JP5166492B2 - Threaded member having sealing member and spark plug - Google Patents

Threaded member having sealing member and spark plug Download PDF

Info

Publication number
JP5166492B2
JP5166492B2 JP2010174280A JP2010174280A JP5166492B2 JP 5166492 B2 JP5166492 B2 JP 5166492B2 JP 2010174280 A JP2010174280 A JP 2010174280A JP 2010174280 A JP2010174280 A JP 2010174280A JP 5166492 B2 JP5166492 B2 JP 5166492B2
Authority
JP
Japan
Prior art keywords
sealing member
gasket
extending portion
threaded member
extending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010174280A
Other languages
Japanese (ja)
Other versions
JP2012033445A (en
Inventor
博俊 吉▲崎▼
直道 宮下
守 無笹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010174280A priority Critical patent/JP5166492B2/en
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to PCT/JP2011/067453 priority patent/WO2012017944A1/en
Priority to EP11814570.5A priority patent/EP2602886B1/en
Priority to US13/813,774 priority patent/US8766521B2/en
Priority to KR1020137002906A priority patent/KR101428950B1/en
Priority to CN201410097914.4A priority patent/CN103872583B/en
Priority to CN2011800383412A priority patent/CN103053084A/en
Publication of JP2012033445A publication Critical patent/JP2012033445A/en
Application granted granted Critical
Publication of JP5166492B2 publication Critical patent/JP5166492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Gasket Seals (AREA)
  • Spark Plugs (AREA)

Description

本発明は、取付孔を介した気密漏れを封止する封止部材を有するねじ付部材およびスパークプラグに関する。   The present invention relates to a threaded member and a spark plug having a sealing member for sealing an airtight leak through an attachment hole.

一般的に、スパークプラグは、主体金具の外周に形成したねじ山を、エンジン等の内燃機関の取付孔に形成した雌ねじに対してねじ止めすることで、エンジンへの取付けを行う。主体金具の外周には、円環状の金属板を一周にわたって厚み方向に折り返して形成される封止部材(ガスケット)が装着され、取付孔を介した燃焼室内の気密漏れが防止される。スパークプラグの取付け時に、ガスケットは、主体金具の張出部と取付孔の開口周縁部との間に挟まれ圧縮される。ガスケットは、ねじ締めに伴い変形し、張出部と開口周縁部とのそれぞれに対する密着性および軸力(締め付けに伴う圧縮により軸方向に働く反力)を高め、気密漏れを封止する。   Generally, a spark plug is attached to an engine by screwing a screw thread formed on the outer periphery of a metal shell to a female screw formed in a mounting hole of an internal combustion engine such as an engine. On the outer periphery of the metal shell, a sealing member (gasket) formed by folding an annular metal plate over the entire circumference in the thickness direction is attached to prevent airtight leakage in the combustion chamber through the mounting hole. When the spark plug is attached, the gasket is compressed by being sandwiched between the overhanging portion of the metal shell and the opening peripheral portion of the attachment hole. The gasket is deformed as the screw is tightened, and improves the adhesion and axial force (reaction force acting in the axial direction due to compression accompanying the tightening) with respect to each of the overhanging portion and the opening peripheral portion, thereby sealing the airtight leak.

ところで直噴式のエンジンでは、燃焼室内に突き出される接地電極と、燃料の噴射口と、火花放電間隙との位置関係が、着火性に影響する。ゆえに、スパークプラグをエンジンに取り付ける際には、ねじの回転により接地電極の向き(燃焼室内における上記の位置関係)を自由に調整できることが望まれる。そこで、スパークプラグを取り付ける際のねじ締めで、トルクを維持しつつもガスケットが潰れることのできる大きさ(圧縮変位の変化量)を確保したものが知られている(例えば特許文献1参照)。特許文献1では、ガスケットの圧縮変位の変化量を0.5mm以上確保したことで、所定の軸力を維持した状態でねじの回転を0.5〜1回転以上確保し、接地電極の向きを調整できるようにしている。   By the way, in the direct injection type engine, the positional relationship among the ground electrode protruding into the combustion chamber, the fuel injection port, and the spark discharge gap affects the ignitability. Therefore, when the spark plug is attached to the engine, it is desired that the direction of the ground electrode (the positional relationship in the combustion chamber) can be freely adjusted by rotating the screw. Then, what secured the magnitude | size (change amount of a compression displacement) which can collapse a gasket is known, maintaining torque, by screwing at the time of attaching a spark plug (for example, refer patent document 1). In Patent Document 1, the amount of change in the compression displacement of the gasket is secured by 0.5 mm or more, so that the rotation of the screw is secured by 0.5 to 1 or more while maintaining a predetermined axial force, and the direction of the ground electrode is set. It can be adjusted.

特開2000−266186号公報JP 2000-266186 A

しかしながら、特許文献1では、ガスケットの圧縮変位の変化量を確保するための潰れ代となる部分が、ガスケットの軸方向よりも径方向に大きく確保されている。ガスケットは取り付け時の潰れによって径方向に広がりやすいため、潰れ代となる部分の形状が径方向に大きいガスケットでは張出部からはみ出す場合がある。   However, in patent document 1, the part which becomes a crushing margin for ensuring the variation | change_quantity of the compression displacement of a gasket is ensured largely in the radial direction rather than the axial direction of a gasket. Since the gasket tends to spread in the radial direction due to crushing at the time of attachment, a gasket having a large crushing margin in the radial direction may protrude from the overhanging portion.

本発明は上記問題点を解決するためになされたものであり、潰れた際の張出部からのはみ出しを抑制しつつも十分な大きさの潰れ代を確保できる封止部材を有するねじ付部材およびスパークプラグを提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and is a screwed member having a sealing member that can secure a sufficiently large crushing margin while suppressing the protrusion from the overhanging portion when crushing. And to provide a spark plug.

本発明の第1態様によれば、自身の外周にねじ山が形成され、当該ねじ山よりも基端側に、自身の外周から外向きに張り出しつつ周方向に一周する形態をなす張出部を有するねじ付部材に、外側から同心的に装着される環状形態をなし、前記ねじ付部材が、雌ねじの形成された取付孔に螺合により取り付けられた状態において、前記張出部と、前記取付孔の開口周縁部との間にて圧縮されて、前記張出部と前記開口周縁部との間を封止する封止部材を備えた、封止部材を有するねじ付部材において、前記封止部材の中心軸を含む平面にて当該封止部材の断面をみたときに、当該断面が、一方の端部から他方の端部まで連続しつつ前記他方の端部が前記一方の端部よりも内側に位置する渦巻状をなすとともに、自身の一端を前記一方の端部とし、前記自身の一端よりも前記封止部材の径方向内側に位置する自身の他端へ向け、前記封止部材の軸方向に沿う成分よりも前記径方向に沿う成分の方が大きくなるように、略直線状に延びる第一延伸部と、前記径方向に沿う成分よりも前記軸方向に沿う成分の方が大きくなるように略直線状に延びる第二延伸部と、前記第一延伸部の他端と前記第二延伸部の一端とを、曲率半径rの曲線にて接続する第一接続部と、前記第二延伸部よりも前記径方向外側の位置にて、前記径方向に沿う成分よりも前記軸方向に沿う成分の方が大きくなるように略直線状に延びる第三延伸部と、前記第二延伸部の他端と前記第三延伸部の一端とを、前記第一延伸部から離れる方向に屈曲する曲線にて接続する第二接続部と、自身の一端が前記第三延伸部の他端に接続されるとともに、自身の他端を前記他方の端部とし、前記軸方向において、前記第一延伸部および前記第二接続部との間に位置しつつ当該第一延伸部および当該第二接続部と重なる部位を有する第三接続部とから構成され、前記封止部材は、前記第一延伸部が前記ねじ付部材の前記張出部に接触する側に位置するとともに、前記ねじ付部材が前記第二延伸部よりも前記径方向内側に位置するように前記ねじ付部材に装着され、前記封止部材が、前記ねじ付部材を前記取付孔に螺合する前において、前記ねじ付部材に装着された状態において、前記封止部材の前記軸方向の高さをh、h/2を満たす位置における前記第二延伸部の厚みをtとし、さらに、前記封止部材の前記径方向において、前記第三延伸部のうち、前記封止部材の前記中心軸から最も離れた部位における前記中心軸からの径方向距離をR1、前記第二延伸部のうち、前記封止部材の前記中心軸に最も近い部位における前記中心軸からの径方向距離をR2としたときに、2×t≦r≦(R1−R2)/2を満たすとともに、h≧(R1−R2)を満たす封止部材を有するねじ付部材が提供される。   According to the first aspect of the present invention, a thread is formed on the outer periphery of the projecting part, and the projecting part forms a form that makes a round in the circumferential direction while projecting outward from the outer periphery of the thread toward the base end side of the thread. In the state where the threaded member has an annular shape that is concentrically mounted from the outside, and the threaded member is screwed into the mounting hole in which the female thread is formed, In the threaded member having a sealing member, the sealing member having a sealing member that is compressed between the opening peripheral portion of the mounting hole and seals between the projecting portion and the opening peripheral portion. When the cross-section of the sealing member is viewed on a plane including the central axis of the stop member, the cross-section continues from one end to the other end while the other end is more than the one end. Has a spiral shape located inside, and one end of itself is the one end. Toward the other end of the sealing member that is located radially inward of the sealing member rather than the one end of the sealing member, so that the component along the radial direction is larger than the component along the axial direction of the sealing member, A first extending portion extending substantially linearly; a second extending portion extending substantially linearly so that the component along the axial direction is larger than the component extending along the radial direction; From a component along the radial direction at a position on the radially outer side than the second extending portion, a first connecting portion that connects the end and one end of the second extending portion with a curve of a radius of curvature r The third extending portion extending substantially linearly so that the component along the axial direction is larger, the other end of the second extending portion, and one end of the third extending portion from the first extending portion. A second connecting portion connected by a curve that bends in a direction away from the other end of the third extending portion; The other end of itself is the other end, and the first extending portion and the second connection are positioned between the first extending portion and the second connecting portion in the axial direction. A third connecting portion having a portion overlapping with the portion, and the sealing member is located on a side where the first extending portion contacts the protruding portion of the threaded member, and the threaded member is The threaded member is attached to the threaded member so as to be positioned radially inward of the second extending portion, and the threaded member is attached to the threaded member before the sealing member is screwed into the mounting hole. In the mounted state, the axial height of the sealing member is h, the thickness of the second extending portion at a position satisfying h / 2 is t, and further, in the radial direction of the sealing member, Of the third extending portion, the center of the sealing member R1 is a radial distance from the central axis in a part farthest from the axis, and R2 is a radial distance from the central axis in a part of the second extending portion closest to the central axis of the sealing member. Then, a threaded member having a sealing member satisfying 2 ≧ t ≦ r ≦ (R1−R2) / 2 and satisfying h ≧ (R1−R2) is provided.

封止部材の断面の形状を規定することで、封止部材が圧縮される際の大きさを確保でき、封止部材による気密性を維持したまま、ねじ付部材の周方向の向きを調整することができる。具体的に、2×t≦rとすることで封止部材の成形性を確保できる。r≦(R1−R2)/2とすることで封止部材の圧縮時における潰れ代の大きさを確保でき、ねじ付部材の周方向の向きの調整を可能とすることができる。h≧(R1−R2)とすることで、潰れ代を中心軸方向に大きくでき、潰れ代を確保しつつも潰れた際の径方向への膨らみを抑制することができる。   By defining the cross-sectional shape of the sealing member, the size when the sealing member is compressed can be secured, and the circumferential direction of the screwed member is adjusted while maintaining the airtightness of the sealing member. be able to. Specifically, the moldability of the sealing member can be ensured by satisfying 2 × t ≦ r. By setting r ≦ (R1-R2) / 2, the size of the crushing allowance when the sealing member is compressed can be ensured, and the circumferential direction of the threaded member can be adjusted. By setting h ≧ (R1−R2), the collapse allowance can be increased in the central axis direction, and the bulge in the radial direction when the collapse is ensured while securing the collapse allowance can be suppressed.

第1態様において、前記封止部材の前記断面において、前記他方の端部は、前記径方向において、前記一方の端部よりも前記中心軸寄りの位置にあってもよい。封止部材の断面の形状において、他方の端部が一方の端部よりも中心軸寄りの位置にあれば、第一延伸部と張出部との接触位置と中心軸とを半径とする等価摩擦直径を、第二接続部と開口周縁部との接触位置と中心軸とを半径とする等価摩擦直径よりも小さくできる。これにより、ねじ付部材を取り付ける際の締め付けトルクを小さくし、取り外す際の戻しトルクを大きくできるので、耐緩み性を確保することができる。   In the first aspect, in the cross section of the sealing member, the other end may be located closer to the central axis than the one end in the radial direction. In the cross-sectional shape of the sealing member, if the other end is located closer to the central axis than the other end, the contact position between the first extending portion and the overhang portion and the central axis are equivalent to the radius. The friction diameter can be made smaller than the equivalent friction diameter having the radius of the contact position between the second connection portion and the opening peripheral edge and the central axis. Thereby, since the fastening torque at the time of attaching a threaded member can be made small and the return torque at the time of removing can be enlarged, loosening resistance can be ensured.

第1態様において、前記封止部材は、ステンレス鋼からなるものであってもよい。ステンレス鋼であれば剛性が高いので、ねじ付部材が取り付けられる装置の駆動・休止に伴う加熱・冷却サイクルによって発生するクリープ変形に対する耐久性が高く、有効である。   In the first aspect, the sealing member may be made of stainless steel. Since stainless steel has high rigidity, it has high durability against creep deformation caused by a heating / cooling cycle that accompanies driving / resting of a device to which a threaded member is attached, and is effective.

第1態様において、前記封止部材を前記軸方向に圧縮する際の圧縮荷重をFとし、前記封止部材への付加圧力PをF/{π(R1−R2)}にて算出したときに、前記付加圧力Pが60MPa〜130MPaの範囲内における、前記ねじ付部材を前記取付孔に螺合する際の回転角が、90°以上360°未満であってもよい。さらには、前記付加圧力Pが60MPa〜130MPaの範囲内における、前記ねじ付部材を前記取付孔に螺合する際の回転角が、180°以上360°未満であってもよい。 In the first aspect, the compression load when compressing the sealing member in the axial direction is F, and the applied pressure P to the sealing member is calculated by F / {π (R1 2 −R2 2 )}. Sometimes, when the additional pressure P is in a range of 60 MPa to 130 MPa, a rotation angle when the threaded member is screwed into the mounting hole may be 90 ° or more and less than 360 °. Furthermore, a rotation angle when the threaded member is screwed into the mounting hole when the additional pressure P is in a range of 60 MPa to 130 MPa may be 180 ° or more and less than 360 °.

回転角として90°以上を確保できれば、ねじ付部材の周方向の向きを、ねじ付部材が取り付けられる装置の駆動に影響する向きとならないように、調整することができる。さらに、回転角として180°以上を確保できれば、ねじ付部材の周方向の向きを、ねじ付部材が取り付けられる装置の駆動において好ましい方向に調整することができる。なお、回転角として360°未満とするのは、回転角が360°であれば、ねじ付部材の周方向の向きを任意の方向に調整できるので、必要十分である。   If 90 ° or more can be secured as the rotation angle, the circumferential direction of the threaded member can be adjusted so as not to affect the drive of the device to which the threaded member is attached. Furthermore, if a rotation angle of 180 ° or more can be secured, the circumferential direction of the threaded member can be adjusted in a preferable direction in driving the device to which the threaded member is attached. The rotation angle of less than 360 ° is necessary and sufficient if the rotation angle is 360 ° because the circumferential direction of the threaded member can be adjusted to an arbitrary direction.

第1態様において、前記ねじ付部材を前記取付孔に螺合する前において、前記ねじ付部材に装着された前記封止部材の前記断面で、前記h/2を満たし、前記厚みtの中央となる前記第二延伸部の位置において、前記封止部材の硬度を測定したときに、ビッカース硬度で、200Hv以上450Hv以下であってもよい。封止部材が200Hv以上450Hv以下のビッカース硬度を確保できれば、封止部材が十分なバネ性を得ることができ、ねじ付部材の周方向の向きを調整する際に、十分な軸力を確保できる。   In the first aspect, before screwing the threaded member into the mounting hole, the section of the sealing member mounted on the threaded member satisfies the h / 2, and the center of the thickness t When the hardness of the sealing member is measured at the position of the second extending portion, the Vickers hardness may be 200 Hv or more and 450 Hv or less. If the sealing member can secure a Vickers hardness of 200 Hv or more and 450 Hv or less, the sealing member can obtain a sufficient spring property, and a sufficient axial force can be secured when adjusting the circumferential direction of the threaded member. .

第1態様において、前記ねじ付部材に装着する前の前記封止部材の前記断面をみたときに、前記第三接続部の一端側から前記他方の端部側へと向かう方向が、前記軸方向に対し、40°以上70°以下の角度で交差してもよい。封止部材の断面において、第三接続部の一端側から他方の端部側へと向かう方向が、軸方向に対し、40°以上の角度で交差すれば、封止部材を圧縮する際に第二延伸部と第三延伸部とを径方向に膨らませ、バネ性をもった変形を行わせ、十分な軸力を確保できる。なお、上記角度が70°より大きい封止部材は、作製が難しい。   In the first aspect, when the cross-section of the sealing member before being attached to the threaded member is viewed, a direction from one end side of the third connection portion toward the other end portion side is the axial direction. On the other hand, they may intersect at an angle of 40 ° to 70 °. In the cross section of the sealing member, if the direction from the one end side of the third connecting portion to the other end side intersects the axial direction at an angle of 40 ° or more, the third member is compressed when the sealing member is compressed. The second stretched portion and the third stretched portion are swelled in the radial direction to cause deformation with a spring property, thereby securing a sufficient axial force. In addition, it is difficult to manufacture a sealing member having the angle larger than 70 °.

本発明の第2態様によれば、第1態様に係る封止部材を有するねじ付部材の前記封止部材を、主体金具に装着して使用するスパークプラグが提供される。第1態様に係る封止部材が装着されたスパークプラグであれば、内燃機関の駆動・休止に伴う加熱・冷却サイクルによる負荷に十分に耐えることができる。よって、気密性および耐緩み性を確保しつつ、接地電極の向きを調整することができるので、着火性を確保することができる。   According to the second aspect of the present invention, there is provided a spark plug that uses the sealing member of the threaded member having the sealing member according to the first aspect while being mounted on a metal shell. If the spark plug is equipped with the sealing member according to the first aspect, it can sufficiently withstand the load caused by the heating / cooling cycle accompanying the driving / stopping of the internal combustion engine. Therefore, since the direction of the ground electrode can be adjusted while ensuring airtightness and looseness resistance, ignitability can be ensured.

スパークプラグ1の部分断面図である。1 is a partial cross-sectional view of a spark plug 1. FIG. ガスケット100のスパークプラグ1への装着前の状態における周方向断面を示す図である。It is a figure which shows the circumferential direction cross section in the state before mounting | wearing with the spark plug 1 of the gasket 100. FIG. ガスケット100のスパークプラグ1への装着後の状態における周方向断面を示す図である。It is a figure which shows the circumferential direction cross section in the state after mounting | wearing with the spark plug 1 of the gasket 100. FIG. スパークプラグ1をエンジンヘッド90に取り付け、主体金具50の張出部54と取付孔91の開口周縁部92との間にガスケット100を挟んで圧縮した状態を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a state in which the spark plug 1 is attached to the engine head 90 and compressed by sandwiching the gasket 100 between the overhanging portion 54 of the metal shell 50 and the opening peripheral edge portion 92 of the attachment hole 91. 接地電極30の向きと点火進角(BTDC)との関係を示すグラフである。It is a graph which shows the relationship between the direction of the ground electrode 30, and ignition advance angle (BTDC).

以下、本発明を具体化したスパークプラグの一実施の形態について、図面を参照して説明する。まず、図1を参照し、本発明に係る封止部材の一例としてのガスケット100を装着したスパークプラグ1の構造について説明する。なお、後述する主体金具50を、本発明におけるねじ付部材の一例として説明するが、スパークプラグ1は主体金具50に各部品が組み付けられて完成するものである。よって、便宜上、主体金具50の軸線が、スパークプラグ1の軸線Oと一致するものとして、以下の説明を行うものとする。また、図1において、軸線O方向を図面における上下方向とし、下側をスパークプラグ1の先端側、上側を後端側として説明する。   Hereinafter, an embodiment of a spark plug embodying the present invention will be described with reference to the drawings. First, with reference to FIG. 1, the structure of the spark plug 1 equipped with a gasket 100 as an example of a sealing member according to the present invention will be described. A metal shell 50 described later will be described as an example of a threaded member in the present invention. However, the spark plug 1 is completed by assembling each component to the metal shell 50. Therefore, for the sake of convenience, the following description will be made assuming that the axis of the metal shell 50 coincides with the axis O of the spark plug 1. In FIG. 1, the axis O direction is the vertical direction in the drawing, the lower side is the front end side of the spark plug 1, and the upper side is the rear end side.

図1に示すように、スパークプラグ1は、軸孔12内の先端側に中心電極20を保持し、後端側に端子金具40を保持する絶縁碍子10を有する。また、スパークプラグ1は、絶縁碍子10の径方向周囲を周方向に取り囲み、絶縁碍子10を保持する主体金具50を有する。主体金具50の先端面57には接地電極30が接合されている。接地電極30は、先端部31側が中心電極20と対向するように屈曲されており、中心電極20に設けられた貴金属チップ80との間に火花放電間隙GAPを有する。   As shown in FIG. 1, the spark plug 1 has an insulator 10 that holds the center electrode 20 on the front end side in the shaft hole 12 and holds the terminal fitting 40 on the rear end side. The spark plug 1 has a metal shell 50 that surrounds the periphery of the insulator 10 in the circumferential direction and holds the insulator 10. The ground electrode 30 is joined to the front end surface 57 of the metal shell 50. The ground electrode 30 is bent so that the tip 31 side faces the center electrode 20, and has a spark discharge gap GAP between the noble metal tip 80 provided on the center electrode 20.

まず、絶縁碍子10について説明する。絶縁碍子10は周知のようにアルミナ等を焼成して形成され、軸中心に軸線O方向へ延びる軸孔12を有する筒形状をなす。軸線O方向における絶縁碍子10の略中央には、外径が最も大きい鍔部19が形成されている。鍔部19より後端側(図1における上側)には、後端側胴部18が形成されている。鍔部19より先端側(図1における下側)には後端側胴部18よりも外径の小さな先端側胴部17が形成されている。先端側胴部17よりも先端側には、先端側胴部17よりも外径の小さな脚長部13が形成されている。脚長部13は先端側ほど外径が縮小されている。脚長部13は、スパークプラグ1が内燃機関のエンジンヘッド90(図4参照)に取り付けられた場合に、エンジンの燃焼室(図示外)内に曝される。脚長部13と先端側胴部17との間は段部15として形成されている。   First, the insulator 10 will be described. As is well known, the insulator 10 is formed by firing alumina or the like, and has a cylindrical shape having a shaft hole 12 extending in the direction of the axis O at the center of the shaft. At the approximate center of the insulator 10 in the direction of the axis O, a flange portion 19 having the largest outer diameter is formed. A rear end side body portion 18 is formed on the rear end side (upper side in FIG. 1) from the flange portion 19. A front end side body portion 17 having an outer diameter smaller than that of the rear end side body portion 18 is formed on the front end side (lower side in FIG. 1) from the flange portion 19. A long leg portion 13 having an outer diameter smaller than that of the front end side body portion 17 is formed on the front end side of the front end side body portion 17. The outer diameter of the long leg portion 13 is reduced toward the distal end side. When the spark plug 1 is attached to the engine head 90 (see FIG. 4) of the internal combustion engine, the leg long portion 13 is exposed to the combustion chamber (not shown) of the engine. A step portion 15 is formed between the leg long portion 13 and the distal end side trunk portion 17.

次に、中心電極20について説明する。上記したように、絶縁碍子10は、軸孔12の先端側に中心電極20を保持する。中心電極20は、インコネル(商標名)600または601等のニッケル系合金等からなる母材24の内部に、熱伝導性に優れる銅等からなる金属芯25を配置した構造を有する。中心電極20の先端部22は絶縁碍子10の先端面から突出し、先端側に向かって外径が縮小されている。先端部22の先端面には、耐火花消耗性向上のため、貴金属チップ80が接合されている。また、絶縁碍子10は、軸孔12内に、シール体4およびセラミック抵抗3を有する。中心電極20は、シール体4およびセラミック抵抗3を経由して、軸孔12の後端側に保持された端子金具40に電気的に接続されている。スパークプラグ1の使用時には、端子金具40に点火コイル(図示外)が接続され、高電圧が印加される。   Next, the center electrode 20 will be described. As described above, the insulator 10 holds the center electrode 20 on the distal end side of the shaft hole 12. The center electrode 20 has a structure in which a metal core 25 made of copper or the like having excellent thermal conductivity is disposed inside a base material 24 made of a nickel-based alloy such as Inconel (trade name) 600 or 601. The distal end portion 22 of the center electrode 20 protrudes from the distal end surface of the insulator 10, and the outer diameter is reduced toward the distal end side. A noble metal tip 80 is joined to the distal end surface of the distal end portion 22 in order to improve spark wear resistance. The insulator 10 has a seal body 4 and a ceramic resistor 3 in the shaft hole 12. The center electrode 20 is electrically connected to the terminal fitting 40 held on the rear end side of the shaft hole 12 via the seal body 4 and the ceramic resistor 3. When the spark plug 1 is used, an ignition coil (not shown) is connected to the terminal fitting 40 and a high voltage is applied.

次に、接地電極30について説明する。接地電極30は、耐腐食性の高い金属(一例として、インコネル(商標名)600または601等のニッケル合金)を用い、横断面が略長方形の棒状に形成された電極である。接地電極30は、一端側の基部32が、主体金具50の先端面57に溶接により接合されている。接地電極30は、他端側の先端部31側が、中心電極20の先端部22側へ向けて屈曲されている。接地電極30の先端部31と、中心電極20の貴金属チップ80との間には、火花放電間隙GAPが形成されている。   Next, the ground electrode 30 will be described. The ground electrode 30 is an electrode formed of a metal having high corrosion resistance (for example, a nickel alloy such as Inconel (trade name) 600 or 601) and formed in a rod shape having a substantially rectangular cross section. The ground electrode 30 has a base portion 32 on one end side joined to the distal end surface 57 of the metal shell 50 by welding. The ground electrode 30 is bent at the tip end 31 side at the other end toward the tip end 22 side of the center electrode 20. A spark discharge gap GAP is formed between the tip 31 of the ground electrode 30 and the noble metal tip 80 of the center electrode 20.

次に、主体金具50について説明する。主体金具50は、低炭素鋼材からなる円筒状の金具である。前述したように、主体金具50は、絶縁碍子10の後端側胴部18の一部から脚長部13にかけての部位の周囲を取り囲み、絶縁碍子10を保持する。主体金具50は、図示外のスパークプラグレンチが嵌合する工具係合部51と、エンジンヘッド90の取付孔91(図4参照)の雌ねじに螺合するねじ山が形成された取付部52とを有する。なお、本実施の形態の主体金具50は、取付部52のねじ山の呼び径をM12とする規格に沿って作製されたものである。呼び径についてはM12に限定するものではなく、M10でもM14であってもよく、あるいはM8であってもよい。また、主体金具50の表面にはNiめっき層が形成されている。   Next, the metal shell 50 will be described. The metal shell 50 is a cylindrical metal fitting made of a low carbon steel material. As described above, the metal shell 50 surrounds the portion from the part of the rear end side body portion 18 of the insulator 10 to the long leg portion 13 and holds the insulator 10. The metal shell 50 includes a tool engaging portion 51 into which a spark plug wrench (not shown) is fitted, and an attachment portion 52 in which a screw thread is formed to be engaged with an internal thread of an attachment hole 91 (see FIG. 4) of the engine head 90. Have The metal shell 50 of the present embodiment is manufactured in accordance with a standard in which the nominal diameter of the thread of the mounting portion 52 is M12. The nominal diameter is not limited to M12, and may be M10, M14, or M8. Further, a Ni plating layer is formed on the surface of the metal shell 50.

主体金具50の工具係合部51と取付部52との間には、径方向外向きに鍔状に張り出す張出部54が形成されている。取付部52と張出部54との間の部位はねじ首59と称され、ねじ首59には、後述するガスケット100が嵌め込まれている。   Between the tool engaging portion 51 and the attachment portion 52 of the metal shell 50, an overhang portion 54 is formed that projects radially outward in a bowl shape. A portion between the attachment portion 52 and the overhang portion 54 is referred to as a screw neck 59, and a gasket 100 described later is fitted into the screw neck 59.

主体金具50の工具係合部51より後端側には、厚みの薄い加締部53が設けられている。張出部54と工具係合部51との間には、加締部53と同様に厚みの薄い座屈部58が設けられている。主体金具50の内周で、取付部52の位置には段部56が形成されており、段部56には、環状の板パッキン8が配置されている。工具係合部51から加締部53にかけての主体金具50の内周面と絶縁碍子10の後端側胴部18の外周面との間には円環状のリング部材6,7が介在されており、リング部材6,7間にタルク(滑石)9の粉末が充填されている。加締部53は、内側に向けて折り曲げるように加締められることで、リング部材6,7およびタルク9を介し、絶縁碍子10を主体金具50内で先端側へ向け押圧する。加締部53に押圧された絶縁碍子10は、段部15が板パッキン8を介して主体金具50の段部56に支持されて、主体金具50と一体になる。主体金具50と絶縁碍子10との間の気密性は板パッキン8によって保持され、燃焼ガスの流出が防止される。上記した座屈部58は、加締めの際に、圧縮力の付加に伴い外向きに撓み変形するように構成されており、軸線O方向におけるタルク9の圧縮長さを長くして、気密性を高めている。   A caulking portion 53 having a small thickness is provided on the rear end side of the metal fitting 50 from the tool engaging portion 51. A thin buckled portion 58 is provided between the overhang portion 54 and the tool engaging portion 51 in the same manner as the caulking portion 53. A step portion 56 is formed at the position of the attachment portion 52 on the inner periphery of the metal shell 50, and the annular plate packing 8 is disposed on the step portion 56. Annular ring members 6, 7 are interposed between the inner peripheral surface of the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the outer peripheral surface of the rear end side body portion 18 of the insulator 10. The talc (talc) 9 powder is filled between the ring members 6 and 7. The crimping portion 53 is crimped so as to be bent inward, thereby pressing the insulator 10 toward the distal end side in the metal shell 50 via the ring members 6, 7 and the talc 9. The insulator 10 pressed by the crimping portion 53 is integrated with the metal shell 50 with the step portion 15 supported by the step portion 56 of the metal shell 50 via the plate packing 8. The airtightness between the metal shell 50 and the insulator 10 is maintained by the plate packing 8, and the outflow of combustion gas is prevented. The above-described buckling portion 58 is configured to bend and deform outwardly with the addition of a compressive force during caulking, and the compression length of the talc 9 in the direction of the axis O is increased to improve airtightness. Is increasing.

次に、ガスケット100について説明する。ガスケット100は、オーステナイト系ステンレス鋼、もしくはフェライト系ステンレス鋼からなる一枚の環状の板材に対し厚み方向に折り返す加工を施して、円環状に作製されたものである。ガスケット100が主体金具50に装着される際には、円環状のガスケット100の中心軸(便宜上、軸Q(図3参照)とする)を軸線O方向に揃え、ねじ首59に嵌め込まれる。このとき、後述する第一延伸部110側が主体金具50の張出部54に向けられ、ねじ首59が、後述する第二延伸部120よりも径方向内側に位置するようにして、ガスケット100がねじ首59に装着される。なお、図1に示す、ガスケット100は、主体金具50に装着される際に軸Q方向に圧縮され、径方向に膨らむように変形されたものであり、ねじ首59からの外れが防止される。以下では、主体金具50に装着する前のガスケット100(すなわち軸Q方向に圧縮されていない状態のもの)について説明する。   Next, the gasket 100 will be described. The gasket 100 is produced in an annular shape by applying a process of turning back in the thickness direction to a single annular plate made of austenitic stainless steel or ferritic stainless steel. When the gasket 100 is attached to the metal shell 50, the center axis of the annular gasket 100 (for convenience, the axis Q (see FIG. 3)) is aligned in the direction of the axis O and is fitted into the screw neck 59. At this time, the gasket 100 is placed so that the first extending portion 110 described later is directed to the overhanging portion 54 of the metal shell 50 and the screw neck 59 is positioned radially inward from the second extending portion 120 described later. Attached to the screw neck 59. The gasket 100 shown in FIG. 1 is deformed so as to be compressed in the axis Q direction and expanded in the radial direction when attached to the metal shell 50, and is prevented from coming off from the screw neck 59. . In the following, the gasket 100 (that is, not compressed in the direction of the axis Q) before being attached to the metal shell 50 will be described.

図2に示すように、本実施の形態のガスケット100は、上記した環状の板材を厚み方向に3箇所で折り返すことによって、周方向と直交する断面(言い換えると、軸Qを含む平面にてガスケット100をみた断面であり、以下、「周方向断面」という)の形状が渦巻状となるように作製される。より具体的に、ガスケット100は、周方向断面において、一方の端部101から他方の端部102まで連続しつつ、端部102が端部101よりも内側に位置する渦巻状をなす。例えば、折り返し箇所が4箇所以上のものや、周方向断面が渦巻状でなく、表裏逆の厚み方向への折り返しが含まれるガスケットを作製するには、少なくとも5工程以上のプレス成型による加工を必要とする。本実施の形態のガスケット100は、板材の一方の面側が常に谷側となる、いわゆる一方向曲げによって作製でき、具体的に、4工程のプレス成型によって形成することができるため、成形性に優れる。以下、ガスケット100の形態について説明するが、便宜上、ガスケット100の周方向断面は、第一延伸部110、第二延伸部120、第三延伸部130、第一接続部140、第二接続部150、および第三接続部160の6つの部位からなるものとする。   As shown in FIG. 2, the gasket 100 according to the present embodiment has a cross section orthogonal to the circumferential direction (in other words, a plane including the axis Q) by folding the above-described annular plate material at three locations in the thickness direction. 100 and is hereinafter referred to as a “circumferential cross section”). More specifically, the gasket 100 has a spiral shape in which the end 102 is located on the inner side of the end 101 while continuing from one end 101 to the other end 102 in the circumferential cross section. For example, in order to produce a gasket that has four or more turns, or a circumferential cross section that is not spiral, and includes a turn in the reverse thickness direction, processing by press molding of at least five steps is required. And The gasket 100 of the present embodiment can be manufactured by so-called unidirectional bending in which one surface side of the plate material is always a valley side, and can be specifically formed by press molding in four steps, and thus has excellent formability. . Hereinafter, although the form of the gasket 100 is demonstrated, the circumferential direction cross section of the gasket 100 has the 1st extending | stretching part 110, the 2nd extending | stretching part 120, the 3rd extending | stretching part 130, the 1st connection part 140, the 2nd connection part 150 for convenience. , And the third connection part 160.

第一延伸部110は、周方向断面において、ガスケット100の一方の端部101を自身の一端111とし、自身の他端112へ向けて、直線状に延びる形状を有する部位である。第一延伸部110の他端112は、径方向において、一端111よりも内側に配置される。第二延伸部120は、周方向断面において、径方向の成分よりも軸Q方向の成分が大きくなるように、自身の一端121から他端122へ向けて、直線状に延びる形状を有する部位である。第二延伸部120の一端121は、他端122よりも、第一延伸部110側に配置される。第三延伸部130も同様に、周方向断面において、径方向の成分よりも軸Q方向の成分が大きくなるように、自身の一端131から他端132へ向けて、直線状に延びる形状を有する部位である。第三延伸部130の他端132は、一端131よりも、第一延伸部110側に配置される。また、第三延伸部130は、径方向において、第二延伸部120よりも外側に配置される。   The first extending portion 110 is a portion having a shape extending linearly toward the other end 112 of the gasket 100 with the one end portion 101 of the gasket 100 as its one end 111 in the circumferential cross section. The other end 112 of the first extending portion 110 is disposed inside the one end 111 in the radial direction. The second extending portion 120 is a portion having a shape extending linearly from one end 121 to the other end 122 such that the component in the axis Q direction is larger than the component in the radial direction in the circumferential cross section. is there. One end 121 of the second extending portion 120 is disposed closer to the first extending portion 110 than the other end 122. Similarly, the third extending portion 130 has a shape extending linearly from one end 131 to the other end 132 so that the component in the axis Q direction is larger than the component in the radial direction in the circumferential cross section. It is a part. The other end 132 of the third extending portion 130 is disposed closer to the first extending portion 110 than the one end 131. Further, the third extending portion 130 is disposed outside the second extending portion 120 in the radial direction.

第一接続部140は、第一延伸部110の他端112と、第二延伸部120の一端121とを接続する部位である。第一接続部140は、ガスケット100の作製時に折り曲げられる上記の3箇所の部位うちの1部位である。後述するが、主体金具50のねじ首59への装着時にガスケット100が圧縮されたときに、第一接続部140は周方向断面の形状が曲率半径rの曲線に沿う形状となって、第一延伸部110と第二延伸部120とを接続する。あらかじめガスケット100の作製時に第一接続部140において折り曲げがなされることで、ガスケット100が装着時に圧縮された際、第一接続部140が曲率半径rの曲線に沿う形状に形成される。   The first connection part 140 is a part that connects the other end 112 of the first extension part 110 and one end 121 of the second extension part 120. The first connection portion 140 is one of the three portions that are bent when the gasket 100 is manufactured. As will be described later, when the gasket 100 is compressed when the metal shell 50 is attached to the screw neck 59, the first connecting portion 140 has a shape in which the shape of the circumferential cross section follows the curve of the radius of curvature r. The extending part 110 and the second extending part 120 are connected. Since the first connecting portion 140 is bent in advance when the gasket 100 is manufactured, the first connecting portion 140 is formed in a shape along the curve of the radius of curvature r when the gasket 100 is compressed at the time of mounting.

第二接続部150は、第二延伸部120の他端122と第三延伸部の一端131とを接続する部位である。第二接続部150は、上記の第一接続部140と同様に、ガスケット100の作製時に折り曲げられる部位の一つである。第二接続部150は、折り曲げによって、周方向断面の形状が、軸Q方向において第一延伸部110から離れる方向に屈曲するU字形状の曲線に沿う形状となる。   The second connecting portion 150 is a portion that connects the other end 122 of the second extending portion 120 and one end 131 of the third extending portion. The second connection part 150 is one of the parts that are bent when the gasket 100 is manufactured, like the first connection part 140 described above. The second connecting portion 150 is bent so that the shape of the circumferential cross section thereof is a shape along a U-shaped curve that bends away from the first extending portion 110 in the axis Q direction.

第三接続部160は、自身の一端161が第三延伸部130の他端132に接続され、自身の他端162を、ガスケット100の他方の端部102とする部位である。第三接続部160も同様に、ガスケット100の作製時に折り曲げられる部位の一つである。第三接続部160の他端162は、径方向において、一端161よりも内側に位置するように折り曲げられる。その際に、他端162は、径方向においては、第二延伸部120と第三延伸部130との間に位置され、軸Q方向においては、第一延伸部110と第二接続部150との間に位置される。これにより、第三接続部160の他端162は、ガスケット100がなす渦巻状の形状の内側で、軸Q方向において、第一延伸部110と第二接続部150とに重なる位置に配置される。   The third connection part 160 is a part where one end 161 of the third connection part 160 is connected to the other end 132 of the third extension part 130 and the other end 162 of the third connection part 160 is the other end part 102 of the gasket 100. Similarly, the third connecting portion 160 is one of the parts that are bent when the gasket 100 is manufactured. The other end 162 of the third connecting portion 160 is bent so as to be located inside the one end 161 in the radial direction. At that time, the other end 162 is positioned between the second extended portion 120 and the third extended portion 130 in the radial direction, and in the axis Q direction, the first extended portion 110 and the second connecting portion 150 Located between. As a result, the other end 162 of the third connection portion 160 is disposed at a position overlapping the first extending portion 110 and the second connection portion 150 in the axis Q direction inside the spiral shape formed by the gasket 100. .

このように、ガスケット100は、周方向断面が渦巻状となるように形成されることで、ガスケット100は内部に空間が確保される。この内部空間が、スパークプラグ1をエンジンヘッド90に取り付ける際にガスケット100が潰れる潰れ代として機能する。本実施の形態では、スパークプラグ1をエンジンヘッド90に取り付ける際に、燃焼室内に突き出される接地電極30の向きを調整するため、ガスケット100には、潰れ代の大きさの確保が望まれる。またガスケット100の圧縮時に、気密性の確保のための十分な軸力を得るために、ガスケット100の第二延伸部120と第三延伸部130とが確実に径方向に膨らむ変形をなすことが望まれる。そこで、ガスケット100の作製時に、第三接続部160を折り曲げる際の折り曲げ角度θに規定が設けられている。具体的に、第三接続部160は、第三延伸部130の他端132と接続する自身の一端161側から、ガスケット100の他方の端部102である自身の他端162側へと向かう方向が、軸Q方向に対し、40°以上70°以下の角度で交差することが規定されている。   As described above, the gasket 100 is formed so that the circumferential cross section thereof is spiral, so that a space is secured in the gasket 100. This internal space functions as a collapse allowance for the gasket 100 to be crushed when the spark plug 1 is attached to the engine head 90. In the present embodiment, when the spark plug 1 is attached to the engine head 90, the gasket 100 is desired to have a sufficient amount of collapse to adjust the direction of the ground electrode 30 protruding into the combustion chamber. In addition, when the gasket 100 is compressed, the second extending portion 120 and the third extending portion 130 of the gasket 100 may be deformed so as to expand in the radial direction in order to obtain a sufficient axial force for ensuring airtightness. desired. Therefore, when the gasket 100 is manufactured, the bending angle θ when the third connecting portion 160 is bent is defined. Specifically, the third connecting portion 160 is directed from the one end 161 side connected to the other end 132 of the third extending portion 130 toward the other end 162 side that is the other end portion 102 of the gasket 100. Is defined to intersect with the axis Q direction at an angle of 40 ° to 70 °.

第三接続部160が折り曲げられる前の状態において、第三接続部160の一端161から他端162へ向かう方向は、第三延伸部130の一端131から他端132へ向かう方向と一致し、直線状に延びる。第三接続部160が折り曲げられる際には、第三接続部160の一端161から他端162へ向かう方向が、第三延伸部130の一端131から他端132へ向かう方向と交差する角度θが、40°以上70°以下となるように、第三接続部160が折り曲げられる。もっとも、第三接続部160の折り曲げ後において、一端161から他端162を向く方向は、折り曲げ位置によって異なってくる。本実施の形態では、ガスケット100の作製時における第三接続部160の折り曲げは、一端161付近において行われるものとし、他端162付近においては延伸方向が維持されるものとする。よって、便宜上、他端162付近における第三接続部160の延伸方向(仮想直線163で示す)が、第三延伸部130の延伸方向(仮想直線164で示す)と交差する角度θを検討する。   In a state before the third connecting portion 160 is bent, the direction from the one end 161 to the other end 162 of the third connecting portion 160 coincides with the direction from the one end 131 to the other end 132 of the third extending portion 130, and a straight line It extends in a shape. When the third connecting portion 160 is bent, an angle θ intersecting the direction from the one end 161 to the other end 162 of the third connecting portion 160 with the direction from the one end 131 to the other end 132 of the third extending portion 130 is The third connecting portion 160 is bent so as to be 40 ° or more and 70 ° or less. However, after the third connecting portion 160 is bent, the direction from the one end 161 toward the other end 162 differs depending on the bending position. In the present embodiment, it is assumed that the bending of the third connecting portion 160 at the time of manufacturing the gasket 100 is performed in the vicinity of one end 161 and the stretching direction is maintained in the vicinity of the other end 162. Therefore, for the sake of convenience, an angle θ at which the extending direction of the third connecting portion 160 in the vicinity of the other end 162 (indicated by the imaginary straight line 163) intersects the extending direction of the third extending portion 130 (indicated by the imaginary straight line 164) will be considered.

後述する実施例1によれば、仮想直線163と仮想直線164とが交差する角度θが70°より大きいものは、成型することができない。また、仮想直線163と仮想直線164とが交差する角度θが40°未満の場合、ガスケット100を主体金具50に装着する際の圧縮において、第二延伸部120と第三延伸部130とが径方向に膨らむ変形をなさない虞がある。   According to Example 1 to be described later, it is impossible to mold a case where the angle θ at which the virtual straight line 163 intersects the virtual straight line 164 is greater than 70 °. When the angle θ at which the virtual straight line 163 and the virtual straight line 164 intersect is less than 40 °, the second extending portion 120 and the third extending portion 130 have a diameter in compression when the gasket 100 is attached to the metal shell 50. There is a risk of not swelling in the direction.

次に、主体金具50に装着された状態のガスケット100(軸Q方向に圧縮され、径方向に膨らむように変形された状態のもの)について、図3,図4を参照し、説明する。ガスケット100は、主体金具50(図1参照)に装着される際に、図3に示すように、軸Q方向に圧縮される。圧縮によって、ガスケット100は、周方向断面が径方向に膨らみ、内径が主体金具50のねじ山の外径よりも小さい程度の大きさとなるため、ガスケット100のねじ首59からの外れが防止される。なお、ガスケット100の周方向の数カ所において、ガスケット100の内径をさらに小さくするための部分的な圧縮を行ってもよい。   Next, the gasket 100 attached to the metal shell 50 (compressed in the direction of the axis Q and deformed so as to expand in the radial direction) will be described with reference to FIGS. When the gasket 100 is attached to the metal shell 50 (see FIG. 1), it is compressed in the direction of the axis Q as shown in FIG. Due to compression, the circumferential cross section of the gasket 100 swells in the radial direction, and the inner diameter becomes a size that is smaller than the outer diameter of the thread of the metal shell 50, so that the gasket 100 is prevented from coming off from the screw neck 59. . Note that partial compression for further reducing the inner diameter of the gasket 100 may be performed at several locations in the circumferential direction of the gasket 100.

図4に示すスパークプラグ1は、主体金具50がエンジンヘッド90の取付孔91に取り付けられ、ガスケット100が、主体金具50の張出部54と、取付孔91の開口周縁部92とに挟まれた状態のものである。なお、図4の状態において、ガスケット100は、主体金具50の締め付けによる軸Q方向への圧縮が、まだなされていない。この状態からさらに締め付けがなされると、図示しないが、ガスケット100は、主体金具50の張出部54と、取付孔91の開口周縁部92との間で軸Q方向に圧縮されて、径方向に膨らむ変形を生ずる。このとき、第二延伸部120と第三延伸部130とが互いに遠ざかる方向へバネ性を有した曲がりを生ずることで、ガスケット100は、張出部54と開口周縁部92とに対する軸力(締め付けに伴う圧縮により軸Q方向に働く反力)を維持したまま変形される。   In the spark plug 1 shown in FIG. 4, the metal shell 50 is mounted in the mounting hole 91 of the engine head 90, and the gasket 100 is sandwiched between the overhanging portion 54 of the metal shell 50 and the opening peripheral edge 92 of the mounting hole 91. It is a thing of the state. In the state of FIG. 4, the gasket 100 has not yet been compressed in the direction of the axis Q by tightening the metal shell 50. When further tightened from this state, although not shown, the gasket 100 is compressed in the axial Q direction between the overhanging portion 54 of the metal shell 50 and the opening peripheral edge portion 92 of the mounting hole 91, so that the radial direction This causes the deformation to swell. At this time, the second extending portion 120 and the third extending portion 130 are bent with a spring property in a direction away from each other, so that the gasket 100 has an axial force (tightening) on the protruding portion 54 and the opening peripheral portion 92. The reaction force is deformed while maintaining the reaction force acting in the direction of the axis Q due to compression.

張出部54と開口周縁部92との間で圧縮されるガスケット100による気密性を確保するには、ガスケット100に適度な圧縮力が付加されることが重要である。そこで、ガスケット100を軸Q方向に圧縮する際の圧縮荷重をFとし、ガスケット100への適度な圧縮力が付加される圧力(付加圧力)Pを、P=F/{π(R1−R2)}により算出する。なお、図3に示すように、ガスケット100の周方向断面において、第三延伸部130のうち、軸Qに最も遠い部位における軸Qからの径方向距離をR1とする。同様に、第二延伸部120のうち、軸Qに最も近い部位における軸Qからの径方向距離をR2とする。 In order to ensure the airtightness of the gasket 100 compressed between the overhanging portion 54 and the opening peripheral edge portion 92, it is important to apply an appropriate compressive force to the gasket 100. Therefore, the compression load when compressing the gasket 100 in the axis Q direction is F, and the pressure (additional pressure) P to which an appropriate compressive force is applied to the gasket 100 is P = F / {π (R1 2 −R2 2 )}. As shown in FIG. 3, in the circumferential cross section of the gasket 100, the radial distance from the axis Q in the portion farthest from the axis Q in the third extending portion 130 is R1. Similarly, the radial distance from the axis Q at the portion closest to the axis Q in the second extending portion 120 is R2.

後述する実施例2によれば、付加圧力Pの範囲を、60MPa以上130MPa以下とすることが望ましいことがわかった。付加圧力Pが60MPa未満であると、ガスケット100による気密性の確保が難しい。付加圧力Pが130MPaより大きいと強度を確保することが難しく、締め付けにより、主体金具50が破断する虞がある。   According to Example 2 described later, it was found that the range of the applied pressure P is desirably 60 MPa or more and 130 MPa or less. If the applied pressure P is less than 60 MPa, it is difficult to ensure airtightness with the gasket 100. If the applied pressure P is greater than 130 MPa, it is difficult to ensure the strength, and the metal shell 50 may be broken by tightening.

また、上記の付加圧力Pの範囲を確保するには、ガスケット100の硬度を確保することによりバネ性を得て、ガスケット100の圧縮時に十分な軸力が得られるようにすることも必要である。後述する実施例3によれば、図3に示す、ガスケット100の周方向断面のS点において、ガスケット100の硬度を測定したときに、ビッカース硬度で200Hv以上450Hv以下であるとよいことがわかった。なお、図3に示す、エンジンヘッド90に取り付ける前の主体金具50に装着された状態のガスケット100の周方向断面において、ガスケット100の軸Q方向の高さをhとする。軸Q方向の高さがh/2となる部位において、第二延伸部120の厚みをtとする。厚みtの中央の位置を、上記のS点とする。   In order to secure the range of the additional pressure P, it is also necessary to obtain a spring property by securing the hardness of the gasket 100 so that a sufficient axial force can be obtained when the gasket 100 is compressed. . According to Example 3 to be described later, it was found that when the hardness of the gasket 100 was measured at the point S of the circumferential cross section of the gasket 100 shown in FIG. 3, the Vickers hardness should be 200 Hv or more and 450 Hv or less. . In addition, in the circumferential cross section of the gasket 100 in a state where it is attached to the metal shell 50 before being attached to the engine head 90 shown in FIG. The thickness of the 2nd extending | stretching part 120 is set to t in the site | part where the height of the axis Q direction becomes h / 2. The center position of the thickness t is defined as the above S point.

S点におけるガスケット100のビッカース硬度が200Hv未満の場合、ガスケット100は十分なバネ性を得ることができず、締め付けにより圧縮されると塑性変形し、緩みを生ずる虞がある。S点におけるガスケット100のビッカース硬度が450Hvより大きい場合、締め付けにより圧縮されるとガスケット100に割れやクラックを生ずる虞がある。   When the Vickers hardness of the gasket 100 at the point S is less than 200 Hv, the gasket 100 cannot obtain a sufficient spring property and may be plastically deformed and loosened when compressed by tightening. When the Vickers hardness of the gasket 100 at the point S is greater than 450 Hv, the gasket 100 may be cracked or cracked when compressed by tightening.

また、上記したように、本実施の形態のガスケット100は、燃焼室内に突き出される接地電極30の向きを調整するための潰れ代を設けている。もっとも、ガスケット100として気密性の確保は必要であるので、潰れ代が潰れても、付加圧力Pの範囲として60MPa以上130MPa以下が確保されることが望まれる。ゆえに、後述する実施例4によれば、付加圧力Pの範囲が確保された上で、スパークプラグ1の着火性を確保するためには、接地電極30の向きを、少なくとも90°以上調整できることが望まれる。接地電極30の向きを調整可能な角度が90°未満の場合、接地電極30の向きを、着火性への影響を小さくできる向きに調整することが難しい場合がある。なお、接地電極30の向きは、360°(一回転分)調整できれば全方向に対応できるので、上限を360°としている。   Further, as described above, the gasket 100 of the present embodiment is provided with a crush margin for adjusting the direction of the ground electrode 30 protruding into the combustion chamber. However, since it is necessary to ensure airtightness as the gasket 100, it is desirable that the range of the applied pressure P is 60 MPa or more and 130 MPa or less even when the collapse allowance is collapsed. Therefore, according to Example 4 to be described later, in order to ensure the ignitability of the spark plug 1 while ensuring the range of the additional pressure P, the orientation of the ground electrode 30 can be adjusted by at least 90 ° or more. desired. When the angle at which the direction of the ground electrode 30 can be adjusted is less than 90 °, it may be difficult to adjust the direction of the ground electrode 30 to a direction that can reduce the influence on the ignitability. Note that the direction of the ground electrode 30 can be adjusted in all directions as long as it can be adjusted by 360 ° (for one rotation), so the upper limit is set to 360 °.

さらに後述する実施例4によれば、接地電極30の向きを180°以上調整できれば、スパークプラグ1の着火性を確実に確保することができることがわかった。接地電極30の向きを調整可能な角度が180°未満の場合、接地電極30の向きを、着火性への影響がより小さくできる向きに調整することが難しい場合がある。なお、接地電極30の向き調整の上限を360°とする点は、上記同様である。   Furthermore, according to Example 4 described later, it was found that if the orientation of the ground electrode 30 can be adjusted by 180 ° or more, the ignitability of the spark plug 1 can be reliably ensured. When the angle at which the direction of the ground electrode 30 can be adjusted is less than 180 °, it may be difficult to adjust the direction of the ground electrode 30 to a direction that can reduce the influence on the ignitability. The point that the upper limit of the orientation adjustment of the ground electrode 30 is 360 ° is the same as described above.

また、接地電極30の向きを調整するのに十分な大きさの潰れ代を確保しつつ、潰れても張出部54からはみ出すことがないように、本実施の形態では、ガスケット100の周方向断面の形状に、規定を設けている。上記したように、ガスケット100の軸Q方向の高さをh、h/2の位置における第二延伸部120の厚みをt、第一接続部140の曲率半径をrとする。また、第三延伸部130の軸Qに最も遠い部位における径方向距離をR1、同様に、第二延伸部120の軸Qに最も近い部位における径方向距離をR2とする。このとき、2×t≦r≦(R1−R2)/2を満たすと共に、h≧(R1−R2)を満たす。   Further, in the present embodiment, the circumferential direction of the gasket 100 is used so as to secure a crushing allowance large enough to adjust the orientation of the ground electrode 30 and not to protrude from the overhanging portion 54 even if it is crushed. There is a provision for the shape of the cross section. As described above, the height in the axis Q direction of the gasket 100 is h, the thickness of the second extending portion 120 at the position of h / 2 is t, and the radius of curvature of the first connection portion 140 is r. Further, the radial distance at the portion farthest from the axis Q of the third extending portion 130 is R1, and similarly, the radial distance at the portion closest to the axis Q of the second extending portion 120 is R2. At this time, 2 × t ≦ r ≦ (R1-R2) / 2 is satisfied and h ≧ (R1-R2) is satisfied.

ガスケット100において、第二延伸部120および第三延伸部130は、潰れ代が軸Q方向に潰れる際に潰れによって径方向に膨らむ部分である。第二延伸部120および第三延伸部130によって、潰れ代の軸Q方向の大きさが確保される。上記のように接地電極30の向きを調整するには、軸Q方向の潰れの大きさとして、ある程度の大きさの確保が必要となる。よって、hがR1−R2より小さく、潰れ代が軸Q方向よりも径方向に大きい場合、ガスケット100が潰れた場合の径方向の大きさが、hがR1−R2以上のものよりも大きくなる。すると、ガスケット100が張出部54からはみ出したり、ねじ首59に引っかかったりする場合があり、十分な締め付けを行えなくなる虞がある。後述する実施例5によれば、接地電極30の向きの調整する角度として十分な角度(具体的には180°以上)を確保できなくなる虞があることがわかった。   In the gasket 100, the second extending portion 120 and the third extending portion 130 are portions that swell in the radial direction by being crushed when the crushed allowance is crushed in the axis Q direction. The second extending portion 120 and the third extending portion 130 ensure the size of the crushing margin in the direction of the axis Q. In order to adjust the orientation of the ground electrode 30 as described above, it is necessary to secure a certain size as the size of the collapse in the axis Q direction. Therefore, when h is smaller than R1-R2 and the crushing margin is larger in the radial direction than the axis Q direction, the radial size when the gasket 100 is crushed becomes larger than that when h is R1-R2 or more. . Then, the gasket 100 may protrude from the overhanging portion 54 or may be caught by the screw neck 59, and there is a possibility that sufficient tightening cannot be performed. According to Example 5 described later, it has been found that there is a possibility that a sufficient angle (specifically, 180 ° or more) cannot be secured as an angle for adjusting the direction of the ground electrode 30.

次に、ガスケット100が軸Q方向に潰れる大きさを確保するには、第一接続部140の曲率半径rを、より小さくするとよい。曲率半径rが大きいほど、軸Q方向において第一接続部140の占める大きさが、より大きくなる。すると、第二延伸部120の軸Q方向の大きさを確保しづらくなり、十分な潰れ代を確保できなくなる虞がある。後述する実施例5によれば、曲率半径rが、(R1−R2)/2より大きい場合に、十分な潰れ代を確保できなくなることがわかった。   Next, in order to secure the size that the gasket 100 is crushed in the direction of the axis Q, the radius of curvature r of the first connecting portion 140 may be made smaller. The larger the radius of curvature r, the larger the size occupied by the first connecting portion 140 in the direction of the axis Q. Then, it becomes difficult to secure the size of the second extending portion 120 in the axis Q direction, and there is a possibility that a sufficient crushing allowance cannot be secured. According to Example 5 described later, it has been found that when the radius of curvature r is larger than (R1−R2) / 2, a sufficient crushing margin cannot be secured.

一方で、曲率半径rが小さいほど、ガスケット100を作製する際に、第一接続部140において折り曲げ加工による歪み量が大きくなる。すると、折り曲げにかかる荷重による負荷で、第一接続部140の折り曲げ痕にシワが寄り、ガスケット100を圧縮した際に折り曲げ痕を起点に折れや潰れを生じ、第二延伸部120におけるバネ性を確保しづらくなる虞がある。後述する実施例6によれば、曲率半径rが第二延伸部120の厚みtの2倍未満である場合、ガスケット100の作製時に、第一接続部140において折れや潰れを生ずる場合があることがわかった。   On the other hand, the smaller the radius of curvature r, the larger the amount of distortion caused by the bending process at the first connecting portion 140 when the gasket 100 is manufactured. Then, the load due to the bending load causes wrinkles toward the bending trace of the first connecting portion 140, and when the gasket 100 is compressed, the folding trace starts from the folding trace and the spring property of the second extending portion 120 is increased. It may be difficult to secure. According to Example 6 to be described later, when the radius of curvature r is less than twice the thickness t of the second extending portion 120, the first connection portion 140 may be folded or crushed when the gasket 100 is manufactured. I understood.

なお、ガスケット100の材料として、例えばJIS(日本工業規格)に定められた以下の規格番号のステンレス鋼(SUS)を用いることができる。オーステナイト系ステンレス鋼の例としては、SUS201、SUS202、SUS301、SUS301J、SUS302、SUS302B、SUS304、SUS304L、SUS304N1、SUS304N2、SUS304LN、SUS305、SUS309S、SUS310S、SUS316、SUS316L、SUS316N、SUS316LN、SUS316J1、SUS316J1L、SUS317、SUS317L、SUS317J1、SUS321、SUS347、SUSXM15J1等を用いることができる。また、フェライト系ステンレス鋼の例としては、SUS405、SUS410L、SUS429、SUS430、SUS430LX、SUS430JIL、SUS434、SUS436L、SUS436JIL、SUS444、SUS445J1、SUS445J2、SUS447J1、SUSXM27等を用いることができる。   In addition, as a material of the gasket 100, for example, stainless steel (SUS) having the following standard number defined in JIS (Japanese Industrial Standard) can be used. Examples of austenitic stainless steels include SUS201, SUS202, SUS301, SUS301J, SUS302, SUS302B, SUS304, SUS304L, SUS304N1, SUS304N2, SUS304LN, SUS305, SUS309S, SUS310S, SUS316, US3316L, S3316L, S3316L, S3316L, S3316L, S3316L, S3316L, S3316L SUS317L, SUS317J1, SUS321, SUS347, SUSXM15J1, etc. can be used. Examples of ferritic stainless steel include SUS405, SUS410L, SUS429, SUS430, SUS430LX, SUS430JIL, SUS434, SUS436L, SUS436JIL, SUS444, SUS445J1, SUS445J2, SUS447J1, and SUS447M27.

これらのようなステンレス鋼を用いて作製したガスケットは、一般的に用いられるFeからなるガスケットと比べ剛性が高い。ゆえに、エンジンの駆動・休止に伴う加熱・冷却によって発生するクリープ変形の耐久性が高く、ガスケットの変形に起因するねじ止めの緩みが生じにくい。後述する実施例7によれば、ガスケット100にステンレス鋼(SUS)を用いた場合と鉄(Fe)を用いた場合とで、耐緩み性に差を生ずることが確認され、ガスケット100の材料としてステンレス鋼を用いることが好ましいことが明らかとなった。   Gaskets made using stainless steel such as these have higher rigidity than commonly used gaskets made of Fe. Therefore, the durability against creep deformation caused by heating / cooling accompanying driving / resting of the engine is high, and screwing due to deformation of the gasket is less likely to occur. According to Example 7 which will be described later, it is confirmed that there is a difference in looseness resistance between the case where stainless steel (SUS) is used for the gasket 100 and the case where iron (Fe) is used. It has become clear that it is preferable to use stainless steel.

さらに、主体金具50のねじ首59にガスケット100を装着する向きによっても、耐緩み性に差を生ずることが、後述する実施例7によって確認された。具体的に、本実施の形態のガスケット100は、周方向断面で、第二延伸部120側を径方向内側に、第三延伸部130側を径方向外側に配置する形状で作製され、第一延伸部110側を張出部54に向けて、ねじ首59に装着される。これに対し、第二延伸部側を径方向外側に、第三延伸部側を径方向内側に配置する形状で作製され、第一延伸部側を張出部54に向けて、ねじ首59に装着される形態のガスケット(サンプル43)がある。また、第二延伸部側を径方向内側に、第三延伸部側を径方向外側に配置する形状で作製され、第二接続部側を張出部54に向けて、ねじ首59に装着される形態のガスケット(サンプル44)がある。いずれの形態のガスケットも、本実施の形態のガスケット100よりも、ねじの取り外し(緩め)に必要な軸力(戻しトルク)が小さくなり、耐緩み性が低下することがわかった。   Furthermore, it was confirmed by Example 7 that will be described later that there is a difference in looseness resistance depending on the direction in which the gasket 100 is attached to the screw neck 59 of the metal shell 50. Specifically, the gasket 100 according to the present embodiment is manufactured in a shape in which the second extending portion 120 side is disposed radially inward and the third extending portion 130 side is disposed radially outward in the circumferential cross section. It is attached to the screw neck 59 with the extending portion 110 side facing the overhang portion 54. On the other hand, it is produced in a shape in which the second extending portion side is arranged radially outside and the third extending portion side is arranged radially inside, and the first extending portion side is directed to the overhanging portion 54 and is attached to the screw neck 59. There is a gasket (sample 43) in the form of being mounted. Further, the second extending portion side is prepared in a shape arranged radially inward and the third extending portion side is arranged radially outside, and the second connecting portion side is directed to the overhanging portion 54 and attached to the screw neck 59. There is one form of gasket (sample 44). It was found that the gasket of any form has a smaller axial force (return torque) required for screw removal (loosening) than the gasket 100 of the present embodiment, and the looseness resistance is lowered.

この現象は、等価摩擦直径の比較によって説明される。図4に示すように、主体金具50のねじ首59に装着される際に、上記したように、ガスケット100は、軸Q方向に圧縮される。ガスケット100が装着された主体金具50を取付孔91に取り付け、ねじの締め付けを行うと、圧縮の初期において、ガスケット100は、張出部54と点Xの一点において接触する。ガスケット100と張出部54との間において生ずる実質的な摩擦力を評価する指標となる公知の等価摩擦直径を検討したとき、点Xの径方向距離を半径とする仮想円の直径が、ガスケット100と張出部54との間における等価摩擦直径に相当する。同様に、ガスケット100は、取付孔91の開口周縁部92とも点Yの一点において接触する。このため、ガスケット100と開口周縁部92との間における等価摩擦直径は、点Yの径方向距離を半径とする仮想円の直径が相当する。   This phenomenon is explained by a comparison of equivalent friction diameters. As shown in FIG. 4, the gasket 100 is compressed in the direction of the axis Q as described above when mounted on the screw neck 59 of the metal shell 50. When the metal shell 50 to which the gasket 100 is attached is attached to the attachment hole 91 and the screw is tightened, the gasket 100 comes into contact with the overhanging portion 54 at one point X at the initial stage of compression. When a known equivalent friction diameter serving as an index for evaluating a substantial friction force generated between the gasket 100 and the overhanging portion 54 is examined, the diameter of a virtual circle whose radius is the radial distance of the point X is the gasket. This corresponds to an equivalent friction diameter between 100 and the overhanging portion 54. Similarly, the gasket 100 also contacts the opening peripheral edge 92 of the mounting hole 91 at one point Y. For this reason, the equivalent friction diameter between the gasket 100 and the opening peripheral edge 92 corresponds to the diameter of a virtual circle whose radius is the radial distance of the point Y.

ここで、等価摩擦直径とは、「回転摩擦力に関して、円環状の接触を、それと同一の回転摩擦力を有する円形状の接触に置き換えたときの円の直径」を指す。耐緩み性を高めるには、ガスケットと主体金具およびエンジンヘッドと間の摩擦力を高め、戻しトルクを大きくすればよい。発明者らは、エンジンヘッドを模したアルミブッシュを用い、アルミブッシュに設けた取付孔に主体金具をねじ止めする際に、ガスケットと主体金具およびアルミブッシュとの間に発生する滑りの状況を観察した。その結果、締め付け時には、ガスケットと主体金具との間にて滑りが生じやすく、ガスケットとアルミブッシュとの間では滑りが生じにくいことがわかった。一方、緩め時には、ガスケットと主体金具との間では滑りが生じにくく、ガスケットとアルミブッシュとの間にて滑りが生じやすいことがわかった。このことから、ガスケットと主体金具との間の摩擦力よりも、ガスケットとアルミブッシュ、すなわちエンジンヘッドとの間の摩擦力を高めれば、ねじ止めの緩みに対する耐性(耐緩み性)を高めることできる。   Here, the equivalent friction diameter refers to “the diameter of a circle when an annular contact is replaced with a circular contact having the same rotational friction force with respect to the rotational friction force”. In order to increase the looseness resistance, the frictional force between the gasket, the metal shell and the engine head may be increased to increase the return torque. The inventors have used an aluminum bush simulating an engine head, and observed the state of slip that occurs between the gasket and the metal shell and the aluminum bush when the metal shell is screwed into the mounting hole provided in the aluminum bush. did. As a result, it was found that when tightening, slipping was likely to occur between the gasket and the metal shell, and slipping was less likely to occur between the gasket and the aluminum bush. On the other hand, when loosened, it was found that slipping was less likely to occur between the gasket and the metal shell, and slipping was likely to occur between the gasket and the aluminum bush. Therefore, if the frictional force between the gasket and the aluminum bush, that is, the engine head, is increased rather than the frictional force between the gasket and the metal shell, the resistance to loosening of the screwing (relaxation resistance) can be increased. .

実施例7によれば、サンプル43のガスケットは、本実施の形態のガスケット100(サンプル41)と比べ、開口周縁部との間の等価摩擦直径は同じであるが、張出部との間の等価摩擦直径は大きい。つまり、サンプル43のガスケットが装着された主体金具は、締め付け時に、より大きなトルクで締め付けないと、本実施の形態のガスケット100が装着された主体金具50と同等の締め付け力を得られない。言い換えると、サンプル43のガスケットが装着された主体金具と、本実施の形態のガスケット100が装着された主体金具50とを同一トルクで締め付けた場合、戻しトルクは、本実施の形態のガスケット100が装着された主体金具50のが大きい。   According to Example 7, the gasket of the sample 43 has the same equivalent friction diameter between the peripheral edge of the opening as compared with the gasket 100 (sample 41) of the present embodiment, but between the extended portion and the gasket. The equivalent friction diameter is large. That is, if the metal shell to which the gasket of the sample 43 is attached is not tightened with a larger torque at the time of tightening, the same fastening force as that of the metal shell 50 to which the gasket 100 of this embodiment is attached cannot be obtained. In other words, when the metal shell to which the gasket of the sample 43 is attached and the metal shell 50 to which the gasket 100 of this embodiment is attached are tightened with the same torque, the return torque is the same as that of the gasket 100 of this embodiment. The mounted metal shell 50 is large.

また、サンプル44のガスケットは、本実施の形態のガスケット100(サンプル41)と比べ、開口周縁部との間の等価摩擦直径が小さく、張出部との間の等価摩擦直径は大きい。よって、両者を同一トルクで締め付けた場合、締め付け力と戻しトルクとのいずれも、サンプル44のガスケットが装着された主体金具よりも、本実施の形態のガスケット100が装着された主体金具50のが大きい。   In addition, the gasket of the sample 44 has a smaller equivalent friction diameter with the peripheral edge of the opening and a larger equivalent friction diameter with the overhanging portion as compared with the gasket 100 (sample 41) of the present embodiment. Therefore, when both are tightened with the same torque, both the tightening force and the return torque of the metal shell 50 to which the gasket 100 of the present embodiment is attached are larger than those of the metal shell to which the gasket of the sample 44 is attached. large.

なお、本発明は各種の変形が可能なことはいうまでもない。ガスケット100は、環状の板材を厚み方向に3箇所で折り返して作製したが、2箇所あるいは4箇所以上で折り返して作製してもよい。また、ガスケット100の周方向断面が、ガスケット100の全周に渡って同一形状でなくともよい。すなわち、ガスケット100は、ガスケット100の周方向において、部分的に、図3に示す周方向断面の形状を有するものであってもよい。   Needless to say, the present invention can be modified in various ways. The gasket 100 is produced by folding an annular plate material at three places in the thickness direction, but may be produced by folding at two places or four or more places. Further, the circumferential cross section of the gasket 100 may not have the same shape over the entire circumference of the gasket 100. That is, the gasket 100 may partially have a circumferential cross-sectional shape shown in FIG. 3 in the circumferential direction of the gasket 100.

図3に示すガスケット100の周方向断面の形状は、主体金具50のねじ首59に装着される際に軸Q方向に圧縮された状態の形状を示した。これに限らず、ガスケット100をねじ首59に装着した状態では図2に示す周方向断面の形状をなし、スパークプラグ1を取付孔91に締め付ける際の圧縮により、図3に示す周方向断面の形状を有してもよい。   The shape of the cross section in the circumferential direction of the gasket 100 shown in FIG. 3 shows a shape compressed in the direction of the axis Q when being attached to the screw neck 59 of the metal shell 50. Not only this but the shape of the circumferential cross section shown in FIG. 2 is formed in the state where the gasket 100 is attached to the screw neck 59, and the circumferential cross section shown in FIG. 3 is formed by compression when the spark plug 1 is tightened in the mounting hole 91. You may have a shape.

ガスケット100の作製時に、第三接続部160を折り曲げる際の折り曲げ角度θを規定することの効果について確認を行った。まず、角度θの大きさの違いによるプレス成型機による成型が可能であるか否かについて、シミュレーションにより確認した。図2に示す、ガスケット100の周方向断面において、第三接続部160の折り曲げ角度θが0°〜70°のガスケットは、プレス成型機による成型の過程をシミュレートしたところ、成型することが可能であったので、○と評価した。しかし、角度θを90°とするガスケットは、成型の過程をシミュレートしたところ、プレス成型機では加工することができないことがわかり、×と評価した。   At the time of producing the gasket 100, the effect of defining the bending angle θ when bending the third connecting portion 160 was confirmed. First, it was confirmed by simulation whether or not molding by a press molding machine according to the difference in the angle θ was possible. In the circumferential cross section of the gasket 100 shown in FIG. 2, a gasket having a bending angle θ of the third connecting portion 160 of 0 ° to 70 ° can be molded by simulating a molding process by a press molding machine. Since it was, it evaluated as (circle). However, a gasket with an angle θ of 90 ° was simulated by the molding process and found that it could not be processed by a press molding machine, and was evaluated as x.

次に、角度θの大きさの違いによる成型後のガスケットを圧縮した場合の挙動の違いをシミュレーションにより確認した。シミュレーションは、公知のFEM解析により行った。角度θが40°以上のガスケットの場合、軸Q方向に圧縮すると、第一延伸部110が押圧されて、第一接続部140が曲がりを生じ、第一延伸部110の一端111側が下方に移動される。そして第一延伸部110が第三接続部160の他端162に接触し、そのまま他端162が第一延伸部110に押圧されて、潰れ代の内側に巻き込まれるように、下方に移動された。さらに圧縮を続けると、第三接続部160の他端162から抗力を受ける第一延伸部110によって、第一接続部140を介して第二延伸部120が押圧され、第二延伸部120が径方向内側へ向けて曲がりを生じ、第二延伸部120の軸Q方向の長さが短くなった。同様に、他端162において第一延伸部110からの抗力を受ける第三接続部160が、第三延伸部130を押圧し、第三延伸部130が径方向外側へ向けて曲がりを生じ、第三延伸部130の軸Q方向の長さが短くなった。これにより、潰れ代が径方向に膨らみつつ軸Q方向に圧縮され、望ましい形態で潰れたので、○と評価した。   Next, the difference in behavior when the molded gasket was compressed due to the difference in the angle θ was confirmed by simulation. The simulation was performed by a known FEM analysis. In the case of a gasket having an angle θ of 40 ° or more, when compressed in the direction of the axis Q, the first extending portion 110 is pressed, the first connecting portion 140 is bent, and the one end 111 side of the first extending portion 110 moves downward. Is done. And the 1st extending part 110 contacted the other end 162 of the 3rd connection part 160, and the other end 162 was pushed by the 1st extending part 110 as it was, and was moved below so that it might be wound inside the crushing allowance . When the compression is further continued, the second extending portion 120 is pressed through the first connecting portion 140 by the first extending portion 110 that receives a drag force from the other end 162 of the third connecting portion 160, and the second extending portion 120 has a diameter. Bending occurred inward in the direction, and the length of the second extending portion 120 in the axis Q direction was shortened. Similarly, the third connecting portion 160 that receives a drag force from the first extending portion 110 at the other end 162 presses the third extending portion 130, and the third extending portion 130 bends radially outward. The length of the three extending portions 130 in the axis Q direction is shortened. As a result, the crushing allowance was compressed in the direction of the axis Q while expanding in the radial direction, and crushed in a desirable form.

一方、角度θが40°未満のガスケットの場合、上記同様、軸Q方向の圧縮により第一接続部140が曲がり、第一延伸部110が第三接続部160の他端162に当接する。すると、第三接続部160の他端162が第一延伸部110から押圧されるが、第三接続部160が、第一延伸部110の面に対して垂直な方向に当接した状態で押圧されてしまう。これにより、第三接続部160が、第三延伸部130とともに径方向外向きに曲がりを生じてしまい、潰れ代が平行四辺形のように変形する。潰れ代は、第二延伸部120および第三延伸部130における径方向に膨らむ曲がりを生ずることなく、軸Q方向に潰れを生ずる。このため、潰れ代は潰れるものの、第二延伸部120および第三延伸部130によるバネ性を得られず、軸力が確保できないため、×と評価した。上記の評価試験の結果を表1に示す。   On the other hand, in the case of the gasket having an angle θ of less than 40 °, the first connecting portion 140 is bent by the compression in the axis Q direction, and the first extending portion 110 is in contact with the other end 162 of the third connecting portion 160 as described above. Then, the other end 162 of the third connection part 160 is pressed from the first extension part 110, but the third connection part 160 is pressed in a state in which the third connection part 160 abuts in a direction perpendicular to the surface of the first extension part 110. Will be. Thereby, the 3rd connection part 160 will bend radially outward with the 3rd extending | stretching part 130, and a crushing allowance will deform | transform like a parallelogram. The crushing allowance causes crushing in the direction of the axis Q without causing bending in the radial direction in the second extending portion 120 and the third extending portion 130. For this reason, although the collapse allowance collapsed, the spring property by the 2nd extending | stretching part 120 and the 3rd extending | stretching part 130 was not acquired, and since axial force was not securable, it evaluated as x. The results of the evaluation test are shown in Table 1.

Figure 0005166492
Figure 0005166492

表1より明らかに、ガスケット100の作製時に、第三接続部160を折り曲げる際の折り曲げ角度θを40°以上70°以下に規定すれば、成型性および圧縮時の変形の両面において望ましい形態の潰れ代を有するガスケット100を得られることがわかった。   Obviously from Table 1, when the gasket 100 is manufactured, if the bending angle θ when bending the third connecting portion 160 is defined to be 40 ° or more and 70 ° or less, the desired form of collapse in both formability and deformation during compression is obtained. It was found that a gasket 100 having a margin can be obtained.

次に、ガスケット100が気密性および耐緩み性を確保するのに必要な付加圧力Pを確認するため、評価試験を行った。ステンレス鋼からなる厚さ0.5mmの円環状の板材にプレス成型による加工を施し、ガスケット100のサンプルを5つ作製した。このとき、図3に示すように、ガスケット100の周方向断面における各寸法を確認したところ、第一接続部140の曲率半径rが1mm、径方向距離R1が8.15mm、径方向距離R2が6mmとなった。このガスケット100のサンプルを主体金具50のねじ首59に装着したスパークプラグ1の5つのサンプルを、それぞれ、締め付けトルク(圧縮荷重F)を異ならせてアルミブッシュ(図示外)に取り付けた。具体的に、各スパークプラグ1のサンプルを取り付ける際の付加圧力P(前述したようにP=F/{π(R1−R2)}により算出される)を、それぞれ、30,60,100,130,190[MPa]とした。このとき、付加圧力Pが190MPaで取り付けられたスパークプラグ1のサンプルでは、主体金具50が破断してしまった。ゆえに、強度の面において×と評価し、以下の耐緩み性および気密性については評価試験を行わなかった。 Next, an evaluation test was performed to confirm the applied pressure P necessary for the gasket 100 to ensure airtightness and looseness resistance. Five samples of the gasket 100 were produced by processing by press molding an annular plate made of stainless steel and having a thickness of 0.5 mm. At this time, as shown in FIG. 3, when the respective dimensions in the circumferential cross section of the gasket 100 were confirmed, the radius of curvature r of the first connecting portion 140 was 1 mm, the radial distance R1 was 8.15 mm, and the radial distance R2 was It became 6 mm. Five samples of the spark plug 1 in which the sample of the gasket 100 was attached to the screw neck 59 of the metal shell 50 were attached to an aluminum bush (not shown) with different tightening torques (compression loads F). Specifically, the applied pressure P (calculated by P = F / {π (R1 2 −R2 2 )} as described above) when attaching the sample of each spark plug 1 is 30, 60, 100, respectively. , 130, 190 [MPa]. At this time, in the sample of the spark plug 1 attached with the additional pressure P of 190 MPa, the metal shell 50 was broken. Therefore, it was evaluated as “x” in terms of strength, and no evaluation test was performed on the following looseness resistance and airtightness.

スパークプラグ1のサンプルが取り付けられたアルミブッシュに対し、ISO11565に示される振動試験を実施した。具体的にはスパークプラグ1のサンプルを取り付けたアルミブッシュを200℃に加熱した状態で、加速度30G±2G、周波数50〜500Hz、スイープ率1オクターブ/分の振動を、スパークプラグ1のサンプルの軸線方向とその直交方向とにそれぞれ8時間ずつ与えた。そして振動試験後に、スパークプラグ1のサンプルが取り付けられたままのアルミブッシュを、液体(例えばエタノール)で満たされたケースで覆い、アルミブッシュの取付孔内に、燃焼室側に相当する開口から1.5MPaの空気圧を加え、1分間あたりの空気漏洩量を測定した。空気漏洩量が5cc以下のものは、ガスケット100による気密性を十分に維持できるとして○と評価し、5ccより多いものは、気密性を維持できないとして×と評価した。   The vibration test shown in ISO11565 was performed on the aluminum bush to which the sample of the spark plug 1 was attached. Specifically, with the aluminum bush to which the sample of the spark plug 1 is attached heated to 200 ° C., vibration of an acceleration of 30 G ± 2 G, a frequency of 50 to 500 Hz, and a sweep rate of 1 octave / min. The direction and its orthogonal direction were each given 8 hours. After the vibration test, the aluminum bush with the sample of the spark plug 1 attached is covered with a case filled with a liquid (for example, ethanol), and the aluminum bush is attached to the mounting hole of the aluminum bush from the opening corresponding to the combustion chamber side. An air pressure of 5 MPa was applied, and the amount of air leakage per minute was measured. Those having an air leakage amount of 5 cc or less were evaluated as “good” because the airtightness by the gasket 100 could be sufficiently maintained, and those having an air leakage amount of more than 5 cc were evaluated as “poor” because the airtightness could not be maintained.

さらに、アルミブッシュからスパークプラグ1を取り外し、このとき、主体金具50の取り外しに必要なトルク(戻しトルク)を測定して、締め付けトルクに対する戻しトルクの割合(戻しトルク/締め付けトルク)を百分率で求めた。戻しトルクが締め付けトルクの10%以上であった場合には、緩みに対する耐性(耐緩み性)が良好であるとして○と評価し、10%未満のものは、緩みに対する耐性が低いとして×と評価した。評価試験の結果を表2に示す。   Further, the spark plug 1 is removed from the aluminum bush, and at this time, the torque (return torque) required for removing the metal shell 50 is measured, and the ratio of the return torque to the tightening torque (return torque / tightening torque) is obtained as a percentage. It was. When the return torque is 10% or more of the tightening torque, it is evaluated as “good” because the resistance to loosening (loose resistance) is good, and when it is less than 10%, it is evaluated as “poor” because the resistance to loosening is low. did. The results of the evaluation test are shown in Table 2.

Figure 0005166492
Figure 0005166492

表2に示すように、付加圧力Pが30〜130[MPa]で取り付けられたガスケット100のサンプルは、いずれも、緩みに対する耐性が良好であった。また、気密性について、付加圧力Pが60〜130[MPa]で取り付けられたガスケット100のサンプルは、十分な気密性を維持できたが、付加圧力Pが30[MPa]で取り付けられたガスケット100のサンプルは、気密性を維持できなかった。よって、スパークプラグ1を取り付ける際の付加圧力Pが60〜130[MPa]であれば、第二延伸部120および第三延伸部130がバネ性を維持したまま変形することによって潰れ代の潰れがなされ、ガスケット100として十分な軸力を得て、耐緩み性および気密性を確保できることがわかった。   As shown in Table 2, all of the samples of the gasket 100 attached with an applied pressure P of 30 to 130 [MPa] had good resistance to loosening. Regarding the airtightness, the sample of the gasket 100 attached with the additional pressure P of 60 to 130 [MPa] was able to maintain sufficient airtightness, but the gasket 100 attached with the additional pressure P of 30 [MPa]. This sample could not maintain airtightness. Therefore, if the additional pressure P at the time of attaching the spark plug 1 is 60 to 130 [MPa], the second extending portion 120 and the third extending portion 130 are deformed while maintaining the spring property, so that the collapse allowance is crushed. As a result, it has been found that a sufficient axial force can be obtained as the gasket 100 and the looseness resistance and the airtightness can be secured.

次に、潰れ代が潰れる場合に、第二延伸部120および第三延伸部130がバネ性を保持したまま変形するのに必要な硬さを確認するため、評価試験を行った。ステンレス鋼の製造工程における焼鈍条件を種々変化させ、ビッカース硬度の異なる9種類の厚さ0.5mmの板材を用意した。そして、上記9種類の各板材を用い、実施例2と同様の寸法条件を備えたガスケット100のサンプルを作製した。また、9つのガスケット100のサンプルと同じサンプルを別途作製し、各サンプルの上記S点におけるビッカース硬度を測定したところ、それぞれ、150、180、200、250、325、380、400、450、460[Hv]であった。なお、ビッカース硬度は、JIS Z2244に基づく試験方法において、試験荷重を1.961Nとし、荷重保持時間を10秒として測定される。そして、作製したガスケット100のサンプルを装着したスパークプラグ1の9つのサンプルを、所定の締め付けトルクでアルミブッシュ(図示外)に取り付け、実施例2と同様の条件で振動試験を実施した。試験後にアルミブッシュからスパークプラグ1を取り外し、戻しトルクを測定して、実施例2と同様に、耐緩み性の評価を行った。なお、耐緩み性の評価についても同様であるが、戻しトルクが締め付けトルクの20%以上であった場合には、耐緩み性がさらに良好であるとして◎と評価した。   Next, an evaluation test was performed in order to confirm the hardness required for the second extending portion 120 and the third extending portion 130 to be deformed while maintaining the spring property when the collapse allowance is crushed. Nine types of 0.5 mm thick plate materials having different Vickers hardness were prepared by changing various annealing conditions in the stainless steel manufacturing process. And the sample of the gasket 100 provided with the dimension conditions similar to Example 2 using each said 9 types of board | plate material was produced. Moreover, when the same sample as the sample of nine gaskets 100 was produced separately and the Vickers hardness at the S point of each sample was measured, 150, 180, 200, 250, 325, 380, 400, 450, 460 [ Hv]. The Vickers hardness is measured with a test load of 1.961 N and a load holding time of 10 seconds in a test method based on JIS Z2244. Then, nine samples of the spark plug 1 fitted with the prepared sample of the gasket 100 were attached to an aluminum bush (not shown) with a predetermined tightening torque, and a vibration test was performed under the same conditions as in Example 2. After the test, the spark plug 1 was removed from the aluminum bush, the return torque was measured, and the loosening resistance was evaluated in the same manner as in Example 2. The same applies to the evaluation of the loosening resistance. However, when the return torque was 20% or more of the tightening torque, the loosening resistance was further evaluated as と し て.

また、上記9種類のガスケット100のサンプルを装着したスパークプラグ1のサンプルを、それぞれ、再度アルミブッシュに取り付け、このとき、締め付けトルクを段階的に大きくしていった。そして、主体金具50に破断(例えばねじ山の破損)が生じたらガスケット100のサンプルを取り外して外観を観察した。ガスケット100のサンプルに割れやクラックが生じていたら×と評価し、生じていなかったら○と評価した。評価試験の結果を表3に示す。   In addition, each of the spark plug 1 samples on which the nine types of gasket 100 samples were mounted was again attached to the aluminum bush, and at this time, the tightening torque was increased stepwise. And when the fracture | rupture (for example, damage of a screw thread) arises in the metal shell 50, the sample of the gasket 100 was removed and the external appearance was observed. When a crack or crack occurred in the sample of the gasket 100, it was evaluated as x, and when it did not occur, it was evaluated as o. The results of the evaluation test are shown in Table 3.

Figure 0005166492
Figure 0005166492

表3に示すように、ビッカース硬度が450Hv以下のガスケット100は、主体金具50に破断が生ずるほどの締め付けトルクで圧縮しても割れやクラックを生じなかったが、450Hvを超えると、割れやクラックを生ずることがわかった。また、ビッカース硬度が200Hv未満のガスケット100は、熱と振動によって塑性変形を生じ、軸力が低下することがわかった。そして、ガスケット100のビッカース硬度を250Hv以上とすれば、十分な耐緩み性を確保できることがわかった。よって、ガスケット100のビッカース硬度が200Hv以上450Hv以下であれば、第二延伸部120および第三延伸部130が十分なバネ性を得ることができ、ガスケット100として十分な軸力を得て、耐緩み性を確保できることがわかった。   As shown in Table 3, the gasket 100 having a Vickers hardness of 450 Hv or less did not crack or crack even when compressed with a tightening torque that would cause the metal shell 50 to break, but if it exceeds 450 Hv, the crack or crack It was found that Further, it has been found that the gasket 100 having a Vickers hardness of less than 200 Hv undergoes plastic deformation due to heat and vibration, and the axial force decreases. And it was found that if the Vickers hardness of the gasket 100 is 250 Hv or more, sufficient loosening resistance can be secured. Therefore, if the Vickers hardness of the gasket 100 is 200 Hv or more and 450 Hv or less, the second stretched portion 120 and the third stretched portion 130 can obtain sufficient spring properties, and a sufficient axial force as the gasket 100 is obtained. It was found that looseness can be secured.

次に、スパークプラグ1の着火性を確保するために必要な、接地電極30の向きの調整可能な角度について検討するため、評価試験を行った。ここでは、潰れ代が、取付部52のねじ山のピッチで1/2ピッチ分の大きさまで潰れることのできる大きさを有することで、接地電極30の向きを0°〜180°の範囲で調整可能なガスケット100のサンプルを8つ用意した。ガスケット100の各サンプルを、それぞれスパークプラグ1のサンプルに装着し、各スパークプラグ1を、試験用の自動車エンジン(1.6L、4気筒)に、付加圧力Pを60MPaで取り付けた。このとき、燃焼室内(図示外)で接地電極30の向く向きが、もっとも着火性が良好となる向きを0°とし、8つのサンプルの接地電極30の向きを45°ずつ、ずらして取り付け、各サンプルを、便宜上、0°から順にサンプル21〜28とした。接地電極30の向きの調整を行わなかった場合の点火進角(BTDC)は、サンプル21から順に、42,41,37.5,37,35,37.5,41,41.5[°]となった。この評価試験の結果を表4に示す。   Next, an evaluation test was performed in order to examine the adjustable angle of the direction of the ground electrode 30 necessary for ensuring the ignitability of the spark plug 1. Here, the direction of the ground electrode 30 is adjusted in the range of 0 ° to 180 ° by having a size that allows the crushing amount to be crushed to a size corresponding to ½ pitch at the thread pitch of the mounting portion 52. Eight samples of possible gaskets 100 were prepared. Each sample of the gasket 100 was attached to a sample of the spark plug 1, and each spark plug 1 was attached to a test automobile engine (1.6 L, 4 cylinders) at an applied pressure P of 60 MPa. At this time, the orientation of the ground electrode 30 in the combustion chamber (not shown) is set to 0 ° for the best ignitability, and the orientation of the ground electrodes 30 of the eight samples is shifted by 45 °, For convenience, the samples were designated as Samples 21 to 28 in order from 0 °. The ignition advance angle (BTDC) when the orientation of the ground electrode 30 is not adjusted is 42, 41, 37.5, 37, 35, 37.5, 41, 41.5 [°] in order from the sample 21. It became. The results of this evaluation test are shown in Table 4.

Figure 0005166492
Figure 0005166492

表4に示すように、ガスケット100に潰れ代がなく接地電極30の向きが調整できない場合、サンプル25のように点火進角が35°となる接地電極30の向き(180°)にスパークプラグ1が取り付けられてしまった場合、点火進角を35°から変更できず、着火性を向上することができなかった。ガスケット100の潰れ代が小さく接地電極30の向きが45°までしか調整できない場合、サンプル25のようにスパークプラグ1が取り付けられてしまっても、接地電極30の向きを+45°調整することにより、点火進角を35°から37.5°に改善することができた。一方、サンプル22のように点火進角が41°となる接地電極30の向き(45°)にスパークプラグ1が取り付けられた場合に、接地電極30の向きを+45°調整してしまうと、点火進角が37.5°に落ちてしまう場合もある。この場合には、接地電極30の向きを調整しなければ、点火進角として41°を得ることができた。同様に、ガスケット100の潰れ代がやや大きく接地電極30の向きを90°まで調整できる場合は、サンプル25については、接地電極30の向きを+90°調整することにより、点火進角を35°から41°に改善することができた。さらにガスケット100の潰れ代が大きく、接地電極30の向きを180°まで調整できる場合、サンプル25については点火進角を35°から42°まで改善することができた。   As shown in Table 4, when the gasket 100 is not crushed and the orientation of the ground electrode 30 cannot be adjusted, the spark plug 1 is oriented in the direction of the ground electrode 30 (180 °) at which the ignition advance angle is 35 ° as in the sample 25. Has been attached, the ignition advance angle could not be changed from 35 °, and the ignitability could not be improved. If the collapse amount of the gasket 100 is small and the direction of the ground electrode 30 can be adjusted only up to 45 °, even if the spark plug 1 is attached like the sample 25, by adjusting the direction of the ground electrode 30 by + 45 °, The ignition advance angle could be improved from 35 ° to 37.5 °. On the other hand, when the spark plug 1 is attached in the direction (45 °) of the ground electrode 30 where the ignition advance angle is 41 ° as in the sample 22, if the direction of the ground electrode 30 is adjusted by + 45 °, the ignition The advance angle may fall to 37.5 °. In this case, if the direction of the ground electrode 30 was not adjusted, 41 ° could be obtained as the ignition advance angle. Similarly, when the crushing margin of the gasket 100 is slightly large and the direction of the ground electrode 30 can be adjusted to 90 °, the ignition advance angle of the sample 25 is adjusted from 35 ° by adjusting the direction of the ground electrode 30 by + 90 °. It was possible to improve to 41 °. Furthermore, when the crushing margin of the gasket 100 is large and the direction of the ground electrode 30 can be adjusted to 180 °, the ignition advance angle of the sample 25 can be improved from 35 ° to 42 °.

このように、接地電極30の向きを調整可能な角度が大きくなるほど、点火進角の調整の自由度を高くすることができる。表4に示すように、例えば、接地電極30の向きを90°まで調整できるガスケット100が装着された場合、各サンプル21〜28について、接地電極30の向きを+90°までの範囲で調整することで、点火進角の最良な値(最大値)として、順に、42,41,37.5,37.5,41,41.5,42,42[°]が得られた。そして、これら最大値の中でもっとも小さな値は、サンプル23,24の示す点火進角の最大値37.5°であった。接地電極30の向きが調整できない場合と比べ、接地電極30の向きを90°まで調整できれば、点火進角の最小値を、35°(接地電極30の向きが調整できない場合のサンプル25)から37.5°まで改善できることが確認できた。ここで図5に示すように、接地電極30の向きが135°〜225°の範囲(グラフ中斜線で示す)では、点火進角が大きく低下することがわかる。接地電極30の向きを少なくとも90°以上調整できれば、少なくとも、点火進角の最小値を、上記のように、37.5°とすることができる。これにより、図5の斜線で示される、点火進角37°以下の範囲を避けることができ、スパークプラグ1の着火性を確保できることがわかった。   Thus, the greater the angle at which the orientation of the ground electrode 30 can be adjusted, the greater the degree of freedom in adjusting the ignition advance. As shown in Table 4, for example, when the gasket 100 capable of adjusting the orientation of the ground electrode 30 to 90 ° is attached, the orientation of the ground electrode 30 is adjusted within a range of + 90 ° for each of the samples 21 to 28. Thus, 42, 41, 37.5, 37.5, 41, 41.5, 42, and 42 [°] were obtained in order as the best value (maximum value) of the ignition advance angle. The smallest value among these maximum values was the maximum ignition advance angle 37.5 ° indicated by the samples 23 and 24. Compared to the case where the orientation of the ground electrode 30 cannot be adjusted, if the orientation of the ground electrode 30 can be adjusted to 90 °, the minimum value of the ignition advance is reduced from 35 ° (sample 25 when the orientation of the ground electrode 30 cannot be adjusted) to 37. It was confirmed that it could be improved to 5 °. Here, as shown in FIG. 5, it can be seen that the ignition advance is greatly reduced when the direction of the ground electrode 30 is in the range of 135 ° to 225 ° (indicated by the oblique lines in the graph). If the orientation of the ground electrode 30 can be adjusted by at least 90 ° or more, at least the minimum value of the ignition advance angle can be set to 37.5 ° as described above. Accordingly, it was found that the range of the spark advance angle of 37 ° or less indicated by the oblique lines in FIG. 5 can be avoided, and the ignitability of the spark plug 1 can be secured.

さらに、表4に示すように、接地電極30の向きを180°まで調整できるガスケット100が装着された場合、各サンプル21〜28について、同様に、接地電極30の向きを調整することで、点火進角の最大値として、順に、42,41,41,41.5,42,42,42,42[°]が得られた。これら最大値の中の最小値は、サンプル22,23の示す点火進角の最大値41°であった。このように、接地電極30の向きを180°まで調整できれば、点火進角の最小値を、接地電極30の向きが調整できない場合のサンプル25が示す35°から41°まで改善できることが確認できた。図5に示すように、35°から42°の範囲の値をとる点火進角の平均値は39°であるが、接地電極30の向きを少なくとも180°以上調整できれば、確実に、平均値よりも高い点火進角となるように調整でき、スパークプラグ1の着火性を確実に確保できることがわかった。   Furthermore, as shown in Table 4, when the gasket 100 capable of adjusting the orientation of the ground electrode 30 to 180 ° is attached, the orientation of the ground electrode 30 is similarly adjusted for each of the samples 21 to 28, thereby igniting. As the maximum value of the advance angle, 42, 41, 41, 41.5, 42, 42, 42, and 42 [°] were obtained in this order. The minimum value among these maximum values was the maximum value 41 ° of the ignition advance indicated by the samples 22 and 23. Thus, it was confirmed that if the orientation of the ground electrode 30 could be adjusted to 180 °, the minimum ignition advance angle could be improved from 35 ° to 41 ° indicated by the sample 25 when the orientation of the ground electrode 30 could not be adjusted. . As shown in FIG. 5, the average value of the ignition advance taking a value in the range of 35 ° to 42 ° is 39 °. However, if the orientation of the ground electrode 30 can be adjusted by at least 180 ° or more, the average value is surely greater than the average value. It was found that the spark plug 1 can be adjusted to have a high ignition advance, and the ignitability of the spark plug 1 can be reliably ensured.

次に、ガスケット100の周方向断面の形状に規定を設けることの効果を確認するため、評価試験を行った。まず、厚みの異なるステンレス鋼からなる円環状の板材を複数用意し、プレス成型の際の折り曲げ位置や折り曲げ角度を調整して、表5に示す、16種類のガスケット100のサンプル1〜16を作製した。サンプル1〜16において、第一接続部140の曲率半径rは、0.4mm〜1.2mmの範囲で異なるものとなった。また、第二延伸部120の厚みtは、0.3mm〜0.5mmの範囲で異なるものとなった。さらに、径方向距離R1と径方向距離R2の大きさの組み合わせについても異ならせ、潰れ代の1/2の大きさに値する(R1−R2)/2の大きさ(便宜上、Wとする)は、0.8mm〜1.075mmの範囲で異なるものとなった。そして、また、潰れ代の縦横比Cを、h/(R1−R2)で求めたところ、Cは、0.938〜1.475の範囲で異なるものとなった。表5に各サンプルの厚みt、曲率半径r、潰れ代の1/2の大きさW、潰れ代の縦横比Cを比較した表を示す。   Next, an evaluation test was performed in order to confirm the effect of providing the regulation on the shape of the circumferential cross section of the gasket 100. First, a plurality of annular plate materials made of stainless steel having different thicknesses are prepared, and the folding position and the folding angle at the time of press molding are adjusted to produce samples 1 to 16 of 16 types of gaskets 100 shown in Table 5. did. In Samples 1 to 16, the radius of curvature r of the first connection portion 140 was different in the range of 0.4 mm to 1.2 mm. Moreover, the thickness t of the 2nd extending | stretching part 120 became different in the range of 0.3 mm-0.5 mm. Further, the combination of the sizes of the radial distance R1 and the radial distance R2 is also changed, and the size of (R1−R2) / 2 that is worth half the crushing margin (for convenience, W) is The difference was in the range of 0.8 mm to 1.075 mm. And when the aspect ratio C of the crushing allowance was calculated | required by h / (R1-R2), C became different in the range of 0.938-1.475. Table 5 shows a table comparing the thickness t, the radius of curvature r, the size W of half of the crushing allowance, and the aspect ratio C of the crushing allowance of each sample.

Figure 0005166492
Figure 0005166492

表5に示す各サンプル1〜16を、それぞれ、スパークプラグ1のサンプルに装着し、60〜130MPaの締め付けトルクでスパークプラグ1をアルミブッシュに取り付けた。このとき、潰れ代が取付部52のねじ山のピッチで1/2ピッチ分の大きさまで潰れることができたサンプル(すなわち接地電極30の向きを180°以上調整できたサンプル)を確認した。調整できたサンプルについては○と判定し、できなかったサンプルを×と判定した。この評価試験の結果を表6に示す。なお、表6では、各サンプルの曲率半径rの大きさと、潰れ代の縦横比Cとの関係について着目した。   Each sample 1-16 shown in Table 5 was attached to the sample of the spark plug 1, and the spark plug 1 was attached to the aluminum bush with a tightening torque of 60-130 MPa. At this time, a sample in which the crushing margin was able to be crushed to a size corresponding to ½ pitch with the thread pitch of the mounting portion 52 (that is, a sample in which the direction of the ground electrode 30 was adjusted by 180 ° or more) was confirmed. About the sample which could be adjusted, it determined with (circle) and the sample which was not able to be determined with x. The results of this evaluation test are shown in Table 6. Table 6 focuses on the relationship between the curvature radius r of each sample and the aspect ratio C of the crushing allowance.

Figure 0005166492
Figure 0005166492

表6に示すように、サンプル1〜9,13,14は、接地電極30の向きを180°以上調整することができた。縦横比Cが1未満で潰れ代が径方向に大きいサンプル11〜12,15,16は、接地電極30の向きを180°以上調整することができないことがわかった。また、曲率半径rが、Wよりも大きなサンプル10も、接地電極30の向きを180°以上調整することができないことがわかった。よって、曲率半径rがW(すなわち、(R1−R2)/2)以下であり、且つ、縦横比Cが1以上であれば(すなわち潰れ代が軸Q方向に大きくh≧(R1−R2)を満たせば)、接地電極30の向きを180°以上調整することができることが確認できた。   As shown in Table 6, Samples 1 to 9, 13, and 14 were able to adjust the orientation of the ground electrode 30 by 180 ° or more. It was found that the samples 11 to 12, 15, and 16 in which the aspect ratio C is less than 1 and the crushing allowance is large in the radial direction cannot adjust the direction of the ground electrode 30 by 180 ° or more. Further, it was found that the sample 10 having the curvature radius r larger than W cannot adjust the direction of the ground electrode 30 by 180 ° or more. Therefore, if the radius of curvature r is W (that is, (R1-R2) / 2) or less and the aspect ratio C is 1 or more (that is, the crushing margin is large in the direction of the axis Q, h ≧ (R1-R2) It is confirmed that the orientation of the ground electrode 30 can be adjusted by 180 ° or more.

さらに、上記の各サンプル1〜16について、第一接続部140を形成する際の成形性についても、評価を行った。サンプル1〜16のガスケット100を作製する際のプレス成型で第一接続部140を折り曲げた後、折り曲げ痕の様子について観察を行った。そのとき、第一接続部140の折り曲げ痕にシワが寄り、折れや潰れが生じたことが確認できたサンプルを×と評価し、折り曲げ痕がなめらかな曲面を形成したサンプルを○と評価した。評価試験の結果を表7に示す。なお、表7では、各サンプルの曲率半径rの大きさと、厚みtの関係について着目した。   Furthermore, for each of the above samples 1 to 16, the moldability when forming the first connection portion 140 was also evaluated. After bending the first connection part 140 by press molding when producing the gaskets 100 of the samples 1 to 16, the state of the bending trace was observed. At that time, a sample that was confirmed to be wrinkled toward the bending trace of the first connection portion 140 and confirmed that the folding or crushing occurred was evaluated as x, and a sample in which the bending trace formed a smooth curved surface was evaluated as ◯. Table 7 shows the results of the evaluation test. In Table 7, attention was paid to the relationship between the radius of curvature r of each sample and the thickness t.

Figure 0005166492
Figure 0005166492

表7に示すように、曲率半径rが厚みtの2倍以上であったサンプル2,3,6,9,10,12は、第一接続部140の折り曲げ痕にシワがなく、なめらかな曲面が形成され、成形性が良好であった。一方、曲率半径rが厚みtの2倍未満のサンプル1,4,5,7,8,11,13〜16は、第一接続部140の折り曲げ痕にシワが寄っているのが確認された。実施例5においてアルミブッシュに取り付けたスパークプラグ1を取り外し、各サンプルの第一接続部140の折り曲げ痕を観察したところ、曲率半径rが厚みtの2倍未満のサンプル1,4,5,7,8,11,13〜16では折れや潰れを生じていたことが確認された。   As shown in Table 7, Samples 2, 3, 6, 9, 10, and 12 in which the radius of curvature r is more than twice the thickness t are smooth curved surfaces with no creases in the first connecting portion 140. Was formed and the moldability was good. On the other hand, in samples 1, 4, 5, 7, 8, 11, 13 to 16 having a radius of curvature r less than twice the thickness t, it was confirmed that the bending marks of the first connection portion 140 were wrinkled. . In Example 5, the spark plug 1 attached to the aluminum bush was removed, and the bending traces of the first connection portion 140 of each sample were observed. As a result, samples 1, 4, 5, and 7 having a radius of curvature r less than twice the thickness t , 8, 11, 13 to 16 were confirmed to be broken or crushed.

次に、ガスケット100の材料や、ガスケット100を主体金具50に装着する向き、周方向断面の形状の違いなどによる耐緩み性の影響を確認するため、評価試験を行った。まず、実施例2と同様に、ステンレス鋼からなる厚さ0.5mmの円環状の板材にプレス成型による加工を施し、本実施の形態のガスケット100のサンプル41を作製した。ガスケット100の周方向断面における各寸法は、第一接続部140の曲率半径rが1mm、径方向距離R1が8.15mm、径方向距離R2が6mmとなった。また、サンプル41と同寸法で、材料を鉄(Fe)にしたサンプル42を作製した。さらに、周方向断面の形状がサンプル41と鏡像体をなすサンプル43を作製した。各サンプルを主体金具50のねじ首59に装着したスパークプラグ1のサンプルを作製し、さらにサンプル41を、軸Q方向を逆さまにしたサンプル44をねじ首59に装着したスパークプラグ1のサンプルを用意した。   Next, an evaluation test was performed in order to confirm the influence of the looseness resistance depending on the material of the gasket 100, the direction in which the gasket 100 is attached to the metal shell 50, the difference in the shape of the circumferential cross section, and the like. First, similarly to Example 2, an annular plate material made of stainless steel having a thickness of 0.5 mm was subjected to processing by press molding to produce a sample 41 of the gasket 100 of the present embodiment. Regarding the dimensions in the circumferential cross section of the gasket 100, the radius of curvature r of the first connecting portion 140 was 1 mm, the radial distance R1 was 8.15 mm, and the radial distance R2 was 6 mm. A sample 42 having the same dimensions as the sample 41 and made of iron (Fe) was produced. Further, a sample 43 having a circumferential cross-sectional shape forming a mirror image with the sample 41 was produced. A sample of the spark plug 1 in which each sample is attached to the screw neck 59 of the metal shell 50 is prepared. Further, a sample 41 and a sample of the spark plug 1 in which the sample 44 with the axis Q direction inverted is attached to the screw neck 59 are prepared. did.

各サンプル41〜44が装着されたスパークプラグ1を締め付けトルク15N・mでアルミブッシュにそれぞれ取り付け、実施例2と同様の振動試験を行った。さらに、アルミブッシュからスパークプラグ1を取り外し、このとき、主体金具50の取り外しに必要なトルク(戻しトルク)を測定した。この評価試験の結果を表8に示す。   The spark plug 1 on which each of the samples 41 to 44 was mounted was attached to an aluminum bush with a tightening torque of 15 N · m, and the same vibration test as in Example 2 was performed. Further, the spark plug 1 was removed from the aluminum bush, and at this time, the torque (return torque) necessary for removing the metal shell 50 was measured. The results of this evaluation test are shown in Table 8.

Figure 0005166492
Figure 0005166492

表8に示すように、サンプル41の戻しトルクは7.9N・mであったのに対し、サンプル42〜44は、それぞれ、4.7,6.7,4.4[N・m]となり、耐緩み性が低下することがわかった。なお、サンプル41と43について、張出部54との接触痕(点Xで示す)から等価摩擦直径を求めたところ、それぞれ13.5mm、14.8mmであった。開口周縁部92との接触痕(点Yで示す)に基づく等価摩擦直径は、サンプル41と43とでは同じであり、周方向断面が鏡像体をなすと、張出部54側と開口周縁部92側との間で等価摩擦直径の比率が異なってくることが、戻しトルクに影響することが確認された。   As shown in Table 8, the return torque of sample 41 was 7.9 N · m, whereas samples 42 to 44 were 4.7, 6.7, and 4.4 [N · m], respectively. It has been found that the loosening resistance decreases. For samples 41 and 43, the equivalent friction diameter was determined from the contact mark (indicated by point X) with the overhanging portion 54 and found to be 13.5 mm and 14.8 mm, respectively. The equivalent friction diameter based on the contact mark (indicated by the point Y) with the opening peripheral portion 92 is the same for the samples 41 and 43, and when the circumferential cross section forms a mirror image, the overhang portion 54 side and the opening peripheral portion It was confirmed that the difference in the ratio of the equivalent friction diameter to the 92 side affects the return torque.

1 スパークプラグ
10 絶縁碍子
12 軸孔
30 接地電極
50 主体金具
54 張出部
90 エンジンヘッド
91 取付孔
92 開口周縁部
100 ガスケット
101 一方の端部
102 他方の端部
110 第一延伸部
111,121,131,161 一端
112,122,132,162 他端
120 第二延伸部
130 第三延伸部
140 第一接続部
150 第二接続部
160 第三接続部
DESCRIPTION OF SYMBOLS 1 Spark plug 10 Insulator 12 Shaft hole 30 Ground electrode 50 Metal fitting 54 Overhang | projection part 90 Engine head 91 Mounting hole 92 Opening peripheral part 100 Gasket 101 One end part 102 Other end part 110 First extending part 111,121, 131,161 One end 112,122,132,162 The other end 120 The second extension part 130 The third extension part 140 The first connection part 150 The second connection part 160 The third connection part

Claims (8)

自身の外周にねじ山が形成され、当該ねじ山よりも基端側に、自身の外周から外向きに張り出しつつ周方向に一周する形態をなす張出部を有するねじ付部材に、外側から同心的に装着される環状形態をなし、前記ねじ付部材が、雌ねじの形成された取付孔に螺合により取り付けられた状態において、前記張出部と、前記取付孔の開口周縁部との間にて圧縮されて、前記張出部と前記開口周縁部との間を封止する封止部材を備えた、封止部材を有するねじ付部材において、
前記封止部材の中心軸を含む平面にて当該封止部材の断面をみたときに、
当該断面が、一方の端部から他方の端部まで連続しつつ前記他方の端部が前記一方の端部よりも内側に位置する渦巻状をなすとともに、
自身の一端を前記一方の端部とし、前記自身の一端よりも前記封止部材の径方向内側に位置する自身の他端へ向け、前記封止部材の軸方向に沿う成分よりも前記径方向に沿う成分の方が大きくなるように、略直線状に延びる第一延伸部と、
前記径方向に沿う成分よりも前記軸方向に沿う成分の方が大きくなるように略直線状に延びる第二延伸部と、
前記第一延伸部の他端と前記第二延伸部の一端とを、曲率半径rの曲線にて接続する第一接続部と、
前記第二延伸部よりも前記径方向外側の位置にて、前記径方向に沿う成分よりも前記軸方向に沿う成分の方が大きくなるように略直線状に延びる第三延伸部と、
前記第二延伸部の他端と前記第三延伸部の一端とを、前記第一延伸部から離れる方向に屈曲する曲線にて接続する第二接続部と、
自身の一端が前記第三延伸部の他端に接続されるとともに、自身の他端を前記他方の端部とし、前記軸方向において、前記第一延伸部および前記第二接続部との間に位置しつつ当該第一延伸部および当該第二接続部と重なる部位を有する第三接続部と
から構成され、
前記封止部材は、前記第一延伸部が前記ねじ付部材の前記張出部に接触する側に位置するとともに、前記ねじ付部材が前記第二延伸部よりも前記径方向内側に位置するように前記ねじ付部材に装着され、
前記封止部材が、前記ねじ付部材を前記取付孔に螺合する前において、前記ねじ付部材に装着された状態において、
前記封止部材の前記軸方向の高さをh、
h/2を満たす位置における前記第二延伸部の厚みをtとし、
さらに、前記封止部材の前記径方向において、
前記第三延伸部のうち、前記封止部材の前記中心軸から最も離れた部位における前記中心軸からの径方向距離をR1、
前記第二延伸部のうち、前記封止部材の前記中心軸に最も近い部位における前記中心軸からの径方向距離をR2としたときに、
2×t≦r≦(R1−R2)/2
を満たすとともに、
h≧(R1−R2)
を満たすことを特徴とする封止部材を有するねじ付部材。
A thread is formed on the outer periphery of the thread, and a threaded member having a projecting portion that forms a round in the circumferential direction while projecting outward from the outer periphery of the thread on the base end side of the thread is concentric from the outside. In the state where the threaded member is screwed into the mounting hole in which the female thread is formed, the annular member is attached to the mounting hole and the opening peripheral edge of the mounting hole. In a threaded member having a sealing member, which includes a sealing member that is compressed and sealed between the projecting portion and the peripheral edge portion of the opening.
When looking at the cross section of the sealing member in a plane including the central axis of the sealing member,
While the cross section is continuous from one end to the other end, the other end forms a spiral shape located on the inner side of the one end,
One end of itself is the one end, and toward the other end of the sealing member positioned radially inward of the sealing member, the radial direction is more than the component along the axial direction of the sealing member. A first extending portion extending substantially linearly, so that the component along
A second extending portion extending substantially linearly so that the component along the axial direction is larger than the component along the radial direction;
A first connecting portion that connects the other end of the first extending portion and one end of the second extending portion with a curve of a radius of curvature r;
A third extending portion extending substantially linearly so that the component along the axial direction is larger than the component along the radial direction at a position outside the second extending portion in the radial direction;
A second connecting portion for connecting the other end of the second extending portion and one end of the third extending portion with a curve bent in a direction away from the first extending portion;
One end of itself is connected to the other end of the third extending portion, and the other end of itself is the other end portion, and in the axial direction, between the first extending portion and the second connecting portion. A third connecting portion having a portion overlapping the first extending portion and the second connecting portion while being positioned,
The sealing member is such that the first extending portion is located on a side of the threaded member that contacts the protruding portion, and the threaded member is located on the radially inner side of the second extending portion. Attached to the threaded member,
Before the sealing member is screwed into the mounting hole, the threaded member is attached to the threaded member.
The axial height of the sealing member is h,
The thickness of the second stretched portion at a position satisfying h / 2 is t,
Furthermore, in the radial direction of the sealing member,
Of the third extending portion, R1 is a radial distance from the central axis at a portion farthest from the central axis of the sealing member,
Of the second extending portion, when the radial distance from the central axis at the portion closest to the central axis of the sealing member is R2,
2 × t ≦ r ≦ (R1-R2) / 2
While satisfying
h ≧ (R1-R2)
A screwed member having a sealing member characterized by satisfying
前記封止部材の前記断面において、前記他方の端部は、前記径方向において、前記一方の端部よりも前記中心軸寄りの位置にあることを特徴とする請求項1に記載の封止部材を有するねじ付部材。   2. The sealing member according to claim 1, wherein, in the cross section of the sealing member, the other end portion is located closer to the central axis than the one end portion in the radial direction. A threaded member. 前記封止部材は、ステンレス鋼からなることを特徴とする請求項1または2に記載の封止部材を有するねじ付部材。   The screw member having a sealing member according to claim 1 or 2, wherein the sealing member is made of stainless steel. 前記封止部材を前記軸方向に圧縮する際の圧縮荷重をFとし、前記封止部材への付加圧力PをF/{π(R1−R2)}にて算出したときに、前記付加圧力Pが60MPa〜130MPaの範囲内における、前記ねじ付部材を前記取付孔に螺合する際の回転角が、90°以上360°未満であることを特徴とする請求項1〜3のいずれかに記載の封止部材を有するねじ付部材。 When the compression load when compressing the sealing member in the axial direction is F, and the applied pressure P to the sealing member is calculated by F / {π (R1 2 −R2 2 )}, the addition The rotation angle at the time of screwing the threaded member into the mounting hole when the pressure P is in a range of 60 MPa to 130 MPa is 90 ° or more and less than 360 °. A threaded member having the sealing member according to 1. 前記付加圧力Pが60MPa〜130MPaの範囲内における、前記ねじ付部材を前記取付孔に螺合する際の回転角が、180°以上360°未満であることを特徴とする請求項4に記載の封止部材を有するねじ付部材。   5. The rotation angle when the threaded member is screwed into the mounting hole when the additional pressure P is in a range of 60 MPa to 130 MPa is 180 ° or more and less than 360 °. A threaded member having a sealing member. 前記ねじ付部材を前記取付孔に螺合する前において、前記ねじ付部材に装着された前記封止部材の前記断面で、前記h/2を満たし、前記厚みtの中央となる前記第二延伸部の位置において、前記封止部材の硬度を測定したときに、ビッカース硬度で、200Hv以上450Hv以下であることを特徴とする請求項1〜5のいずれかに記載の封止部材を有するねじ付部材。   Before the threaded member is screwed into the mounting hole, the second stretch that satisfies the h / 2 and becomes the center of the thickness t in the cross section of the sealing member mounted on the threaded member When the hardness of the said sealing member is measured in the position of a part, it is 200Hv or more and 450Hv or less by Vickers hardness, The screw attachment which has the sealing member in any one of Claims 1-5 characterized by the above-mentioned Element. 前記ねじ付部材に装着する前の前記封止部材の前記断面をみたときに、前記第三接続部の一端側から前記他方の端部側へと向かう方向が、前記軸方向に対し、40°以上70°以下の角度で交差することを特徴とする請求項1〜6のいずれかに記載の封止部材を有するねじ付部材。   When the cross section of the sealing member before being attached to the threaded member is viewed, the direction from the one end side of the third connection portion toward the other end portion side is 40 ° with respect to the axial direction. The threaded member having a sealing member according to any one of claims 1 to 6, characterized by intersecting at an angle of 70 ° or less. 請求項1〜7のいずれかに記載の封止部材を有するねじ付部材の前記封止部材を、主体金具に装着して使用することを特徴とするスパークプラグ。   A spark plug using the sealing member of the threaded member having the sealing member according to any one of claims 1 to 7 mounted on a metal shell.
JP2010174280A 2010-08-03 2010-08-03 Threaded member having sealing member and spark plug Active JP5166492B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010174280A JP5166492B2 (en) 2010-08-03 2010-08-03 Threaded member having sealing member and spark plug
EP11814570.5A EP2602886B1 (en) 2010-08-03 2011-07-29 Spark plug
US13/813,774 US8766521B2 (en) 2010-08-03 2011-07-29 Spark plug
KR1020137002906A KR101428950B1 (en) 2010-08-03 2011-07-29 Spark plug
PCT/JP2011/067453 WO2012017944A1 (en) 2010-08-03 2011-07-29 Spark plug
CN201410097914.4A CN103872583B (en) 2010-08-03 2011-07-29 Spark plug
CN2011800383412A CN103053084A (en) 2010-08-03 2011-07-29 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174280A JP5166492B2 (en) 2010-08-03 2010-08-03 Threaded member having sealing member and spark plug

Publications (2)

Publication Number Publication Date
JP2012033445A JP2012033445A (en) 2012-02-16
JP5166492B2 true JP5166492B2 (en) 2013-03-21

Family

ID=45846623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174280A Active JP5166492B2 (en) 2010-08-03 2010-08-03 Threaded member having sealing member and spark plug

Country Status (1)

Country Link
JP (1) JP5166492B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529837A (en) * 1968-12-02 1970-09-22 Champion Spark Plug Co Gasket
JPS511378Y2 (en) * 1973-11-01 1976-01-16
JPS55117660U (en) * 1979-02-12 1980-08-20
JP4774139B2 (en) * 1999-12-28 2011-09-14 日本特殊陶業株式会社 Threaded member with gasket
JP2003278630A (en) * 2002-03-26 2003-10-02 Ngk Spark Plug Co Ltd Mounting structure for ignition plug
JP4436398B2 (en) * 2007-10-09 2010-03-24 日本特殊陶業株式会社 Sealing member for spark plug and spark plug

Also Published As

Publication number Publication date
JP2012033445A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP4436398B2 (en) Sealing member for spark plug and spark plug
WO2012017944A1 (en) Spark plug
JP4296202B2 (en) Spark plug manufacturing method and spark plug manufactured by the manufacturing method
JP4625416B2 (en) Spark plug
WO2013008371A1 (en) Spark plug
JP2000266186A (en) Gasket and spark plug with gasket
JP2004134120A (en) Spark plug
JP4774139B2 (en) Threaded member with gasket
JP2013089525A (en) Spark plug mounting structure
JP4520320B2 (en) Spark plug and method for manufacturing the same
JP5166492B2 (en) Threaded member having sealing member and spark plug
JP2013149623A (en) Spark plug
JP5130333B2 (en) Spark plug
JP5113136B2 (en) Sealing member for spark plug and spark plug
JP5513466B2 (en) Manufacturing method of spark plug
JP4950266B2 (en) Sealing member for spark plug and spark plug
JP6495194B2 (en) Spark plug mounting structure
JP5331190B2 (en) Spark plug
JP2010027626A5 (en)
JP2012031834A (en) Spark plug
JP2022154441A (en) Spark plug
JP2022147178A (en) Spark plug
JP2010133729A (en) Pressure sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5166492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250