JP4950266B2 - Sealing member for spark plug and spark plug - Google Patents

Sealing member for spark plug and spark plug Download PDF

Info

Publication number
JP4950266B2
JP4950266B2 JP2009251981A JP2009251981A JP4950266B2 JP 4950266 B2 JP4950266 B2 JP 4950266B2 JP 2009251981 A JP2009251981 A JP 2009251981A JP 2009251981 A JP2009251981 A JP 2009251981A JP 4950266 B2 JP4950266 B2 JP 4950266B2
Authority
JP
Japan
Prior art keywords
gasket
spark plug
radius
sealing member
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009251981A
Other languages
Japanese (ja)
Other versions
JP2010027625A (en
Inventor
怜門 福澤
友聡 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009251981A priority Critical patent/JP4950266B2/en
Publication of JP2010027625A publication Critical patent/JP2010027625A/en
Application granted granted Critical
Publication of JP4950266B2 publication Critical patent/JP4950266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の取付孔に取り付けられるスパークプラグの主体金具に装着されて用いられ、取付孔を介した気密漏れを封止するスパークプラグ用の封止部材およびスパークプラグに関するものである。   The present invention relates to a spark plug sealing member and a spark plug that are used by being mounted on a metal shell of a spark plug that is attached to an attachment hole of an internal combustion engine and seals airtight leakage through the attachment hole.

一般的なスパークプラグは、主体金具の外周に形成したねじ山を内燃機関のエンジンヘッドに設けられた取付孔の雌ねじに螺合させて、内燃機関への取り付けが行われる。こうしたスパークプラグには、取付孔を介した燃焼室内の気密漏れを防止するため、主体金具の外周に円環状の封止部材(ガスケット)が装着される。一般的なガスケットは冷間圧延用鋼帯(以下、「Fe」とする。)から円環状に形成した板材を、例えば断面がS字形状となるように径方向において折り返して作製される。そして、取付孔へのスパークプラグの取り付け時に、主体金具の張出部と取付孔の開口周縁部との間でこのガスケットを挟んで圧縮し、変形により密着性を高めつつ軸力(締め付けに伴う圧縮により軸方向に働く反力)を生じさせて、取付孔を介した燃焼室内の気密漏れの封止が行われている。   A general spark plug is attached to an internal combustion engine by screwing a thread formed on the outer periphery of a metal shell into a female screw in a mounting hole provided in an engine head of the internal combustion engine. In such a spark plug, an annular sealing member (gasket) is attached to the outer periphery of the metal shell in order to prevent airtight leakage in the combustion chamber through the mounting hole. A general gasket is produced by folding a plate material formed in an annular shape from a steel strip for cold rolling (hereinafter referred to as “Fe”), for example, in a radial direction so that the cross section has an S shape. When the spark plug is attached to the attachment hole, the gasket is sandwiched between the overhanging portion of the metal shell and the opening peripheral portion of the attachment hole and compressed, and the axial force (according to tightening) is improved while improving adhesion. A reaction force acting in the axial direction due to compression is generated, and airtight leakage in the combustion chamber is sealed through the mounting hole.

近年、内燃機関の小型化、高性能化が図られ、エンジンの振動が激しくなる傾向にあり、また、燃焼室内の温度も上昇傾向にある。このため、従来のFeからなるガスケットでは、エンジンの駆動・休止に伴う加熱・冷却サイクルによって発生するクリープ変形に対する耐久性が比較的低いため、緩みを生じて軸力の低下を招く虞がある。そこで、Feよりも剛性が高く、クリープ変形を生じにくいステンレス鋼からなるガスケットを用い、気密性の維持が図られている(例えば、特許文献1参照。)。   In recent years, downsizing and higher performance of internal combustion engines have been achieved, engine vibrations tend to be intense, and the temperature in the combustion chamber is also increasing. For this reason, a conventional gasket made of Fe has a relatively low durability against creep deformation caused by a heating / cooling cycle that accompanies driving / resting of the engine, so that it may loosen and cause a reduction in axial force. Therefore, the use of a gasket made of stainless steel, which is higher in rigidity than Fe and hardly causes creep deformation, maintains airtightness (see, for example, Patent Document 1).

特開2004−134120号公報JP 2004-134120 A

しかしながら、内燃機関の小型化に伴いスパークプラグも小型化が図られ、主体金具は薄肉化に伴い強度が低下するため、取り付け時に推奨されるスパークプラグの締付トルクが低く設定されている。ステンレス鋼からなる剛性の高いガスケットは塑性変形が生じにくいため、締付トルクが低くなれば、締め付け後に十分な軸力を得られず、燃焼室内の気密漏れの封止が不十分となる虞があった。一方、ガスケットに十分な塑性変形を生じさせようと締付トルクを高めれば、小型化により強度の低下した主体金具のねじ首などにかかる負担が増加し、破断等を生ずる虞があった。   However, as the internal combustion engine is reduced in size, the spark plug is also reduced in size, and the strength of the metal shell decreases as the thickness of the metal shell is reduced. Therefore, the recommended tightening torque of the spark plug is set low. Highly rigid gaskets made of stainless steel are less prone to plastic deformation, so if the tightening torque is low, sufficient axial force cannot be obtained after tightening, which may result in insufficient sealing of the airtight leak in the combustion chamber. there were. On the other hand, if the tightening torque is increased so as to cause sufficient plastic deformation of the gasket, the burden on the screw neck of the metal shell whose strength has been reduced due to downsizing increases, which may cause breakage or the like.

本発明は上記問題点を解決するためになされたものであり、低い締付トルクでも十分な軸力を得ることができるスパークプラグ用の封止部材およびスパークプラグを提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a spark plug sealing member and a spark plug capable of obtaining a sufficient axial force even with a low tightening torque.

求項に係る発明のスパークプラグ用の封止部材は、オーステナイト系ステンレス鋼もしくはフェライト系ステンレス鋼からなる環状をなす一枚の板材にその板材を径方向に折り返す加工を施して、少なくとも前記板材が軸線方向に2層以上重なる配置となる部位を有するように形成されると共に、筒状をなしねじ山を有するスパークプラグの主体金具の外周に装着されて用いられ、前記主体金具が内燃機関の取付孔に螺合により取り付けられた状態において、前記主体金具の外周に設けられその外周から外向きに張り出しつつ周方向に一周する形態をなす張出部と、前記取付孔の開口周縁部との間にて、前記軸線方向に圧縮されることで、前記張出部と前記開口周縁部との間を封止するスパークプラグ用の封止部材であって、呼び径がM10以下である前記主体金具に装着され、前記内燃機関へ取り付けられる前の状態において、前記軸線方向に前記封止部材を構成する前記板材の層が最も多い最多重なり部位におけるその板材の層の数をn、前記板材の平均厚みをl[mm]、前記最多重なり部位における前記板材の各層の合計厚みをL[mm]、圧縮前の前記封止部材の前記軸線方向における厚みをx[mm]としたときに、0.2≦l[mm]≦0.5と、2≦n≦5と、1.1L≦x≦1.4L ・・・ 以上、(2)とを満たすとともに、前記板材が軸線方向に重なる配置となる2つの部位間を折り返して接続する部位を折曲部とし、複数の前記折曲部のうちの一の折曲部において最も小さな曲率半径を有する部分のその曲率半径を、その折曲部における最小曲率半径Rとし、さらに複数の前記折曲部同士でそれぞれの前記最小曲率半径Rを比較して、前記最小曲率半径Rが最も大きな第1折曲部のその最小曲率半径RをR1[mm]とし、前記最小曲率半径Rが最も小さな第2折曲部のその最小曲率半径RをR2[mm]としたときに、0.2≦R1≦0.8 ・・・ (3)と、0.05≦R2≦0.2 ・・・ (4)と、R1>R2 ・・・ (5)とを満たすことを特徴とする。 A sealing member for the spark plug according to a Motomeko 1, giving the process of folding the sheet material in the radial direction on a single plate material forming the annular made of austenitic stainless steel or ferritic stainless steel, at least the The plate member is formed so as to have a portion where two or more layers are overlapped in the axial direction, and is used by being mounted on the outer periphery of a metallic shell of a spark plug having a cylindrical shape and having a thread. A projecting portion that is provided on the outer periphery of the metal shell and extends outwardly from the outer periphery of the metal shell, and forms a round in the circumferential direction, and an opening peripheral portion of the mounting hole. Is a sealing member for a spark plug that seals between the projecting portion and the peripheral edge portion of the opening by being compressed in the axial direction. The number of layers of the plate material in the most multiplexed portion where the number of layers of the plate material constituting the sealing member is the largest in the axial direction in a state before being attached to the metal shell and being attached to the internal combustion engine which is 0 or less N, the average thickness of the plate material is l [mm], the total thickness of each layer of the plate material at the most multiplexed portion is L [mm], and the thickness of the sealing member in the axial direction before compression is x [mm] when a, and 0.2 ≦ l [mm] ≦ 0.5 , and 2 ≦ n ≦ 5, 1.1L ≦ x ≦ 1.4L ··· above, fulfills and (2), the plate Is a portion that is folded and connected between two portions that are arranged to overlap in the axial direction, and the curvature radius of the portion having the smallest curvature radius in one of the plurality of the bent portions , The minimum radius of curvature R at the bent portion Further, the minimum curvature radii R of the plurality of bent portions are compared with each other, the minimum radius of curvature R of the first bent portion having the largest minimum curvature radius R is set to R1 [mm], and When the minimum curvature radius R of the second bent portion having the smallest minimum curvature radius R is R2 [mm], 0.2 ≦ R1 ≦ 0.8 (3) and 0.05 ≦ R2 ≦ 0.2 (4) and R1> R2 (5) are satisfied .

また、請求項に係る発明のスパークプラグ用の封止部材は、請求項記載の発明の構成に加え、前記第1折曲部のうち曲率半径が前記最小曲率半径R1となる部分における前記板材の厚みをt1[mm]とし、前記第2折曲部のうち曲率半径が前記最小曲率半径R2となる部分における前記板材の厚みをt2[mm]としたときに、t2<t1 ・・・ (6)を満たすことを特徴とする。 Moreover, the sealing member for a spark plug of the invention according to claim 2 is the structure of the invention according to claim 1 , wherein the radius of curvature of the first bent portion becomes the minimum radius of curvature R <b> 1. When the thickness of the plate material is t1 [mm] and the thickness of the plate material in the portion where the radius of curvature is the minimum curvature radius R2 in the second bent portion is t2 [mm], t2 <t1. (6) is satisfied.

また、請求項に係る発明のスパークプラグは、請求項1または2に記載のスパークプラグ用の封止部材が装着されたことを特徴とする。 A spark plug of the invention according to claim 3 is characterized in that the spark plug sealing member according to claim 1 or 2 is mounted.

請求項に係る発明のスパークプラグ用の封止部材は、オーステナイト系ステンレス鋼もしくはフェライト系ステンレス鋼からなるので、一般的に用いられる冷間圧延用鋼帯からなる封止部材と比べて剛性が高く、エンジンの駆動・休止に伴う加熱・冷却によって発生するクリープ変形に対する耐久性が高い。この封止部材を呼び径がM10以下のスパークプラグに装着する場合、軸線方向における封止部材の(全体の)厚みxが(2)の式を満たすことを規定している。つまり、一般的に用いられる封止部材と比べ軸線方向における厚みxが小さいので、スパークプラグの取り付け時に軸線方向に圧縮されても、弾性変形中に、あるいは弾性変形が限界に達して塑性変形が生じてすぐに、封止部材を構成する板材同士を密着状態にすることができる。スパークプラグの締付トルクと封止部材に生ずる軸力との関係において、締付トルクの上昇に伴い、封止部材が弾性変形して軸力が上昇することとなるが、その弾性変形が限界となり塑性変形が生ずると、締付トルクが高まっても軸力が上昇しない状態となる場合がある。こうした場合でも、請求項に係る封止部材は、上記のように弾性変形中に、あるいは塑性変形が生じてすぐ板材同士が密着状態となるので、軸力を継続して上昇させることができる。 Since the sealing member for a spark plug of the invention according to claim 1 is made of austenitic stainless steel or ferritic stainless steel, the rigidity is higher than that of a sealing member made of a generally used cold rolling steel strip. High durability against creep deformation caused by heating / cooling during engine operation / rest. When this sealing member is attached to a spark plug having a nominal diameter of M10 or less, it is defined that the (total) thickness x of the sealing member in the axial direction satisfies the expression (2). That is, since the thickness x in the axial direction is smaller than that of a generally used sealing member, even if the spark plug is compressed in the axial direction, the elastic deformation reaches the limit and the plastic deformation does not occur. As soon as it occurs, the plate materials constituting the sealing member can be brought into close contact with each other. In the relationship between the tightening torque of the spark plug and the axial force generated in the sealing member, the sealing member is elastically deformed and the axial force is increased as the tightening torque is increased. When plastic deformation occurs, the axial force may not increase even when the tightening torque is increased. Even in such a case, the sealing member according to claim 1 can continuously increase the axial force because the plate members are in close contact with each other during elastic deformation or immediately after plastic deformation occurs as described above. .

封止部材の厚みxが1.4Lより大きい場合、締付トルクに対する軸力は、一般的に用いられる冷間圧延用鋼帯からなる封止部材よりも小さくなる虞がある。また、封止部材には主体金具への装着後に脱落防止のため全体あるいは内孔側の一部を軽く潰すことで内向きに突出する部位が形成される。封止部材の厚みxが1.1Lより小さい場合、潰しを行っても脱落防止に十分な大きさの突出部位を形成できない虞がある。   When the thickness x of the sealing member is larger than 1.4 L, the axial force with respect to the tightening torque may be smaller than that of a sealing member made of a generally used cold rolling steel strip. In addition, the sealing member is formed with a portion projecting inward by lightly crushing the whole or a part of the inner hole side to prevent dropping after being attached to the metal shell. When the thickness x of the sealing member is smaller than 1.1 L, there is a possibility that a projecting portion having a size sufficient to prevent the dropout may not be formed even if the sealing member is crushed.

ところで、封止部材の第1折曲部は、最も大きな最小曲率半径R1を持つ部位であり、封止部材に締付トルクを加えて生ずる弾性変形や、弾性変形が限界に達して生ずる塑性変形の状態は、最小曲率半径R1の大きさによって異なってくる。つまり、最小曲率半径R1の大きさと軸力との大きさには相関関係がある。従って封止部材に一定の圧縮力が加えられた場合、封止部材の変形の度合いを最小曲率半径R1の大きさによって調整することができ、封止部材に生ずる軸力は、その封止部材の変形の度合いによって調整することができる。スパークプラグを取り付ける際にトルクレンチを用いず、一般的に採用される回転角度(90度〜270度)で締め付けを行った場合、封止部材に加わる圧縮力の範囲は一定の範囲となるが、その範囲にあわせ、狙いの軸力が得られるように、最小曲率半径R1の大きさを調整することが可能となる。その最小曲率半径R1が(3)の式を満たせば、上記回転角度で締め付けを行った場合、封止部材によって十分な封止効果を得ることができる軸力を得ることができる。 By the way, the 1st bending part of a sealing member is a site | part with the largest minimum curvature radius R1, and the plastic deformation which occurs when an elastic deformation reaches a limit and elastic deformation which applies a fastening torque to a sealing member The state of depends on the size of the minimum curvature radius R1. That is, there is a correlation between the magnitude of the minimum curvature radius R1 and the magnitude of the axial force. Therefore, when a certain compressive force is applied to the sealing member, the degree of deformation of the sealing member can be adjusted by the size of the minimum curvature radius R1, and the axial force generated in the sealing member is the sealing member. It can be adjusted according to the degree of deformation. When a spark plug is attached without using a torque wrench and tightening is performed at a rotation angle (90 degrees to 270 degrees) generally employed, the range of compressive force applied to the sealing member is a certain range. The size of the minimum curvature radius R1 can be adjusted in accordance with the range so that a target axial force can be obtained . Satisfy the minimum radius of curvature R1 of that is the formula (3), when performing tightening by the rotational angle, it is possible to obtain the axial force can obtain sufficient sealing effect by the sealing member.

また、最も小さな最小曲率半径R2を持つ第2折曲部のその最小曲率半径R2が(4)の式を満たすので、圧縮時に、この第2折曲部における弾性変形や塑性変形が滑らかに行われ、封止部材を構成する板材の各層同士の接触時の密着性を高めることができる。 Further, since the second bent portion its minimum radius of curvature R2 of having most small minimum radius of curvature R2 satisfies the formula (4), at the time of compression, the elastic deformation and plastic deformation in the second bent portion is smoothly It is performed and the adhesiveness at the time of contact of each layer of the board | plate material which comprises a sealing member can be improved.

このように、ステンレス鋼からなり剛性の高い封止部材を作製するにあたり、請求項に係る発明のように、第1折曲部よりも曲げの度合いを大きくする必要のある第2折曲部の厚みt2を、第1折曲部の厚みt1よりも薄くすれば、加工を容易に行うことができる。 Thus, when producing a highly rigid sealing member made of stainless steel, as in the invention according to claim 2 , the second bent portion needs to have a higher degree of bending than the first bent portion. If thickness t2 of this is made thinner than thickness t1 of the 1st bending part, processing can be performed easily.

また、請求項に係る発明のスパークプラグでは、請求項1または2に記載のスパークプラグ用の封止部材を装着することで、小型化、小径化を図っても、十分な封止効果を得ることができる。 Moreover, in the spark plug of the invention according to claim 3 , by mounting the sealing member for the spark plug according to claim 1 or 2 , a sufficient sealing effect can be obtained even if the size and diameter are reduced. Obtainable.

エンジンヘッド150に取り付けた状態でみたスパークプラグ100の部分断面図である。FIG. 3 is a partial cross-sectional view of the spark plug 100 as viewed in a state attached to the engine head 150. エンジンヘッド150に取り付けた状態のスパークプラグ100のガスケット80付近を拡大してみた断面図である。FIG. 3 is a cross-sectional view in which the vicinity of a gasket 80 of a spark plug 100 attached to an engine head 150 is enlarged. ガスケット80を圧縮により変形させる前の周方向における断面図である。It is sectional drawing in the circumferential direction before deforming the gasket 80 by compression. 締付トルクと軸力との関係を示すグラフである。It is a graph which shows the relationship between fastening torque and axial force. ガスケット全体の厚みと脱落発生回数との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the whole gasket, and the frequency | count of omission occurrence. ガスケット全体の厚みと軸力との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the whole gasket, and axial force. ガスケット全体の厚みと軸力との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the whole gasket, and axial force. ガスケット全体の厚みと軸力との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the whole gasket, and axial force. ガスケット全体の厚みと軸力との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the whole gasket, and axial force. ガスケット全体の厚みと軸力との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the whole gasket, and axial force. 最小曲率半径R1の違いによる回転角度と軸力との関係を示すグラフである。It is a graph which shows the relationship between the rotation angle by the difference in minimum curvature radius R1, and axial force. 10kNの軸力が得られる最小曲率半径R1と回転角度との関係を示すグラフである。It is a graph which shows the relationship between the minimum curvature radius R1 in which the axial force of 10 kN is obtained, and a rotation angle.

以下、本発明を具体化したスパークプラグおよびその製造方法の一実施の形態について、図面を参照して説明する。まず、図1〜図3を参照し、本発明に係る封止部材の一例としてのガスケット80を装着したスパークプラグ100の構造について説明する。図1は、エンジンヘッド150に取り付けた状態でみたスパークプラグ100の部分断面図である。図2は、エンジンヘッド150に取り付けた状態のスパークプラグ100のガスケット80付近を拡大してみた断面図である。図3は、ガスケット80を圧縮により変形させる前の周方向における断面図である。なお、図1において、スパークプラグ100の軸線O方向を図面における上下方向とし、下側をスパークプラグ100の先端側、上側を後端側として説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a spark plug embodying the present invention and an embodiment of a manufacturing method thereof will be described with reference to the drawings. First, with reference to FIGS. 1-3, the structure of the spark plug 100 which mounted | wore with the gasket 80 as an example of the sealing member which concerns on this invention is demonstrated. FIG. 1 is a partial cross-sectional view of the spark plug 100 as viewed in a state attached to the engine head 150. FIG. 2 is an enlarged cross-sectional view of the vicinity of the gasket 80 of the spark plug 100 attached to the engine head 150. FIG. 3 is a cross-sectional view in the circumferential direction before the gasket 80 is deformed by compression. In FIG. 1, the axis O direction of the spark plug 100 will be described as the vertical direction in the drawing, the lower side will be described as the front end side, and the upper side will be described as the rear end side.

図1に示すように、スパークプラグ100は、概略、自身の軸孔12内の先端側に中心電極20を保持し、後端側に端子金具40を保持した絶縁碍子10を、その絶縁碍子10の径方向周囲を周方向に、主体金具50で取り囲んで保持した構造を有する。また、主体金具50の先端面57には接地電極30が接合されており、その先端部31側が、中心電極20と対向するように屈曲されている。   As shown in FIG. 1, the spark plug 100 roughly includes an insulator 10 that holds the center electrode 20 on the front end side in its own shaft hole 12 and holds the terminal fitting 40 on the rear end side. The outer periphery in the circumferential direction is surrounded by the metal shell 50 and held in the circumferential direction. Further, the ground electrode 30 is joined to the front end surface 57 of the metal shell 50, and the front end portion 31 side is bent so as to face the center electrode 20.

まず、絶縁碍子10について説明する。絶縁碍子10は周知のようにアルミナ等を焼成して形成され、軸中心に軸線O方向へ延びる軸孔12が形成された筒形状を有する。軸線O方向の略中央には外径が最も大きい鍔部19が形成されており、それより後端側(図1における上側)には後端側胴部18が形成されている。鍔部19より先端側(図1における下側)には後端側胴部18よりも外径の小さな先端側胴部17が形成され、更にその先端側胴部17よりも先端側に、先端側胴部17よりも外径の小さな脚長部13が形成されている。脚長部13は先端側ほど縮径されており、スパークプラグ100が内燃機関のエンジンヘッド150に取り付けられた際には、その燃焼室151内に曝される。そして、脚長部13と先端側胴部17との間は段部15として形成されている。   First, the insulator 10 will be described. As is well known, the insulator 10 is formed by firing alumina or the like, and has a cylindrical shape in which an axial hole 12 extending in the direction of the axis O is formed at the axial center. A flange portion 19 having the largest outer diameter is formed substantially at the center in the direction of the axis O, and a rear end side body portion 18 is formed on the rear end side (the upper side in FIG. 1). A front end side body portion 17 having an outer diameter smaller than that of the rear end side body portion 18 is formed on the front end side (lower side in FIG. 1) from the flange portion 19. A long leg portion 13 having an outer diameter smaller than that of the side body portion 17 is formed. The long leg portion 13 is reduced in diameter toward the distal end side, and exposed to the combustion chamber 151 when the spark plug 100 is attached to the engine head 150 of the internal combustion engine. A step portion 15 is formed between the leg length portion 13 and the front end side body portion 17.

次に、中心電極20について説明する。中心電極20はインコネル(商標名)600または601等のニッケル系合金等で形成され、内部に熱伝導性に優れる銅等からなる金属芯23を有している。中心電極20の先端部21は絶縁碍子10の先端面から突出しており、先端側に向かって径小となるように形成されている。その先端部21の先端面には、耐火花消耗性を向上するため貴金属からなるチップ90が接合されている。また、中心電極20は、軸孔12の内部に設けられたシール体4およびセラミック抵抗3を経由して、上方の端子金具40に電気的に接続されている。そして端子金具40には点火コイル(図示外)が接続され、高電圧が印加されるようになっている。   Next, the center electrode 20 will be described. The center electrode 20 is formed of a nickel-based alloy such as Inconel (trade name) 600 or 601 and has a metal core 23 made of copper or the like having excellent thermal conductivity. The distal end portion 21 of the center electrode 20 protrudes from the distal end surface of the insulator 10 and is formed so as to become smaller in diameter toward the distal end side. A tip 90 made of a noble metal is joined to the tip surface of the tip portion 21 in order to improve the spark wear resistance. Further, the center electrode 20 is electrically connected to the upper terminal fitting 40 via the seal body 4 and the ceramic resistor 3 provided in the shaft hole 12. An ignition coil (not shown) is connected to the terminal fitting 40 so that a high voltage is applied.

次いで、接地電極30について説明する。接地電極30は耐腐食性の高い金属から構成され、一例として、インコネル(商標名)600または601等のニッケル合金が用いられる。この接地電極30は自身の長手方向と直交する横断面が略長方形を有しており、基部32が主体金具50の先端面57に溶接により接合されている。また、接地電極30の先端部31は、一側面側が中心電極20の先端部21に向き合うように屈曲されている。   Next, the ground electrode 30 will be described. The ground electrode 30 is made of a metal having high corrosion resistance. As an example, a nickel alloy such as Inconel (trade name) 600 or 601 is used. The ground electrode 30 has a substantially rectangular cross section perpendicular to its longitudinal direction, and the base 32 is joined to the distal end surface 57 of the metal shell 50 by welding. The tip 31 of the ground electrode 30 is bent so that one side faces the tip 21 of the center electrode 20.

次に、主体金具50について説明する。主体金具50は、内燃機関のエンジンヘッド150にスパークプラグ100を固定するための円筒状の金具であり、その内部に、絶縁碍子10の後端側胴部18の一部から脚長部13にかけての部位を取り囲むようにして、絶縁碍子10を保持している。主体金具50は低炭素鋼材より形成され、図示外のスパークプラグレンチが嵌合する工具係合部51と、エンジンヘッド150の取付孔155の雌ねじに螺合するねじ山が形成された取付部52とを有する。なお、本実施の形態の主体金具50は、取付部52のねじ山の呼び径をM12とする規格に沿って作製されたものである。   Next, the metal shell 50 will be described. The metal shell 50 is a cylindrical metal fitting for fixing the spark plug 100 to the engine head 150 of the internal combustion engine. Inside the metal shell 50 is a portion extending from a part of the rear end side body portion 18 of the insulator 10 to the leg length portion 13. The insulator 10 is held so as to surround the part. The metal shell 50 is made of a low carbon steel material, and a tool engaging portion 51 to which a spark plug wrench (not shown) is fitted, and a mounting portion 52 in which a screw thread to be screwed into the female screw of the mounting hole 155 of the engine head 150 is formed. And have. The metal shell 50 of the present embodiment is manufactured in accordance with a standard in which the nominal diameter of the thread of the mounting portion 52 is M12.

主体金具50の工具係合部51と取付部52との間には、鍔状をなし外向きに張り出しつつ主体金具50の外周を一周する張出部54が形成されている。また、取付部52と張出部54との間の部位はねじ首55と称され、張出部54の外径や取付部52の外径よりも小径に形成されている。ねじ首55には、スパークプラグ100をエンジンヘッド150に取り付けた際に、取付孔155を介した燃焼室151内の気密漏れを封止するためのガスケット80(後述)が嵌挿されている。   Between the tool engaging portion 51 and the attachment portion 52 of the metal shell 50, an overhanging portion 54 is formed. A portion between the attachment portion 52 and the overhang portion 54 is referred to as a screw neck 55 and is formed to have a smaller diameter than the outer diameter of the overhang portion 54 and the outer diameter of the attachment portion 52. When the spark plug 100 is attached to the engine head 150, a gasket 80 (described later) for sealing an airtight leak in the combustion chamber 151 via the attachment hole 155 is fitted into the screw neck 55.

また、主体金具50の工具係合部51より後端側には薄肉の加締部53が設けられ、張出部54と工具係合部51との間には、加締部53と同様に薄肉の座屈部58が設けられている。工具係合部51から加締部53にかけての主体金具50の内周面と絶縁碍子10の後端側胴部18の外周面との間には円環状のリング部材6,7が介在されており、更に両リング部材6,7間にタルク(滑石)9の粉末が充填されている。そして、加締部53を内側に折り曲げるようにして加締めることにより、リング部材6,7およびタルク9を介し、絶縁碍子10が主体金具50内で先端側に向け押圧される。これにより、主体金具50の内周で取付部52の位置に形成された段部56に、環状の板パッキン8を介し、絶縁碍子10の段部15が支持されて、主体金具50と絶縁碍子10とが一体にされる。このとき、主体金具50と絶縁碍子10との間の気密性は板パッキン8によって保持され、燃焼ガスの流出が防止される。上記した座屈部58は、加締めの際に、圧縮力の付加に伴い外向きに撓み変形するように構成されており、タルク9の軸線O方向の圧縮長を長くして気密性を高めている。   Further, a thin caulking portion 53 is provided on the rear end side of the metal fitting 50 from the tool engaging portion 51, and between the overhang portion 54 and the tool engaging portion 51, similarly to the caulking portion 53. A thin buckling portion 58 is provided. Annular ring members 6, 7 are interposed between the inner peripheral surface of the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the outer peripheral surface of the rear end side body portion 18 of the insulator 10. Further, a powder of talc (talc) 9 is filled between the ring members 6 and 7. Then, the insulator 10 is pressed toward the front end side in the metal shell 50 through the ring members 6 and 7 and the talc 9 by bending the crimping portion 53 inwardly. Thereby, the step portion 15 of the insulator 10 is supported by the step portion 56 formed at the position of the mounting portion 52 on the inner periphery of the metal shell 50 via the annular plate packing 8, so that the metal shell 50 and the insulator 50 are supported. 10 is integrated. At this time, the airtightness between the metal shell 50 and the insulator 10 is maintained by the plate packing 8, and the outflow of combustion gas is prevented. The above-described buckling portion 58 is configured to bend outwardly and deform with the addition of compressive force during caulking, and increase the compression length of the talc 9 in the direction of the axis O to improve airtightness. ing.

次に、ガスケット80について説明する。図2,図3に示すガスケット80は、オーステナイト系ステンレス鋼、もしくはフェライト系ステンレス鋼からなる環状をなす一枚の板材に対し、その板材の径方向において自身を折り返す加工を施して作製されたものである。ガスケット80は、スパークプラグ100がエンジンヘッド150に取り付けられた際に、取付孔155の開口周縁部156と主体金具50の張出部54との間で圧縮されて変形し、両者に密着することで、取付孔155を介した燃焼室151内の気密漏れを封止する。なお、図2では、圧縮による変形後のガスケット80の断面形状を示し、図3では変形前のガスケット80の断面形状を示している。   Next, the gasket 80 will be described. The gasket 80 shown in FIG. 2 and FIG. 3 is produced by performing a process of turning itself back in the radial direction of a plate made of austenitic stainless steel or ferritic stainless steel. It is. When the spark plug 100 is attached to the engine head 150, the gasket 80 is compressed and deformed between the opening peripheral edge portion 156 of the attachment hole 155 and the overhanging portion 54 of the metal shell 50, and adheres to both. Thus, an airtight leak in the combustion chamber 151 via the mounting hole 155 is sealed. 2 shows a sectional shape of the gasket 80 after being deformed by compression, and FIG. 3 shows a sectional shape of the gasket 80 before being deformed.

ガスケット80は、軸線O方向において、板材が、少なくとも2層以上重なる配置となる部位を有している。また、図示しないが、ガスケット80は、圧縮前の状態において取付部52の外径よりも僅かに大きな内径を有している。スパークプラグ100への装着時に、ガスケット80は主体金具50の先端側からねじ首55に嵌め込まれる。そして張出部54に当接した状態で、ガスケット80の全体あるいは内孔側の一部が軽く潰されることで、ガスケット80には主体金具50のねじ山の先端よりも内向きに突出する部位が形成され、ねじ首55からの抜けが防止される。   The gasket 80 has a portion in which at least two layers overlap each other in the axis O direction. Although not shown, the gasket 80 has an inner diameter slightly larger than the outer diameter of the mounting portion 52 in a state before compression. When mounting to the spark plug 100, the gasket 80 is fitted into the screw neck 55 from the front end side of the metal shell 50. Then, the entire portion of the gasket 80 or a part on the inner hole side is lightly crushed in a state where it is in contact with the overhanging portion 54, so that the gasket 80 has a portion protruding inward from the tip of the thread of the metal shell 50. Is formed, and the screw neck 55 is prevented from coming off.

このような構造を有する本実施の形態のスパークプラグ100では、上記したように、小型化・小径化に伴い取り付け時の締付トルクが低下しても、燃焼室151内の気密漏れを防止するのに十分な軸力を得られるように、ガスケット80の材料を規定している。具体的には、ガスケット80の材料として、例えばJIS(日本工業規格)に定められた以下の規格番号のステンレス鋼(SUS)を用いることができる。オーステナイト系ステンレス鋼の例としては、SUS201、SUS202、SUS301、SUS301J、SUS302、SUS302B、SUS304、SUS304L、SUS304N1、SUS304N2、SUS304LN、SUS305、SUS309S、SUS310S、SUS316、SUS316L、SUS316N、SUS316LN、SUS316J1、SUS316J1L、SUS317、SUS317L、SUS317J1、SUS321、SUS347、SUSXM15J1等を用いることができる。また、フェライト系ステンレス鋼の例としては、SUS405、SUS410L、SUS429、SUS430、SUS430LX、SUS430JIL、SUS434、SUS436L、SUS436JIL、SUS444、SUS445J1、SUS445J2、SUS447J1、SUSXM27等を用いることができる。これらのようなステンレス鋼を用いて作製したガスケット80は、一般的に用いられるFeからなるガスケットと比べ剛性が高く、エンジンの駆動・休止に伴う加熱・冷却によって発生するクリープ変形に対し、耐久性が高い。   In the spark plug 100 of the present embodiment having such a structure, as described above, even if the tightening torque at the time of attachment decreases as the size and diameter of the spark plug 100 are reduced, airtight leakage in the combustion chamber 151 is prevented. The material of the gasket 80 is defined so that a sufficient axial force can be obtained. Specifically, as a material of the gasket 80, for example, stainless steel (SUS) having the following standard number defined in JIS (Japanese Industrial Standard) can be used. Examples of austenitic stainless steels include SUS201, SUS202, SUS301, SUS301J, SUS302, SUS302B, SUS304, SUS304L, SUS304N1, SUS304N2, SUS304LN, SUS305, SUS309S, SUS310S, SUS316, US3316L, S3316L, S3316L, S3316L, S3316L, S3316L, S3316L, S3316L SUS317L, SUS317J1, SUS321, SUS347, SUSXM15J1, etc. can be used. Examples of ferritic stainless steel include SUS405, SUS410L, SUS429, SUS430, SUS430LX, SUS430JIL, SUS434, SUS436L, SUS436JIL, SUS444, SUS445J1, SUS445J2, SUS447J1, and SUS447M27. The gaskets 80 made of stainless steel such as these have higher rigidity than the commonly used gaskets made of Fe, and are resistant to creep deformation caused by heating and cooling associated with engine driving and stopping. Is expensive.

ガスケット80は、スパークプラグ100の取り付け時に、主体金具50の張出部54と取付孔155の開口周縁部156との間に挟まれて圧縮され、変形することによって密着性を高め、より高い封止効果を得るものである。このためにはガスケット80を構成する板材の平均厚みについて、上記のオーステナイト系ステンレス鋼もしくはフェライト系ステンレス鋼を使用する場合は、0.2〜0.5mmのものを使用することが望ましい。板材の平均厚みが0.2mm未満では、スパークプラグ100の取り付け時に比較的小さな圧縮力にてガスケット80が潰れてしまい、締付トルクの適性範囲内にて十分な軸力を得ることができなくなる虞がある。一方、平均厚みが0.5mmを超えるとガスケット80に変形を生じさせるための圧縮力を大きくする必要が生じ、より強い圧縮力を加えてスパークプラグ100の締め付けを行った場合、主体金具50のねじ首55の破損や取付部52のねじ山の潰れを招く虞がある。なお、平均厚みとは、板材において異なる部位(例えば、互いに異なる10箇所の部位)の厚みの平均である。   The gasket 80 is sandwiched between the overhanging portion 54 of the metallic shell 50 and the opening peripheral edge portion 156 of the mounting hole 155 when the spark plug 100 is attached, is compressed, and is deformed to improve the adhesion, thereby improving the sealing performance. A stopping effect is obtained. For this purpose, when using the austenitic stainless steel or the ferritic stainless steel, the average thickness of the plate material constituting the gasket 80 is preferably 0.2 to 0.5 mm. If the average thickness of the plate material is less than 0.2 mm, the gasket 80 is crushed by a relatively small compressive force when the spark plug 100 is attached, and a sufficient axial force cannot be obtained within an appropriate range of tightening torque. There is a fear. On the other hand, when the average thickness exceeds 0.5 mm, it is necessary to increase the compression force for causing deformation of the gasket 80. When the spark plug 100 is tightened by applying a stronger compression force, There is a possibility that the screw neck 55 may be damaged or the thread of the mounting portion 52 may be crushed. The average thickness is an average thickness of different portions (for example, ten different portions) in the plate material.

もっとも、スパークプラグをエンジンヘッドに取り付けるときに推奨される締付トルクは、JIS B8031において、スパークプラグの大きさの規格(呼び径)に応じて定められており、呼び径が小さいほど締付トルクは小さい。M12以下の小径のスパークプラグ100において、上記のようなステンレス鋼(SUS)からなるガスケット80を、そのまま、従来のFeからなるガスケットに置き換えて用いた場合、締め付け時に発生する軸力はFeからなるガスケットに比べて低下する。このことについて図4を参照して説明する。   However, the recommended tightening torque when attaching the spark plug to the engine head is determined according to the standard (nominal diameter) of the spark plug in JIS B8031, and the tightening torque is smaller as the nominal diameter is smaller. Is small. In the spark plug 100 having a small diameter of M12 or less, when the gasket 80 made of stainless steel (SUS) is replaced with a conventional gasket made of Fe as it is, the axial force generated during tightening is made of Fe. Reduced compared to gaskets. This will be described with reference to FIG.

ガスケットを装着したスパークプラグをエンジンヘッドに取り付けるとき、締付トルクを高めていくと、ガスケットにはまず弾性変形が生じ、軸力が上昇していく。図4に示すようにステンレス鋼からなるガスケット(2点鎖線で示す)は、Feからなるガスケット(実線で示す)よりも剛性が高いため、締付トルクの増加に伴い弾性変形が限界となって塑性変形(いわゆる座屈)が生じ始める締付トルクが大きい。座屈が生じている間は締付トルクを増加させても塑性変形が大きくなるだけで、軸力の上昇はほぼ横ばいとなり、軸力を損失した状態となる。さらに締付トルクを増加し、畳み込まれた板材同士が軸方向に密着してそれ以上の塑性変形がしにくくなると、軸力は再び上昇し始める。ステンレス鋼より剛性の低いFeからなるガスケットは、比較的低い締付トルクで十分な塑性変形を生じてしまうため、その座屈が生じている間の締付トルクの範囲(以下、「座屈領域」という。)がステンレス鋼からなるガスケットより小さい。呼び径がM12のスパークプラグでは、上記のJIS B8031で推奨される締付トルクは15〜25N・mであるが、その範囲において、ステンレス鋼からなるガスケットにおいて生ずる軸力は、Feからなるガスケットにおいて生ずる軸力に及ばない。つまり、ステンレス鋼からなるガスケットにおいてFeからなるガスケットと同等の軸力を得るには高い締付トルクが必要となる。   When a spark plug with a gasket is attached to an engine head, if the tightening torque is increased, the gasket first undergoes elastic deformation and the axial force increases. As shown in FIG. 4, the gasket made of stainless steel (shown by a two-dot chain line) is higher in rigidity than the gasket made of Fe (shown by a solid line), so that elastic deformation becomes a limit as the tightening torque increases. The tightening torque at which plastic deformation (so-called buckling) begins to occur is large. While the buckling is occurring, even if the tightening torque is increased, the plastic deformation only increases, and the increase in the axial force is almost flat and the axial force is lost. When the tightening torque is further increased and the folded plate materials are brought into close contact with each other in the axial direction and further plastic deformation becomes difficult, the axial force starts to rise again. A gasket made of Fe, which has a lower rigidity than stainless steel, causes sufficient plastic deformation at a relatively low tightening torque. Therefore, the range of tightening torque during the buckling (hereinafter referred to as “buckling region”). Is smaller than a gasket made of stainless steel. In the spark plug having a nominal diameter of M12, the tightening torque recommended in the above JIS B8031 is 15 to 25 N · m. In that range, the axial force generated in the stainless steel gasket is the same as that in the Fe gasket. It does not reach the resulting axial force. That is, a high tightening torque is required to obtain an axial force equivalent to that of a gasket made of Fe in a stainless steel gasket.

本実施の形態のガスケット80(図4の1点鎖線で示す)は、Feよりも剛性が高くクリープ変形に強いステンレス鋼を用いて作製しつつも、座屈領域を減少させることで、Feからなるガスケットと同等の締付トルクに対する軸力を得られるようにしたものである。具体的には、締付トルクを増加させる過程において、弾性変形中に、あるいは塑性変形が生じてすぐに板材同士が密着状態となり軸力の損失を低減できるように、変形がなされる前(締め付け前)の状態のガスケット80の全体の厚みについて規定を設けている。   The gasket 80 of the present embodiment (shown by a one-dot chain line in FIG. 4) is made of stainless steel that is more rigid than Fe and resistant to creep deformation, while reducing the buckling region. An axial force for a tightening torque equivalent to that of the gasket is obtained. Specifically, in the process of increasing the tightening torque, during the elastic deformation or immediately after the plastic deformation occurs, the plates are brought into close contact with each other so that the loss of axial force can be reduced (tightening). Regulations are provided for the overall thickness of the gasket 80 in the previous state.

図3に示すように、ガスケット80を構成する板材の層が軸線O方向に最も多く重なる部位(最多重なり部位)におけるその板材の層の数をnとする。例えば図3に示すガスケット80では、軸線O方向に沿う1点鎖線P上においてガスケット80を構成する板材の層が最も多く、その層の数は4である。また、板材の平均厚みをl[mm]とし、最多重なり部位における板材の各層の合計厚みをL[mm]とし、また軸線O方向におけるガスケット80全体の厚みをx[mm]とする。   As shown in FIG. 3, the number of plate layers in the portion where the layers of the plate material constituting the gasket 80 overlap most in the direction of the axis O (the most multiplexed portion) is n. For example, in the gasket 80 shown in FIG. 3, the number of layers of the plate material constituting the gasket 80 is the largest on the one-dot chain line P along the axis O direction, and the number of layers is four. Further, the average thickness of the plate material is l [mm], the total thickness of each layer of the plate material in the most multiplexed portion is L [mm], and the total thickness of the gasket 80 in the axis O direction is x [mm].

また、ガスケット80全体の厚みx[mm]を規定するにあたって、軸線Oと直交する2つの仮想平面を想定する。ガスケット80は周方向に連続して一周する環状をなすため、ガスケット80の軸線O方向両側にてそれら仮想平面をそれぞれガスケット80に、その全周にわたって接触させた状態とする。このときの2つの仮想平面間の距離が、ガスケット80全体の厚みxに相当する。   In defining the thickness x [mm] of the entire gasket 80, two virtual planes orthogonal to the axis O are assumed. Since the gasket 80 has an annular shape that makes a continuous round in the circumferential direction, the virtual planes are in contact with the gasket 80 over the entire circumference on both sides of the gasket 80 in the axis O direction. The distance between the two virtual planes at this time corresponds to the thickness x of the entire gasket 80.

また、上記したように、主体金具50の取付部52に形成されるねじ山の呼び径に応じて取り付け時の締付トルクの適正範囲が定められている。そこで、呼び径に応じた締付トルクの適正範囲内でガスケット80が十分な軸力を得られるように、呼び径によって、以下のようにガスケット80の規定を異ならせている。   As described above, the appropriate range of the tightening torque at the time of attachment is determined according to the nominal diameter of the thread formed on the attachment portion 52 of the metal shell 50. Therefore, the gasket 80 is defined differently depending on the nominal diameter so that the gasket 80 can obtain a sufficient axial force within an appropriate range of the tightening torque according to the nominal diameter.

本実施の形態のガスケット80のように、呼び径がM12である主体金具50に装着する場合、そのガスケット80については、
0.2≦l≦0.5
と、
2≦n≦5
と、
1.1L≦x≦1.45L ・・・ 以上、(1)
とを満たすことを規定している。
As in the case of the gasket 80 according to the present embodiment, when the metal fitting 50 having a nominal diameter of M12 is attached,
0.2 ≦ l ≦ 0.5
When,
2 ≦ n ≦ 5
When,
1.1L ≦ x ≦ 1.45L (1)
It is prescribed to satisfy.

一方、呼び径がM10以下である主体金具にガスケットを装着する場合、そのガスケットについては、
0.2≦l≦0.5
と、
2≦n≦5
と、
1.1L≦x≦1.4L ・・・ 以上、(2)
とを満たすことを規定している。
On the other hand, when attaching a gasket to a metal shell whose nominal diameter is M10 or less,
0.2 ≦ l ≦ 0.5
When,
2 ≦ n ≦ 5
When,
1.1L ≦ x ≦ 1.4L (2)
It is prescribed to satisfy.

前述したように、スパークプラグ100の製造過程において、ガスケット80は、ねじ首55に嵌め込まれた後、ガスケット80の全体あるいは内孔側の一部が軽く潰されることで、もとの内孔よりも内向きに突出する部位が形成されて、ねじ首55からの抜け(脱落)が防止される。この突出部位を形成するにあたって、xが1.1L未満であると、脱落を防止するのに十分な潰れによる突出量が得られず、ねじ首55からの脱落を十分に防止できない虞があることが、後述する実施例1の結果より確認されている。   As described above, in the process of manufacturing the spark plug 100, after the gasket 80 is fitted into the screw neck 55, the entire gasket 80 or a part on the inner hole side is lightly crushed, so A portion projecting inward is also formed, so that the screw neck 55 is prevented from coming off (dropping out). When forming this protruding portion, if x is less than 1.1 L, the amount of protrusion due to crushing sufficient to prevent the dropout cannot be obtained, and the dropout from the screw neck 55 may not be sufficiently prevented. This has been confirmed from the results of Example 1 described later.

一方、xを大きくすればガスケットを構成する板材の各層の間隙が広がり、圧縮時に層同士を密着させるのに必要となる弾性変形量および塑性変形量が大きくなるため、図4で示した座屈領域が広がる。スパークプラグを推奨される締付トルクで取付孔に取り付ける場合、主体金具の呼び径がM12の場合にはxを1.45L以下とすることが好ましく、また、M10以下の場合にはxを1.4L以下とすることが好ましい。上記xの上限を超えた場合、ガスケットの得られる軸力が、Feからなる従来のガスケットを用いたスパークプラグを同様に取り付けた場合に得られる軸力よりも小さくなってしまうことが、後述する実施例2〜4および実施例5,6の結果より確認されている。   On the other hand, if x is increased, the gap between the layers of the plate material constituting the gasket is widened, and the amount of elastic deformation and plastic deformation required to bring the layers into close contact with each other during compression increases, so the buckling shown in FIG. The area expands. When the spark plug is attached to the attachment hole with the recommended tightening torque, x is preferably 1.45L or less when the nominal diameter of the metal shell is M12, and x is 1 when M10 or less. .4L or less is preferable. It will be described later that when the upper limit of x is exceeded, the axial force obtained by the gasket becomes smaller than the axial force obtained when a spark plug using a conventional gasket made of Fe is similarly attached. This is confirmed from the results of Examples 2 to 4 and Examples 5 and 6.

また、本実施の形態では、図3に示す、ガスケット80の折曲部83,86,89の曲率半径について規定を設けている。折曲部とは、ガスケットの周方向断面において、ガスケットを構成する板材が軸線O方向に重なる配置となる2つの部位間を折り返し接続する部位を指す。具体的に、折曲部83は、板材上の部位で軸線O方向に沿う1点鎖線Q上に配置されている部位81と部位82との間を折り返して接続している。折曲部86は、板材上の部位で軸線O方向に沿う1点鎖線S上に配置されている部位84と部位85との間を折り返して接続している。そして折曲部89は、板材上の部位で軸線O方向に沿う1点鎖線P上に配置されている部位87と部位88との間を折り返して接続している。   In the present embodiment, provision is made for the radii of curvature of the bent portions 83, 86, 89 of the gasket 80 shown in FIG. The bent portion refers to a portion where the two plate portions constituting the gasket overlap each other in the direction of the axis O in the circumferential cross section of the gasket. Specifically, the bent portion 83 is folded and connected between a portion 81 and a portion 82 arranged on a one-dot chain line Q along the axis O direction at a portion on the plate material. The bent portion 86 is connected between the portion 84 and the portion 85 that are disposed on the one-dot chain line S along the axis O direction at the portion on the plate. The bent portion 89 is connected by folding back between a portion 87 and a portion 88 arranged on the one-dot chain line P along the axis O direction at a portion on the plate material.

次に、各折曲部83,86,89において、周方向断面の輪郭線で折り返しの内側となる輪郭線の曲率半径のうち、それぞれの最小となる部分の曲率半径(図3において点線で示す円の半径)を、それぞれの最小曲率半径Rとする。そして各折曲部83,86,89における各最小曲率半径Rを比較し、最も大きな最小曲率半径Rを持つ折曲部83のその最小曲率半径RをR1[mm]とし、最も小さな最小曲率半径Rを持つ折曲部86の最小曲率半径RをR2[mm]とする。このとき、本実施の形態では、
0.2≦R1≦0.8 ・・・ (3)
と、
0.05≦R2≦0.2 ・・・ (4)
と、
R1>R2 ・・・ (5)
とが満たされることを規定している。なお、折曲部83が、本発明における「第1折曲部」に相当し、折曲部86が、本発明における「第2折曲部」に相当する。
Next, in each of the bent portions 83, 86, and 89, the curvature radius of the smallest portion of the curvature radii of the contour that is inside the fold at the contour of the circumferential cross section (shown by a dotted line in FIG. 3). Let the radius of the circle) be the minimum radius of curvature R of each. Then, the respective minimum curvature radii R in the respective bent portions 83, 86, 89 are compared, and the minimum curvature radius R of the bent portion 83 having the largest minimum curvature radius R is defined as R1 [mm], and the smallest minimum curvature radius. The minimum curvature radius R of the bent portion 86 having R is R2 [mm]. At this time, in this embodiment,
0.2 ≦ R1 ≦ 0.8 (3)
When,
0.05 ≦ R2 ≦ 0.2 (4)
When,
R1> R2 (5)
And that is satisfied. The bent portion 83 corresponds to the “first bent portion” in the present invention, and the bent portion 86 corresponds to the “second bent portion” in the present invention.

スパークプラグ100を取付孔155に取り付けるとき、推奨される締付トルクでの締め付けを行うにはトルクレンチを用いる必要があるが、トルクレンチの準備ができない場合、締め付け時の回転角度を調整することで必要な軸力が得られるように設計されている。具体的には、締め付け時に取付孔155の開口周縁部156にガスケット80が当接してから、予め設定された回転角度での締め付けを行えば、推奨される締付トルクで締め付けた場合と同等の軸力が得られるというものである。折曲部83は、最も大きな最小曲率半径R1を持つ(すなわちR1>R2)ため、ガスケット80が圧縮されて変形する際に、ガスケット80全体の変形の度合いに大きく影響することになる。つまり、折曲部83の最小曲率半径R1によって、ガスケット80に締付トルクを加えて生ずる弾性変形や、弾性変形が限界に達して生ずる塑性変形の状態が異なってくる。このため、締め付け時の回転角度と得られる軸力との関係に相関関係があるといえる。従って、ガスケット80に一定の圧縮力が加えられた場合、ガスケット80の変形の度合いは、最小曲率半径R1の大きさによって調整することができ、ガスケット80に生ずる軸力は、そのガスケット80の変形の度合いによって調整することができることとなる。換言すると、スパークプラグ100を取り付ける際に一般的に採用される回転角度(90度〜270度)で締め付けを行った場合、ガスケット80に加わる圧縮力の範囲は一定の範囲となるが、その範囲にあわせ、狙いの軸力が得られるように、最小曲率半径R1の大きさを調整することが可能となる。そこで本実施の形態では、折曲部83の最小曲率半径R1を0.2mm以上0.8mm以下としている。後述する実施例7の結果に基づくと、折曲部83の最小曲率半径R1を上記範囲に設定すれば、一般的に採用される回転角度(90度〜270度)の範囲で締め付けを行った場合に、エンジンの振動等による緩みが生じないとされる最低限必要な10kNの軸力を得ることができた。   When attaching the spark plug 100 to the attachment hole 155, it is necessary to use a torque wrench to tighten with the recommended tightening torque, but if the torque wrench is not ready, adjust the rotation angle when tightening. Designed to obtain the required axial force. Specifically, when the gasket 80 is brought into contact with the opening peripheral edge 156 of the mounting hole 155 at the time of tightening, tightening at a preset rotation angle is equivalent to the case of tightening with the recommended tightening torque. Axial force can be obtained. Since the bent portion 83 has the largest minimum curvature radius R1 (that is, R1> R2), when the gasket 80 is compressed and deformed, the degree of deformation of the entire gasket 80 is greatly affected. That is, depending on the minimum curvature radius R1 of the bent portion 83, the state of elastic deformation caused by applying a tightening torque to the gasket 80 and the state of plastic deformation caused when the elastic deformation reaches the limit differ. For this reason, it can be said that there is a correlation in the relationship between the rotation angle at the time of tightening and the obtained axial force. Therefore, when a certain compressive force is applied to the gasket 80, the degree of deformation of the gasket 80 can be adjusted by the size of the minimum radius of curvature R1, and the axial force generated in the gasket 80 is the deformation of the gasket 80. It can be adjusted according to the degree. In other words, when tightening is performed at a rotation angle (90 degrees to 270 degrees) that is generally employed when the spark plug 100 is attached, the range of the compressive force applied to the gasket 80 is a certain range. Accordingly, it is possible to adjust the size of the minimum curvature radius R1 so that a target axial force can be obtained. Therefore, in the present embodiment, the minimum curvature radius R1 of the bent portion 83 is set to 0.2 mm or more and 0.8 mm or less. Based on the result of Example 7 to be described later, if the minimum radius of curvature R1 of the bent portion 83 is set in the above range, tightening is performed in a range of a rotation angle (90 degrees to 270 degrees) generally employed. In this case, it was possible to obtain a minimum axial force of 10 kN, which is considered to cause no loosening due to engine vibration or the like.

また、折曲部83とは異なり、折曲部86は、最も小さな最小曲率半径R2を持つため、この折曲部86における弾性変形や塑性変形の滑らかさが、ガスケットを構成する板材の各層同士の接触時の密着性に影響を及ぼす。そこで本実施の形態では、折曲部86の最小曲率半径R2を0.05mm以上0.2mm以下としている。折曲部86の最小曲率半径R2が0.05mm未満では、ガスケット80の圧縮時に折曲部86に亀裂が生ずる虞がある。また、折曲部86の最小曲率半径R2が0.2mmより大きいと、ガスケット80の圧縮時に板材の各層同士の密着性が得られず、エンジンの振動等による緩みが生ずる虞があることが、後述する実施例8の結果よりわかった。   Further, unlike the bent portion 83, the bent portion 86 has the smallest minimum radius of curvature R2, so that the smoothness of the elastic deformation and plastic deformation in the bent portion 86 is due to the layers of the plate material constituting the gasket. It affects the adhesion at the time of contact. Therefore, in the present embodiment, the minimum curvature radius R2 of the bent portion 86 is set to 0.05 mm or more and 0.2 mm or less. If the minimum curvature radius R2 of the bent portion 86 is less than 0.05 mm, the bent portion 86 may crack when the gasket 80 is compressed. Further, if the minimum curvature radius R2 of the bent portion 86 is larger than 0.2 mm, adhesion between the layers of the plate material may not be obtained when the gasket 80 is compressed, and there is a possibility that loosening due to engine vibration or the like may occur. This was found from the results of Example 8 described later.

さらに、本実施の形態では、折曲部83のうち曲率半径が最小曲率半径R1となる部分における板材の厚みをt1[mm]とし、折曲部86のうち曲率半径が最小曲率半径R2となる部分における板材の厚みをt2[mm]としたときに、
t2<t1 ・・・ (6)
を満たすことを規定している。
Further, in the present embodiment, the thickness of the plate material in the portion of the bent portion 83 where the curvature radius is the minimum curvature radius R1 is t1 [mm], and the curvature radius of the bent portion 86 is the minimum curvature radius R2. When the thickness of the plate material in the part is t2 [mm],
t2 <t1 (6)
It stipulates that

上記のように、折曲部83の最小曲率半径R1よりも小さな最小曲率半径R2を有する折曲部86は、製造の際に、折曲部83よりも曲げの度合いを大きくする必要がある。ステンレス鋼からなるガスケット80を作製する際の加工容易性を考慮すると、曲げの度合いの大きな折曲部86の厚みt2を、折曲部の83の厚みt1よりも薄くすることが好ましい。   As described above, the bent portion 86 having the minimum radius of curvature R2 smaller than the minimum radius of curvature R1 of the bent portion 83 needs to be bent more than the bent portion 83 during manufacture. Considering the ease of processing when manufacturing the gasket 80 made of stainless steel, it is preferable to make the thickness t2 of the bent portion 86 having a large degree of bending smaller than the thickness t1 of the bent portion 83.

このように、スパークプラグ100に、従来のFeからなるガスケットよりも剛性の高いステンレス鋼からなるガスケット80を用いる上で、Feからなるガスケットと同等の封止効果を得られるように、ガスケット80の大きさの規定を設定するため各種の評価試験を行った。   As described above, when the gasket 80 made of stainless steel having higher rigidity than the conventional gasket made of Fe is used for the spark plug 100, the gasket 80 has a sealing effect equivalent to that of the gasket made of Fe. Various evaluation tests were conducted in order to set the size specification.

まず、ガスケット全体の厚みxの下限について確認するための評価試験を行った。この評価試験では、板状のステンレス鋼を円環状に打ち抜き、平均厚みlを0.3mmとした板材を複数用意した。そして各板材に対し、図3に示すように、軸線O方向に最も多く重なる部位における板材の層の数nが4となるように、金型を用いて折り曲げ加工を施した。このとき、折り曲げ加工後に形成されるガスケット全体の厚みxが1.0L〜1.65Lの範囲で変化するように金型の調整を行い、全体の厚みxが異なるごとに50個ずつ、M12用のガスケットのサンプルを作製した。   First, an evaluation test for confirming the lower limit of the thickness x of the entire gasket was performed. In this evaluation test, a plurality of plate materials having an average thickness l of 0.3 mm were prepared by punching plate-shaped stainless steel into an annular shape. Then, as shown in FIG. 3, each plate was subjected to bending using a mold so that the number n of plate layers in the portion overlapping most in the axis O direction was 4. At this time, the mold is adjusted so that the total thickness x of the gasket formed after the bending process changes in the range of 1.0 L to 1.65 L, and 50 pieces each for the total thickness x are for M12. A gasket sample was prepared.

作製した各サンプルをそれぞれ試験用のスパークプラグに嵌め込み、抜け防止のため、内孔側の一部を軽く潰して内向きに突出する部位を形成した。そして各サンプルを装着したスパークプラグに対し振動を与え、ガスケットの厚みxが異なるごとに50個ずつ用意した各サンプルのうち、脱落が生じたサンプルの個数を数えた。この試験の結果を図5のグラフに示す。   Each of the prepared samples was fitted into a test spark plug, and a part projecting inward was formed by lightly crushing a part of the inner hole side to prevent disconnection. Then, vibration was applied to the spark plug on which each sample was mounted, and the number of samples in which dropout occurred was counted among the 50 samples prepared for each different gasket thickness x. The result of this test is shown in the graph of FIG.

図5に示すように、ガスケット全体の厚みxを1.1L以上としたサンプルにおいて、振動試験によって脱落するものはなかった。しかし、全体の厚みxを1.1L未満としたサンプルでは、いずれも脱落が生じた。このことから内向きに突出させた部位が抜け防止に十分な大きさを有するには、全体の厚みxを1.1L以上とすればよいことが確認できた。   As shown in FIG. 5, none of the samples in which the thickness x of the entire gasket was 1.1 L or more dropped out by the vibration test. However, in all samples in which the total thickness x was less than 1.1 L, dropping occurred. From this, it was confirmed that the entire thickness x should be 1.1 L or more in order for the portion protruding inward to have a size sufficient to prevent the removal.

次に、ガスケット全体の厚みxの上限について確認するための評価試験を行った。この評価試験では、実施例1と同様に自身を構成する板材の平均厚みlを0.3mmとしたステンレス鋼(SUS)からなる板材を複数用意し、軸線O方向に最も多く重なる部位における板材の層の数nが4となるように折り曲げ加工を施した。そして折り曲げ加工後の全体の厚みxを1.0L〜1.85Lの範囲で変化させ、M12用のガスケットのサンプルを複数種類作製した。また、比較用に、平均厚みを0.3mmとしたFeからなる板材を用い、同形状で全体の厚みが1.8L(2.16mm)のガスケットのサンプルを作製した。   Next, an evaluation test for confirming the upper limit of the thickness x of the entire gasket was performed. In this evaluation test, as in Example 1, a plurality of plate materials made of stainless steel (SUS) having an average thickness 1 of the plate material constituting itself of 0.3 mm are prepared, and the plate material in the portion that overlaps most in the axis O direction is prepared. Bending was performed so that the number n of layers was 4. And the whole thickness x after a bending process was changed in the range of 1.0L-1.85L, and several types of samples of the gasket for M12 were produced. For comparison, a sample of a gasket having the same shape and an overall thickness of 1.8 L (2.16 mm) was prepared using a plate made of Fe having an average thickness of 0.3 mm.

作製した各サンプルをそれぞれ試験用のスパークプラグに装着し、このスパークプラグをエンジンヘッドと同様のアルミ材を用いて作製したアルミブッシュに締付トルク20N・mで取り付け、ガスケットに生じた軸力を測定した。アルミブッシュはアルミ製のバー材に開口した取付孔に、JIS B8031に記載された呼び径がM12のスパークプラグに対応する雌ねじをNC加工にて形成したものである。また、軸力は、アルミブッシュの開口周縁部とガスケットとの間にロードセルを挟み込み、締め付け後の圧縮力を電気的に検出することにより測定した。この試験の結果を図6のグラフに示す。   Each prepared sample is attached to a test spark plug, and this spark plug is attached to an aluminum bush made using the same aluminum material as the engine head with a tightening torque of 20 N · m. It was measured. In the aluminum bush, a female screw corresponding to a spark plug having a nominal diameter of M12 described in JIS B8031 is formed by NC machining in a mounting hole opened in an aluminum bar material. Further, the axial force was measured by sandwiching a load cell between the peripheral edge of the opening of the aluminum bush and the gasket and electrically detecting the compressive force after tightening. The result of this test is shown in the graph of FIG.

前述したように、ステンレス鋼からなるガスケットはFeからなるガスケットと比べ塑性変形に対する耐力が高く、締付トルク20N・mにおいて生ずる軸力が小さい(図4参照)。図6に示すように、ガスケット全体の厚みxが大きくなるに従って、ガスケットに生ずる軸力が小さくなった。比較対象とするFeからなる従来の大きさ(形状)のガスケット(全体の厚みが1.8L)では、締付トルク20N・mにおいて約9.5kNの軸力が得られたのに対し、同形状のステンレス鋼からなるガスケットでは、約4.8kNの軸力しか得られなかった。ステンレス鋼からなるガスケットにおいて、Feからなる従来のガスケットと同等の軸力を実現するには、全体の厚みxが1.45L以下であればよいことが確認できた。   As described above, the gasket made of stainless steel has higher resistance to plastic deformation than the gasket made of Fe, and the axial force generated at a tightening torque of 20 N · m is small (see FIG. 4). As shown in FIG. 6, the axial force generated in the gasket decreased as the thickness x of the entire gasket increased. In the conventional gasket of the size (shape) made of Fe (the total thickness is 1.8 L), an axial force of about 9.5 kN was obtained at a tightening torque of 20 N · m. With the gasket made of stainless steel having a shape, only an axial force of about 4.8 kN was obtained. In the gasket made of stainless steel, it was confirmed that the total thickness x should be 1.45L or less in order to achieve the same axial force as that of the conventional gasket made of Fe.

次に、実施例2と同様のM12用のガスケットで、最大の層数を3とした場合について評価試験を行った。この評価試験では、自身を構成する板材の平均厚みlを0.4mmとし、軸線O方向に最も多く重なる部位における板材の層の数nを3としたステンレス鋼からなるM12用のガスケットのサンプルで、上記同様、折り曲げ加工後の全体の厚みxを1.0L〜1.85Lの範囲で変化させたものを用意した。比較用に、平均厚みを0.4mmとした同形状で全体の厚みが1.8L(2.16mm)のFeからなる従来のガスケットのサンプルを用意した。そして実施例2と同様の方法で評価試験を行ったところ、図7に示すように、最大の層数を3としたガスケットにおいても実施例2で評価を行った4層のガスケットと同様の傾向を示すことが確認できた。そして同様に、Feからなる従来のガスケットと同等の軸力をステンレス鋼からなるガスケットにおいて実現するには、全体の厚みxを1.45L以下とすればよいことがわかった。   Next, an evaluation test was conducted for the same M12 gasket as in Example 2 where the maximum number of layers was three. In this evaluation test, a sample of a gasket for M12 made of stainless steel in which the average thickness l of the plate material constituting itself is 0.4 mm and the number n of the plate material layers in the portion overlapping most in the direction of the axis O is 3. In the same manner as described above, the total thickness x after bending was changed in the range of 1.0 L to 1.85 L. For comparison, a sample of a conventional gasket made of Fe having the same shape with an average thickness of 0.4 mm and an overall thickness of 1.8 L (2.16 mm) was prepared. Then, when an evaluation test was performed in the same manner as in Example 2, as shown in FIG. 7, the same tendency as in the four-layer gasket evaluated in Example 2 was observed in the gasket with the maximum number of layers being three. It was confirmed that Similarly, in order to achieve the same axial force as that of the conventional gasket made of Fe in the gasket made of stainless steel, it has been found that the total thickness x should be 1.45 L or less.

さらに、実施例2と同様のM12用のガスケットで、最大の層数を5とした場合について評価試験を行った。この評価試験では、自身を構成する板材の平均厚みlを0.25mmとし、軸線O方向に最も多く重なる部位における板材の層の数nを5としたステンレス鋼からなるM12用のガスケットのサンプルで、上記同様、折り曲げ加工後の全体の厚みxを1.0L〜1.85Lの範囲で変化させたものを用意した。そして比較用に用意した、平均厚みを0.25mmとした同形状で全体の厚みが1.8L(2.25mm)のFeからなる従来のガスケットと共に、実施例2と同様の方法で評価試験を行った。この試験の結果を図8に示すが、最大の層数を5としたガスケットにおいても実施例2で評価を行った4層のガスケットと同様の傾向を示すことが確認できた。そして同様に、Feからなる従来のガスケットと同等の軸力をステンレス鋼からなるガスケットにおいて実現するには、全体の厚みxを1.45L以下とすればよいことがわかった。   Furthermore, an evaluation test was conducted for the case where the maximum number of layers was set to 5 with the same gasket for M12 as in Example 2. In this evaluation test, a sample of a gasket for M12 made of stainless steel in which the average thickness l of the plate material constituting itself is 0.25 mm and the number n of the plate material layers in the portion that overlaps most in the direction of the axis O is 5. In the same manner as described above, the total thickness x after bending was changed in the range of 1.0 L to 1.85 L. Then, an evaluation test was performed in the same manner as in Example 2 together with a conventional gasket made of Fe having an average thickness of 0.25 mm and an overall thickness of 1.8 L (2.25 mm) prepared for comparison. went. The result of this test is shown in FIG. 8, and it was confirmed that the gasket having the maximum number of layers of 5 showed the same tendency as the 4-layer gasket evaluated in Example 2. Similarly, in order to achieve the same axial force as that of the conventional gasket made of Fe in the gasket made of stainless steel, it has been found that the total thickness x should be 1.45 L or less.

また、M10用のガスケットについても同様に、ガスケット全体の厚みxの上限について確認するための評価試験を行った。この評価試験では、自身を構成する板材の平均厚みlを0.3mmとし、軸線O方向に最も多く重なる部位における板材の層の数nを4としたステンレス鋼からなるM10用のガスケットのサンプルで、上記同様、折り曲げ加工後の全体の厚みxを1.0L〜1.85Lの範囲で変化させたものを用意した。そして比較用に、平均厚みを0.3mmとした同形状で全体の厚みが1.8L(2.16mm)のFeからなる従来のガスケットを用意し、実施例2と同様に、各サンプルを12.5N・mの締付トルクでアルミブッシュに取り付けたときの軸力を測定する評価試験を行った。この試験の結果を図9に示すが、M10用のガスケットにおいてもガスケット全体の厚みxが大きくなるに従って、ガスケットに生ずる軸力が小さくなる傾向が示された。そしてM10用のガスケットで、ステンレス鋼からなるガスケットでFeからなる従来のガスケットと同等の軸力を実現するには、全体の厚みxが1.4L以下であればよいことが確認できた。   Similarly, an evaluation test for confirming the upper limit of the thickness x of the entire gasket was performed on the gasket for M10. In this evaluation test, a sample of a gasket for M10 made of stainless steel in which the average thickness l of the plate material constituting itself is 0.3 mm and the number n of the plate material layers in the portion overlapping most in the direction of the axis O is 4. In the same manner as described above, the total thickness x after bending was changed in the range of 1.0 L to 1.85 L. For comparison, a conventional gasket made of Fe having the same shape with an average thickness of 0.3 mm and an overall thickness of 1.8 L (2.16 mm) is prepared. An evaluation test was conducted to measure the axial force when attached to an aluminum bush with a tightening torque of 5 N · m. The result of this test is shown in FIG. 9, and also in the M10 gasket, the axial force generated in the gasket tended to decrease as the thickness x of the entire gasket increased. It was confirmed that the overall thickness x should be 1.4 L or less in order to realize the axial force equivalent to that of the conventional gasket made of Fe with the gasket made of stainless steel with the gasket for M10.

さらに、M8用のガスケットについても同様の評価試験を行った。自身を構成する板材の平均厚みlを0.4mmとし、軸線O方向に最も多く重なる部位における板材の層の数nを3としたステンレス鋼からなるM8用のガスケットのサンプルで、上記同様、折り曲げ加工後の全体の厚みxを1.0L〜1.85Lの範囲で変化させたものを用意した。そして比較用に、平均厚みを0.4mmとした同形状で全体の厚みが1.8L(2.16mm)のFeからなる従来のガスケットを用意し、実施例2と同様に、各サンプルを10N・mの締付トルクでアルミブッシュに取り付けたときの軸力を測定する評価試験を行った。この試験の結果を図10に示すが、M8用のガスケットにおいてもガスケット全体の厚みxが大きくなるに従って、ガスケットに生ずる軸力が小さくなる同様の傾向が示された。そしてM8用のガスケットで、ステンレス鋼からなるガスケットでFeからなる従来のガスケットと同等の軸力を実現するには、M10用のガスケットと同様に、全体の厚みxが1.4L以下であればよいことが確認できた。   Further, the same evaluation test was performed on the gasket for M8. This is a sample of M8 gasket made of stainless steel with an average thickness l of the plate material constituting itself of 0.4 mm and a number n of the plate material layers at the most overlapping portion in the direction of the axis O, which is 3 as above. What changed the whole thickness x after a process in the range of 1.0L-1.85L was prepared. For comparison, a conventional gasket made of Fe having the same shape with an average thickness of 0.4 mm and an overall thickness of 1.8 L (2.16 mm) is prepared. An evaluation test was performed to measure the axial force when attached to an aluminum bush with a tightening torque of m. The result of this test is shown in FIG. 10, and in the M8 gasket, the same tendency that the axial force generated in the gasket decreases as the thickness x of the entire gasket increases is shown. And in order to realize the axial force equivalent to the conventional gasket made of Fe with the gasket made of stainless steel with the gasket for M8, if the total thickness x is 1.4L or less like the gasket for M10 It was confirmed that it was good.

次に、最も大きな最小曲率半径R1を有する折曲部のその最小曲率半径R1の大きさについて規定するための評価試験を行った。前述したように、ガスケットが圧縮されて変形する際に、最も大きな最小曲率半径R1を有する折曲部のその最小曲率半径R1の大きさが、ガスケット全体の変形の度合いに大きく影響し、ひいてはガスケットの得られる軸力に対し影響する。図4のグラフにおいて1点鎖線で示したように、(1)の式を満たすガスケットでは、締付トルクの上昇に対し軸力の上昇が横ばい状態となる座屈領域がほとんどなく、締付トルクと軸力とがほぼ比例関係となる。そこでスパークプラグを取付孔に取り付けるときの回転角度と、ガスケットの得られる軸力との関係から最も大きな最小曲率半径R1の大きさについて評価を行うこととした。   Next, an evaluation test for defining the size of the minimum curvature radius R1 of the bent portion having the largest minimum curvature radius R1 was performed. As described above, when the gasket is compressed and deformed, the size of the minimum curvature radius R1 of the bent portion having the largest minimum curvature radius R1 greatly affects the degree of deformation of the entire gasket, and consequently the gasket. This affects the axial force obtained. As indicated by the one-dot chain line in the graph of FIG. 4, the gasket satisfying the expression (1) has almost no buckling region in which the increase of the axial force is flat with respect to the increase of the tightening torque, and the tightening torque. And the axial force are almost proportional. Therefore, the largest minimum radius of curvature R1 is evaluated from the relationship between the rotation angle when the spark plug is attached to the attachment hole and the axial force obtained by the gasket.

この評価試験では、自身を構成する板材の平均厚みlを0.3mm、軸線O方向に最も多く重なる部位における板材の層の数nを4とし、最小曲率半径R1が0.1mm〜1.0mmの範囲で変化させつつ、折り曲げ加工後の全体の厚みxが1.33L(1.6mm)となるように調整した、ステンレス鋼からなるM12用のガスケットのサンプルを複数用意した。そしてこれら各サンプルをそれぞれ試験用のスパークプラグに装着し、そのスパークプラグを、ガスケットの各種類ごとに30度〜360度の範囲で回転角度を異ならせてアルミブッシュに取り付け、そのときガスケットに生じた軸力を、実施例2と同様の方法で測定した。この評価試験の結果を図11のグラフに示す。   In this evaluation test, the average thickness l of the plate material constituting itself is 0.3 mm, the number n of the plate material layers in the portion overlapping most in the direction of the axis O is 4, and the minimum radius of curvature R1 is 0.1 mm to 1.0 mm. A plurality of samples of M12 gaskets made of stainless steel were prepared so that the total thickness x after bending was adjusted to 1.33 L (1.6 mm). Each of these samples is mounted on a test spark plug, and the spark plug is attached to an aluminum bush at different rotation angles in the range of 30 to 360 degrees for each type of gasket. The axial force was measured in the same manner as in Example 2. The result of this evaluation test is shown in the graph of FIG.

この評価試験の結果、図11に示すように、最小曲率半径R1の大きさによって係数がことなるが、回転角度と軸力との間には比例関係があることが確認できた。ここで、エンジンの振動等による緩みが生じないとされる最低限必要な軸力は10kNであるため、図11において10kNの軸力が得られたときの回転角度を推定される比例直線(実線で示す)から求め、この回転角度と最小曲率半径R1との関係を、図12のグラフにおいて示した。一般に、スパークプラグの締め付け時の回転角度として、直感的に解りやすい90度〜270度の範囲(1/4〜3/4回転)が採用されている。図12のグラフから回転角度が90度〜270度の範囲を満たす最小曲率半径R1の値を求めると、0.2mm〜0.8mmであるとよいことがわかった。   As a result of this evaluation test, as shown in FIG. 11, although the coefficient varies depending on the size of the minimum radius of curvature R1, it was confirmed that there is a proportional relationship between the rotation angle and the axial force. Here, since the minimum required axial force at which no loosening due to engine vibration or the like does not occur is 10 kN, a proportional straight line (solid line) for estimating the rotation angle when an axial force of 10 kN is obtained in FIG. The relationship between the rotation angle and the minimum radius of curvature R1 is shown in the graph of FIG. Generally, the range of 90 to 270 degrees (1/4 to 3/4 rotation) that is easy to understand intuitively is adopted as the rotation angle when tightening the spark plug. From the graph of FIG. 12, it was found that the value of the minimum curvature radius R1 that satisfies the rotation angle range of 90 to 270 degrees was found to be 0.2 mm to 0.8 mm.

次に、最も小さな最小曲率半径R2を有する折曲部のその最小曲率半径R2の大きさについて規定するための評価試験を行った。前述したように、最小曲率半径R2を有する折曲部における弾性変形や塑性変形の滑らかさが、ガスケットを構成する板材の各層同士の接触時の密着性に影響を及ぼす。そこで、自身を構成する板材の平均厚みlを0.3mm、軸線O方向に最も多く重なる部位における板材の層の数nを4とし、最小曲率半径R2が0.03mm〜0.25mmの範囲で変化させつつ、折り曲げ加工後の全体の厚みxが1.33L(1.6mm)となるように調整した、ステンレス鋼からなるM12用のガスケットのサンプルを複数用意した。このとき、最小曲率半径R2を0.03mmとしたサンプルでは折曲部に亀裂が生じてしまったため、成形性に劣るとして×と評価し、以下の評価試験の対象外とした。   Next, an evaluation test for defining the size of the minimum curvature radius R2 of the bent portion having the smallest minimum curvature radius R2 was performed. As described above, the smoothness of elastic deformation or plastic deformation in the bent portion having the minimum radius of curvature R2 affects the adhesion at the time of contact between the layers of the plate material constituting the gasket. Therefore, the average thickness l of the plate material constituting itself is 0.3 mm, the number n of the plate material layers in the portion overlapping most in the direction of the axis O is 4, and the minimum curvature radius R2 is in the range of 0.03 mm to 0.25 mm. A plurality of samples of M12 gaskets made of stainless steel, which were adjusted so that the total thickness x after bending was 1.33 L (1.6 mm) while being changed, were prepared. At this time, in the sample in which the minimum curvature radius R2 was 0.03 mm, a crack was generated in the bent portion. Therefore, the sample was evaluated as x because it was inferior in formability, and excluded from the following evaluation tests.

各サンプルをそれぞれ試験用のスパークプラグに装着し、それらのスパークプラグを締付トルク20N・mでアルミブッシュに取り付け、ISO11565に示される振動試験を実施した。具体的にはスパークプラグを取り付けたアルミブッシュを200度に加熱した状態で、加速度30G±2G、周波数50〜500Hz、スイープ率1オクターブ/分の振動を、スパークプラグの軸線方向とその直交方向とにそれぞれ8時間ずつ与えた。そして振動試験後に、主体金具の取り外しに必要なトルク(戻しトルク)を測定した。戻しトルクが10N・m以上(締め付け時の50%以上)であった場合には緩みに対する耐性(耐緩み性)が良好であるとして○と評価し、10N・m未満のものは緩みに対する耐性が低いとして×と評価した。この評価試験の結果を表1に示す。   Each sample was mounted on a test spark plug, and the spark plug was attached to an aluminum bush with a tightening torque of 20 N · m, and a vibration test shown in ISO11565 was performed. Specifically, with the aluminum bush attached with the spark plug heated to 200 degrees, the vibration of acceleration 30G ± 2G, frequency 50-500Hz, sweep rate 1 octave / min, the axial direction of the spark plug and its orthogonal direction For 8 hours each. Then, after the vibration test, a torque (return torque) necessary for removing the metal shell was measured. When the return torque is 10 N · m or more (50% or more when tightening), the resistance to looseness (loose resistance) is evaluated as “good”, and those with less than 10 N · m are resistant to looseness. X was rated as low. The results of this evaluation test are shown in Table 1.

Figure 0004950266
Figure 0004950266

表1に示すように、最小曲率半径R2が0.05mm〜0.20mmのガスケットでは耐緩み性について良好であったが、0.25mmのガスケットでは、耐緩み性に問題があることが確認できた。この試験の結果から、最小曲率半径R2の大きさを0.05mm〜0.20mmとするとよいことがわかった。   As shown in Table 1, the gasket having a minimum radius of curvature R2 of 0.05 mm to 0.20 mm was good in terms of loosening resistance, but the gasket of 0.25 mm could be confirmed to have a problem in loosening resistance. It was. From the results of this test, it was found that the minimum radius of curvature R2 should be 0.05 mm to 0.20 mm.

なお、本発明は各種の変形が可能なことはいうまでもない。例えば、ガスケット80は、折り曲げ加工前の円環状の板材の状態において、その厚みに勾配があっても、厚みが均一の板材であってもよい。また、ガスケット80は、軸線O方向に最も多く重なる部位における板材の層の数nが4であるものを例として説明したが、2層〜5層のものであればよい。なお、本実施の形態では呼び径がM12のスパークプラグ100に装着するガスケット80について説明を行ったが、M10用やM8用など、呼び径がM10以下のスパークプラグに用いるガスケットについても、その形態については同様である。   Needless to say, the present invention can be modified in various ways. For example, the gasket 80 may be a plate material having a uniform thickness or a gradient in the shape of an annular plate material before bending. In addition, the gasket 80 has been described as an example in which the number n of the plate material layers in the portion that overlaps most in the direction of the axis O is 4, but it may be of 2 to 5 layers. In this embodiment, the gasket 80 attached to the spark plug 100 having a nominal diameter of M12 has been described. However, the gasket used for the spark plug having a nominal diameter of M10 or less, such as for M10 and M8, is also in the form. The same applies to.

50 主体金具
54 張出部
80 ガスケット
81 部位
82 部位
83 折曲部
84 部位
85 部位
86 折曲部
87 部位
88 部位
89 折曲部
100 スパークプラグ
150 エンジンヘッド
155 取付孔
156 開口周縁部
DESCRIPTION OF SYMBOLS 50 Metal shell 54 Overhang | projection part 80 Gasket 81 Part 82 Part 83 Bent part 84 Part 85 Part 86 Bent part 87 Part 88 Part 89 Bent part 100 Spark plug 150 Engine head 155 Mounting hole 156 Opening peripheral part

Claims (3)

オーステナイト系ステンレス鋼もしくはフェライト系ステンレス鋼からなる環状をなす一枚の板材にその板材を径方向に折り返す加工を施して、少なくとも前記板材が軸線方向に2層以上重なる配置となる部位を有するように形成されると共に、筒状をなしねじ山を有するスパークプラグの主体金具の外周に装着されて用いられ、前記主体金具が内燃機関の取付孔に螺合により取り付けられた状態において、前記主体金具の外周に設けられその外周から外向きに張り出しつつ周方向に一周する形態をなす張出部と、前記取付孔の開口周縁部との間にて、前記軸線方向に圧縮されることで、前記張出部と前記開口周縁部との間を封止するスパークプラグ用の封止部材であって、
呼び径がM10以下である前記主体金具に装着され、前記内燃機関へ取り付けられる前の状態において、
前記軸線方向に前記封止部材を構成する前記板材の層が最も多い最多重なり部位におけるその板材の層の数をn、前記板材の平均厚みをl[mm]、前記最多重なり部位における前記板材の各層の合計厚みをL[mm]、圧縮前の前記封止部材の前記軸線方向における厚みをx[mm]としたときに、
0.2≦l[mm]≦0.5
と、
2≦n≦5
と、
1.1L≦x≦1.4L ・・・ 以上、(2)
とを満たすとともに、
前記板材が軸線方向に重なる配置となる2つの部位間を折り返して接続する部位を折曲部とし、複数の前記折曲部のうちの一の折曲部において最も小さな曲率半径を有する部分のその曲率半径を、その折曲部における最小曲率半径Rとし、さらに複数の前記折曲部同士でそれぞれの前記最小曲率半径Rを比較して、前記最小曲率半径Rが最も大きな第1折曲部のその最小曲率半径RをR1[mm]とし、前記最小曲率半径Rが最も小さな第2折曲部のその最小曲率半径RをR2[mm]としたときに、
0.2≦R1≦0.8 ・・・ (3)
と、
0.05≦R2≦0.2 ・・・ (4)
と、
R1>R2 ・・・ (5)
とを満たすことを特徴とするスパークプラグ用の封止部材。
An annular plate made of austenitic stainless steel or ferritic stainless steel is subjected to a process in which the plate is folded back in the radial direction so that at least the plate has an area where two or more layers overlap in the axial direction. In the state where the metal shell is mounted and used on the outer periphery of the metal shell of the spark plug having a cylindrical shape and having a thread, the metal shell is attached to the mounting hole of the internal combustion engine by screwing. It is compressed in the axial direction between a protruding portion provided on the outer periphery and extending outward from the outer periphery and making a round in the circumferential direction, and an opening peripheral portion of the mounting hole. A sealing member for a spark plug that seals between a protruding portion and the peripheral edge of the opening,
In a state before being attached to the metal shell having a nominal diameter of M10 or less and being attached to the internal combustion engine,
In the axial direction, the number of layers of the plate material in the most multiplexed portion where the number of layers of the plate material constituting the sealing member is the largest is n, the average thickness of the plate material is l [mm], and the plate material in the most multiplexed portion is When the total thickness of each layer is L [mm], and the thickness in the axial direction of the sealing member before compression is x [mm],
0.2 ≦ l [mm] ≦ 0.5
When,
2 ≦ n ≦ 5
When,
1.1L ≦ x ≦ 1.4L (2)
With satisfy the door,
The portion where the plate member is folded and connected between the two portions arranged in the axial direction is defined as a bent portion, and the portion having the smallest radius of curvature in one of the plurality of bent portions. The curvature radius is set to the minimum curvature radius R in the bent portion, and the minimum curvature radius R is compared between the plurality of bent portions, and the first bent portion having the largest minimum curvature radius R is compared. When the minimum curvature radius R is R1 [mm], and the minimum curvature radius R of the second bent portion with the smallest minimum curvature radius R is R2 [mm],
0.2 ≦ R1 ≦ 0.8 (3)
When,
0.05 ≦ R2 ≦ 0.2 (4)
When,
R1> R2 (5)
And a spark plug sealing member characterized by satisfying the above .
前記第1折曲部のうち曲率半径が前記最小曲率半径R1となる部分における前記板材の厚みをt1[mm]とし、前記第2折曲部のうち曲率半径が前記最小曲率半径R2となる部分における前記板材の厚みをt2[mm]としたときに、
t2<t1 ・・・ (6)
を満たすことを特徴とする請求項に記載のスパークプラグ用の封止部材。
The thickness of the plate member at the portion where the radius of curvature is the minimum radius of curvature R1 in the first bent portion is t1 [mm], and the portion of the second bent portion where the radius of curvature is the minimum radius of curvature R2 When the thickness of the plate material at t2 [mm],
t2 <t1 (6)
The spark plug sealing member according to claim 1 , wherein:
請求項1または2に記載のスパークプラグ用の封止部材が装着されたことを特徴とするスパークプラグ。 A spark plug comprising the sealing member for a spark plug according to claim 1 or 2 attached thereto.
JP2009251981A 2009-11-02 2009-11-02 Sealing member for spark plug and spark plug Active JP4950266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009251981A JP4950266B2 (en) 2009-11-02 2009-11-02 Sealing member for spark plug and spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009251981A JP4950266B2 (en) 2009-11-02 2009-11-02 Sealing member for spark plug and spark plug

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007263820A Division JP4436398B2 (en) 2007-10-09 2007-10-09 Sealing member for spark plug and spark plug

Publications (2)

Publication Number Publication Date
JP2010027625A JP2010027625A (en) 2010-02-04
JP4950266B2 true JP4950266B2 (en) 2012-06-13

Family

ID=41733214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009251981A Active JP4950266B2 (en) 2009-11-02 2009-11-02 Sealing member for spark plug and spark plug

Country Status (1)

Country Link
JP (1) JP4950266B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939893A (en) * 1982-08-31 1984-03-05 Agency Of Ind Science & Technol Novel imide compound
JP2000266186A (en) * 1999-03-19 2000-09-26 Ngk Spark Plug Co Ltd Gasket and spark plug with gasket

Also Published As

Publication number Publication date
JP2010027625A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4436398B2 (en) Sealing member for spark plug and spark plug
JP4296202B2 (en) Spark plug manufacturing method and spark plug manufactured by the manufacturing method
JP2000266186A (en) Gasket and spark plug with gasket
WO2012017944A1 (en) Spark plug
WO2005071809A1 (en) Spark plug
US20060066196A1 (en) Spark plug
JP4774139B2 (en) Threaded member with gasket
JP2004134120A (en) Spark plug
JP5113136B2 (en) Sealing member for spark plug and spark plug
JP4950266B2 (en) Sealing member for spark plug and spark plug
JP2005190762A (en) Spark plug and its manufacturing method
JP2010027626A5 (en)
JP5130333B2 (en) Spark plug
JP4965471B2 (en) Spark plug
JP2013089525A (en) Spark plug mounting structure
JP3200662U (en) Metal gasket
JP2007239537A (en) Exhaust pipe flange joint structure
JP5399946B2 (en) Spark plug
JP2012031834A (en) Spark plug
JP5166492B2 (en) Threaded member having sealing member and spark plug
JP6495194B2 (en) Spark plug mounting structure
JP4921503B2 (en) Metal gasket
JP2008223581A (en) Metal gasket

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091103

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250