JP4935255B2 - Gas production method - Google Patents

Gas production method Download PDF

Info

Publication number
JP4935255B2
JP4935255B2 JP2006239938A JP2006239938A JP4935255B2 JP 4935255 B2 JP4935255 B2 JP 4935255B2 JP 2006239938 A JP2006239938 A JP 2006239938A JP 2006239938 A JP2006239938 A JP 2006239938A JP 4935255 B2 JP4935255 B2 JP 4935255B2
Authority
JP
Japan
Prior art keywords
gas
carbonaceous material
hydrogen
production method
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006239938A
Other languages
Japanese (ja)
Other versions
JP2007146115A (en
Inventor
鉱一 伊藤
雅之 油井
一生 馬目
裕子 手塚
陽子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006239938A priority Critical patent/JP4935255B2/en
Publication of JP2007146115A publication Critical patent/JP2007146115A/en
Application granted granted Critical
Publication of JP4935255B2 publication Critical patent/JP4935255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Treatment Of Sludge (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Coke Industry (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、水素を含むガスの製造方法に関し、詳細には従来の水性ガス化反応よりも低温で水素を製造することができるガス製造方法に関する。   The present invention relates to a method for producing a gas containing hydrogen, and more particularly to a gas production method capable of producing hydrogen at a lower temperature than a conventional water gasification reaction.

水素は、水素化(水素添加)、水素化分解、水素化精製など多くの化学プロセスの中で重要な役割を演じる材料であり、また、クリーンエネルギーとして利用が期待されている。水素の製造方法としては、水の電気分解、石炭コークスを高温で水蒸気と反応(水性ガス化反応)させてHとCOの混合ガスを製造し、COをHOと反応(シフト反応)させるとさらに水素が得られるので、以前はこの方法により水素が製造された。その後、天然ガス(CH)、精油所ガス、粗製ガソリン(ナフサ)などの石油系原料を用いて水素が製造されるようになった。しかし、石油系原料の枯渇や価格上昇によっては、石炭を原料とする方法が復活する可能性がある。 Hydrogen is a material that plays an important role in many chemical processes such as hydrogenation (hydrogenation), hydrocracking, hydrorefining, and is expected to be used as clean energy. As a method for producing hydrogen, electrolysis of water, coal coke is reacted with water vapor at high temperature (aqueous gasification reaction) to produce a mixed gas of H 2 and CO, and CO is reacted with H 2 O (shift reaction) In the past, hydrogen was produced by this method because further hydrogen is obtained. Thereafter, hydrogen was produced using petroleum-based raw materials such as natural gas (CH 4 ), refinery gas, and crude gasoline (naphtha). However, depending on the exhaustion of petroleum-based raw materials and price increases, there is a possibility that the method using coal as a raw material will be restored.

C+HO→CO+H ・・・ 水性ガス化反応(吸熱)
CO+HO→CO+H ・・・ COシフト反応(発熱)
C + H 2 O → CO + H 2 .. Water gasification reaction (endothermic)
CO + H 2 O → CO 2 + H 2 ... CO shift reaction (exotherm)

また、循環型社会の構築に相応しい廃棄物を利用した水素の製造検討も行われている。特許文献1〜2にはバイオマスを利用して、水性ガス化反応によりHとCOを製造する提案がなされている。 In addition, hydrogen production using waste suitable for building a recycling-oriented society is being studied. Patent Documents 1 and 2 propose that biomass is used to produce H 2 and CO by a water gasification reaction.

ところで、発電所、工場、自動車等の人間の社会的活動に伴って大気中に排出される二酸化炭素は地球温暖化の主たる原因であることが知られており、近年、この二酸化炭素の排出量を削減することが地球環境の保護の大きな課題となっている。これに対し、従来から二酸化炭素削減対策として、二酸化炭素の削減技術、固定化技術の研究が行われているが、最近バイオマス燃料に注目が集まってきている。   By the way, it is known that carbon dioxide discharged into the atmosphere due to human social activities such as power plants, factories, automobiles, etc. is the main cause of global warming. Reducing environmental issues is a major issue for protecting the global environment. On the other hand, as a measure for reducing carbon dioxide, research on carbon dioxide reduction technology and immobilization technology has been conducted, but recently, biomass fuel has been attracting attention.

バイオマス燃料は、原料や性状等多種多様な形態が検討されているが、実際に実用化されているのは、固形燃料や液体燃料が中心である。また、バイオマス利用は、米国ではDOEが中心、欧州ではスウエーデン、デンマークなど北欧が積極的である。我国では一部発電に利用されているものもあるが、いずれも小規模(数千〜数万kW程度)である。   Biomass fuel has been studied in various forms such as raw materials and properties, but solid fuel and liquid fuel are mainly used in practice. Biomass utilization is dominated by DOE in the United States, and Nordic countries such as Sweden and Denmark in Europe. Some of them are used for power generation in Japan, but all of them are small-scale (several thousands to tens of thousands kW).

特許文献1には、有機物を主体とする廃棄物の一部を部分酸化して得られる熱量を水性ガス化反応に利用し、残りの廃棄物を約800〜1000℃に加熱し、水蒸気によりガス化してHとCO濃度の高いガスを製造する方法が提案されている。この方法によれば、他の燃料を用いることなくHとCO濃度の高いガスを製造することができる。 In Patent Document 1, the amount of heat obtained by partial oxidation of a part of waste mainly composed of organic matter is used for a water gasification reaction, and the remaining waste is heated to about 800 to 1000 ° C. There has been proposed a method for producing a gas having a high H 2 and CO concentration. According to this method, a gas having a high H 2 and CO concentration can be produced without using another fuel.

特許文献2には、ごみからチャーを製造し、更に、ごみ焼却設備における廃熱を利用して蒸気を製造し、チャーをシャフト炉に充填して800〜1000℃に加熱すると共に、蒸気をシャフト炉に供給して水性ガス化反応によりHとCOからなる燃料用改質ガスを製造する方法が提案されている。これにより、COを含まない改質ガスを得ることができ、化石燃料の代替となる高カロリーでクリーンな燃料となることが記載されている。
特開平5−287282号公報 特開2001−192675号公報
In Patent Document 2, char is produced from waste, and further, steam is produced using waste heat in the waste incineration facility, the char is filled in a shaft furnace and heated to 800 to 1000 ° C., and the steam is supplied to the shaft. A method for producing a reformed gas for fuel composed of H 2 and CO by supplying it to a furnace and performing a water gasification reaction has been proposed. Thus, it is described that a reformed gas containing no CO 2 can be obtained, and that it becomes a high-calorie clean fuel that substitutes for fossil fuel.
JP-A-5-287282 JP 2001-192675 A

しかしながら、上記の特許文献に記載された方法は、高温・高圧下での水性ガス化反応を、古紙を部分酸化して得た熱量、或いは、ごみから製造したチャーと焼却設備の廃熱利用で得た蒸気を利用して行うものであるため、省エネルギーの方法ではなかった。このため、地球環境に悪影響を与えず、短時間かつ低温で水素を製造できる方法の出現が望まれていた。   However, the method described in the above-mentioned patent document is based on the amount of heat obtained by partial oxidation of waste paper, or the waste heat of char and incineration equipment manufactured from waste. Since it is performed using the obtained steam, it was not an energy saving method. For this reason, the advent of a method capable of producing hydrogen at a low temperature in a short time without adversely affecting the global environment has been desired.

本発明は、このような現状に鑑みてなされたものであり、バイオマスなどを利用した炭素質材料から水性ガス化反応により水素を製造することができ、しかも低温で水素を発生させることができる、ガス製造方法を提供することを目的とする。   The present invention has been made in view of such a current situation, hydrogen can be produced from a carbonaceous material using biomass and the like by a water gasification reaction, and hydrogen can be generated at a low temperature. An object is to provide a gas production method.

前記目的を達成するため、本発明者らは鋭意検討した結果、バイオマス炭化物等の炭素質材料と水蒸気との接触反応をマイクロ波による加熱状態で行わせるに当たり、触媒作用のある金属を担持、混合等することによって、低温で水素含有ガスが発生することを見出し、本発明に到達した。   In order to achieve the above-mentioned object, the present inventors have intensively studied. Etc., and found that a hydrogen-containing gas is generated at a low temperature, and reached the present invention.

すなわち、本発明は以下のとおりである。
(1)パラジウムを含む炭素質材料(ただし、竹炭を除く)をマイクロ波で加熱し、150〜450℃で、水蒸気と反応させて水素を含むガスを製造することを特徴とするガス製造方法。
(2)パラジウムを含む炭素質材料が、パラジウムを担持させた炭素質材料及びパラジウムを混合した炭素質材料から選択される少なくとも一種の材料である前記(1)に記載のガス製造方法。
(3)炭素質材料が、バイオマスの炭化物である前記(1)又は(2)に記載のガス製造方法。
(4)パラジウムの炭素質材料に対する比率が、0.1〜10質量%である前記(1)〜(3)のいずれかに記載のガス製造方法。
パラジウムを含む炭素質材料(ただし、竹炭を除く)を充填した反応容器内に水蒸気を導入し、反応容器内の前記炭素質材料をマイクロ波で加熱することにより、150〜450℃で、水素を含むガスを製造することを特徴とするガス製造方法。
That is, the present invention is as follows.
(1) A gas production method characterized by producing a gas containing hydrogen by heating a carbonaceous material containing palladium (excluding bamboo charcoal) with microwaves and reacting with water vapor at 150 to 450 ° C.
(2) a carbonaceous material containing palladium, a method of gas production according to at least one of which is the material the selected palladium from carbonaceous materials and carbonaceous materials palladium were mixed having supported thereon (1).
(3) The gas production method according to (1) or (2), wherein the carbonaceous material is a biomass carbide.
(4) The gas production method according to any one of (1) to (3), wherein a ratio of palladium to the carbonaceous material is 0.1 to 10% by mass.
( 5 ) Introducing water vapor into a reaction vessel filled with a carbonaceous material containing palladium (excluding bamboo charcoal), and heating the carbonaceous material in the reaction vessel with microwaves at 150 to 450 ° C. , gas production method characterized by the production of gas containing hydrogen.

本発明のガス製造方法によれば、パラジウムを含む炭素質材料にマイクロ波を照射し、マイクロ波による加熱状態で水性ガス化反応を行わせるので、マイクロ波効果と触媒効果により、コークスを高温で水蒸気と反応させる従来の水性ガス化反応に比べて、低温かつ低エネルギーで水素を製造することができる。しかも、バイオマス炭化物などの固体炭素質材料を使用することができるので、地球環境の保護にも貢献できる。発生した水素は、燃料などとして直接利用できるほか、メタノールやジメチルエーテル合成原料などとして利用することもできる。
According to the gas production method of the present invention, the carbonaceous material containing palladium is irradiated with microwaves, and the water gasification reaction is performed in a heated state by the microwaves. Compared with the conventional water gasification reaction that reacts with water vapor, hydrogen can be produced at low temperature and low energy. In addition, since solid carbonaceous material such as biomass carbide can be used, it can contribute to the protection of the global environment. The generated hydrogen can be used directly as a fuel, and can also be used as a raw material for synthesis of methanol or dimethyl ether.

本発明においてガス製造原料として用いられる炭素質材料は、特に限定されるものではなく、炭素質を多量に含むものであれば良い。具体例としては、石炭、コークス、活性炭、各種バイオマスの炭化物、などが挙げられる。中でも、バイオマスの炭化物は化石燃料系の炭化物に比べて水素ガス発生量が多く、好ましい材料である。前記のバイオマスの炭化物としては、稲わら、麦わら、バガス等の草類系バイオマス;木材、間伐材、伐採木、剪定枝、おがくず、樹皮、チップ、端材、流木、笹、木質建築廃材など木質系バイオマス;モミ殻、稲藁、麦藁、バガス、アブラヤシ(パーム油の原料)のヤシ殻などの農作物系バイオマス;食品工場や外食産業から出る食品残渣などの食物系バイオマス;下水汚泥、ごみなど、の炭化物を挙げることができる。   The carbonaceous material used as the gas production raw material in the present invention is not particularly limited as long as it contains a large amount of carbonaceous material. Specific examples include coal, coke, activated carbon, various biomass carbides, and the like. Among them, biomass carbide is a preferable material because it generates more hydrogen gas than fossil fuel carbide. The biomass of the biomass includes grass-based biomass such as rice straw, straw and bagasse; wood such as wood, thinned wood, felled trees, pruned branches, sawdust, bark, chips, mill ends, driftwood, firewood, wood construction waste Biomass; crop biomass such as fir shell, rice straw, wheat straw, bagasse, oil palm (raw material of palm oil); food biomass such as food residue from food factories and restaurant industry; sewage sludge, garbage Can be mentioned.

上記の炭素質材料の大きさは特に限定されないが、約0.1〜5mm程度のものが取扱性の点より好ましく、また、触媒活性を高めることができる点より多孔質で表面積の大きいものが好ましい。   Although the size of the carbonaceous material is not particularly limited, a material having a surface area of about 0.1 to 5 mm is preferable from the viewpoint of handleability, and a porous material having a large surface area from the viewpoint of enhancing the catalytic activity. preferable.

本発明で用いるところの金属を含む炭素質材料としては、金属を担持させた炭素質材料及び金属を混合した炭素質材料から選択される少なくとも一種の材料が挙げられ前記の金属としては、パラジウムが好ましい。
The carbonaceous material containing a metal as used in the present invention, the metal of at least one material may be mentioned are selected carbonaceous material and metal is supported carbonaceous material obtained by mixing, as the metals, Pas Rajiu beam is preferable.

また、上記の金属を担持させた炭素質材料において、担持させる金属の種類や量は、マイクロ波による触媒活性を高めることができるように適宜選択すれば良く、これにより低温にて水素を発生させることが可能となる。金属の担持量は、炭素質材料に対する質量比で、0.1〜10質量%の範囲が好ましく、少なすぎる場合はガス発生量が少なくなり、多すぎる場合は過熱によって反応が不安定になると共に、経済性にも劣るものとなる。   Further, in the carbonaceous material carrying the above metal, the kind and amount of the metal to be carried may be appropriately selected so that the catalytic activity by the microwave can be enhanced, thereby generating hydrogen at a low temperature. It becomes possible. The amount of the metal supported is preferably in the range of 0.1 to 10% by mass with respect to the carbonaceous material. If the amount is too small, the amount of gas generated decreases, and if it is too large, the reaction becomes unstable due to overheating. It is also inferior in economic efficiency.

バイオマス炭化物に金属を担持させる場合は、公知の方法に従って実施すれば良い。例えば、生バイオマスと上記の金属を含む金属化合物(塩酸塩、硫酸塩、炭酸塩等)を混合後、炭化する方法、或いは、バイオマス炭化物を上記の金属化合物(同上)を溶解させた溶液に浸漬した後、乾燥する方法等が挙げられる。   What is necessary is just to implement according to a well-known method, when carrying | supporting a metal to biomass carbide | carbonized_material. For example, after mixing raw biomass with a metal compound containing the above metals (hydrochloride, sulfate, carbonate, etc.), carbonizing, or immersing biomass carbide in a solution in which the above metal compound (same as above) is dissolved And then drying.

また、反応に供する材料として、バイオマス炭化物と上記の金属との混合物を用いることもできる。この場合、金属のバイオマス炭化物に対する比率は、0.1〜10質量%の範囲が好ましく、少なすぎる場合はガス発生量が減少し、多すぎる場合は反応が不安定になる。金属を担持させたバイオマス炭化物を用いた場合は、水素の発生に伴って炭素が失われていくことで金属の脱落が生じ触媒機能が損なわれるおそれがあるが、バイオマス炭化物と金属とを混合した場合は、金属が脱落するおそれがなく耐久性の良い材料になりうる。更に、金属とバイオマス炭化物を比重差で分離することができるので、反応後の触媒回収も容易である。   Moreover, the mixture of biomass carbide | carbonized_material and said metal can also be used as a material with which it uses for reaction. In this case, the ratio of the metal to the biomass carbide is preferably in the range of 0.1 to 10% by mass. When the amount is too small, the amount of gas generated decreases, and when the amount is too large, the reaction becomes unstable. When biomass carbide carrying metal is used, carbon may be lost due to loss of carbon as hydrogen is generated, and the catalytic function may be impaired. However, biomass carbide and metal were mixed. In this case, the metal can be a durable material without fear of dropping off. Furthermore, since the metal and the biomass carbide can be separated by the specific gravity difference, the catalyst recovery after the reaction is easy.

本発明のガス製造方法では、金属を含む炭素質材料にマイクロ波を照射して加熱し、これと水蒸気を反応させて、下記する反応により、水素と一酸化炭素を含むガスを製造する。この方法によれば、ヒーター等の加熱手段と異なり、マイクロ波によって炭素質材料の表面が活性化されるので、従来よりも格段に低い温度で水素を発生させることが可能となる。   In the gas production method of the present invention, a carbonaceous material containing metal is heated by irradiation with microwaves, and this is reacted with water vapor to produce a gas containing hydrogen and carbon monoxide by the following reaction. According to this method, unlike the heating means such as a heater, the surface of the carbonaceous material is activated by microwaves, so that hydrogen can be generated at a temperature much lower than that of the conventional method.

C+HO→CO+H 水性ガス化反応(吸熱)
CO+HO→CO+H COシフト反応(発熱)
C + H 2 O → CO + H 2 water gasification reaction (endothermic)
CO + H 2 O → CO 2 + H 2 CO shift reaction (exothermic)

ガスを製造する場合は、例えば、金属を含む炭素質材料を、ポリエチレンやテフロン(登録商標)などのプラスチック製、陶器製、石英ガラス製などマイクロ波透過性の反応容器内に充填し、これらの炭素質材料を収容した反応容器内に水蒸気を導入し、反応容器内の固体炭素材をマイクロ波で加熱することにより、水素含有ガスを発生させることができる。勿論これ以外の方法であっても構わない。   In the case of producing gas, for example, a carbonaceous material containing a metal is filled in a microwave permeable reaction vessel such as a plastic such as polyethylene or Teflon (registered trademark), earthenware, or quartz glass. A hydrogen-containing gas can be generated by introducing water vapor into a reaction vessel containing a carbonaceous material and heating the solid carbon material in the reaction vessel with microwaves. Of course, other methods may be used.

本発明では、上記の炭素質材料に照射するマイクロ波の出力や周波数、照射方法は、特に限定されるものではなく、反応温度が所定の範囲に保持できるよう電気的に制御すればよい。出力が低すぎる場合はガス化反応の進行が遅くなり、出力が高すぎる場合はマイクロ波の利用率が悪くなる。マイクロ波の周波数は、通常、1GHz〜300GHzである。1GHz未満又は300GHzを超える周波数範囲では、反応促進効果が不十分となる。   In the present invention, the output, frequency, and irradiation method of the microwave applied to the carbonaceous material are not particularly limited, and may be electrically controlled so that the reaction temperature can be maintained within a predetermined range. When the output is too low, the progress of the gasification reaction is slow, and when the output is too high, the utilization rate of the microwave is deteriorated. The frequency of the microwave is usually 1 GHz to 300 GHz. In the frequency range below 1 GHz or above 300 GHz, the reaction promoting effect is insufficient.

マイクロ波の照射方法は連続照射、間欠照射のいずれの方法であってもよい。照射時間及び照射停止時間は、反応に供する炭素質材料の種類に応じて適宜に決定することができる。   The microwave irradiation method may be either continuous irradiation or intermittent irradiation. The irradiation time and the irradiation stop time can be appropriately determined according to the type of the carbonaceous material subjected to the reaction.

ガス化反応における反応温度は、使用する炭素質材料の種類及び担持させる金属の種類や量によっても異なるが、通常120℃以上であり、好ましくは150〜450℃である。反応温度が低すぎる場合はガス発生量が少なくなり、一方、反応温度が高すぎる場合はエネルギー的に不利となる。
The reaction temperature in the gasification reaction varies depending on the type of carbonaceous material used and the type and amount of the metal to be supported, but is usually 120 ° C. or higher, preferably 150 to 450 ° C. If the reaction temperature is too low, the amount of gas generated is reduced. On the other hand, if the reaction temperature is too high, it is disadvantageous in terms of energy.

ガス化反応における反応圧力は、常圧、加圧の何れでもかまわないが、通常0.1MPa(常圧)〜30MPaであり、好ましくは0.1MPa(常圧)〜20MPaである。   The reaction pressure in the gasification reaction may be normal pressure or increased pressure, but is usually 0.1 MPa (normal pressure) to 30 MPa, preferably 0.1 MPa (normal pressure) to 20 MPa.

以下、本発明を実施例を用いて更に詳細に説明するが、本発明は以下の実施例にのみ限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited only to a following example.

(実施例1)
反応容器、水蒸気発生装置、窒素ボンベ、マイクロ波制御装置、温度制御装置、インピンジャー、生成ガスサンプリングパックを用意した。反応容器には、ガス流量計、圧力計、及び調整弁を設けた。
Example 1
A reaction vessel, a steam generator, a nitrogen cylinder, a microwave controller, a temperature controller, an impinger, and a generated gas sampling pack were prepared. The reaction vessel was provided with a gas flow meter, a pressure gauge, and a regulating valve.

表1に示す4種類の炭素質材料を用意し、表1に示す量を反応容器に充填し、これをマイクロ波反応装置内に設置した。窒素ボンベより装置内に窒素を供給し、装置内を窒素雰囲気にした。0.5L/minの流速で窒素ガスを流しながら、水蒸気発生装置で発生させた水蒸気を0.0607mol/minの速度で反応容器内に供給し、周波数2.45GHzのマイクロ波を反応容器に連続照射しながら所定の温度まで昇温させた後、10〜40分間保持し、水性ガス化反応を行った。反応中は、温度制御装置とマイクロ波制御装置によりマイクロ波の出力を制御した。   Four types of carbonaceous materials shown in Table 1 were prepared, and the amounts shown in Table 1 were filled in a reaction vessel, which was placed in a microwave reactor. Nitrogen was supplied into the apparatus from a nitrogen cylinder, and the inside of the apparatus was put into a nitrogen atmosphere. While flowing nitrogen gas at a flow rate of 0.5 L / min, water vapor generated by the water vapor generator is supplied into the reaction vessel at a rate of 0.0607 mol / min, and microwaves with a frequency of 2.45 GHz are continuously supplied to the reaction vessel. After raising the temperature to a predetermined temperature while irradiating, it was held for 10 to 40 minutes to carry out a water gasification reaction. During the reaction, the microwave output was controlled by a temperature controller and a microwave controller.

反応生成ガスは、反応容器の上部に設けられたガス出口から連続的に排出させ、インピンジャーで余剰水を凝縮させ乾ガスとした後、ガスをサンプリングし、TCDガスクロマトグラフィーで分析した。生成ガス量は、ガス毎に作成した検量線を用いて求めた。その結果を表1に示す。   The reaction product gas was continuously discharged from the gas outlet provided in the upper part of the reaction vessel, and after surplus water was condensed with an impinger to form dry gas, the gas was sampled and analyzed by TCD gas chromatography. The amount of generated gas was determined using a calibration curve created for each gas. The results are shown in Table 1.

Figure 0004935255
Figure 0004935255

表1の結果より、炭素質材料を水蒸気と反応させることにより、炭素質材料から水素ガスと一酸化炭素ガスが発生するが、Pdを担持させた炭素質材料を用いた場合は、水性ガス化反応の理論温度よりも低温で水素が発生することがわかった。   From the results in Table 1, hydrogen gas and carbon monoxide gas are generated from the carbonaceous material by reacting the carbonaceous material with water vapor. However, when the carbonaceous material supporting Pd is used, water gasification is performed. It was found that hydrogen was generated at a temperature lower than the theoretical reaction temperature.

また、Pdを担持させた材料同士を比較すると、やしがら活性炭を用いた場合は、石炭系活性炭(非バイオマスの炭化物)を用いた場合に比べて生成ガスのH/CO比が高く、水素リッチのガスを生成可能であることがわかった。 In addition, when the materials carrying Pd are compared with each other, when using Yashigara activated carbon, the H 2 / CO ratio of the generated gas is higher than when using coal-based activated carbon (non-biomass carbide), It was found that hydrogen-rich gas can be generated.

本発明のガス製造方法によれば、低温かつ低エネルギーで水素を製造することが可能になるので、得られた水素は、燃料分野では自動車や燃料電池等の燃料、水素ステーション備蓄用として、ファインケミカル分野では各種化合物の原料として、幅広く利用することができる。   According to the gas production method of the present invention, it becomes possible to produce hydrogen at a low temperature and low energy, so that the obtained hydrogen can be used in the fuel field as a fuel for automobiles, fuel cells, etc., and for storage of hydrogen stations as a fine chemical. In the field, it can be widely used as a raw material for various compounds.

Claims (5)

パラジウムを含む炭素質材料(ただし、竹炭を除く)をマイクロ波で加熱し、150〜450℃で、水蒸気と反応させて水素を含むガスを製造することを特徴とするガス製造方法。 A gas production method comprising producing a gas containing hydrogen by heating a carbonaceous material containing palladium (excluding bamboo charcoal) with microwaves and reacting with water vapor at 150 to 450 ° C. パラジウムを含む炭素質材料が、パラジウムを担持させた炭素質材料及びパラジウムを混合した炭素質材料から選択される少なくとも一種の材料である請求項1に記載のガス製造方法。 2. The gas production method according to claim 1, wherein the carbonaceous material containing palladium is at least one material selected from a carbonaceous material supporting palladium and a carbonaceous material mixed with palladium . 炭素質材料が、バイオマスの炭化物である請求項1又は2に記載のガス製造方法。 The gas production method according to claim 1, wherein the carbonaceous material is a biomass carbide. パラジウムの炭素質材料に対する比率が、0.1〜10質量%である請求項1〜3のいずれかに記載のガス製造方法。 The gas production method according to claim 1, wherein a ratio of palladium to the carbonaceous material is 0.1 to 10% by mass. パラジウムを含む炭素質材料(ただし、竹炭を除く)を充填した反応容器内に水蒸気を導入し、反応容器内の前記炭素質材料をマイクロ波で加熱することにより、150〜450℃で、水素を含むガスを製造することを特徴とするガス製造方法。
Hydrogen is introduced at 150 to 450 ° C. by introducing water vapor into a reaction vessel filled with a carbonaceous material containing palladium (excluding bamboo charcoal) and heating the carbonaceous material in the reaction vessel with microwaves. A gas production method comprising producing a gas containing the gas.
JP2006239938A 2005-11-01 2006-09-05 Gas production method Expired - Fee Related JP4935255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239938A JP4935255B2 (en) 2005-11-01 2006-09-05 Gas production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005317944 2005-11-01
JP2005317944 2005-11-01
JP2006239938A JP4935255B2 (en) 2005-11-01 2006-09-05 Gas production method

Publications (2)

Publication Number Publication Date
JP2007146115A JP2007146115A (en) 2007-06-14
JP4935255B2 true JP4935255B2 (en) 2012-05-23

Family

ID=38207894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239938A Expired - Fee Related JP4935255B2 (en) 2005-11-01 2006-09-05 Gas production method

Country Status (1)

Country Link
JP (1) JP4935255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108906076A (en) * 2018-06-27 2018-11-30 济南大学 A kind of preparation method of the three-dimensional cross Pt-Cu-Co alloy nanoparticle of multiple-limb

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079920B2 (en) * 2012-01-12 2012-11-21 民朗 金辺 Hydrogen gas production equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822508B2 (en) * 1979-11-07 1983-05-09 東北大学長 Coal catalytic gasification method
JPH09309714A (en) * 1996-05-22 1997-12-02 Heiyou Shoji Kk Active modification of carbonaceous material and apparatus using the same
JP2006089322A (en) * 2004-09-22 2006-04-06 Hitachi Ltd Hydrogen production method and device
JP2007126300A (en) * 2005-11-01 2007-05-24 Tokyo Electric Power Co Inc:The Method of and device for generating hydrogen from solid carbonaceous material using microwave
JP2007126301A (en) * 2005-11-01 2007-05-24 Tokyo Electric Power Co Inc:The Method for producing hydrogen from woody biomass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108906076A (en) * 2018-06-27 2018-11-30 济南大学 A kind of preparation method of the three-dimensional cross Pt-Cu-Co alloy nanoparticle of multiple-limb

Also Published As

Publication number Publication date
JP2007146115A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
Foong et al. Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production
Alptekin et al. Review on catalytic biomass gasification for hydrogen production as a sustainable energy form and social, technological, economic, environmental, and political analysis of catalysts
Motasemi et al. A review on the microwave-assisted pyrolysis technique
Feng et al. Roles and fates of K and Ca species on biochar structure during in-situ tar H2O reforming over nascent biochar
Asadullah et al. Energy efficient production of hydrogen and syngas from biomass: development of low-temperature catalytic process for cellulose gasification
Xu et al. Gasification of sewage sludge and other biomass for hydrogen production in supercritical water
Parthasarathy et al. Combined slow pyrolysis and steam gasification of biomass for hydrogen generation—a review
Chiodo et al. Syngas production by catalytic steam gasification of citrus residues
Cho et al. Carbon dioxide-cofeeding pyrolysis of pine sawdust over nickle-based catalyst for hydrogen production
Werkneh Biogas impurities: environmental and health implications, removal technologies and future perspectives
Faizan et al. Critical review on catalytic biomass gasification: State-of-Art progress, technical challenges, and perspectives in future development
Bhaskar et al. Thermochemical route for biohydrogen production
Wang et al. Synergistic effects of lanthanum ferrite perovskite and hydrogen to promote ammonia production during microalgae catalytic pyrolysis process
Tursunov et al. Effect of Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O promoter catalysts on H2, CO and CH4 concentration by CO2 gasification of Rosa Multiflora biomass
KR101995128B1 (en) Microwave reforming apparatus for gas reforming
JP2009132746A (en) Carbon support, method for producing carbon support, device for producing carbon support, method for producing gas, method of power generation and power generator
Sharma et al. Exploring the potential for biomethane production by the hybrid anaerobic digestion and hydrothermal gasification process: A review
Cantrell et al. Green farming systems for the Southeast USA using manure-to-energy conversion platforms
JP4935255B2 (en) Gas production method
Liao et al. H2-rich gas production from wood biomass air-steam gasification over a multifunctional Ni1. 5Ca4. 0Mn1. 0Ox catalyst derived from biomaterial
CN102712847B (en) Biorefinery method
JP2007126300A (en) Method of and device for generating hydrogen from solid carbonaceous material using microwave
US10442689B2 (en) Microwave reforming apparatus for gas reforming
JP2007126301A (en) Method for producing hydrogen from woody biomass
Elgazar et al. A review of hydrogen production from food waste through gasification process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees