例えば、所定時間毎に実行される。   Next, another example of the abnormality detection process of the exhaust gas purification apparatus by the ECU 100 will be described with reference to the flowchart shown in FIG. Note that the processing routine shown in FIG. 3 is executed, for example, every predetermined time after the internal combustion engine 1 is started.

先ず、排気浄化装置で浄化された排気ガスEGのNOx浄化率が所定範囲よりも低下しているかを判断する(ステップS11)。これは、上記したステップS1と同様の処理により判断できる。   First, it is determined whether the NOx purification rate of the exhaust gas EG purified by the exhaust purification device is lower than a predetermined range (step S11). This can be determined by the same processing as in step S1 described above.

ステップS11において、NOx浄化率が所定範囲にある場合には、処理を終了し、NOx浄化率が低下して所定範囲外にあると判断したときは、排気浄化装置に異常が発生したと判断し、この異常原因を検出するために、先ず、尿素水添加弁62が正常かを判断する(ステップS12)。これは、例えば、流量計を尿素水添加システムに設けて尿素添加量を測ることにより判断できる。また、尿素水添加弁62における添加圧力を測定することによっても尿素水添加弁62が正常に動作しているかを判断することができる。   In step S11, if the NOx purification rate is within the predetermined range, the process is terminated, and if it is determined that the NOx purification rate falls outside the predetermined range, it is determined that an abnormality has occurred in the exhaust purification device. In order to detect the cause of the abnormality, first, it is determined whether the urea water addition valve 62 is normal (step S12). This can be determined, for example, by providing a flow meter in the urea water addition system and measuring the urea addition amount. It can also be determined whether the urea water addition valve 62 is operating normally by measuring the addition pressure at the urea water addition valve 62.

ステップS12において、尿素水添加弁62が正常に動作していないと判断した場合には、尿素水添加弁異常を検出する(ステップS18)。ステップS12において、尿素水添加弁62が正常に動作していると判断した場合には、尿素水添加弁62の下流側と上流側のNOxセンサ70A,70Cの検出信号を用いて、現在選択還元触媒コンバータ50に添加されているアンモニア量を推定する(ステップS13)。この処理は、上記したステップS3と同様の処理である。   If it is determined in step S12 that the urea water addition valve 62 is not operating normally, a urea water addition valve abnormality is detected (step S18). If it is determined in step S12 that the urea water addition valve 62 is operating normally, the current selective reduction is performed using the detection signals of the NOx sensors 70A and 70C on the downstream side and the upstream side of the urea water addition valve 62. The amount of ammonia added to the catalytic converter 50 is estimated (step S13). This process is the same process as step S3 described above.

次いで、尿素水添加弁62に対する指示添加量と推定したアンモニア量から、尿素水添加弁62から添加される尿素水63の濃度を算出する(ステップS14)。   Next, the concentration of the urea water 63 added from the urea water addition valve 62 is calculated from the estimated amount of addition to the urea water addition valve 62 and the estimated ammonia amount (step S14).

次いで、ステップS14において算出した尿素水添加弁62から添加される尿素水63の濃度が基準値の範囲内であるかを判断する(ステップS15)。尿素水63の濃度が基準値の範囲内であると判断した場合には、尿素水添加量及び尿素水濃度のいずれも異常がないので、選択還元触媒コンバータ50の異常が検出される(ステップS16)。また、尿素水63の濃度が基準値の範囲外にあるときは、尿素水濃度の異常と判定する(ステーションS17)。   Next, it is determined whether the concentration of the urea water 63 added from the urea water addition valve 62 calculated in step S14 is within the reference value range (step S15). When it is determined that the concentration of the urea water 63 is within the reference value range, neither the urea water addition amount nor the urea water concentration is abnormal, and thus an abnormality of the selective catalytic reduction converter 50 is detected (step S16). ). Further, when the concentration of the urea water 63 is outside the range of the reference value, it is determined that the urea water concentration is abnormal (station S17).

本実施形態によれば、NOxセンサ70Aを尿素水添加弁62の下流でかつ選択還元触媒コンバータ50の上流に配置し、選択還元触媒コンバータ50に供給されるアンモニア量を推定することにより、NOx浄化率が低下する異常を検出した場合に、NOx浄化率が低下する異常の原因を特定することが可能になる。   According to the present embodiment, the NOx sensor 70A is disposed downstream of the urea water addition valve 62 and upstream of the selective reduction catalytic converter 50, and the amount of ammonia supplied to the selective reduction catalytic converter 50 is estimated, thereby purifying NOx. When an abnormality in which the rate decreases is detected, it is possible to identify the cause of the abnormality in which the NOx purification rate decreases.

1…内燃機関
10…排気通路
30…酸化触媒コンバータ
40…DPF
50…選択還元触媒コンバータ
60…尿素タンク
62…尿素水添加弁
63…尿素水
100…ECU
EG…排気ガス
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 10 ... Exhaust passage 30 ... Oxidation catalytic converter 40 ... DPF
50 ... Selective reduction catalytic converter 60 ... Urea tank 62 ... Urea water addition valve 63 ... Urea water 100 ... ECU
EG ... Exhaust gas

Claims (5)

内燃機関の排気通路に設けられ、排気ガスに含まれるNOxを尿素水が加水分解されて生成されるアンモニアを還元剤として選択的に還元する選択還元触媒と、前記排気通路の前記選択還元触媒の上流側から前記選択還元触媒に向けて尿素水を添加する尿素水添加弁とを備える内燃機関の排気浄化装置であって、
前記選択還元触媒のNOx浄化率が低下したときの異常原因を検出するために、前記排気通路の前記尿素水添加弁の下流側でかつ前記選択還元触媒の上流側にNOxセンサが設けられており、
前記NOxセンサの検出信号を利用して、前記選択還元触媒のNOx浄化率の低下及びその異常原因を検出する異常検出手段をさらに有し、
前記異常検出手段は、前記選択還元触媒のNOx浄化率の低下を検出した際に、前記NOxセンサの検出信号と、検出した又は推定した前記尿素水添加弁の上流側のNOx濃度とに基いて、前記選択還元触媒へ供給されるアンモニア量を推定し、推定したアンモニア量に基いて、尿素水添加量の異常、または、添加される尿素水濃度の異常を検出することを特徴とすることを特徴とする内燃機関の排気浄化装置。
A selective reduction catalyst that is provided in an exhaust passage of the internal combustion engine and selectively reduces NOx contained in the exhaust gas by hydrolysis of urea water using ammonia as a reducing agent; and the selective reduction catalyst in the exhaust passage. An exhaust gas purification apparatus for an internal combustion engine comprising a urea water addition valve for adding urea water toward the selective reduction catalyst from the upstream side,
For NOx purification rate of the selective reduction catalyst for detecting the cause of the abnormality when lowered, NOx sensor is provided on the upstream side of the downstream side a and the selective reduction catalyst of the urea water addition valve of the exhaust passage ,
Using a detection signal of the NOx sensor, further comprising an abnormality detection means for detecting a decrease in the NOx purification rate of the selective reduction catalyst and the cause of the abnormality,
The abnormality detecting means detects a decrease in the NOx purification rate of the selective reduction catalyst based on the detection signal of the NOx sensor and the detected or estimated NOx concentration upstream of the urea water addition valve. Estimating the amount of ammonia supplied to the selective reduction catalyst, and detecting an abnormality in the urea water addition amount or an abnormality in the concentration of the added urea water based on the estimated ammonia amount. An exhaust gas purification apparatus for an internal combustion engine characterized by the above.
前記異常検出手段は、尿素水濃度が正常な場合に、推定した前記アンモニア量に基いて、尿素添加量が正常を判断し、異常と判断した場合には、前記尿素水添加弁の尿素水の添加量を補正することを特徴とする請求項1に記載の内燃機関の排気浄化装置。 The abnormality detection means determines whether the urea addition amount is normal based on the estimated ammonia amount when the urea water concentration is normal, and determines that the urea addition amount of the urea water addition valve is abnormal if it is determined to be abnormal. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the amount of addition is corrected. 前記尿素水添加弁の尿素水の添加量を補正した後にNOx浄化率が正常化されない場合には、前記選択還元触媒が異常と判断する、ことを特徴とする請求項に記載の内燃機関の排気浄化装置。 3. The internal combustion engine according to claim 2 , wherein if the NOx purification rate is not normalized after correcting the urea water addition amount of the urea water addition valve, the selective reduction catalyst is determined to be abnormal. Exhaust purification device. 前記異常検出手段は、尿素水の添加量が正常な場合に、推定したアンモニア量に基いて、尿素水の濃度が正常かを判別し、当該尿素水の濃度が正常な場合には、前記選択還元触媒が異常と判断する、ことを特徴とする請求項に記載の内燃機関の排気浄化装置。 The abnormality detection means determines whether the concentration of urea water is normal based on the estimated ammonia amount when the addition amount of urea water is normal, and if the concentration of urea water is normal, the selection The exhaust gas purification apparatus for an internal combustion engine according to claim 1 , wherein the reduction catalyst is determined to be abnormal. 前記異常検出手段は、尿素水が加水分解されてアンモニアが生成されるための所定の条件を満たす場合に、前記アンモニア量を推定することを特徴とする請求項1ないし4のいずれかに記載の内燃機関の排気浄化装置。 The said abnormality detection means estimates the amount of ammonia when satisfy | filling the predetermined condition for urea water to be hydrolyzed and to produce | generate ammonia, The ammonia amount in any one of Claim 1 thru | or 4 characterized by the above-mentioned. An exhaust purification device for an internal combustion engine.
JP2009005783A 2009-01-14 2009-01-14 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5170689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005783A JP5170689B2 (en) 2009-01-14 2009-01-14 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005783A JP5170689B2 (en) 2009-01-14 2009-01-14 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010163923A JP2010163923A (en) 2010-07-29
JP5170689B2 true JP5170689B2 (en) 2013-03-27

Family

ID=42580281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005783A Expired - Fee Related JP5170689B2 (en) 2009-01-14 2009-01-14 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5170689B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640539B2 (en) * 2010-08-06 2014-12-17 三菱ふそうトラック・バス株式会社 Urea water quality abnormality diagnosis device
JP2012062818A (en) * 2010-09-16 2012-03-29 Hino Motors Ltd Exhaust emission control device for engine
DE102010038176B4 (en) * 2010-10-14 2014-02-27 Ford Global Technologies, Llc. A method of measuring the quality of ammonia injection for an after-treatment system of a motor vehicle
JP6130619B2 (en) * 2010-11-15 2017-05-17 三菱重工業株式会社 Control device for NOx purification device
JP5760423B2 (en) * 2010-12-16 2015-08-12 いすゞ自動車株式会社 NOx purification rate reduction cause diagnosis device
JP5769514B2 (en) * 2011-06-27 2015-08-26 本田技研工業株式会社 Abnormality discrimination device for exhaust purification system
JP5846490B2 (en) * 2011-12-21 2016-01-20 三菱ふそうトラック・バス株式会社 Exhaust gas purification device for internal combustion engine
JP6044867B2 (en) * 2012-04-26 2016-12-14 三菱ふそうトラック・バス株式会社 Exhaust gas purification device for internal combustion engine
JP6105403B2 (en) * 2013-06-17 2017-03-29 日野自動車株式会社 Diagnosis device for urea water supply system
JP6064836B2 (en) * 2013-08-21 2017-01-25 トヨタ自動車株式会社 Urea water addition valve abnormality detection device
JP6274151B2 (en) * 2015-04-27 2018-02-07 トヨタ自動車株式会社 Urea water abnormality determination device
FR3072419A1 (en) * 2017-10-17 2019-04-19 Psa Automobiles Sa METHOD FOR REPLACING A REDUCING AGENT INJECTION IN AN EXHAUST LINE OF A THERMAL ENGINE

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3979153B2 (en) * 2002-04-03 2007-09-19 三菱ふそうトラック・バス株式会社 NOx purification device for internal combustion engine
JP4161609B2 (en) * 2002-04-23 2008-10-08 三菱ふそうトラック・バス株式会社 Exhaust gas purification device for internal combustion engine
JP2005226504A (en) * 2004-02-12 2005-08-25 Hino Motors Ltd Method for controlling exhaust emission control device
JP4267534B2 (en) * 2004-07-23 2009-05-27 日野自動車株式会社 Abnormality detection method for exhaust purification system
JP4419150B2 (en) * 2006-12-12 2010-02-24 トヨタ自動車株式会社 NOx catalyst abnormality diagnosis device and abnormality diagnosis method
JP4710868B2 (en) * 2007-04-25 2011-06-29 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2010163923A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5170689B2 (en) Exhaust gas purification device for internal combustion engine
JP4985849B2 (en) Catalyst deterioration determination device and catalyst deterioration determination method
EP3012426B1 (en) Diagnostic device for urea water supply system
JP6248789B2 (en) Exhaust purification system
EP3085909B1 (en) Exhaust control system for internal combustion engine
JP5837197B2 (en) Abnormality diagnosis device and exhaust gas purification device for internal combustion engine
WO2010079621A1 (en) Apparatus for determination of component passing through catalyst, and exhaust gas purification apparatus for internal combustion engine
JP2009121413A (en) Apparatus for diagnosis of abnormality in exhaust gas purifuication system
JP5348539B2 (en) Exhaust gas purification device for internal combustion engine
JP2008133780A (en) Device and method for diagnosing abnormality of nox sensor
JP6175292B2 (en) NOx sensor failure determination device and failure determination method
JP4919178B2 (en) Exhaust gas purification device for internal combustion engine
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
JP2008095603A (en) Exhaust emission control device for internal combustion engine
JP2012036857A (en) Device for diagnosing catalyst degradation
JP6638549B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2012082703A (en) DEVICE AND METHOD FOR DETECTING DEGRADATION OF SELECTIVE REDUCTION TYPE NOx CATALYST
JP2020023922A (en) Exhaust emission control device of internal combustion engine
JP2019190360A (en) Exhaust emission control device of internal combustion engine
JP7280175B2 (en) Exhaust purification device
JP2016003615A (en) Method and device for detecting thermal deterioration of oxidation catalyst
JP2020045796A (en) Exhaust emission control device for internal combustion engine
JP2012233463A (en) Device for detecting defect in exhaust purificastion system
JP2020060121A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees