JP5167823B2 - Shock absorbing member - Google Patents

Shock absorbing member Download PDF

Info

Publication number
JP5167823B2
JP5167823B2 JP2008006066A JP2008006066A JP5167823B2 JP 5167823 B2 JP5167823 B2 JP 5167823B2 JP 2008006066 A JP2008006066 A JP 2008006066A JP 2008006066 A JP2008006066 A JP 2008006066A JP 5167823 B2 JP5167823 B2 JP 5167823B2
Authority
JP
Japan
Prior art keywords
absorbing member
shock absorbing
section
cross
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008006066A
Other languages
Japanese (ja)
Other versions
JP2009168115A (en
Inventor
正俊 阿部
直哉 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008006066A priority Critical patent/JP5167823B2/en
Publication of JP2009168115A publication Critical patent/JP2009168115A/en
Application granted granted Critical
Publication of JP5167823B2 publication Critical patent/JP5167823B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Description

本発明は、例えば車両の衝突時に車両に入力される衝撃荷重を吸収するための衝撃吸収部材に関するものである。   The present invention relates to an impact absorbing member for absorbing an impact load input to a vehicle at the time of a vehicle collision, for example.

従来の衝撃吸収部材としては、例えば特許文献1に記載されているように、扁平な略八角形の部材横断面を有し、互いに対向する2つの長辺部の一部に台形状の溝部が設けられているクラッシュボックスが知られている。
特許第3912422号
As a conventional shock absorbing member, for example, as described in Patent Document 1, a flat and substantially octagonal member cross section is provided, and a trapezoidal groove is formed in a part of two long sides facing each other. The provided crash box is known.
Patent No. 3912422

しかしながら、上記従来技術の衝撃吸収部材においては、部材横断面を形成する稜線の各辺の長さや形状が一定ではないため、衝突により衝撃荷重を受けたときの圧潰状況が各面で異なり、各面同士の圧潰干渉が生じる。従って、安定した荷重特性が得られなくなるため、衝撃吸収性の悪化につながる。   However, in the impact absorbing member of the above prior art, since the length and shape of each side of the ridge line forming the member cross section are not constant, the crushing situation when receiving an impact load due to a collision is different on each surface, Crushing interference between surfaces occurs. Therefore, stable load characteristics cannot be obtained, leading to deterioration of shock absorption.

本発明の目的は、衝突時の衝撃吸収性を向上させることができる衝撃吸収部材を提供することである。   An object of the present invention is to provide an impact absorbing member capable of improving impact absorbability at the time of collision.

本発明は、衝突時に発生する衝撃荷重を吸収するための衝撃吸収部材において、凹凸状に形成された部材横断面を有し、部材横断面を形成する稜線が全て直線で形成されていると共に、稜線の各辺の長さが全て実質的に等しくなっており、稜線の凸状角部の角度が全て鋭角となっていることを特徴とするものである。 The present invention, in the impact absorbing member for absorbing the impact load generated at the time of the collision, has a member cross section formed in a concavo-convex shape, all the ridge lines forming the member cross section are formed in a straight line, all the length of each side of the ridge is substantially equal Kuna', it is characterized in that the angle of the convex corner portions of the ridge are all an acute angle.

このような本発明の衝撃吸収部材においては、部材横断面を形成する稜線を全て直線で形成することに加え、当該稜線の各辺の長さを全て実質的に等しくすることにより、衝突により衝撃荷重を受けたときの圧潰挙動が各面で等しくなるため、各面同士の圧潰干渉の発生が防止されるようになる。また、部材横断面の形状を凹凸状とすることにより、部材横断面を形成する稜線の各辺の長さが短くなるため、1回の圧潰による座屈波長が短くなる。以上により、衝撃吸収部材の荷重特性の安定性が良くなるため、衝突時における衝撃吸収部材の衝撃吸収性を向上させることができる。   In such an impact-absorbing member of the present invention, in addition to forming all the ridge lines forming the member cross section in a straight line, the length of each side of the ridge line is substantially equal to each other, so that the impact is caused by a collision. Since the crushing behavior when receiving a load becomes equal on each surface, the occurrence of crushing interference between the surfaces is prevented. Moreover, since the length of each side of the ridgeline forming the member cross section is shortened by making the shape of the member cross section uneven, the buckling wavelength due to one crushing is shortened. As described above, since the stability of the load characteristics of the shock absorbing member is improved, the shock absorbing property of the shock absorbing member at the time of collision can be improved.

また、稜線の凸状角部の角度が全て鋭角となっていることにより、衝撃吸収部材の圧潰荷重が十分高くなるため、衝撃吸収部材の荷重特性の安定性が更に良くなる。これにより、衝突時における衝撃吸収部材の衝撃吸収性を一層向上させることができる。 In addition, since all the convex corner portions of the ridge line are acute angles, the crushing load of the shock absorbing member is sufficiently high, so that the stability of the load characteristics of the shock absorbing member is further improved. Thereby, the shock absorption property of the shock absorbing member at the time of collision can be further improved.

ましくは、部材横断面が全体にわたって凹凸状に形成されている。この場合には、衝撃吸収部材の局部剛性が強くなるため、衝撃吸収部材が折れにくくなる。
また、好ましくは、部材横断面の形状がスター形である。
Good Mashiku is member cross section is formed in an uneven shape throughout. In this case, since the local rigidity of the shock absorbing member is increased, the shock absorbing member is hardly broken.
Preferably, the shape of the member cross section is a star shape.

本発明の衝撃吸収部材によれば、衝突時の衝撃吸収性を向上させ、衝撃エネルギーの吸収を効率良く行うことができる。   According to the impact absorbing member of the present invention, it is possible to improve impact absorbability at the time of collision and efficiently absorb impact energy.

以下、本発明に係わる衝撃吸収部材の好適な実施形態について、図面を参照して詳細に説明する。   Hereinafter, a preferred embodiment of an impact absorbing member according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係わる衝撃吸収部材の一実施形態を示す斜視図(一部断面を含む)であり、図2は、図1に示した衝撃吸収部材の横断面図である。同図において、本実施形態の衝撃吸収部材1は、車両の衝突時に車両に生じる衝撃荷重を吸収するための部材であり、例えば車両の前部に設けられたバンパーのクラッシュボックスとして使用されるものである。この場合、衝撃吸収部材1は、車両のフロントサイドメンバの前端面に接合されることになる。   FIG. 1 is a perspective view (including a partial cross section) showing an embodiment of an impact absorbing member according to the present invention, and FIG. 2 is a transverse sectional view of the impact absorbing member shown in FIG. In the figure, an impact absorbing member 1 of the present embodiment is a member for absorbing an impact load generated in a vehicle at the time of a vehicle collision, and is used, for example, as a crash box for a bumper provided at the front of the vehicle. It is. In this case, the shock absorbing member 1 is joined to the front end surface of the front side member of the vehicle.

衝撃吸収部材1は、両端が開放された中空部材であり、鉄やアルミニウム等で形成されている。衝撃吸収部材1は、例えば押し出し加工により一体成形したり、複数枚の平板を溶接して作ることができる。   The shock absorbing member 1 is a hollow member having both ends opened, and is formed of iron, aluminum, or the like. The shock absorbing member 1 can be formed by, for example, integral molding by extrusion or welding a plurality of flat plates.

衝撃吸収部材1の横断面(衝撃吸収部材1の長手方向に直交する断面)の形状は、略ダブル十字形となっている。つまり、衝撃吸収部材1の横断面は、縦横両方向に対して矩形状の凸部2が複数形成された凹凸形状をなしている。このように衝撃吸収部材1の横断面の形状を全体にわたって凹凸状とすることにより、衝撃吸収部材1の局部剛性が高くなり、衝撃吸収部材1が折れにくくなる。   The shape of the cross section of the shock absorbing member 1 (the cross section perpendicular to the longitudinal direction of the shock absorbing member 1) is substantially a double cross. That is, the cross section of the shock absorbing member 1 has an uneven shape in which a plurality of rectangular protrusions 2 are formed in both the vertical and horizontal directions. Thus, by making the shape of the cross section of the shock absorbing member 1 uneven as a whole, the local rigidity of the shock absorbing member 1 is increased and the shock absorbing member 1 is not easily broken.

衝撃吸収部材1の横断面(以下、部材横断面ということがある)を形成する稜線3は、全て直線で形成されている。ここでいう「直線」とは、見た目上で直線ということであり、例えば肉眼では分からない微小な凹凸や曲線については直線とみなすこととする。   The ridgelines 3 that form the cross section of the shock absorbing member 1 (hereinafter also referred to as “member cross section”) are all formed in a straight line. The term “straight line” as used herein means a straight line in appearance, and for example, minute unevenness and curves that cannot be seen with the naked eye are regarded as straight lines.

部材横断面を形成する稜線3の各外辺(外側の辺)3a及び各内辺(内側の辺)3bの長さは、全て実質的に等しくなっている。ここでいう「実質的に等しい」とは、必ずしも完全に等しいものだけに限られるものではなく、僅かな誤差(例えば数mm程度の誤差)でしかないものも含んでいる。   The lengths of the outer sides (outer sides) 3a and the inner sides (inner sides) 3b of the ridgeline 3 forming the member cross section are all substantially equal. The term “substantially equal” as used herein is not necessarily limited to a completely equal one, but includes a slight error (for example, an error of about several mm).

また、部材横断面を形成する稜線3における凸部2の両側の角部(凸状角部)4の角度は、全て90度となっている。   Moreover, all the angles of the corners (convex corners) 4 on both sides of the convex part 2 in the ridgeline 3 forming the member cross section are 90 degrees.

車両の衝突時には車両に衝撃荷重が入力されるが、その衝撃荷重を衝撃吸収部材1が軸方向の圧潰荷重(軸圧縮荷重)として受け、その軸圧縮荷重により衝撃吸収部材1が座屈変形することで、衝撃エネルギーが緩和されることになる。   When the vehicle collides, an impact load is input to the vehicle. The impact absorbing member 1 receives the impact load as an axial crushing load (axial compressive load), and the impact absorbing member 1 is buckled and deformed by the axial compressive load. This will alleviate the impact energy.

このとき、衝撃吸収部材1に求められる性能としては、限られたスペース及び荷重上限内で可能な限り衝撃吸収量を稼ぐことが重要である。そのためには、衝撃吸収部材1において質量効率の良い圧潰荷重を得ることにより、衝撃吸収部材1の荷重特性(図3及び図4参照)を向上させる必要がある。   At this time, as the performance required for the shock absorbing member 1, it is important to earn the shock absorbing amount as much as possible within the limited space and the upper limit of the load. For this purpose, it is necessary to improve the load characteristics (see FIGS. 3 and 4) of the shock absorbing member 1 by obtaining a crushing load with high mass efficiency in the shock absorbing member 1.

質量効率の良い圧潰荷重を得るためには、第1に、圧潰荷重の波形における山谷のレベル差を小さくすることで、平均圧潰荷重を高くする必要がある。例えば図3に示す荷重特性では、圧潰荷重Aの波形(破線参照)及び圧潰荷重Bの波形(実線参照)の山(荷重ピーク)の大きさが一定であるが、圧潰荷重Aの波形における山谷のレベル差が圧潰荷重Bの波形における山谷のレベル差よりも小さいため、圧潰荷重Aの平均値Aaveが圧潰荷重Bの平均値Baveよりも高くなる。 In order to obtain a mass-efficient crushing load, first, it is necessary to increase the average crushing load by reducing the level difference between peaks and valleys in the crushing load waveform. For example, in the load characteristics shown in FIG. 3, the crush load A waveform (see broken line) and the crush load B waveform (see solid line) have a constant peak (load peak). Therefore, the average value A ave of the crushing load A is higher than the average value B ave of the crushing load B.

第2に、衝撃吸収部材1全体にわたって軸圧潰(軸圧縮)を安定して起こす必要がある。具体的には、図3に示すように、圧潰荷重の波形における山(荷重ピーク)の大きさがほぼ一定になるようにし、更に圧潰荷重の波形における波長(座屈波長)がほぼ一定になるようにする。例えば図4に示すように、衝撃吸収部材1の圧潰途中から、圧潰荷重の波形における荷重ピーク及び座屈波長が不安定になると、これに伴って平均圧潰荷重も下がるため、質量効率が悪くなってしまう。   Secondly, it is necessary to stably cause axial crushing (axial compression) throughout the shock absorbing member 1. Specifically, as shown in FIG. 3, the peak (load peak) in the waveform of the crush load is made substantially constant, and the wavelength (buckling wavelength) in the waveform of the crush load is made almost constant. Like that. For example, as shown in FIG. 4, when the load peak and buckling wavelength in the waveform of the crushing load become unstable during the crushing of the shock absorbing member 1, the average crushing load is lowered accordingly, and the mass efficiency is deteriorated. End up.

また、衝撃吸収部材1の圧潰荷重は、部材横断面を形成する稜線3の凸状角部4の角度に応じて変化する。   Moreover, the crushing load of the impact absorbing member 1 changes according to the angle of the convex corner 4 of the ridgeline 3 that forms the member cross section.

ここで、図5に示すように、断面山形状の板材6の折れ角θを90〜150度の範囲内で変えた時の破壊荷重をCAE解析により評価した。その評価結果を図6に示す。図6から分かるように、板材6の折れ角θが小さくなるほど破壊荷重が上がるようになる。これにより、衝撃吸収部材1の横断面を形成する稜線3の凸状角部4の角度が小さくなるほど、衝撃吸収部材1の圧潰荷重が高くなると言える。   Here, as shown in FIG. 5, the fracture load when the bending angle θ of the plate member 6 having a cross-sectional mountain shape was changed within a range of 90 to 150 degrees was evaluated by CAE analysis. The evaluation results are shown in FIG. As can be seen from FIG. 6, the breaking load increases as the folding angle θ of the plate 6 decreases. Thereby, it can be said that the crushing load of the shock absorbing member 1 increases as the angle of the convex corner 4 of the ridgeline 3 forming the cross section of the shock absorbing member 1 decreases.

ところで、衝撃吸収部材に曲面部が存在している、つまり衝撃吸収部材の横断面を形成する稜線に曲線部分が含まれていると、以下の不具合が生じる。即ち、曲面部での圧潰荷重は、平面部での圧潰荷重よりも低くなる。このため、曲面部では、平面部に比し、狙いの圧潰荷重を出すための質量がかかることになり、質量効率が悪化する。また、衝撃吸収部材に平面部と曲面部とが混在していると、平面部及び曲面部での圧潰状況が異なるため、それらの圧潰干渉が生じ、圧潰荷重の波形における山谷間の距離が長くなってしまう。さらに、軸圧潰以外の入力(曲げ等)に対しては、曲面部の局部剛性が平面部の局部剛性に比べて弱くなってしまう。   By the way, if the shock absorbing member has a curved surface portion, that is, if the curved line is included in the ridge line forming the cross section of the shock absorbing member, the following problems occur. That is, the crushing load at the curved surface portion is lower than the crushing load at the flat surface portion. For this reason, compared with a plane part, the mass for taking out the target crushing load will be applied in a curved surface part, and mass efficiency will deteriorate. In addition, if the shock absorbing member has both a flat surface portion and a curved surface portion, the crushing situation at the flat surface portion and the curved surface portion is different, so that the crushing interference occurs, and the distance between the peaks and valleys in the waveform of the crushing load is long. turn into. Furthermore, for inputs other than axial crushing (bending, etc.), the local rigidity of the curved surface portion becomes weaker than the local rigidity of the flat surface portion.

また、衝撃吸収部材の横断面を形成する稜線の各辺の長さが異なっていても、圧潰状況の違いによる圧潰干渉が生じるため、上記と同様に圧潰荷重の波形における山谷間の距離が長くなるという問題が発生する。   Even if the length of each side of the ridge line forming the cross section of the shock absorbing member is different, crushing interference occurs due to the difference in the crushing situation. Problem arises.

これに対し、本実施形態の衝撃吸収部材1においては、部材横断面を形成する稜線3の各辺3a,3bが全て直線で形成されており、しかも各辺3aの長さが全て実質的に等しくなり、各辺3bの長さが全て実質的に等しくなっている。このため、衝撃吸収部材1の各面での軸圧潰挙動が等しくなるため、各面同士の圧潰干渉の発生が防止される。従って、圧潰荷重の波形における山谷間の距離が短くなるため、平均圧潰荷重が高くなる。また、圧潰荷重の波形における座屈波長が一定になりやすくなるため、軸圧潰が安定して起きるようになる。   On the other hand, in the impact absorbing member 1 of the present embodiment, the sides 3a and 3b of the ridge line 3 forming the member cross section are all formed in a straight line, and the lengths of the sides 3a are substantially all. The length of each side 3b is substantially equal. For this reason, since the axial crushing behavior on each surface of the shock absorbing member 1 becomes equal, the occurrence of crushing interference between the surfaces is prevented. Therefore, since the distance between the peaks and valleys in the waveform of the crushing load is shortened, the average crushing load is increased. In addition, since the buckling wavelength in the waveform of the crushing load tends to be constant, axial crushing occurs stably.

また、衝撃吸収部材1の横断面形状は全体的に凹凸状となっているので、衝撃吸収部材1の横断面を形成する稜線3の一辺長が短くなる。このため、限られた断面サイズ(図2の破線参照)内において稜線3の線長全体が増えることになるため、平均圧潰荷重が高くなる。また、部材横断面を形成する稜線3の一辺長が短くなることで、一回の圧潰挙動がコンパクトになるため、圧潰荷重の波形における座屈波長が短くなり、この点でも軸圧潰が安定して起きるようになる。   Moreover, since the cross-sectional shape of the shock absorbing member 1 is generally uneven, the length of one side of the ridge line 3 that forms the cross section of the shock absorbing member 1 is shortened. For this reason, since the whole line length of the ridgeline 3 increases within a limited cross-sectional size (see the broken line in FIG. 2), the average crushing load increases. In addition, since the length of one side of the ridgeline 3 that forms the member cross section is shortened, the crushing behavior at one time becomes compact, so that the buckling wavelength in the waveform of the crushing load is shortened. Get up.

また、衝撃吸収部材1の横断面を形成する稜線3の凸状角部4の角度が全て90度となっているため、衝撃吸収部材1の圧潰荷重自体が高くなり、結果的に平均圧潰荷重が高くなる。   Moreover, since all the angles of the convex corners 4 of the ridgeline 3 forming the cross section of the shock absorbing member 1 are 90 degrees, the crushing load itself of the shock absorbing member 1 is increased, and as a result, the average crushing load is increased. Becomes higher.

このように衝撃吸収部材1の平均圧潰荷重が高くなると共に、衝撃吸収部材1の軸圧潰が安定して起きるようになるので、質量効率の良い十分な圧潰荷重を得ることができる。これにより、車両の衝突時に衝撃吸収部材1に必要な衝撃吸収能力を向上させることが可能となる。   As described above, the average crushing load of the shock absorbing member 1 is increased and the axial crushing of the shock absorbing member 1 occurs stably, so that a sufficient crushing load with high mass efficiency can be obtained. As a result, it is possible to improve the shock absorbing capability required for the shock absorbing member 1 in the event of a vehicle collision.

図7は、図1に示した衝撃吸収部材1の変形例を示す斜視図(一部断面を含む)である。本変形例における衝撃吸収部材11の横断面の形状は、スター形となっている。つまり、衝撃吸収部材11の横断面は、四方に対して山形状の凸部12が複数形成された凹凸形状をなしている。   FIG. 7 is a perspective view (including a partial cross section) showing a modification of the shock absorbing member 1 shown in FIG. The shape of the cross section of the shock absorbing member 11 in this modification is a star shape. That is, the cross section of the shock absorbing member 11 has an uneven shape in which a plurality of mountain-shaped convex portions 12 are formed on all sides.

衝撃吸収部材11の横断面(以下、部材横断面ということがある)を形成する稜線13は、全て直線で形成されている。また、部材横断面を形成する稜線13の各外辺13a及び各内辺13bの長さは、全て実質的に等しくなっている。さらに、部材横断面を形成する稜線13の凸状角部14の角度は、全て鋭角となっている。   The ridge lines 13 that form the transverse section of the shock absorbing member 11 (hereinafter also referred to as “member transverse section”) are all formed in a straight line. Further, the lengths of the outer sides 13a and the inner sides 13b of the ridge line 13 forming the member cross section are all substantially equal. Furthermore, the angles of the convex corners 14 of the ridgeline 13 forming the member cross section are all acute angles.

このように部材横断面を形成する稜線13が全て直線で形成されており、しかも稜線13の各辺13a,13bの長さが全て実質的に等しくなっているため、衝撃吸収部材11の各面での軸圧潰挙動が等しくなり、各面同士の圧潰干渉の発生が防止される。従って、圧潰荷重の波形における山谷間の距離が短くなるため、平均圧潰荷重が高くなり、軸圧潰が安定して起きるようになる。   In this way, the ridge lines 13 forming the member cross section are all formed in a straight line, and the lengths of the sides 13a and 13b of the ridge line 13 are all substantially equal. The axial crushing behavior at the same is equalized, and crushing interference between the surfaces is prevented. Therefore, since the distance between the peaks and valleys in the waveform of the crushing load is shortened, the average crushing load is increased and the axial crushing occurs stably.

また、衝撃吸収部材11の横断面が全体的に凹凸形状をなしているので、部材横断面を形成する稜線13の一辺長が短くなる。このため、圧潰荷重の波形における座屈波長が短くなると共に、衝撃吸収部材11の局部剛性が高くなる。   In addition, since the cross section of the shock absorbing member 11 has an uneven shape as a whole, the length of one side of the ridge line 13 forming the member cross section is shortened. For this reason, the buckling wavelength in the waveform of the crushing load is shortened, and the local rigidity of the shock absorbing member 11 is increased.

さらに、部材横断面を形成する稜線13の凸状角部14の角度が全て鋭角となっているため、衝撃吸収部材11の圧潰荷重が十分高くなる。   Furthermore, since the angles of the convex corner portions 14 of the ridge line 13 forming the member cross section are all acute, the crushing load of the shock absorbing member 11 is sufficiently high.

なお、本発明は、上記実施形態に限定されるものではない。例えば、衝撃吸収部材の横断面形状は、上記の略ダブル十字形及びスター形に限られず、種々変形可能である。このとき、衝撃吸収部材の横断面を形成する稜線の少なくとも一部において凸状角部の角度が90度以下であるのが好ましい。   The present invention is not limited to the above embodiment. For example, the cross-sectional shape of the impact absorbing member is not limited to the substantially double cross shape and the star shape, and can be variously modified. At this time, it is preferable that the angle of the convex corner is 90 degrees or less in at least a part of the ridgeline forming the cross section of the shock absorbing member.

本発明に係わる衝撃吸収部材の一実施形態を示す斜視図(一部断面を含む)である。1 is a perspective view (including a partial cross section) illustrating an embodiment of an impact absorbing member according to the present invention. 図1に示した衝撃吸収部材の横断面図である。It is a cross-sectional view of the impact absorbing member shown in FIG. 衝撃吸収部材の荷重特性の一例を示すグラフである。It is a graph which shows an example of the load characteristic of an impact-absorbing member. 衝撃吸収部材の荷重特性の他の例を示すグラフである。It is a graph which shows the other example of the load characteristic of an impact-absorbing member. 断面山形状の板材の折れ角を変えた時の破壊荷重の評価方法を示す図である。It is a figure which shows the evaluation method of the breaking load when changing the bending angle of the board | plate material of a cross-sectional mountain shape. 図5に示した評価方法により破壊荷重を評価した結果を示すグラフである。It is a graph which shows the result of having evaluated the fracture load by the evaluation method shown in FIG. 図1に示した衝撃吸収部材の変形例を示す斜視図(一部断面を含む)である。FIG. 6 is a perspective view (including a partial cross section) showing a modification of the shock absorbing member shown in FIG. 1.

符号の説明Explanation of symbols

1…衝撃吸収部材、3…稜線、3a…外辺、3b…内辺、4…凸状角部、11…衝撃吸収部材、13…稜線、13a…外辺、13b…内辺、14…凸状角部。   DESCRIPTION OF SYMBOLS 1 ... Shock absorption member, 3 ... Edge line, 3a ... Outer side, 3b ... Inner side, 4 ... Convex-shaped corner, 11 ... Impact absorption member, 13 ... Edge line, 13a ... Outer side, 13b ... Inner side, 14 ... Convex Corner.

Claims (3)

衝突時に発生する衝撃荷重を吸収するための衝撃吸収部材において、
凹凸状に形成された部材横断面を有し、
前記部材横断面を形成する稜線が全て直線で形成されていると共に、前記稜線の各辺の長さが全て実質的に等しくなっており、
前記稜線の凸状角部の角度が全て鋭角となっていることを特徴とする衝撃吸収部材。
In the shock absorbing member to absorb the impact load generated at the time of collision,
It has a member cross section formed in an uneven shape,
Wherein with ridge forming the member cross-section is formed on all straight, have all substantially equal Kuna' length of each side of the ridge,
The impact absorbing member, wherein all the angles of the convex corners of the ridge line are acute angles .
前記部材横断面が全体にわたって凹凸状に形成されていることを特徴とする請求項1記載の衝撃吸収部材。 2. The impact absorbing member according to claim 1, wherein the member cross section is formed in an uneven shape throughout . 前記部材横断面の形状がスター形であることを特徴とする請求項1または2記載の衝撃吸収部材。 The impact absorbing member according to claim 1 or 2, wherein the shape of the member cross section is a star shape .
JP2008006066A 2008-01-15 2008-01-15 Shock absorbing member Expired - Fee Related JP5167823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006066A JP5167823B2 (en) 2008-01-15 2008-01-15 Shock absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006066A JP5167823B2 (en) 2008-01-15 2008-01-15 Shock absorbing member

Publications (2)

Publication Number Publication Date
JP2009168115A JP2009168115A (en) 2009-07-30
JP5167823B2 true JP5167823B2 (en) 2013-03-21

Family

ID=40969523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006066A Expired - Fee Related JP5167823B2 (en) 2008-01-15 2008-01-15 Shock absorbing member

Country Status (1)

Country Link
JP (1) JP5167823B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561691B2 (en) * 2010-02-27 2014-07-30 Jfeスチール株式会社 Shock absorbing member
MX337269B (en) * 2010-09-28 2016-02-22 Magna Int Inc Scalable crush can for vehicle.
US9381881B2 (en) 2011-08-09 2016-07-05 Nippon Steel & Sumitomo Metal Corporation Shock absorbing member
CN103717938B (en) 2011-08-09 2017-05-17 新日铁住金株式会社 Shock absorbing member
JP5930360B2 (en) * 2011-09-01 2016-06-08 いすゞ自動車株式会社 Underrun protector structure
JP5912593B2 (en) * 2012-02-01 2016-04-27 株式会社神戸製鋼所 Manufacturing method of energy absorbing member

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4362953B2 (en) * 2000-07-03 2009-11-11 日本軽金属株式会社 Bumpy stay
JP3854812B2 (en) * 2001-03-27 2006-12-06 新日本製鐵株式会社 Strength members for automobiles
JP3897542B2 (en) * 2001-05-29 2007-03-28 株式会社神戸製鋼所 Energy absorbing member
JP2003225714A (en) * 2002-02-04 2003-08-12 Jfe Steel Kk Method for forming metallic tube and member for absorbing collision energy
JP2004026080A (en) * 2002-06-27 2004-01-29 Nissan Motor Co Ltd Member for reinforcing vehicle body
CN100476233C (en) * 2003-07-28 2009-04-08 住友金属工业株式会社 Cash energy absorption member
JP2005104335A (en) * 2003-09-30 2005-04-21 Jfe Steel Kk Side member tube hydroforming member
JP4375239B2 (en) * 2005-01-28 2009-12-02 住友金属工業株式会社 Shock absorbing member and shock energy absorbing method
JP2006347265A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Vehicular impact absorbing member
EP1923273B1 (en) * 2005-09-09 2010-12-01 Toyoda Iron Works Co., Ltd. Impact absorption member for vehicle
JP5040568B2 (en) * 2007-10-01 2012-10-03 マツダ株式会社 Auto body structure

Also Published As

Publication number Publication date
JP2009168115A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5167823B2 (en) Shock absorbing member
US7896411B2 (en) Impact absorbing member for vehicle
US8297668B2 (en) Impact absorbing member for vehicle
US8066322B2 (en) Vehicle body structure
JP6070656B2 (en) Shock absorption box for vehicles
JP4815387B2 (en) Shock absorbing member
JP5486251B2 (en) Vehicle shock absorber and vehicle bumper device
WO2014196321A1 (en) Bumper reinforcement
JP2015080998A (en) Crash box
US20130241218A1 (en) Vehicle bumper reinforcement
JP5207228B2 (en) Inner panel for vehicle
JP7084326B2 (en) Crash box
JP5169249B2 (en) Energy absorbing member and automobile bumper structure
JP5217456B2 (en) Front side member structure
JP5729275B2 (en) Shock absorber for vehicle
JP5803819B2 (en) Vehicle front structure
JP6572786B2 (en) Shock absorption structure at the rear of the vehicle
JP5251692B2 (en) Vehicle framework
JP5585684B2 (en) Shock absorbing member
WO2017022158A1 (en) Collision energy absorption device for railway car
JP5882020B2 (en) Shock absorbing member
JP6747928B2 (en) Shock absorber
JP6443399B2 (en) Hood inner panel for vehicles
JP5552994B2 (en) Side member structure
JP6853476B2 (en) Shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees