JP5166080B2 - Anodizing method for improving power density of solid oxide fuel cell membrane electrode assembly (SOFC-MEA) - Google Patents

Anodizing method for improving power density of solid oxide fuel cell membrane electrode assembly (SOFC-MEA) Download PDF

Info

Publication number
JP5166080B2
JP5166080B2 JP2008062271A JP2008062271A JP5166080B2 JP 5166080 B2 JP5166080 B2 JP 5166080B2 JP 2008062271 A JP2008062271 A JP 2008062271A JP 2008062271 A JP2008062271 A JP 2008062271A JP 5166080 B2 JP5166080 B2 JP 5166080B2
Authority
JP
Japan
Prior art keywords
anode
mea
sofc
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008062271A
Other languages
Japanese (ja)
Other versions
JP2009218146A (en
Inventor
王俊修
李茂傳
高維欣
林泰男
張揚状
林立夫
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to JP2008062271A priority Critical patent/JP5166080B2/en
Publication of JP2009218146A publication Critical patent/JP2009218146A/en
Application granted granted Critical
Publication of JP5166080B2 publication Critical patent/JP5166080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体酸化物形燃料電池の膜電極接合体に用いる革新的なアノード処理方法である。テープキャスティング法によって電極基板を作り、シルクスクリーン印刷法(Screen printing)、スパッタリングコーティング法(Sputtering coating)、スピンコーティング法(Spin coating)、スプレー法などの薄膜形成工程及び二段階の研磨工程(abrasion and polish)で基板を処理することを組み合わせることによって、電極/電解質層の密着性の優れたSOFC電池を作成する。この製法によって、アノード側の導電性を効果的に向上させながら、多段階の焼結過程によってアノード表面に生成したニッケル欠乏絶縁層(Ni depleted layer)がもたらす電流伝導への抵抗を回避し、SOFC電池セルの効率を効果的に向上させる。 The present invention is an innovative anodizing method used for a membrane electrode assembly of a solid oxide fuel cell. Electrode substrate is made by tape casting method, thin film forming process such as silk screen printing method, sputtering coating method, spin coating method, spin coating method, spraying method and two-step polishing process (abrasion and By combining the processing of the substrate with polish), an SOFC battery with excellent electrode / electrolyte layer adhesion is created. This method effectively improves the conductivity on the anode side while avoiding the resistance to current conduction caused by the nickel depleted insulating layer (Ni depleted layer) generated on the anode surface by the multi-step sintering process, and SOFC The efficiency of the battery cell is effectively improved.

現今の石油資源の枯渇への懸念および環境保護意識のたかまりに応えて、現在の緊急の課題は石油の代替となる新形態のエネルギーを見出すことである。高性能固体酸化物形燃料電池は高效率、低汚染及びエネルギー多元化の特性を備えたエネルギー発電システムであり、かつ材料構成は簡単で、構造のモジュール化によって持続的安定な電源を提供できるなどの特色に基き、最も発展潜在力のある発電システムといえる。   In response to current concerns about the depletion of petroleum resources and the growing awareness of environmental protection, the current urgent task is to find new forms of energy to replace oil. A high-performance solid oxide fuel cell is an energy power generation system with high efficiency, low pollution, and multiple energy. The material structure is simple, and the modularization of the structure can provide a stable and stable power source. Based on these characteristics, it can be said that the power generation system has the most potential for development.

従来の技術ではYSZからなる電解質を支持基板とする固体酸化物形燃料電池(Electrolyte Supported Cell、略してESC)の作動温度は800~1000 ℃である。その電解質基板の厚さは150〜300 μmでやや厚いため、ESCは高温で作動しなければならない。現在、主流になっているのはアノード(材料はNiO+YSZ)支持基板の電池セル(Anode Supported Cell、略してASC)であって、特徴としてその電解質層(YSZを主材料とする)の基板上の厚さは10 μmなので作動温度を650〜800 ℃に下げることができる。従来のASCの膜電極(MEA)の製造工程においては、まずアノードをテープキャスティング法などにより形成し、焼結してから該アノード基板上にそれぞれ電解質層とカソード層とを形成後焼結するので、一般に少なくとも1400℃において三回の高温焼結工程を経なければならない。そのために、多段階の焼結過程においてしばしば材料の組成が変わり、あるいは変形させられることもあって、余計に電池の抵抗値を増加する。この発明の着目点は従来の製作方法を保ちながら、新しいアノード処理方法によって、これらの多段階の焼結がもたらすマイナス影響を低減する。このアノード処理方法によって抵抗を下げ、イオン伝導/電気伝導性を向上して、SOFCの出力密度を向上させる。
特開2005−149797号公報 特開2007−335142号公報 特開2007−317644号公報
In the prior art, the operating temperature of a solid oxide fuel cell (electrolyte supported cell, abbreviated as ESC) using an electrolyte made of YSZ as a supporting substrate is 800 to 1000 ° C. Since the thickness of the electrolyte substrate is 150-300 μm, which is slightly thick, the ESC must operate at a high temperature. Currently, the anode (material is NiO + YSZ) supporting substrate battery cell (Anode Supported Cell, ASC for short), which is characterized by its electrolyte layer (YSZ is the main material) substrate Since the upper thickness is 10 μm, the operating temperature can be lowered to 650-800 ° C. In the manufacturing process of the conventional ASC membrane electrode (MEA), the anode is first formed by a tape casting method or the like, sintered, and then the electrolyte layer and the cathode layer are respectively formed on the anode substrate and then sintered. Generally, at least 1400 ° C. must undergo three high temperature sintering steps. Therefore, the composition of the material is often changed or deformed in a multi-stage sintering process, and the resistance value of the battery is further increased. The focus of the present invention is to reduce the negative effects of these multi-stage sintering by a new anodizing method while maintaining the conventional fabrication method. This anodizing method reduces the resistance, improves the ionic conduction / electric conductivity, and improves the SOFC power density.
JP 2005-149797 JP 2007-335142 A JP 2007-317644

本発明は、新規なSOFC-MEA製造工程を提供し、「固体酸化物形燃料電池の膜電極接合体(MEA)或いは電池セル(略してSOFC−MEA又はUnit Cell)の電気的特性」を向上させる。このSOFC−MEAは1.低抵抗値、2.良好な界面結合性、の特徴を備えているので、電池の出力密度を高めつつ長時間に渡って安定な電気出力を提供することが出来る。 The present invention provides a novel SOFC-MEA manufacturing process and improves the “electrical characteristics of a membrane electrode assembly (MEA) or battery cell (abbreviated SOFC-MEA or Unit Cell) of a solid oxide fuel cell”. Let Since this SOFC-MEA has the characteristics of 1. low resistance value and 2. good interfacial bonding property, it can provide a stable electric output for a long time while increasing the output density of the battery.

本発明は、テープキャスティング法(Tape casting process)によって電極基板のグリーンテープを作り、このグリーンテープの仮焼/焼結工程により電極板を形成する。この電極の片側の平面に研磨処理を施して、より平滑な表面として緻密な電解質層の形成に使う。電解質薄膜の製作にはシルクスクリーン印刷法(Screen printing)、スパッタリングコーティング法(Sputtering
coating)、スピンコーティング法(Spin coating)、スプレー法などの薄膜形成工程が適している。アノード/電解質焼結工程を経て、上記の表面処理方法によって、電極/電解質界面の密着度良好なSOFC半電池セルが得られる。更に、シルクスクリーン印刷法などによってカソード層を半電池の電解質層上に塗布して高温焼結を行って、SOFC全電池を完成する。更に、完成した全電池のアノード面に研磨処理を施す。この研磨工程によって処理された全電池は、焼結過程で形成されたNi欠乏層を除去するためMEAと集電体(current collector)との間の電気抵抗が大幅に低減し、効率が著しく向上した高導電率/低抵抗のSOFC電池セルが得られる。
In the present invention, a green tape of an electrode substrate is formed by a tape casting process, and an electrode plate is formed by a calcination / sintering process of the green tape. The flat surface on one side of the electrode is polished to be used for forming a dense electrolyte layer with a smoother surface. For the production of electrolyte thin films, screen printing and sputtering coating (Sputtering)
Thin film forming processes such as coating), spin coating, and spraying are suitable. Through the anode / electrolyte sintering step, an SOFC half battery cell with good adhesion at the electrode / electrolyte interface can be obtained by the above surface treatment method. Further, a cathode layer is applied on the electrolyte layer of the half cell by silk screen printing or the like, and high temperature sintering is performed to complete the SOFC all battery. Further, polishing is performed on the anode surfaces of all the completed batteries. All batteries treated by this polishing process remove the Ni-deficient layer formed during the sintering process, greatly reducing the electrical resistance between the MEA and the current collector and significantly improving efficiency. Thus, a high conductivity / low resistance SOFC battery cell is obtained.

本発明の高導電率/低抵抗の平板型固体酸化物形燃料電池を製作するためのアノード処理方法は下記の通りである。 An anodizing method for producing a high conductivity / low resistance flat plate type solid oxide fuel cell of the present invention is as follows.

ステップ1:テープキャスティング法(Tape casting process)によってアノードグリーンテープを作り、このアノードグリーンテープを所定の寸法に切断し、これらを重ねて圧着するラミネート処理により厚さを600〜1200 μmとし、1200℃〜1500℃の温度(1400 ℃が最適)において数時間の焼結を行い、第一段階のSOFCのアノード支持基板を得る。適用可能なアノード基板の材料にはNiO/YSZ、NiO/GDC、NiO/YDC、NiO/SDCなどがある。 Step 1: Anode green tape is made by tape casting process, this anode green tape is cut to a predetermined size, and the thickness is 600 ~ 1200 μm by laminating process, and the thickness is 1200 ℃ Sintering is performed for several hours at a temperature of ˜1500 ° C. (1400 ° C. is optimal) to obtain a first stage SOFC anode support substrate. Applicable anode substrate materials include NiO / YSZ, NiO / GDC, NiO / YDC, and NiO / SDC.

ステップ2:ステップ1で作成したアノード支持基板の表面側に研磨処理を施して超音波洗浄し、乾燥させてからシルクスクリーン印刷法(Screen printing)、スパッタリングコーティング法(Sputtering
coating)、スピンコーティング法(Spin coating)、スプレー法などの電解質膜製作工程により,厚さが10μm以下の電解質層を形成し、1200℃〜1500℃において数時間の仮焼を行って半電池(half cell)を完成した。
走査型電子顕微鏡(SEM)で該半電池のマイクロ構造を分析し、電解質層は無孔質状態(Open
pore free)のマイクロ構造並びに完全緻密な状態を達成しており、電極/電解質層間の界面密着性も良いことを確認した。
Step 2: The surface of the anode support substrate prepared in Step 1 is subjected to polishing treatment, ultrasonically cleaned and dried, and then screen printing and sputtering coating (Sputtering)
An electrolyte layer having a thickness of 10 μm or less is formed by an electrolyte membrane manufacturing process such as coating, spin coating, or spraying, and calcined at 1200 ° C. to 1500 ° C. for several hours to form a half-cell ( half cell) was completed.
The half-cell microstructure was analyzed with a scanning electron microscope (SEM), and the electrolyte layer was in a non-porous state (Open
It was confirmed that the microstructure of pore free) and a completely dense state were achieved, and the interfacial adhesion between the electrode / electrolyte layers was also good.

ステップ3:ステップ2で得た半電池の電解質層上にLSM又はLSCFなどのカソード材料で、シルクスクリーン印刷法によって多孔質(Porous)のカソード層を作り、1200℃において約3時間の仮焼を行い、SOFC-MEAを製作する。
最後に全電池のアノード側の平面に研磨処理を施して10〜30μm程度の厚さを除去する研磨加工を行う。この処理によって電気抵抗を効果的に低減して、SOFC電池セルの作動効率を高めることができる。この効果は電池セルの(Performance
test of SOFC-MEA)電気性能試験により検証した。ステップ1から3までのフローを図1に示す。
ステップ2及び3における研磨工程は、アノード表面の平坦性及びNi欠乏層の除去のためのものであるから、これらの作用を達成できればサンドペーパーなどによる機械的研磨法に限らず、化学的処理による化学的研磨法も適用可能である。
Step 3: On the half-cell electrolyte layer obtained in Step 2, a porous cathode layer is made by a silk screen printing method using a cathode material such as LSM or LSCF and calcined at 1200 ° C for about 3 hours. And make SOFC-MEA.
Finally, a polishing process is performed to remove the thickness of about 10 to 30 μm by polishing the flat surface on the anode side of all the batteries. By this treatment, the electrical resistance can be effectively reduced and the operating efficiency of the SOFC battery cell can be increased. This effect is due to the battery cell performance
Test of SOFC-MEA) It was verified by electrical performance test. The flow from steps 1 to 3 is shown in FIG.
The polishing steps in Steps 2 and 3 are for the flatness of the anode surface and the removal of the Ni-deficient layer. Therefore, as long as these actions can be achieved, the polishing process is not limited to the mechanical polishing method using sandpaper or the like, but by chemical treatment A chemical polishing method is also applicable.

電池セルの研磨による簡単な処理によって、導電性を向上し、低抵抗の電気的特性を達成し、高導電率/低抵抗の平板型固体酸化物形燃料電池を実現する。   A simple process by polishing the battery cell improves conductivity, achieves low resistance electrical characteristics, and realizes a high conductivity / low resistance flat plate type solid oxide fuel cell.

本発明について以下に代表的な例を示し、さらに具体的に説明する。
〔実施例〕
高導電率/低抵抗の平板型固体酸化物形燃料電池(電池セル)(SOFC-MEA(Unit Cell))の製作方法。
ステップ1:
MEAのアノード基板の基本材料として50 wt% NiO+50 wt% 8YSZ及び定量の造孔剤(Pore former)として石墨微粉末(Graphite)を混合したスラリーとし、テープキャスティング法によって電極グリーンテープを製作し、ラミネート処理によってこれらを積層圧着して厚さを600〜1000 μmにして、5×5 cm2〜10×10 cm2の寸法とする。このようにして成型したアノードグリーンテープを1400 ℃において4時間の焼結を行い、第一段階のアノード支持基板を得る。
The present invention will be described in more detail below with typical examples.
〔Example〕
Manufacturing method of high conductivity / low resistance flat type solid oxide fuel cell (battery cell) (SOFC-MEA (Unit Cell)).
Step 1:
The slurry is a mixture of 50 wt% NiO + 50 wt% 8YSZ as the basic material for MEA anode substrate and fine graphite (Graphite) as the pore former (Pore former). These are laminated and pressure-bonded by processing so that the thickness is 600 to 1000 μm, and the dimensions are 5 × 5 cm 2 to 10 × 10 cm 2 . The anode green tape thus molded is sintered at 1400 ° C. for 4 hours to obtain a first stage anode support substrate.

ステップ2:第一段階で得られたSOFCのアノード支持基板(Anode supported substrate)に対して表面の片側に研磨を施す。まず粗目の紙やすりから研磨し始め、次に粗さを細い方に順番に従ってエメリの番手を換えて研磨して最後に研磨紙で仕上げ、このステップによって電極支持基板の表面の平坦性・平滑性を確保する。 Step 2: Polish one side of the surface of the SOFC anode supported substrate obtained in the first stage. First, start polishing with a coarse sandpaper, then change the emery count in the order of thinness, and finish with abrasive paper. This step makes the surface of the electrode support substrate flat and smooth. Secure.

ステップ3:スピンコーティング法による薄膜製造工程により、10μm以下の電解質層を研磨処理を施した電極基板の表面に密着して形成し、グリーンテープ電解質層を有するSOFC 半電池(Half cell)として、1200℃〜1600℃の温度(1400 ℃が最適)において数時間(4時間以上)の焼結を行い、第一段階のセラミック半電池を得る。
SEMで半電池のマイクロ構造(Microstructure)分析を行い、電極/電解質層の界面が密着し、かつ表面が無孔質状態であること確認した。図2が示すように、その電解質層の厚さは8μmで完全緻密な構造となり、気密機能を備えていた。
Step 3: Using a thin film manufacturing process by spin coating, an electrolyte layer of 10 μm or less is formed in close contact with the surface of the polished electrode substrate, and the SOFC half cell (Half cell) having a green tape electrolyte layer is 1200 Sintering is performed for several hours (4 hours or more) at a temperature of from 1 to 1600 ° C. (1400 ° C. is optimal) to obtain a first stage ceramic half-cell.
Microstructure analysis of the half-cell with SEM confirmed that the electrode / electrolyte layer interface was in close contact and the surface was non-porous. As shown in FIG. 2, the electrolyte layer had a thickness of 8 μm and a completely dense structure, and had an airtight function.

ステップ4:ステップ3で得られた電解質層の上に、シルクスクリーン印刷法(Screen printing)によってカソード材料LSM(La0.8Sr0.2MnO3)からなる多孔質のカソード層を形成して、1200℃において3時間の焼結工程(焼結の温度昇降速度は3oC/minでよいがそれに限定されない。)を経て、SOFC-MEA(Unit Cell)を得る。この電池セルに放電試験を行った二回の試験結果を図3に示す。その結果から、OVCが理論上の標準値(即ち800oCにおいて>1.0Vとなること)に達するにも拘らず出力密度は1.55mW/cm2 にしか達せず(800oCにおいて)良くないのが分かる。その原因は多段階の焼結を経て、アノードの表面に約10〜20μmの厚さのニッケル欠乏絶縁層が形成されるためで、図4の断面図のa、b、cに対応して右側上から順にNi、Zr、及びYSZの分析値をしめすようにニッケル欠乏のアノード層の表面にあるNiOの成分の比率が低くてYSZが表面のほとんどの成分を占めるようになり、YSZリッチの電子絶縁層を形成する。このために酸化還元作用において触媒成分として働くニッケルの不足により水素分子を吸収してイオン化させることができなくなる。更に、YSZの不導電性により高抵抗を生じて電化学反応で生じた電子を引き出すことができないため、セル電池のパワーパフォーマンスを高めることもできない。
この電池セルのアノードの表面に研磨処理を施し、ニッケル欠乏絶縁層(約10〜30μm)を除去して、更に、この処理された電池セルに放電試験を行うと結果は図5に示すとおりに、アノードの研磨処理を行った電池セルは他の処理されなかった電池セルより明らかに電池の効率が向上している。セル電池電圧が800oCにおいて350~200mV(0.35~0.2V)となる時、出力密度は25mW/cm2に引き上げられ、これによってニッケル欠乏層はセル電池の出力を妨害することが分かる。図6は、この方法によって製作した電池セルに電気性能試験を行って測定した結果を示し、その最大出力密度は278mW/cm2に達することから、このアノード処理方法の必要性、優れた作用効果を立証した。
Step 4: A porous cathode layer made of a cathode material LSM (La 0.8 Sr 0.2 MnO 3 ) is formed on the electrolyte layer obtained in Step 3 by screen printing at 1200 ° C. A SOFC-MEA (Unit Cell) is obtained after a sintering process of 3 hours (the temperature raising / lowering speed of sintering may be 3 ° C./min, but is not limited thereto). FIG. 3 shows the results of two tests in which a discharge test was performed on this battery cell. The results, OVC standard value of the theoretical (at 800 o C) power density despite the reach (i.e. 800 o> 1.0 V to become possible in C) does not reach only 1.55mW / cm 2 poor I understand. The reason is that a nickel-deficient insulating layer having a thickness of about 10 to 20 μm is formed on the surface of the anode through multi-stage sintering, and the right side corresponding to a, b and c in the cross-sectional view of FIG. From the top, the ratio of NiO components on the surface of the nickel-deficient anode layer is so low that the analysis values of Ni, Zr, and YSZ are shown, and YSZ occupies most of the components on the surface. An insulating layer is formed. For this reason, hydrogen molecules cannot be absorbed and ionized due to the lack of nickel acting as a catalyst component in the redox action. Furthermore, since the non-conductive property of YSZ produces a high resistance and electrons generated by the electrochemical reaction cannot be extracted, the power performance of the cell battery cannot be improved.
When the surface of the anode of the battery cell is polished, the nickel-deficient insulating layer (about 10 to 30 μm) is removed, and a discharge test is further performed on the treated battery cell, the result is as shown in FIG. The battery cells that have undergone the anode polishing process have clearly improved battery efficiency over the other untreated battery cells. It can be seen that when the cell battery voltage is 350 to 200 mV (0.35 to 0.2 V) at 800 ° C., the output density is raised to 25 mW / cm 2 , whereby the nickel-deficient layer interferes with the output of the cell battery. Figure 6 shows the results of measurement carried out electrical performance test cell fabricated by this method, since the maximum power density reaching 278mW / cm 2, the need for the anodization method, excellent functions and effects Proved.

本発明のアノード処理方法の製作概要図であり、(a)はアノード基板、(b)はアノードの研磨した面に電解質層を形成した状態、(c)はカソードを形成した状態、(d)はアノード基板面の研磨工程である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of production of an anodic treatment method of the present invention, (a) is an anode substrate, (b) is a state where an electrolyte layer is formed on the polished surface of the anode , (c) is a state where a cathode is formed, (d) Is a polishing step of the anode substrate surface. (a)完成した固体酸化物燃料電池の電池断面構造のSEMマイクロ構造解析図であって、図中の電解質層は完全緻密性を備えて厚さは8μmである。(b)電解質層の平面SEMマイクロ構造図であり、エアタイト(air-tight)の構造をしている完全緻密な結晶面構造である。(a) SEM micro structure analysis diagram of the cell cross-sectional structure of the completed solid oxide fuel cell, in which the electrolyte layer has a complete denseness and a thickness of 8 μm. (b) Planar SEM micro structure diagram of the electrolyte layer, which is a completely dense crystal plane structure having an air-tight structure. 固体酸化物燃料電池のニッケル欠乏層に研磨処理を施さないまま行った二回の電気性能試験の結果。The results of two electrical performance tests performed without polishing the nickel-deficient layer of the solid oxide fuel cell. 固体酸化物燃料電池のアノード表面の組成分析図。The composition analysis figure of the anode surface of a solid oxide fuel cell. 固体酸化物燃料電池の表面に研磨処理後の電気性能試験図。The electrical performance test figure after grinding | polishing processing on the surface of a solid oxide fuel cell. 本発明の製作工程によって完成した固体酸化物燃料電池の電気性能試験結果図(水素と酸素の気体供給量を200〜400ml/minの範囲で変化)。The electrical performance test result figure of the solid oxide fuel cell completed by the manufacturing process of this invention (The gas supply amount of hydrogen and oxygen changes in the range of 200-400 ml / min).

Claims (2)

平板型固体酸化物形燃料電池用膜電極接合体〔SOFC-MEA〕の製造方法であって、
a) アノード電極がニッケルと、電解質材料であるセラミックスとを混合したもので、テープキャスティング法によって形成したSOFCのアノード支持基板グリーンテープを焼結し、
b) 該アノード基板の表側に研磨処理を施して平滑化し、
c) 研磨した電極面上に電解質薄膜層を形成し、
d) 該アノード/電解質複合基材に仮焼を行なって半電池を形成し、
e) 該半電池の電解質層上にシルクスクリーン印刷法などの薄膜形成法によってカソード材料層を形成し、焼結処理を行って膜電極接合体(MEA)を形成し、
f) 該MEAのアノード面側表面層を研磨処理して焼結過程で形成されたニッケル欠乏絶縁層を除去することを特徴とする平板型固体酸化物形燃料電池膜電極接合体のアノード処理方法。
A method for producing a membrane electrode assembly [SOFC-MEA] for a flat plate solid oxide fuel cell,
a) The anode electrode is a mixture of nickel and ceramic, which is an electrolyte material. The anode support substrate green tape of SOFC formed by the tape casting method is sintered,
b) Polishing and smoothing the front side of the anode substrate,
c) forming an electrolyte thin film layer on the polished electrode surface;
d) calcining the anode / electrolyte composite substrate to form a half-cell;
e) forming a cathode material layer on the electrolyte layer of the half-cell by a thin film forming method such as a silk screen printing method, performing a sintering process to form a membrane electrode assembly (MEA),
f) Anodic treatment of a membrane electrode assembly for a flat plate type solid oxide fuel cell, characterized in that the nickel- deficient insulating layer formed during the sintering process is removed by polishing the anode surface side surface layer of the MEA Method.
前記ステップ(b)における研磨処理は、サンドペーパーで研磨処理を施すことを特徴とする請求項1に記載の平板型固体酸化物形燃料電池膜電極接合体のアノード処理方法。
Polishing in the step (b), the anode processing method of the flat panel type solid oxide fuel cell membrane electrode assembly according to claim 1, characterized by applying polishing with sand paper.
JP2008062271A 2008-03-12 2008-03-12 Anodizing method for improving power density of solid oxide fuel cell membrane electrode assembly (SOFC-MEA) Active JP5166080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062271A JP5166080B2 (en) 2008-03-12 2008-03-12 Anodizing method for improving power density of solid oxide fuel cell membrane electrode assembly (SOFC-MEA)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062271A JP5166080B2 (en) 2008-03-12 2008-03-12 Anodizing method for improving power density of solid oxide fuel cell membrane electrode assembly (SOFC-MEA)

Publications (2)

Publication Number Publication Date
JP2009218146A JP2009218146A (en) 2009-09-24
JP5166080B2 true JP5166080B2 (en) 2013-03-21

Family

ID=41189783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062271A Active JP5166080B2 (en) 2008-03-12 2008-03-12 Anodizing method for improving power density of solid oxide fuel cell membrane electrode assembly (SOFC-MEA)

Country Status (1)

Country Link
JP (1) JP5166080B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851661B (en) * 2021-09-22 2023-09-26 中国科学技术大学 Preparation method of ultrathin electrolyte membrane of solid oxide fuel cell and half cell
CN114335640B (en) * 2021-12-27 2023-06-02 安徽壹石通材料科学研究院有限公司 Sintering method of anode support type SOFC half-cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302438A (en) * 1996-05-15 1997-11-25 Toto Ltd Nickel/ysz cermet and its manufacture
YU88103A (en) * 2002-05-14 2006-08-17 H.Lundbeck A/S. Treatment adhd
JP4087216B2 (en) * 2002-10-22 2008-05-21 東京瓦斯株式会社 Seal structure and sealing method for solid oxide fuel cell
JP4460881B2 (en) * 2003-11-27 2010-05-12 京セラ株式会社 Fuel cell manufacturing method
JP2006139960A (en) * 2004-11-10 2006-06-01 Dainippon Printing Co Ltd Single compartment type solid oxide fuel cell

Also Published As

Publication number Publication date
JP2009218146A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
KR100648144B1 (en) High performance anode-supported solide oxide fuel cell
Basu et al. Processing of high-performance anode-supported planar solid oxide fuel cell
CN103887549B (en) A kind of Solid Oxide Fuel Cell composite electrolyte film and preparation thereof
Baharuddin et al. Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate-to low-temperature solid oxide fuel cells
JP6140733B2 (en) Design and manufacturing technology for solid oxide fuel cells with improved output performance in medium and low temperature operation
CN103390739A (en) Solid oxide fuel cell cerium-oxide-based electrolyte barrier layer and preparation method thereof
US7815843B2 (en) Process for anode treatment of solid oxide fuel cell—membrane electrode assembly to upgrade power density in performance test
Jiao et al. Comparison of ultra-fast microwave sintering and conventional thermal sintering in manufacturing of anode support solid oxide fuel cell
Liu et al. Influence of anode's microstructure on electrochemical performance of solid oxide direct carbon fuel cells
JP5814468B2 (en) Solid oxide fuel cell unit cell manufacturing process
US9806367B2 (en) Fabrication process for production of SOFC-MEA with a pore array anode structure for improving output power density
JP2001357859A (en) Separator for fuel cell
JP5166080B2 (en) Anodizing method for improving power density of solid oxide fuel cell membrane electrode assembly (SOFC-MEA)
TW201616714A (en) Fabrication process for production of SOFC-MEA with pore array anode structure
JP5198908B2 (en) A method for producing a completely dense electrolyte layer laminated on a high performance solid oxide fuel cell membrane electrode assembly (SOFC-MEA).
EP2107630B1 (en) Process for anode treatment of a membrane electrode assembly of a solid oxide fuel cell
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JP2012142241A (en) Method for manufacturing single cell for solid oxide fuel cell
CN109346752B (en) Preparation method of electrolyte-supported zirconium-based electrolyte film of solid oxide fuel cell
KR101335063B1 (en) Method of large powewr solid oxide fuel cell
US10283799B2 (en) Membrane electrode assembly structure of fuel cell and the method of fabricating the same
Liu et al. Study of a fuel electrode-supported solid oxide electrolysis cell prepared by aqueous Co-tape casting
JP6486138B2 (en) Method of manufacturing membrane electrode assembly for solid oxide fuel cell having anode with pore arrangement structure
Orui et al. Development of Anode Supported Solid Oxide Fuel Cells using LaNi (Fe) O3 for Cathodes.
TWI336969B (en) The innovation process for anode treatment of solid oxide fuel cell-membrane electrode assembly (sofc-mea) to upgrade the power density in performance test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5166080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250