JP5170516B2 - Method for producing hydrogen gas - Google Patents

Method for producing hydrogen gas Download PDF

Info

Publication number
JP5170516B2
JP5170516B2 JP2007181827A JP2007181827A JP5170516B2 JP 5170516 B2 JP5170516 B2 JP 5170516B2 JP 2007181827 A JP2007181827 A JP 2007181827A JP 2007181827 A JP2007181827 A JP 2007181827A JP 5170516 B2 JP5170516 B2 JP 5170516B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
cellulose
producing hydrogen
generated
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007181827A
Other languages
Japanese (ja)
Other versions
JP2009018955A (en
Inventor
其武 張
文良 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2007181827A priority Critical patent/JP5170516B2/en
Publication of JP2009018955A publication Critical patent/JP2009018955A/en
Application granted granted Critical
Publication of JP5170516B2 publication Critical patent/JP5170516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、セルロースを含むバイオマスから水素ガスを製造する方法に関するものである。   The present invention relates to a method for producing hydrogen gas from biomass containing cellulose.

近年、地球温暖化など住環境が悪化する中で、「持続可能な循環型社会の実現」が人類社会に求められている。その基盤技術として、再生可能なエネルギーの創製、利用拡大に注目が集まっている。その中でも、賦存量、経済性、カーボンニュートラルの優位性などの視点で、バイオマスの果たす役割は大きい。バイオマスからのエネルギー回収については、エタノール合成などを含めて、多くの研究・技術開発が世界的に進められている。   In recent years, with the deterioration of the living environment such as global warming, “realization of a sustainable recycling society” is required of human society. Attention has been focused on creating and expanding the use of renewable energy as the fundamental technology. Among them, biomass plays a major role in terms of the existing amount, economic efficiency, and carbon neutral advantage. Regarding energy recovery from biomass, many research and technological developments are underway worldwide, including ethanol synthesis.

従来、バイオマスから水素ガスを製造する方法としては、例えば、木材を水蒸気あるいは空気と共に1000℃の高温でガス化することで、水素と一酸化炭素との混合ガスとし、一酸化炭素を水素と二酸化炭素とに変換する方法が知られているが、1000℃程度の高温の反応条件が必要である。   Conventionally, as a method for producing hydrogen gas from biomass, for example, wood is gasified with water vapor or air at a high temperature of 1000 ° C. to obtain a mixed gas of hydrogen and carbon monoxide, and carbon monoxide is converted to hydrogen and carbon dioxide. Although a method for converting to carbon is known, reaction conditions at a high temperature of about 1000 ° C. are necessary.

また、先行技術として、高圧力容器内で、水性媒体の存在下、水素を活性化する金属触媒を用いて、バイオマスを温度300〜375度に加熱する方法が提案されている(例えば、特許文献1参照)。しかし、この方法では、高圧力容器やニッケル系触媒が必要で、水素ガス製造装置のコストが高価になるという問題点がある。   In addition, as a prior art, a method of heating biomass to a temperature of 300 to 375 degrees using a metal catalyst that activates hydrogen in the presence of an aqueous medium in a high-pressure vessel has been proposed (for example, Patent Documents). 1). However, this method requires a high-pressure vessel and a nickel-based catalyst, and there is a problem that the cost of the hydrogen gas production apparatus becomes expensive.

特許第2671944号公報Japanese Patent No. 2671944

本発明の目的は、低コストなメカノケミカル処理を利用した、セルロースまたは高セルロース含有物からの水素ガスの製造方法を提供することにある。   An object of the present invention is to provide a method for producing hydrogen gas from cellulose or a high cellulose content using a low-cost mechanochemical treatment.

本発明によれば、バイオマスから水素ガスを製造する方法において、セルロースまたは高セルロース含有物の粉末と水酸化カルシウムの粉末と水酸化ニッケルの粉末とを所定量秤量し、該秤量物と複数の硬質ボールとを混合容器内に入れ、前記混合容器内で前記秤量物を所定時間混合粉砕し、粉砕後、該混合粉砕物を密封容器内で、350℃以上、450℃以下の温度に加熱保持し、発生した水素ガスを導出することを、特徴とする水素ガスの製造方法が得られる。
According to the present invention, in a method for producing hydrogen gas from biomass, a predetermined amount of cellulose or high cellulose-containing powder, calcium hydroxide powder, and nickel hydroxide powder are weighed, and the weighed material and a plurality of hard materials are weighed. A ball is placed in a mixing container, and the weighed product is mixed and pulverized for a predetermined time in the mixing container. After pulverization, the mixed pulverized product is heated and held at a temperature of 350 ° C. or higher and 450 ° C. or lower in a sealed container. A hydrogen gas production method characterized by deriving the generated hydrogen gas can be obtained.

また、本発明によれば、前記高セルロース含有物は、植物、植物から生産されたもの、古紙、家畜排せつ物、食品廃棄物、建築発生木材、または、下水汚泥を含む廃棄物であることを、特徴とする水素ガスの製造方法が得られる。なお、本発明の水素ガスの製造方法で、混合容器内での混合粉砕時間は、混合粉砕原料3g当り2時間以下であることが好ましい。
Further , according to the present invention , the high cellulose-containing material is a plant, a product produced from a plant, waste paper, livestock excrement, food waste, building generated wood, or waste containing sewage sludge. A characteristic method for producing hydrogen gas is obtained. In the method for producing hydrogen gas of the present invention, the mixing and pulverizing time in the mixing vessel is preferably 2 hours or less per 3 g of the mixed and pulverized raw material.

本発明によれば、高圧力容器や1000℃の高温処理を用いずに、低コストなメカノケミカル処理を利用した、セルロースまたは高セルロース含有物からの水素ガスの製造方法が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the hydrogen gas from a cellulose or a high cellulose containing material using a low-cost mechanochemical process is obtained, without using a high pressure vessel or a 1000 degreeC high temperature process.

以下、本発明の実施の形態について図面を参照しながら説明する。
セルロースと水酸化カルシウムと水酸化ニッケルとの混合試料(重量3g)を、メカノケミカル処理として、遊星ミルとスチールボールとを用いて混合粉砕し、処理粉末を加熱し、質量分析装置により評価し、発生ガスの定性分析を行った。水素発生の理論的反応式を式1に示す。Ni(OH)2は、水素発生の触媒的な働きを果たしているものと考えられる。
(式1)
C6(H2O)5 + 6Ca(OH)2 + 0.5Ni(OH)2 → 11.5H2 + 0.5Ni + 6CaCO3
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A mixed sample (weight 3 g) of cellulose, calcium hydroxide and nickel hydroxide is mixed and pulverized using a planetary mill and a steel ball as a mechanochemical treatment, the treated powder is heated, and evaluated by a mass spectrometer. Qualitative analysis of the generated gas was performed. The theoretical reaction formula for hydrogen generation is shown in Formula 1. Ni (OH) 2 is considered to play a catalytic role in hydrogen generation.
(Formula 1)
C 6 (H 2 O) 5 + 6Ca (OH) 2 + 0.5Ni (OH) 2 → 11.5H 2 + 0.5Ni + 6CaCO 3

図1は、セルロースと水酸化カルシウムとの混合物を2時間メカノケミカル処理し、それを質量分析装置で評価したときの、温度による発生ガスの変化結果を示す。図1から、Ca(OH)を用いた場合は、温度によって段階的に水素以外に異なる気体も発生していることが確認できる。すなわち、セルロースとCa(OH)とをメカノケミカル処理し、その後熱分解すると、350℃から450℃の温度範囲内で、安定な物質であるCaCO3が生成し、水素ガスが発生する。その後、さらに高温に熱すると、CaCO3が分解し、酸化カルシウム(CaO)になり、一酸化炭素(CO)と二酸化炭素(CO2)とが発生する。このように、水素と二酸化炭素とを異なる温度で発生させて分離することができる。 FIG. 1 shows the results of changes in generated gas with temperature when a mixture of cellulose and calcium hydroxide was mechanochemically treated for 2 hours and evaluated with a mass spectrometer. From FIG. 1, when Ca (OH) 2 is used, it can be confirmed that different gases other than hydrogen are generated stepwise depending on the temperature. That is, when cellulose and Ca (OH) 2 are mechanochemically treated and then pyrolyzed, CaCO 3 which is a stable substance is generated within a temperature range of 350 ° C. to 450 ° C., and hydrogen gas is generated. Thereafter, when heated to a higher temperature, CaCO 3 is decomposed into calcium oxide (CaO), and carbon monoxide (CO) and carbon dioxide (CO 2 ) are generated. Thus, hydrogen and carbon dioxide can be generated and separated at different temperatures.

図2は、メカノケミカル処理時間を変化させた場合の、混合粉砕粉末の水素ガス発生量の温度による変化の質量分析結果を示す。メカノケミカル処理時間として、遊星ミルとスチールボールとを使用せず、かき混ぜ用の棒で混合した場合(図2中の0min)、遊星ミルとスチールボールとを用いて60分間(60min)混合粉砕した場合、120分間(120min)混合粉砕した場合の水素ガス発生量を調べた。図2から、メカノケミカル処理時間が長いほど水素発生量が多くなることが分かるが、メカノケミカル処理時間を120分間より延長しても更なる水素ガス発生はない。混合粉砕原料3gの分解反応が、120分間程度で完了したものと考えられる。   FIG. 2 shows a mass analysis result of a change in the amount of hydrogen gas generation of the mixed pulverized powder with temperature when the mechanochemical treatment time is changed. As a mechanochemical treatment time, when a planetary mill and a steel ball are not used but mixed with a stirring rod (0 min in FIG. 2), the planetary mill and the steel ball are mixed and ground for 60 minutes (60 min). In this case, the amount of hydrogen gas generated when mixing and grinding for 120 minutes (120 minutes) was examined. FIG. 2 shows that the longer the mechanochemical treatment time is, the more hydrogen is generated. However, even if the mechanochemical treatment time is extended beyond 120 minutes, no further hydrogen gas is generated. It is considered that the decomposition reaction of 3 g of the mixed pulverized raw material was completed in about 120 minutes.

なお、Ca(OH)以外の水酸化物を使用しても、水素ガスが発生することが確認された。しかしながら、水素と二酸化炭素とがほぼ同じ温度で発生するため、水素と二酸化炭素との分離が困難である。 It was confirmed that hydrogen gas was generated even when a hydroxide other than Ca (OH) 2 was used. However, since hydrogen and carbon dioxide are generated at substantially the same temperature, it is difficult to separate hydrogen and carbon dioxide.

本実施の形態は、セルロースを出発原料として使用した実験結果について詳細に説明したが、セルロースを主成分とする植物、植物から生産されたもの、古紙、家畜排せつ物、食品廃棄物、建築発生木材、下水汚泥などの廃棄物でも同様の効果が得られることは明らかである。   In the present embodiment, the experimental results using cellulose as a starting material have been described in detail. Plants based on cellulose, those produced from plants, waste paper, livestock excrement, food waste, building-generated wood, It is clear that the same effect can be obtained with waste such as sewage sludge.

本発明の実施の形態の水素ガスの製造方法の、セルロースとCa(OH)との混合物を2時間メカノケミカル処理し、それを質量分析装置で評価したときの発生ガスの温度による変化結果を示すグラフである。In the method for producing hydrogen gas according to the embodiment of the present invention, the change result of the temperature of the generated gas when the mixture of cellulose and Ca (OH) 2 is mechanochemically treated for 2 hours and evaluated with a mass spectrometer. It is a graph to show. 本発明の実施の形態の水素ガスの製造方法の、メカノケミカル処理時間を変化させた場合の、セルロースとCa(OH)との混合粉砕粉末の水素ガス発生量の温度による変化の質量分析結果を示すグラフである。Mass spectrometry result of change in temperature of hydrogen gas generation amount of mixed pulverized powder of cellulose and Ca (OH) 2 when the mechanochemical treatment time is changed in the method for producing hydrogen gas according to the embodiment of the present invention It is a graph which shows.

Claims (2)

バイオマスから水素ガスを製造する方法において、
セルロースまたは高セルロース含有物の粉末と水酸化カルシウムの粉末と水酸化ニッケルの粉末とを所定量秤量し、該秤量物と複数の硬質ボールとを混合容器内に入れ、前記混合容器内で前記秤量物を所定時間混合粉砕し、粉砕後、該混合粉砕物を密封容器内で、350℃以上、450℃以下の温度に加熱保持し、発生した水素ガスを導出することを、特徴とする水素ガスの製造方法。
In a method for producing hydrogen gas from biomass,
A predetermined amount of cellulose or high cellulose-containing powder, calcium hydroxide powder and nickel hydroxide powder are weighed, and the weighed material and a plurality of hard balls are placed in a mixing container, and the weighing is performed in the mixing container. The mixture is pulverized for a predetermined time, and after pulverization, the mixed pulverized product is heated and held in a sealed container at a temperature of 350 ° C. or higher and 450 ° C. or lower, and the generated hydrogen gas is derived. Manufacturing method.
前記高セルロース含有物は、植物、植物から生産されたもの、古紙、家畜排せつ物、食品廃棄物、建築発生木材、または、下水汚泥を含む廃棄物であることを、特徴とする請求項1記載の水素ガスの製造方法。
The high cellulose-containing material is a plant, those produced from plants, waste paper, manure, food waste, building lumber originating, or that the waste containing sewage sludge, according to claim 1, wherein A method for producing hydrogen gas.
JP2007181827A 2007-07-11 2007-07-11 Method for producing hydrogen gas Active JP5170516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181827A JP5170516B2 (en) 2007-07-11 2007-07-11 Method for producing hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181827A JP5170516B2 (en) 2007-07-11 2007-07-11 Method for producing hydrogen gas

Publications (2)

Publication Number Publication Date
JP2009018955A JP2009018955A (en) 2009-01-29
JP5170516B2 true JP5170516B2 (en) 2013-03-27

Family

ID=40358926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181827A Active JP5170516B2 (en) 2007-07-11 2007-07-11 Method for producing hydrogen gas

Country Status (1)

Country Link
JP (1) JP5170516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222781A (en) * 2015-05-28 2016-12-28 国立大学法人東北大学 Hydrogen production method and system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733792B2 (en) * 2008-08-26 2011-07-27 株式会社豊田中央研究所 Energy gas production method and energy gas storage material
JP5572846B2 (en) * 2010-02-23 2014-08-20 株式会社豊田中央研究所 Energy gas production method and energy gas storage material
CN108212165B (en) * 2018-01-19 2019-08-02 清华大学 A kind of catalyst and preparation method thereof for biomass low temperature gasification high-purity hydrogen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837490B2 (en) * 2002-01-15 2006-10-25 独立行政法人産業技術総合研究所 Biomass semi-carbonized consolidated fuel precursor and method for producing biomass semi-carbonized consolidated fuel
JP4364684B2 (en) * 2004-03-17 2009-11-18 株式会社神戸製鋼所 Method for producing gasified fuel
JP2006312690A (en) * 2005-05-09 2006-11-16 Kyoto Univ Process of manufacturing hydrogen from biomass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222781A (en) * 2015-05-28 2016-12-28 国立大学法人東北大学 Hydrogen production method and system

Also Published As

Publication number Publication date
JP2009018955A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
Li et al. Recent advances in hydrogen production by thermo-catalytic conversion of biomass
Stonor et al. Biomass conversion to H 2 with substantially suppressed CO 2 formation in the presence of Group I & Group II hydroxides and a Ni/ZrO 2 catalyst
Gong et al. Influence of NaOH and Ni catalysts on hydrogen production from the supercritical water gasification of dewatered sewage sludge
Shan et al. Supercritical water gasification of waste water produced from hydrothermal liquefaction of microalgae over Ru catalyst for production of H2 rich gas fuel
JP5170516B2 (en) Method for producing hydrogen gas
US20210140054A1 (en) Methods and systems for the generation of high purity hydrogen with co2 capture from biomass and biogenic wastes
Tursunov et al. Effect of Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O promoter catalysts on H2, CO and CH4 concentration by CO2 gasification of Rosa Multiflora biomass
JP2021104916A (en) Method for producing amorphous silica and method for producing cosmetic raw material
Ighalo et al. Biochar from coconut residues: an overview of production, properties, and applications
Dong et al. Highly selective room‐temperature catalyst‐free reduction of alkaline carbonates to methane by metal hydrides
Khan et al. Performance study of Ni catalyst with quicklime (CaO) as CO2 adsorbent in palm kernel shell steam gasification for hydrogen production
Taufiq‐Yap et al. Modification of Malaysian dolomite using mechanochemical treatment via different media for oil palm fronds gasification
Tristantini et al. CATALYTIC EFFECT OF K 2 CO 3 IN STEAM GASIFICATION OF LIGNITE CHAR ON MOLE RATIO OF H 2/CO IN SYNGAS.
Shahdan et al. Catalytic Co-pyrolysis of empty fruit bunch and high-density polyethylene mixtures over rice husk ash: Thermogravimetric, kinetic and thermodynamic analyses
Biondo et al. Charred shrimp shells treated with potassium fluoride used as a catalyst for the transesterification of soybean oil with methanol
JP2006312690A (en) Process of manufacturing hydrogen from biomass
Chaiklangmuang et al. Performance of active nickel loaded lignite char catalyst on conversion of coffee residue into rich-synthesis gas by gasification
Rashidi et al. HYDROGEN RICH GAS PRODUCTION VIA NONCATALYTIC GASIFICATION OF SUGAR CANE BAGASSE IN SUPERCRITICAL WATER MEDIA.
Kojima et al. Kenaf as bioresource for production of hydrogen-rich gas
Sharma Biochar and other properties resulting from the gasification and combustion of biomass with different components
Li et al. Syn-gas production from catalytic steam gasification of municipal solid wastes in a combined fixed bed reactor
JP4935255B2 (en) Gas production method
Kumproa et al. High-purity hydrogen gas production by catalytic thermal decomposition using mechanochemical treatment
Marcelino et al. Supercritical Water Gasification of Coconut Shell Impregnated with a Nickel Nanocatalyst
Qi et al. Production of H2-Rich Syngas from Oxygen-Steam Gasification of Biomass Using Modified Red Mud Extract as Catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

R150 Certificate of patent or registration of utility model

Ref document number: 5170516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250