JP5163739B2 - Battery state detection system and automobile equipped with the same - Google Patents

Battery state detection system and automobile equipped with the same Download PDF

Info

Publication number
JP5163739B2
JP5163739B2 JP2010505127A JP2010505127A JP5163739B2 JP 5163739 B2 JP5163739 B2 JP 5163739B2 JP 2010505127 A JP2010505127 A JP 2010505127A JP 2010505127 A JP2010505127 A JP 2010505127A JP 5163739 B2 JP5163739 B2 JP 5163739B2
Authority
JP
Japan
Prior art keywords
remaining capacity
battery
ocv
lead battery
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010505127A
Other languages
Japanese (ja)
Other versions
JPWO2009118904A1 (en
Inventor
謙一 前田
啓介 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Publication of JPWO2009118904A1 publication Critical patent/JPWO2009118904A1/en
Application granted granted Critical
Publication of JP5163739B2 publication Critical patent/JP5163739B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は電池状態検知システムおよびこれを備えた自動車に係り、特に、車両に搭載された鉛電池の電池状態を検知する電池状態検知システムおよび該電池状態検知システムを備えた自動車に関する。   The present invention relates to a battery state detection system and an automobile equipped with the same, and more particularly to a battery state detection system for detecting a battery state of a lead battery mounted on a vehicle and an automobile equipped with the battery state detection system.

近年、エンジン自動車による排ガスの削減に対応するため、エンジン停止後の再始動(アイドルストップ・スタート)が行われており、アイドルストップ可能な状態に鉛電池を保つ技術が望まれている。すなわち、アイドルストップ機能を有する自動車(車両)では、エンジン停止中のエアコン、カーステレオなどの負荷は、すべて鉛電池からの電力で賄われる。このため、従来に比べ鉛電池の深い放電が増加し、鉛電池の残存容量が小さくなる傾向にある。鉛電池の出力は鉛電池の残存容量に依存するため、エンジン停止中に鉛電池の残存容量が小さくなると、エンジンを始動する充分な出力が得られなくなり、エンジン停止後の再始動ができなくなるおそれがある。   In recent years, in order to cope with the reduction of exhaust gas caused by engine cars, restart after engine stop (idle stop / start) has been performed, and a technology for keeping a lead battery in a state where idling can be stopped is desired. That is, in an automobile (vehicle) having an idle stop function, loads such as an air conditioner and a car stereo while the engine is stopped are all covered by power from the lead battery. For this reason, the deep discharge of a lead battery increases compared with the past, and there exists a tendency for the residual capacity of a lead battery to become small. Since the output of the lead battery depends on the remaining capacity of the lead battery, if the remaining capacity of the lead battery decreases while the engine is stopped, sufficient output to start the engine may not be obtained, and restart after the engine stops may not be possible. There is.

従って、再始動可能な状態を保つためには、鉛電池の残存容量や充電状態(SOC)を演算(推定)してエンジン始動に必要な出力の有無を監視し、エンジン始動に必要な出力がある場合には、アイドルストップ可能、エンジン始動に必要な出力がない場合には、アイドルストップを止め、鉛電池を充電するなどの信号を車両側のコンピュータに送信する必要がある。   Therefore, in order to maintain the restartable state, the remaining capacity of the lead battery and the state of charge (SOC) are calculated (estimated) to monitor the presence or absence of the output required for engine start, and the output required for engine start is In some cases, idling can be stopped, and when there is no output necessary for starting the engine, it is necessary to stop idling and charge the lead battery to send a signal to the vehicle computer.

鉛電池はこの種の用途に対応できる代表的な電池である。鉛電池の残存容量の推定技術として、鉛電池の開回路電圧(OCV)を計測することにより求める技術(例えば、日本国特開平4−264371号公報参照)や、鉛電池の内部抵抗を測定することにより求める技術(例えば、日本国特開2002−334725号公報参照)が知られている。前者の技術では、残存容量とOCVとの関係が一次式で表されることを利用し、車両停止時に測定したOCVをこの式に代入することにより残存容量を算出している。後者の技術では、例えば、エンジン始動時に測定した鉛電池の内部抵抗を、複数の温度、残存容量に対応する鉛電池の内部抵抗値のマップに代入することにより残存容量を算出している。   Lead batteries are typical batteries that can be used for this type of application. As a technique for estimating the remaining capacity of a lead battery, a technique obtained by measuring the open circuit voltage (OCV) of the lead battery (see, for example, Japanese Patent Laid-Open No. 4-264371), or measuring the internal resistance of the lead battery A technique (for example, refer to Japanese Patent Laid-Open No. 2002-334725) is known. The former technique uses the fact that the relationship between the remaining capacity and the OCV is expressed by a linear expression, and calculates the remaining capacity by substituting the OCV measured when the vehicle is stopped into this expression. In the latter technique, for example, the remaining capacity is calculated by substituting the internal resistance of the lead battery measured at the start of the engine into a map of the internal resistance values of the lead battery corresponding to a plurality of temperatures and the remaining capacity.

なお、本発明に関連する技術として、鉛電池の健康状態ないし劣化度(SOH)を推定する技術(例えば、日本国特開2006−10601号公報参照)や車両に搭載された鉛電池の開回路電圧(OCV)および内部抵抗を、複数の劣化度に応じてOCVと内部抵抗との関係が予め定義されたマップに当てはめて鉛電池の劣化度を推定する劣化度推定技術(例えば、日本国特開2006−15896号公報参照)が開示されている。   As a technique related to the present invention, a technique for estimating the health state or degree of deterioration (SOH) of a lead battery (see, for example, Japanese Patent Application Laid-Open No. 2006-10601) or an open circuit of a lead battery mounted on a vehicle. Degradation level estimation technology for estimating the degradation level of a lead battery by applying a voltage (OCV) and internal resistance to a map in which the relationship between OCV and internal resistance is defined in advance according to a plurality of degradation levels (for example, Japanese No. 2006-15896) is disclosed.

OCVから残存容量を推定する場合、以下の課題がある。図2に示すように、新品(SOH100%)の鉛電池では残存容量とOCVがほぼ一直線上にあるが、劣化するにつれこの直線からはずれてしまうため、1つの一次式から残存容量を算出することはできない。この問題は、OCVを鉛電池の劣化度(SOH)により補正することで解決できる。ところが、鉛電池の劣化のメカニズムが複雑であるため、SOHを精度よく推定できない場合がある。つまり、劣化電池の場合、残存容量の推定誤差が大きくなる可能性がある、という課題がある。   When estimating the remaining capacity from the OCV, there are the following problems. As shown in FIG. 2, in a new (100% SOH) lead battery, the remaining capacity and the OCV are almost in a straight line, but as the battery deteriorates, it deviates from this straight line. Therefore, the remaining capacity is calculated from one linear equation. I can't. This problem can be solved by correcting the OCV based on the deterioration degree (SOH) of the lead battery. However, since the deterioration mechanism of the lead battery is complicated, the SOH may not be estimated accurately. That is, in the case of a deteriorated battery, there is a problem that the estimation error of the remaining capacity may increase.

一方、内部抵抗から残存容量を推定する場合、以下の課題がある。図3に示すように、この推定技術では、劣化しても新品とほぼ同一曲線上であるため、SOHを推定することなく残存容量を算出できるという利点がある反面、残存容量が大きい領域では残存容量に対する内部抵抗の感度が小さいため、残存容量の推定誤差が大きくなる傾向がある、という課題がある。   On the other hand, when estimating the remaining capacity from the internal resistance, there are the following problems. As shown in FIG. 3, this estimation technique has the advantage that the remaining capacity can be calculated without estimating the SOH because it is on the same curve as the new product even if it deteriorates. Since the sensitivity of the internal resistance to the capacity is small, there is a problem that the estimation error of the remaining capacity tends to increase.

本発明は上記事案に鑑み、鉛電池の残存容量を精度よく推定することができる電池状態検知システムおよび該電池状態検知システムを備えた自動車を提供することを課題とする。   An object of the present invention is to provide a battery state detection system capable of accurately estimating the remaining capacity of a lead battery and an automobile provided with the battery state detection system.

上記課題を解決するために、本発明の第1の態様は、車両に搭載された鉛電池の状態を判定する電池状態検知システムにおいて、車両停止時の前記鉛電池の開回路電圧(OCV)をOCVと残存容量との関係を定めた関係式ないしマップに代入することにより前記鉛電池の残存容量QOCVを算出する第1の残存容量推定部と、前記鉛電池からエンジン始動用セルモータにイグニッションスイッチを介して電力を供給する際に測定した前記鉛電池の内部抵抗を、複数の温度、残存容量に対応する前記鉛電池の内部抵抗値のマップないし関係式に代入することにより前記鉛電池の残存容量Qを算出する第2の残存容量推定部と、前記第1および第2の残存容量推定部で算出された残存容量QOCV、Qおよび測定量の誤差より決定される係数WOCV、Wから走行前の前記鉛電池の残存容量Qfを推定する走行前残存容量推定部と、を備え、前記走行前残存容量推定部は、前記測定量の誤差より決定される係数W OCV 、W としてW =δQ OCV /(δQ OCV +δQ )、W OCV =1−W を用い、前記残存容量QfをQf=W OCV ×Q OCV +W ・Q の式により推定することを特徴とする。 In order to solve the above-mentioned problem, a first aspect of the present invention is a battery state detection system for determining a state of a lead battery mounted on a vehicle, wherein the open circuit voltage (OCV) of the lead battery when the vehicle is stopped is A first remaining capacity estimating unit for calculating the remaining capacity Q OCV of the lead battery by substituting the relation between the OCV and the remaining capacity into a relational expression or map, and an ignition switch from the lead battery to the cell motor for starting the engine; The internal resistance of the lead battery measured when power is supplied through the battery is substituted into a map or a relational expression of the internal resistance value of the lead battery corresponding to a plurality of temperatures and residual capacities. a second remaining capacity estimating section that calculates a capacity Q R, before Symbol remaining capacity Q OCV calculated by the first and second remaining capacity estimating section, is determined from the error of Q R and the measured quantity With a coefficient W OCV, pre-travel remaining capacity estimating unit for estimating the remaining capacity Qf of the lead battery before traveling from W R, and the travel before the remaining capacity estimating unit coefficients determined from the error of the measured quantity W OCV, W W R = δQ OCV 2 / as R (δQ OCV 2 + δQ R 2), using the W OCV = 1-W R, the remaining capacity Qf of Qf = W OCV × Q OCV + W R · Q R It is estimated by a formula .

本態様において、車両走行時は電流積算値に鉛電池の充電効率を乗じた値を走行前の残存容量に加算することにより鉛電池の残存容量を推定することが好ましい。また、推定した残存容量と車両の抵抗値とにより車両のエンジン始動の可否を判定する判定部をさらに備えるようにしてもよい。このとき、車両の抵抗値は、エンジン始動時の最低電圧Vpeakをエンジン始動時の最大電流Ipeakで除することにより求めたり、車両の抵抗値をOutR、エンジン始動時の最低電圧をVpeak、鉛電池の内部抵抗をInRとしたときに、OutR=Vpeak×InR/(OCV−Vpeak)で求めたりすることができる。さらに、エンジン始動時の電流、電圧データを用い最小二乗法により求められた近似曲線の相関係数が0.7〜0.9より小さい場合、走行前の残存容量を0Ahとすることが望ましい。例えば、エンジン始動時の電流、電圧データを用い最小二乗法により求められた近似曲線の相関係数が0.8未満の場合、走行前の残存容量を0Ahとするようにしてもよい。また、鉛電池の充放電電気量を計測する電力計測部を備え、電力計測部は電池温度、電圧データを複数の温度、電圧に対応する充電効率のマップないし関係式に代入することにより決定される充電効率を用いるようにしてもよい。さらに、OCVは車両停止時に鉛電池から車両負荷へ流れる暗電流と鉛電池の劣化度(SOH)と電池温度とにより補正されることが望ましい。   In this aspect, it is preferable that the remaining capacity of the lead battery is estimated by adding a value obtained by multiplying the current integrated value by the charge efficiency of the lead battery to the remaining capacity before traveling when the vehicle is traveling. Moreover, you may make it further provide the determination part which determines the propriety of the engine start of a vehicle from the estimated remaining capacity | capacitance and the resistance value of a vehicle. At this time, the resistance value of the vehicle is obtained by dividing the minimum voltage Vpeak at the engine start by the maximum current Ipeak at the engine start, the vehicle resistance value is OutR, the minimum voltage at the engine start is Vpeak, a lead battery InR can be obtained by OutR = Vpeak × InR / (OCV−Vpeak). Further, when the correlation coefficient of the approximate curve obtained by the least square method using the current and voltage data at the time of starting the engine is smaller than 0.7 to 0.9, it is desirable that the remaining capacity before running is 0 Ah. For example, when the correlation coefficient of the approximate curve obtained by the least square method using the current and voltage data at engine start is less than 0.8, the remaining capacity before running may be set to 0 Ah. In addition, it has a power measurement unit that measures the amount of charge / discharge electricity of the lead battery, and the power measurement unit is determined by substituting the battery temperature and voltage data into a charging efficiency map or relational expression corresponding to a plurality of temperatures and voltages. The charging efficiency may be used. Further, it is desirable that the OCV is corrected by the dark current flowing from the lead battery to the vehicle load when the vehicle is stopped, the deterioration degree (SOH) of the lead battery, and the battery temperature.

また、上記課題を解決するために、本発明の第2の態様は、第1の態様の電池状態検知システムを備えた自動車である。   Moreover, in order to solve the said subject, the 2nd aspect of this invention is a motor vehicle provided with the battery state detection system of the 1st aspect.

本発明によれば、走行前残存容量推定部は、直接測定量の誤差より決定される係数W OCV 、W を用い、走行前の鉛電池の残存容量QfをQf=W OCV ×Q OCV +W ・Q の式により推定するので、鉛電池の残存容量を精度よく推定することができる、という効果を得ることができる。 According to the present invention, a remaining capacity estimating unit before traveling, direct measurement of coefficient W OCV determined from the error, W with R, remaining capacity Qf the Qf = W OCV × Q OCV + W of the lead battery before traveling since estimated by the formula R · Q R, it is possible to accurately estimate the remaining capacity of a lead battery, it is possible to obtain an effect that.

以下、図面を参照して、本発明に係る自動車の実施の形態について説明する。   Embodiments of an automobile according to the present invention will be described below with reference to the drawings.

(構成)
図1に示すように、本実施形態の自動車100はガソリンエンジン車であり、自動車100は、例えば、エンジンルームに、液式鉛電池1と、鉛電池1の上部に配置され鉛電池1の電池状態を判定する電池状態検知システム12とを備えている。なお、本実施形態では、鉛電池1と電池状態検知システム12とは一体化されている。
(Constitution)
As shown in FIG. 1, the automobile 100 of this embodiment is a gasoline engine car. The automobile 100 is, for example, a liquid lead battery 1 and a battery of the lead battery 1 disposed on the lead battery 1 in an engine room. A battery state detection system 12 for determining the state. In the present embodiment, the lead battery 1 and the battery state detection system 12 are integrated.

図4に示すように、電池状態検知システム12は、鉛電池1の温度を測定するサーミスタ等の温度センサ2、差動増幅回路等を有し鉛電池1の外部端子に接続された電圧測定部3、ホール素子等の電流センサ4および鉛電池1の電池状態を検知するマイクロコンピュータ(以下、マイコンという。)10を備えている。   As shown in FIG. 4, the battery state detection system 12 includes a temperature sensor 2 such as a thermistor that measures the temperature of the lead battery 1, a differential amplifier circuit, and the like, and a voltage measurement unit that is connected to an external terminal of the lead battery 1. 3. A current sensor 4 such as a Hall element and a microcomputer (hereinafter referred to as a microcomputer) 10 for detecting the battery state of the lead battery 1 are provided.

鉛電池1は、電池容器となる略角型の電槽を有しており、電槽内には合計6組の極板群が収容されている。電槽の材質には、例えば、ポリエチレン(PE)等の高分子樹脂を用いることができる。各極板群は複数枚の負極板および正極板がセパレータを介して積層されており、セル電圧は2.0Vである。このため、鉛電池1の公称電圧は12Vとされている。電槽の上部は、電槽の上部開口を密閉するPE等の高分子樹脂製の上蓋に接着ないし溶着されている。上蓋には、鉛電池1を電源として外部へ電力を供給するためのロッド状正極端子および負極端子が立設されている。なお、上述した温度センサは電槽の側面部または底面部に固定されている。   The lead battery 1 has a substantially rectangular battery case serving as a battery container, and a total of six electrode plate groups are accommodated in the battery case. As the material of the battery case, for example, a polymer resin such as polyethylene (PE) can be used. Each electrode plate group is formed by laminating a plurality of negative plates and positive plates with a separator interposed therebetween, and the cell voltage is 2.0V. For this reason, the nominal voltage of the lead battery 1 is set to 12V. The upper part of the battery case is bonded or welded to an upper lid made of a polymer resin such as PE that seals the upper opening of the battery case. A rod-like positive electrode terminal and a negative electrode terminal for supplying electric power to the outside using the lead battery 1 as a power source are erected on the upper lid. In addition, the temperature sensor mentioned above is being fixed to the side part or bottom face part of a battery case.

鉛電池1の正極端子は、電流センサ4を介してイグニッションスイッチ(以下、IGNという。)5の中央端子に接続されている。IGN5は、中央端子とは別に、OFF端子、ON/ACC端子およびSTART端子を有しており、中央端子とこれらOFF、ON/ACCおよびSTART端子のいずれかとは、ロータリー式に切り替え接続が可能である。   A positive terminal of the lead battery 1 is connected to a central terminal of an ignition switch (hereinafter referred to as “IGN”) 5 through a current sensor 4. The IGN5 has an OFF terminal, an ON / ACC terminal, and a START terminal in addition to the central terminal. The central terminal and any of these OFF, ON / ACC, and START terminals can be switched in a rotary manner. is there.

START端子はエンジン始動用セルモータ(スタータ)9に接続されている。セルモータ9は、図示しないクラッチ機構を介してエンジン8の回転軸に回転駆動力の伝達が可能である。   The START terminal is connected to an engine starting cell motor (starter) 9. The cell motor 9 can transmit a rotational driving force to the rotating shaft of the engine 8 via a clutch mechanism (not shown).

また、ON/ACC端子は、エアコン、ラジオ、ランプ等の補機6および一方向への電流の流れを許容する整流素子を含むレギュレータを介してエンジン8の回転により発電する発電機(オルタネータ)7の一端に接続されている。すなわち、レギュレータのアノード側は発電機7の一端に、カソード側はON/ACC端子に接続されている。エンジン8の回転軸は、不図示のクラッチ機構を介して発電機7に動力の伝達が可能である。このため、エンジン8が回転状態にあるときは、不図示のクラッチ機構を介して発電機7が作動し発電機7からの電力が補機6や鉛電池1に供給(充電)される。なお、OFF端子はいずれにも接続されていない。   The ON / ACC terminal is a generator (alternator) 7 that generates electric power by rotation of the engine 8 via an auxiliary device 6 such as an air conditioner, a radio, a lamp, and a regulator including a rectifying element that allows current flow in one direction. It is connected to one end. That is, the anode side of the regulator is connected to one end of the generator 7, and the cathode side is connected to the ON / ACC terminal. The rotating shaft of the engine 8 can transmit power to the generator 7 via a clutch mechanism (not shown). For this reason, when the engine 8 is in a rotating state, the generator 7 is operated via a clutch mechanism (not shown), and the electric power from the generator 7 is supplied (charged) to the auxiliary machine 6 and the lead battery 1. Note that the OFF terminal is not connected to any of them.

電圧測定部3の出力側はマイコン10に内蔵されたA/Dコンバータに接続されている。また、温度センサ2および電流センサ4の出力側は、マイコン10に内蔵されたA/Dコンバータにそれぞれ接続されている。このため、マイコン10は、鉛電池1の電圧、温度および鉛電池1に流れる電流を所定時間毎にデジタル値で取り込むことができる。なお、マイコン10は、I/Oを介して上位の車両制御システム11と通信可能である。   The output side of the voltage measuring unit 3 is connected to an A / D converter built in the microcomputer 10. The output sides of the temperature sensor 2 and the current sensor 4 are connected to an A / D converter built in the microcomputer 10 respectively. For this reason, the microcomputer 10 can take in the voltage and temperature of the lead battery 1 and the current flowing through the lead battery 1 as digital values every predetermined time. The microcomputer 10 can communicate with the host vehicle control system 11 via the I / O.

マイコン10は、中央演算処理装置として機能するCPU、電池状態検知システム12の基本制御プログラムや後述するマップや数式等のプログラムデータが格納されたROM、CPUのワークエリアとして働くとともにデータを一時的に記憶するRAM、不揮発性のEEPROM等を含んで構成されている。発電機7、セルモータ9および補機6の他端、鉛電池1の負極端子およびマイコン10は、それぞれグランド(自動車のシャーシと同電位)に接続されている。なお、本実施形態のマイコン10は、電圧、電流および温度を所定時間毎に(例えば、電圧、電流をそれぞれ2m秒間隔、温度を1秒間隔で)それぞれサンプリングし、サンプリング結果をRAMに格納する。また、電流については、放電電流と充電電流とに分け、それぞれの積算値を算出している。   The microcomputer 10 functions as a CPU that functions as a central processing unit, a basic control program for the battery state detection system 12, a ROM that stores program data such as maps and mathematical formulas described later, and a work area for the CPU and temporarily stores the data. It includes a RAM for storage, a nonvolatile EEPROM, and the like. The other end of the generator 7, the cell motor 9 and the auxiliary machine 6, the negative terminal of the lead battery 1, and the microcomputer 10 are each connected to the ground (the same potential as the chassis of the automobile). Note that the microcomputer 10 of the present embodiment samples the voltage, current, and temperature at predetermined time intervals (for example, the voltage and current are each 2 milliseconds and the temperature is 1 second), and the sampling result is stored in the RAM. . The current is divided into a discharge current and a charge current, and an integrated value of each is calculated.

(動作)
次に、電池状態検知システム12の動作について、エンジン状態の検知、鉛電池1の残存容量の推定、エンジン始動の可否の判定の順に説明する。
<1.エンジン状態の検知>
(Operation)
Next, the operation of the battery state detection system 12 will be described in the order of detection of the engine state, estimation of the remaining capacity of the lead battery 1, and determination of whether or not the engine can be started.
<1. Engine status detection>

マイコン10のCPU(以下、単にCPUと略称する。)は、IGN5の電圧を測定し(図4では構成を省略)、例えば、IGN5の電圧が約0Vから12V以上となった場合、IGN5がON/ACC端子位置に位置し、IGN5の電圧が12V以上の電圧から約0Vの電圧となったときにIGN5がオフ端子位置に位置したと判断し、車両のイグニッションスイッチがオンかオフか(キーによるエンジン始動、エンジン停止)を検知している。なお、IGN5が端子位置について信号を出力するタイプのものであれば、その信号または車両制御システム11からの信号によりエンジン状態を検知するようにしてもよい。   The CPU of the microcomputer 10 (hereinafter simply referred to as “CPU”) measures the voltage of IGN5 (the configuration is omitted in FIG. 4). For example, when the voltage of IGN5 is increased from about 0V to 12V or more, IGN5 is turned on. It is located at the / ACC terminal position, and it is determined that IGN5 is located at the OFF terminal position when the voltage of IGN5 changes from a voltage of 12 V or higher to a voltage of about 0 V, and the vehicle ignition switch is turned on or off (depending on the key) Engine start, engine stop). If the IGN 5 is of a type that outputs a signal regarding the terminal position, the engine state may be detected by the signal or a signal from the vehicle control system 11.

一般に、ガソリンエンジン車やディーゼルエンジン車等の内燃機関を有する自動車では、鉛電池から電力を供給しセルモータを回して、エンジンを始動する。この際、大電流が流れるが、それに伴い、鉛電池1の端子間電圧は大きく降下する。このときの電圧降下および電流の時間変化を測定すると、セルモータに電流が流れ始めた直後に、鋭いピーク状の大電流が流れ、同時に鉛電池1の端子間電圧は鋭い谷状の電圧降下を示す(図6も参照)。後述するように、エンジン始動時における鉛電池の最低電圧値Vpeak、鉛電池に流れる最大電流値Ipeak、および、自動車(車両)の抵抗値との間には、オームの法則が成り立つ。付言すれば、このオームの法則が成り立つのは、最低電圧値Vpeakおよび最大電流値Ipeakをとるときの一瞬であり、それ以外のときにはオームの法則は成立しない。   In general, in an automobile having an internal combustion engine such as a gasoline engine car or a diesel engine car, electric power is supplied from a lead battery and a cell motor is rotated to start the engine. At this time, a large current flows, and accordingly, the voltage between the terminals of the lead battery 1 greatly decreases. When the voltage drop and the time change of the current at this time are measured, a sharp peak-shaped large current flows immediately after the current starts to flow through the cell motor, and at the same time, the voltage between the terminals of the lead battery 1 shows a sharp valley-shaped voltage drop. (See also FIG. 6). As will be described later, Ohm's law is established between the minimum voltage value Vpeak of the lead battery at the time of starting the engine, the maximum current value Ipeak flowing in the lead battery, and the resistance value of the automobile (vehicle). In other words, the Ohm's law is established only for a moment when the minimum voltage value Vpeak and the maximum current value Ipeak are taken, and the Ohm's law is not established otherwise.

なお、CPUは、エンジン停止後、鉛電池1の分極反応が解消した所定時刻に、電圧測定部3を介して測定した鉛電池1の電圧をOCVとして取り込むが、後述するように、エンジン停止後、CPUはタイマのみ作動させそれ以外の制御動作を行わない省電力モードに入り、タイマにより所定時刻となるとOCVを取り込み、再度、省電力モードに入る。   The CPU takes in the voltage of the lead battery 1 measured through the voltage measuring unit 3 as an OCV at a predetermined time after the polarization reaction of the lead battery 1 is canceled after the engine is stopped. The CPU enters a power saving mode in which only the timer is operated and no other control operation is performed. When the timer reaches a predetermined time, the OCV is taken in and the power saving mode is entered again.

<2.鉛電池1の残存容量の算出>
一般に、鉛電池の残存容量Q(Ah)は次式(1)で求めることができる。なお、式(1)において、Qfは走行前容量、Qoutは放電電流積算値、Qinは充電電流積算値、cは充電効率を表している。
<2. Calculation of remaining capacity of lead battery 1>
In general, the remaining capacity Q (Ah) of the lead battery can be obtained by the following equation (1). In equation (1), Qf represents the pre-travel capacity, Qout represents the discharge current integrated value, Qin represents the charge current integrated value, and c represents the charging efficiency.

Figure 0005163739
Figure 0005163739

走行前容量Qfは車両停止時に測定したOCVとエンジン始動時の内部抵抗から求めることができる。一般に、鉛電池では充放電による分極が解消するまで2〜10時間以上かかる。このため、本実施形態では車両停止から6時間以上経過した状態でのOCVを採用した。6時間以上経過しなかった場合は前回の走行終了時の残存容量推定値を走行前容量とした。すなわち、CPUは前回の走行終了時の残存容量推定値をEEPROMに格納しておき、車両停止から6時間以上経過したか否かを判断し、否定判断のときに、EEPROMから前回の走行終了時の残存容量推定値を読み出して使用する。一方、6時間以上経過した場合の走行前容量Qfは以下のように求めることができる。   The pre-travel capacity Qf can be obtained from the OCV measured when the vehicle is stopped and the internal resistance when the engine is started. Generally, in a lead battery, it takes 2 to 10 hours or more until polarization due to charge / discharge is eliminated. For this reason, in this embodiment, OCV in the state which passed 6 hours or more after the vehicle stop was employ | adopted. When 6 hours or more did not elapse, the estimated remaining capacity at the end of the previous run was taken as the pre-travel capacity. That is, the CPU stores the estimated remaining capacity at the end of the previous run in the EEPROM, determines whether or not 6 hours or more have elapsed since the vehicle stopped, and from the EEPROM at the end of the previous run when a negative determination is made. The estimated remaining capacity is read and used. On the other hand, the pre-travel capacity Qf when 6 hours or more have elapsed can be obtained as follows.

2−1.走行前容量Qfの算出
2−1−1.OCVからの残存容量QOCVの算出
まず、車両停止時に測定したOCVについて、次の方法で暗電流降下分を補正する。図5に0°Cで暗電流25mA放電したときのOCVと、無負荷状態での(真の)25°CでのOCVの関係を示す。劣化品では内部抵抗が大きくなるため、新品(SOH100%)より電圧降下が大きくなる。このため、図5に示すように、左方にシフトする。SOH100%の近似線をf3(x)、SOH40%の近似線をf4(x)とした。同様に、下表1に示すように、−20,0,25,60°C、暗電流25,32,75mAについて、SOH100%の近似線、SOH40%の近似線を求めることができる。
2-1. Calculation of pre-travel capacity Qf 2-1-1. Calculation of remaining capacity Q OCV from OCV First, the dark current drop is corrected by the following method for the OCV measured when the vehicle is stopped. FIG. 5 shows the relationship between the OCV when a dark current of 25 mA is discharged at 0 ° C. and the OCV at 25 ° C. (true) in a no-load state. Since the internal resistance of the deteriorated product is large, the voltage drop is larger than that of a new product (SOH 100%). For this reason, it shifts to the left as shown in FIG. The approximate line of SOH 100% was f3 (x), and the approximate line of SOH 40% was f4 (x). Similarly, as shown in Table 1 below, an approximate line of SOH 100% and an approximate line of SOH 40% can be obtained for −20, 0, 25, 60 ° C. and dark current 25, 32, 75 mA.

Figure 0005163739
Figure 0005163739

電圧測定値OCVbをこの補正式に代入し、比例計算により25°CのOCV(OCVb_25)を算出する。例として、暗電流Ix>32mA、電池温度T<0°Cの場合について説明する。   The voltage measurement value OCVb is substituted into this correction formula, and an OCV of 25 ° C. (OCVb — 25) is calculated by proportional calculation. As an example, a case where dark current Ix> 32 mA and battery temperature T <0 ° C. will be described.

1)32mA、−20°C、SOH40%のときの25°COCV(Data1)は、Data1=f9(OCVb)で表すことができる。また、32mA、−20°C、SOH100%のときの25°COCV(Data2)は、Data2=f10(OCVb)で表すことができる。従って、32mA、−20°C、SOH(SOH)%のときの25°COCV(Data3)は、Data3=Data2+(Data1−Data2)×(100−SOH)/(100−40)・・・式(2)で表すことができる。 1) 25 ° COCV (Data 1) at 32 mA, −20 ° C. and SOH 40% can be expressed by Data 1 = f9 (OCVb). Further, 25 ° COCV (Data 2) at 32 mA, −20 ° C. and SOH 100% can be expressed by Data 2 = f10 (OCVb). Therefore, 25 ° COCV (Data 3) at 32 mA, −20 ° C., SOH (SOH)% is Data 3 = Data 2+ (Data 1−Data 2) × (100−SOH) / (100−40) 2).

2)一方、32mA、0°C、SOH40%のときの25°COCV(Data4)は、Data4=f11(OCVb)で表すことができる。また、32mA、0°C、SOH100%のときの25°COCV(Data5)は、Data5=f12(OCVb)で表すことができる。従って、32mA、0°C、SOH(SOH)%のときの25°COCV(Data6)は、Data6=Data5+(Data4−Data5)×(100−SOH)/(100−40)・・・式(3)で表すことができる。 2) On the other hand, 25 ° COCV (Data 4) at 32 mA, 0 ° C., and 40% SOH can be expressed by Data 4 = f11 (OCVb). Further, 25 ° COCV (Data 5) at 32 mA, 0 ° C., and SOH 100% can be expressed by Data 5 = f12 (OCVb). Therefore, 25 ° COCV (Data 6) at 32 mA, 0 ° C. and SOH (SOH)% is Data 6 = Data 5+ (Data 4 -Data 5) × (100−SOH) / (100−40) (3) ).

3)上記1)、2)から、32mA、T°C、SOH(SOH)%のときの25°COCV(Data7)は、Data7=Data6+(Data3−Data6)×(0−T)/(0−(−20))・・・式(4)で表すことができる。同様に75mA、T°C、SOH(SOH)%のときの25°COCV(Data8)を求めることができる。 3) From 1) and 2) above, 25 ° COCV (Data 7) at 32 mA, T ° C, SOH (SOH)% is Data 7 = Data 6+ (Data 3 -Data 6) × (0−T) / (0−T) (−20))... (4) Similarly, 25 ° COCV (Data 8) at 75 mA, T ° C., and SOH (SOH)% can be obtained.

4)上記3)から、25°COCV(OCVb_25)は、OCVb_25=Data8+(Data7−Data8)×(75−Ix)/(75−32)・・・式(5)として得ることができる。 4) From 3) above, 25 ° COCV (OCVb — 25) can be obtained as OCVb — 25 = Data8 + (Data7−Data8) × (75−Ix) / (75−32) (5).

このOCVb_25をさらに以下に示す方法でSOH補正する。図2に示したように、劣化品のOCVは新品(SOH100%)の直線より上方に平行移動する。SOHc%で新品に対し上方にbV平行移動したとするとSOHx%のときのOCV補正値ΔOCVは、ΔOCV=d×(100−x)/(100−c)・・・式(6)で表される。   This OCVb_25 is further subjected to SOH correction by the following method. As shown in FIG. 2, the OCV of the deteriorated product translates upward from the straight line of the new product (SOH 100%). Assuming that bV is translated upward with respect to a new product at SOHc%, the OCV correction value ΔOCV at SOHx% is expressed by ΔOCV = d × (100−x) / (100−c) (6) The

図2に示した新品の直線の一次式を、QOCV=(OCVb_25−b)/a・・・式(7)(a、bは定数)とすると、劣化品の直線の一次式は、QOCV=(OCVb_25−ΔOCV−b)/a・・・式(8)で表される。なお、残存容量QOCVがSOHで規定される満充電容量(=(新品時の満充電容量)×SOH/100)より大きい場合は、QOCV=(SOHで規定される満充電容量)とする。Assuming that the linear expression of the new straight line shown in FIG. 2 is Q OCV = (OCVb — 25−b) / a (7) (a and b are constants), the linear expression of the deteriorated product is Q OCV = (OCVb — 25−ΔOCV−b) / a (Expression (8)) When the remaining capacity Q OCV is larger than the full charge capacity defined by SOH (= (full charge capacity at new article) × SOH / 100), Q OCV = (full charge capacity defined by SOH). .

ここで、OCVの測定誤差をδOCVとすると、残存容量QOCVの誤差δQOCVは、δQOCV={(OCVb_25−ΔOCV+δOCV−b)/a−((OCVb_25−ΔOCV−δOCV−b)/a)}/2・・・式(9)で表すことができる。Here, when the measurement error of the OCV and DerutaOCV, error .delta.Q OCV of the remaining capacity Q OCV is, δQ OCV = {(OCVb_25- ΔOCV + δOCV-b) / a - ((OCVb_25-ΔOCV-δOCV-b) / a)} / 2 ... It can be expressed by equation (9).

本実施形態では、残存容量QOCVとOCVとの関係式(式(8))や誤差算出式(式(9))等がプログラムデータとしてROMに格納されており、CPUは、RAMに展開されたこれらのプログラムデータを利用して残存容量QOCV等を算出する。なお、SOHは、例えば、特許文献3に記載された技術で求めることができる。In the present embodiment, a relational expression (equation (8)) between the remaining capacities Q OCV and OCV, an error calculation expression (equation (9)), and the like are stored as program data in the ROM, and the CPU is expanded in the RAM. The remaining capacity Q OCV and the like are calculated using these program data. In addition, SOH can be calculated | required with the technique described in patent document 3, for example.

2−1−2.内部抵抗からの残存容量Qの算出
鉛電池1の内部抵抗は、図6に示すように、例えば、エンジン始動時(鉛電池1からIGN5を介してセルモータ9に電力を供給する際)の−100〜−200Aの範囲の電圧電流データから最小二乗法により算出した近似線の傾きとして求めることができる。図7に示すように、予め内部抵抗と電池温度のマップを作成しておく(本実施形態ではROMからRAMに展開されている。)。このマップにエンジン始動時の内部抵抗と電池温度を代入し残存容量Qを算出する。
2-1-2. Internal resistance calculation lead battery 1 remaining capacity Q R from the internal resistance, as shown in FIG. 6, for example, during engine start (when supplying power to the starter motor 9 via a lead battery 1 IGN5) - It can be determined as the slope of the approximate line calculated from the voltage-current data in the range of 100 to -200 A by the least square method. As shown in FIG. 7, a map of internal resistance and battery temperature is created in advance (in this embodiment, it is expanded from ROM to RAM). The map to substitute the internal resistance and the battery temperature at the time of starting the engine to calculate the remaining capacity Q R.

具体的には、例えば、測定した電池温度t°Cから比例計算によりt°CでのQ−R関係式を求め、それに内部抵抗値を代入し残存容量Qを求める。ここで、残存容量QがSOHで規定される満充電容量(=(新品時の満充電容量)×SOH/100)より大きい場合は、Q=(SOHで規定される満充電容量)とする。Specifically, for example, determine the Q-R relationship in t ° C by proportional calculation from the measured battery temperature t ° C, it assigns the internal resistance value determining the remaining capacity Q R. Here, if the full charge capacity of the remaining capacity Q R is defined by SOH (= (the full charge capacity at the time of a new) × SOH / 100) greater than (full-charge capacity, which is defined by SOH) Q R = a To do.

fa()を内部抵抗R、電池温度tから残存容量を求める関数とすると、残存容量Qの誤差δQは、δQ={fa(R+δR,t)−fa(R−δR,t)}/2・・・式(10)で表すことができる。なお、式(10)においてδRは内部抵抗の測定誤差である。電池温度の測定誤差は内部抵抗に比べ小さかったため省略した。When the fa () and the internal resistance R, the function for obtaining the remaining capacity from the battery temperature t, the error .delta.Q R of the remaining capacity Q R is, δQ R = {fa (R + δR, t) -fa (R-δR, t)} / 2 ... It can be expressed by equation (10). In Equation (10), δR is an internal resistance measurement error. The measurement error of the battery temperature was omitted because it was smaller than the internal resistance.

本実施形態では、上述したマップや関係式、誤差算出式(式(10))等がプログラムデータとしてROMに格納されており、CPUは、RAMに展開されたこれらのプログラムデータを利用して残存容量Q等を算出する。In the present embodiment, the above-described map, relational expression, error calculation expression (formula (10)), and the like are stored as program data in the ROM, and the CPU uses these program data expanded in the RAM to remain. to calculate the capacity Q R and the like.

2−1−3.走行前容量Qfの算出(誤差低減処理)
CPUは、算出精度を高めるため、最小誤差原理に基づく重み付平均により、走行前容量Qfを、上述した、OCVからの残存容量QOCVと内部抵抗からの残存容量Qとの両者から次式により算出する:Qf=WOCV×QOCV+W・Q・・・式(11)。ここで、係数Wは、W=δQOCV /(δQOCV +δQ )・・・式(12)、係数WOCVは、WOCV=1−W・・・式(13)である。
2-1-3. Calculation of pre-travel capacity Qf (error reduction process)
The CPU, in order to improve the calculation accuracy, the weighted average based on minimum error principle, the pre-travel capacity Qf, described above, the following equation from both the remaining capacity Q R from the remaining capacity Q OCV and internal resistance from OCV Qf = W OCV × Q OCV + W R · Q R (Equation 11) Here, the coefficient W R is, W R = δQ OCV 2 / (δQ OCV 2 + δQ R 2) ··· Equation (12), the coefficient W OCV is, W OCV = 1-W R ··· formula (13) It is.

2−1−4.過放電判定
図6に示した近似線(2−1−2参照)の相関係数と、鉛電池1の残存容量は、図8に示す関係にある。図8に示すように、相関係数が小さい場合、走行前容量Qfはほぼ0Ahとなる。このため、本実施形態では、CPUは相関係数が0.8未満か否かを判断し、肯定判断のとき(相関係数<0.8)は走行前容量Qf=0Ah、否定判断のとき(相関係数≧0.8)は走行前容量Qf=算出した走行前容量Qfとするステップ(アルゴリズム)を追加した。
2-1-4. Overdischarge determination The correlation coefficient of the approximate line (see 2-1-2) shown in FIG. 6 and the remaining capacity of the lead battery 1 are in the relationship shown in FIG. As shown in FIG. 8, when the correlation coefficient is small, the pre-travel capacity Qf is approximately 0 Ah. For this reason, in this embodiment, the CPU determines whether or not the correlation coefficient is less than 0.8. When the determination is affirmative (correlation coefficient <0.8), the pre-travel capacity Qf = 0 Ah, and the negative determination For (correlation coefficient ≧ 0.8), a step (algorithm) was added in which pre-travel capacity Qf = calculated pre-travel capacity Qf.

2−2.充電効率cの算出
図9に示すように、予め電池電圧と電池温度のマップを作成しておく(本実施形態ではROMからRAMに展開されている。)。このマップに測定した電池電圧Vと電池温度tを代入し充電効率cを推定する。具体的には、例えば、測定した電池温度t°Cから比例計算によりt°CでのV−c関係式を求め、それに電池電圧値を代入し充電効率cを求める。
2-2. Calculation of Charging Efficiency c As shown in FIG. 9, a map of battery voltage and battery temperature is created in advance (in this embodiment, it is expanded from ROM to RAM). The measured battery voltage V and battery temperature t are substituted into this map to estimate the charging efficiency c. Specifically, for example, a Vc relational expression at t ° C is obtained from the measured battery temperature t ° C by proportional calculation, and the battery voltage value is substituted into the equation to obtain the charging efficiency c.

CPUは、以上のようにして求めた各値を、式(1)に代入することにより、6時間以上経過した場合の走行前容量Qfを推定する。また、式(1)からも明らかなように、車両走行中は、電流積算値に鉛電池1の充電効率cを乗じた値を走行前容量Qfに加算することにより鉛電池1の残存容量を推定する。なお、本実施形態では、説明を明瞭に行うために、ステップ毎に式を明示したが、これらをまとめた式を用いるようにしてもよい。   The CPU estimates the pre-traveling capacity Qf when 6 hours or more have elapsed by substituting the values obtained as described above into Equation (1). Further, as apparent from the equation (1), during the vehicle traveling, the remaining capacity of the lead battery 1 is obtained by adding a value obtained by multiplying the current integrated value by the charging efficiency c of the lead battery 1 to the pre-travel capacity Qf. presume. In the present embodiment, in order to clarify the explanation, the formula is clearly shown for each step. However, a formula summarizing these may be used.

<3.エンジン始動の可否の判定>
図10はエンジン始動時の等価回路を示している。図10より、次式(14)、(15)が成り立つ。なお、式(14)、(15)において、Vpeakはエンジン始動時の鉛電池1の最低電圧値、Ipeakはエンジン始動時の鉛電池1に流れる最大電流値、OutRは自動車の抵抗値、InRは鉛電池1の内部抵抗値を表している。
<3. Determining whether the engine can be started>
FIG. 10 shows an equivalent circuit when starting the engine. From FIG. 10, the following expressions (14) and (15) hold. In the equations (14) and (15), Vpeak is the minimum voltage value of the lead battery 1 at the time of starting the engine, Ipeak is the maximum current value flowing through the lead battery 1 at the time of starting the engine, OutR is the resistance value of the automobile, and InR is The internal resistance value of the lead battery 1 is represented.

Figure 0005163739
Figure 0005163739

式(14)、(15)より、Vpeak=(OCV×OutR)/(InR+OutR)・・・式(17)が成り立つ。   From expressions (14) and (15), Vpeak = (OCV × OutR) / (InR + OutR) (17) is established.

CPUは、式(17)に現在の残存容量推定値Q、温度から求められたOCV(OCV)、内部抵抗(InR)を代入することによりエンジン(再)始動時の最低電圧の推定値Vexpを算出する。The CPU substitutes the current remaining capacity estimation value Q, the OCV (OCV Q ) obtained from the temperature, and the internal resistance (InR Q ) into the equation (17), thereby estimating the minimum voltage at the time of engine (re) starting. Vexp is calculated.

すなわち、Vexp=(OCV×OutR)/(InR+OutR)・・・式(18)により、エンジン始動時の最低電圧の推定値Vexpを算出する。ただし、OCV=(Q×a)+b・・・式(18)、OutR=Vpeak/Ipeak・・・式(19)であり、InRは現在の残存容量推定値Q、温度を予め作成してあるマップに代入演算することにより求められる内部抵抗である。なお、OutRは鉛電池1の使用期間中ほぼ一定とみなせるため、本実施形態では、電池搭載(ないし交換)後の数回のエンジン始動時の鉛電池1の最低電圧値Vpeakを最大電流値Ipeakで除した値(の平均値)を求め、その値をEEPROMに格納しておき、格納した値を読み出して自動車の抵抗値OutRとして用いた。また、OutRは温度により若干異なる場合があるので、温度補正してもよい。That is, Vexp = (OCV Q × OutR) / (InR Q + OutR) (Equation 18) is used to calculate an estimated value Vexp of the minimum voltage at the time of engine start. However, OCV Q = (Q × a ) + b ··· formula (18), a OutR = Vpeak / Ipeak ··· formula (19), InR Q creates current remaining capacity estimation value Q, the temperature in advance This is the internal resistance obtained by assigning to a certain map. Since OutR can be regarded as substantially constant during the use period of the lead battery 1, in this embodiment, the minimum voltage value Vpeak of the lead battery 1 when the engine is started several times after the battery is mounted (or replaced) is the maximum current value Ipeak. The value divided by (average value) was obtained, the value was stored in the EEPROM, and the stored value was read and used as the automobile resistance value OutR. Also, since OutR may differ slightly depending on the temperature, temperature correction may be performed.

電流センサ2の測定範囲が狭くIpeakが測定できない場合、OutR=Vpeak×InR/(OCV−Vpeak)・・・式(20)として算出するようにしてもよい。このような算出式を用いることにより、電流センサ2の低コスト化を図ることができる。なお、式(20)において、InRは、エンジン始動時のIVデ−タを最小2乗近似することにより算出される内部抵抗である。   When the measurement range of the current sensor 2 is narrow and Ipeak cannot be measured, it may be calculated as OutR = Vpeak × InR / (OCV−Vpeak) (Equation 20). By using such a calculation formula, the cost of the current sensor 2 can be reduced. In Expression (20), InR is an internal resistance calculated by approximating the IV data at the time of starting the engine to the least square.

CPUは、エンジン始動時の最低電圧の推定値Vexpがエンジン始動のための最低電圧値Vminに対し、Vexp≦Vmin・・・式(21)か否かを判断し、肯定判断ときにはエンジンを停止すると再始動が不能になると判断してその旨を車両制御システム11に報知し、否定判断のときにはエンジンを停止しても再始動(ISS)が可能と判断してその旨を車両制御システム11に報知する。否定判断の報知を受けた車両制御システム11は、エンジンを停止せず、発電機7を継続作動させることで鉛電池1を充電する。なお、エンジン始動のための最低電圧値Vminは自動車により異なるが6.8〜7.8V程度であり、本実施形態では7.2Vとした。   The CPU determines whether or not the estimated value Vexp of the minimum voltage at the time of starting the engine is Vexp ≦ Vmin (formula (21)) with respect to the minimum voltage value Vmin for starting the engine. The vehicle control system 11 is notified that the restart is impossible, and the vehicle control system 11 is notified that the restart is impossible, and the vehicle control system 11 is notified that the restart (ISS) is possible even if the engine is stopped. To do. The vehicle control system 11 that has received the negative determination notification charges the lead battery 1 by continuously operating the generator 7 without stopping the engine. The minimum voltage value Vmin for starting the engine is about 6.8 to 7.8 V, although it varies depending on the vehicle, and is set to 7.2 V in this embodiment.

(効果等)
次に、本実施形態の自動車の作用・効果等について、電池状態検知システム12の作用・効果等を中心に説明する。
(Effects etc.)
Next, functions and effects of the vehicle according to the present embodiment will be described focusing on functions and effects of the battery state detection system 12.

電池状態検知システム12は、残存容量QOCV、Qおよび測定量の誤差より決定される係数WOCV、Wを算出し、これらから鉛電池1の走行前容量Qfを推定している(式(11))。このため、従来技術のようにOCVから残存容量を推定する場合の原理的誤差や内部抵抗から残存容量を推定する場合の原理的誤差を小さくすることができるので、走行前の鉛電池1の残存容量を精度よく推定することができる。また、車両走行時は電流積算値に鉛電池1の充電効率cを乗じた値を走行前容量Qfに加算することにより鉛電池1の残存容量Qを推定しているが、車両走行中の基準となる走行前容量Qfを精度よく推定するとともに、走行中の実際の充放電電流を積算しているので、車両走行中の鉛電池1の残存容量を精度よく把握することができる。Battery state detection system 12, the remaining capacity Q OCV, Q R and measuring the amount of coefficient W OCV determined from the error, calculating the W R, From these estimates the traveling before capacity Qf the lead battery 1 (formula (11)). For this reason, the principle error in estimating the remaining capacity from the OCV as in the prior art and the principle error in estimating the remaining capacity from the internal resistance can be reduced, so the remaining of the lead battery 1 before traveling can be reduced. The capacity can be estimated accurately. Further, when the vehicle is traveling, the remaining capacity Q of the lead battery 1 is estimated by adding a value obtained by multiplying the current integrated value by the charging efficiency c of the lead battery 1 to the pre-travel capacity Qf. Therefore, the remaining capacity of the lead battery 1 during traveling of the vehicle can be accurately grasped because the pre-traveling capacity Qf is accurately estimated and the actual charge / discharge current during traveling is integrated.

また、電池状態検知システム12は、エンジン始動時の電流、電圧データを用い最小二乗法により求められた近似曲線の相関係数が0.8未満の場合、走行前容量Qfを0Ahとしている。これにより、鉛電池1の実際の残存容量を反映させた走行前容量Qfを得ることができる。   Further, the battery state detection system 12 sets the pre-travel capacity Qf to 0 Ah when the correlation coefficient of the approximate curve obtained by the least square method using the current and voltage data when starting the engine is less than 0.8. As a result, the pre-travel capacity Qf reflecting the actual remaining capacity of the lead battery 1 can be obtained.

さらに、電池状態検知システム12は、精度よく推定した車両走行中の鉛電池1の残存容量Qと実際の自動車の抵抗値OutRとにより自動車のエンジン始動の可否を判定している(式(18)、(21))。このため、エンジン始動の可否の精度を高めることができる。   Further, the battery state detection system 12 determines whether or not the engine of the automobile can be started based on the accurately estimated remaining capacity Q of the lead battery 1 while the vehicle is running and the actual resistance value OutR of the automobile (Formula (18)). (21)). For this reason, it is possible to improve the accuracy of whether or not the engine can be started.

また、本実施形態の自動車では、鉛電池1の残存容量を精度よく推定可能な電池状態検知システム12を備えているので、アイドルストップ・スタートの際に、エンジン再始動を確保することができる。   In addition, since the automobile of the present embodiment includes the battery state detection system 12 that can accurately estimate the remaining capacity of the lead battery 1, engine restart can be ensured at the time of idling stop / start.

なお、本実施形態では、相関係数が0.8未満か否かを判断し、肯定判断のとき(は走行前容量Qf=0Ah、否定判断のときは走行前容量Qf=算出した走行前容量Qfとする例を示したが、本発明はこれに限らず、例えば、相関係数の範囲を0.7〜0.9の範囲で定めることができる。   In the present embodiment, it is determined whether or not the correlation coefficient is less than 0.8. When an affirmative determination is made (is a pre-travel capacity Qf = 0 Ah, a negative determination is a pre-travel capacity Qf = a calculated pre-travel capacity Although an example of Qf has been shown, the present invention is not limited to this, and for example, the range of the correlation coefficient can be set within a range of 0.7 to 0.9.

また、本実施形態では、鉛電池1に14V系液式鉛電池を例示したが、本発明はこれに限定されるものではない。例えば、42V系液式鉛電池、リテーナに電解液を含有させたタイプの鉛電池、鉛電池の一種のバイポーラ電池等にも適用可能である。またさらに、本実施形態では、アイドルストップ・スタート機能を有する自動車を例示したが、本発明はこのような機能を有しない自動車に適用可能なことは云うまでもない。   Moreover, in this embodiment, although the 14V type liquid lead battery was illustrated as the lead battery 1, this invention is not limited to this. For example, the present invention can be applied to a 42V liquid lead battery, a lead battery in which an electrolytic solution is contained in a retainer, a kind of bipolar battery of a lead battery, and the like. Furthermore, in the present embodiment, an automobile having an idle stop / start function is illustrated, but it goes without saying that the present invention can be applied to an automobile having no such function.

さらに、本実施形態では、ホール式の電流センサを例示したが、本発明はこれに限らず、シャント式の電流センサを用いるようにしてもよい。また、本実施形態では、エンジン状態の検知を電圧変動を把握することで検知する例を示したが、電流変動で把握したり、電圧変動および電流変動の両者で把握したりするようにしてもよい。   Furthermore, in the present embodiment, the Hall type current sensor is exemplified, but the present invention is not limited to this, and a shunt type current sensor may be used. In this embodiment, an example in which the detection of the engine state is detected by grasping the voltage fluctuation has been shown. However, it may be grasped by the current fluctuation or by both the voltage fluctuation and the current fluctuation. Good.

そして、本実施形態では、マップないし関係式の一方を例示したが、マップを関係式に、または、関係式をマップに置き換えてCPUが演算することができることや、マイコン10によるソフトウエアをハードウエア等に置換可能なことは論を待たない。   In the present embodiment, one of the map or the relational expression is exemplified. However, the CPU can perform the calculation by replacing the map with the relational expression or the relational expression with the map, and the software by the microcomputer 10 is hardware. We can't wait for the possibility of substituting.

本発明は鉛電池の残存容量を精度よく推定することができる電池状態検知システムおよび該電池状態検知システムを備えた自動車を提供するものであるため、電池状態検知システムおよび自動車の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a battery state detection system capable of accurately estimating the remaining capacity of a lead battery and a vehicle equipped with the battery state detection system, it contributes to the manufacture and sale of the battery state detection system and the vehicle. Therefore, it has industrial applicability.

本発明が適用可能な実施形態の自動車の模式図である。It is a schematic diagram of the motor vehicle of embodiment which can apply this invention. 14V系鉛電池の残存容量とOCVとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the remaining capacity of 14V system lead battery, and OCV. 電池温度25°Cにおける鉛電池の残存容量と内部抵抗との関係を示す説明図である。It is explanatory drawing which shows the relationship between the residual capacity of a lead battery and internal resistance in the battery temperature of 25 degreeC. 実施形態の自動車のブロック回路図である。It is a block circuit diagram of a car of an embodiment. 0°Cで暗電流25mA放電したときのOCVと25°COCVとの関係を示す特性線図である。It is a characteristic diagram which shows the relationship between OCV when 25 mA of dark currents are discharged at 0 degreeC, and 25 degreeCOCV. 内部抵抗の算出方法を模式的に示す説明図である。It is explanatory drawing which shows the calculation method of internal resistance typically. 電池温度、内部抵抗と残存容量のマップである。It is a map of battery temperature, internal resistance, and remaining capacity. 残存容量と相関係数との関係を示す説明図である。It is explanatory drawing which shows the relationship between remaining capacity and a correlation coefficient. 電池温度、電圧と充電効率のマップである。It is a map of battery temperature, voltage, and charging efficiency. エンジン始動時の自動車の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the motor vehicle at the time of engine starting.

符号の説明Explanation of symbols

1 鉛電池
10 マイコン(第1の残存容量推定部の一部、第2の残存容量推定部の一部、走行前残存容量推定部、判定部、電力計測部)
12 電池状態検知システム
100 自動車
1 Lead battery 10 Microcomputer (a part of the first remaining capacity estimating part, a part of the second remaining capacity estimating part, a remaining capacity estimating part before traveling, a judging part, a power measuring part)
12 battery state detection system 100 automobile

Claims (15)

車両に搭載された鉛電池の状態を判定する電池状態検知システムにおいて、
車両停止時の前記鉛電池の開回路電圧(OCV)をOCVと残存容量との関係を定めた関係式ないしマップに代入することにより前記鉛電池の残存容量QOCVを算出する第1の残存容量推定部と、
前記鉛電池からエンジン始動用セルモータにイグニッションスイッチを介して電力を供給する際に測定した前記鉛電池の内部抵抗を、複数の温度、残存容量に対応する前記鉛電池の内部抵抗値のマップないし関係式に代入することにより前記鉛電池の残存容量Qを算出する第2の残存容量推定部と、
記第1および第2の残存容量推定部で算出された残存容量QOCV、Qおよび測定量の誤差より決定される係数WOCV、Wから走行前の前記鉛電池の残存容量Qfを推定する走行前残存容量推定部と、
を備え、
前記走行前残存容量推定部は、前記測定量の誤差より決定される係数W OCV 、W としてW =δQ OCV /(δQ OCV +δQ )、W OCV =1−W を用い、前記残存容量QfをQf=W OCV ×Q OCV +W ・Q の式により推定することを特徴とする電池状態検知システム。
In a battery state detection system for determining the state of a lead battery mounted on a vehicle,
The first remaining capacity for calculating the remaining capacity Q OCV of the lead battery by substituting the open circuit voltage (OCV) of the lead battery when the vehicle is stopped into a relational expression or map that defines the relationship between the OCV and the remaining capacity. An estimation unit;
The internal resistance of the lead battery measured when power is supplied from the lead battery to an engine starting cell motor via an ignition switch, a map or relationship of the internal resistance values of the lead battery corresponding to a plurality of temperatures and remaining capacities. a second remaining capacity estimating section that calculates a remaining capacity Q R of the lead battery by substituting in the equation,
Before Symbol remaining capacity Q OCV calculated by the first and second remaining capacity estimating section, the coefficient W OCV determined from the error of Q R and the measured quantity, the remaining capacity Qf of the lead battery before traveling from W R A pre-travel remaining capacity estimation unit to estimate,
With
The pre-travel remaining capacity estimating section, the coefficient W OCV is determined from the error of the measured quantity, W R = δQ OCV 2 / (δQ OCV 2 + δQ R 2) as W R, using the W OCV = 1-W R The remaining capacity Qf is estimated by an equation of Qf = W OCV × Q OCV + W R · Q R.
車両走行時は電流積算値に前記鉛電池の充電効率を乗じた値を前記走行前の残存容量に加算することにより前記鉛電池の残存容量を推定することを特徴とする請求項1に記載の電池状態検知システム。  2. The remaining capacity of the lead battery is estimated by adding a value obtained by multiplying a current integrated value by the charging efficiency of the lead battery to the remaining capacity before the traveling when the vehicle travels. Battery status detection system. 前記推定した残存容量と前記車両の抵抗値とにより前記車両のエンジン始動の可否を判定する判定部をさらに備えたことを特徴とする請求項1に記載の電池状態検知システム。  The battery state detection system according to claim 1, further comprising a determination unit that determines whether or not the vehicle engine can be started based on the estimated remaining capacity and the resistance value of the vehicle. 前記車両の抵抗値は、エンジン始動時の最低電圧Vpeakをエンジン始動時の最大電流Ipeakで除することにより求めることを特徴とする請求項3に記載の池状態検知システム。  4. The pond state detection system according to claim 3, wherein the resistance value of the vehicle is obtained by dividing a minimum voltage Vpeak at the start of the engine by a maximum current Ipeak at the start of the engine. 前記車両の抵抗値は、前記車両の抵抗値をOutR、エンジン始動時の最低電圧をVpeak、前記鉛電池の内部抵抗をInRとしたときに、OutR=Vpeak×InR/(OCV−Vpeak)で求めることを特徴とする請求項3に記載の池状態検知システム。  The resistance value of the vehicle is obtained by OutR = Vpeak × InR / (OCV−Vpeak), where OutR is the resistance value of the vehicle, Vpeak is the minimum voltage at engine start, and InR is the internal resistance of the lead battery. The pond state detection system according to claim 3. 前記推定した残存容量と前記車両の抵抗値とにより前記車両のエンジン始動の可否を判定する判定部をさらに備えたことを特徴とする請求項2に記載の電池状態検知システム。  The battery state detection system according to claim 2, further comprising a determination unit that determines whether the engine of the vehicle can be started based on the estimated remaining capacity and the resistance value of the vehicle. 前記車両の抵抗値は、エンジン始動時の最低電圧Vpeakをエンジン始動時の最大電流Ipeakで除することにより求めることを特徴とする請求項6に記載の池状態検知システム。  7. The pond state detection system according to claim 6, wherein the resistance value of the vehicle is obtained by dividing a minimum voltage Vpeak at the start of the engine by a maximum current Ipeak at the start of the engine. 前記車両の抵抗値は、前記車両の抵抗値をOutR、エンジン始動時の最低電圧をVpeak、前記鉛電池の内部抵抗をInRとしたときに、OutR=Vpeak×InR/(OCV−Vpeak)で求めることを特徴とする請求項6に記載の池状態検知システム。  The resistance value of the vehicle is obtained by OutR = Vpeak × InR / (OCV−Vpeak), where OutR is the resistance value of the vehicle, Vpeak is the minimum voltage at engine start, and InR is the internal resistance of the lead battery. The pond state detection system according to claim 6. エンジン始動時の電流、電圧データを用い最小二乗法により求められた近似曲線の相関係数が0.7〜0.9より小さい場合、前記走行前の残存容量を0Ahとすることを特徴とする請求項1に記載の電池状態検知システム。  When the correlation coefficient of the approximate curve obtained by the least square method using current and voltage data at the time of engine start is smaller than 0.7 to 0.9, the remaining capacity before running is set to 0 Ah. The battery state detection system according to claim 1. エンジン始動時の電流、電圧データを用い最小二乗法により求められた近似曲線の相関係数が0.8未満の場合、前記走行前の残存容量を0Ahとすることを特徴とする請求項9に記載の電池状態検知システム。  10. The remaining capacity before running is set to 0 Ah when a correlation coefficient of an approximate curve obtained by a least square method using current and voltage data at engine start is less than 0.8. The battery state detection system as described. エンジン始動時の電流、電圧データを用い最小二乗法により求められた近似曲線の相関係数が0.7〜0.9より小さい場合、前記走行前の残存容量を0Ahとすることを特徴とする請求項2に記載の電池状態検知システム。  When the correlation coefficient of the approximate curve obtained by the least square method using current and voltage data at the time of engine start is smaller than 0.7 to 0.9, the remaining capacity before running is set to 0 Ah. The battery state detection system according to claim 2. エンジン始動時の電流、電圧データを用い最小二乗法により求められた近似曲線の相関係数が0.8未満の場合、前記走行前の残存容量を0Ahとすることを特徴とする請求項11に記載の電池状態検知システム。  12. The remaining capacity before running is set to 0 Ah when the correlation coefficient of the approximate curve obtained by the least square method using current and voltage data at engine start is less than 0.8. The battery state detection system as described. 前記鉛電池の充放電電気量を計測する電力計測部を備え、前記電力計測部は電池温度、電圧データを複数の温度、電圧に対応する充電効率のマップないし関係式に代入することにより決定される充電効率を用いることを特徴とする請求項2に記載の電池状態検知システム。  The power measurement unit includes a power measurement unit that measures the amount of charge / discharge electricity of the lead battery, and the power measurement unit is determined by substituting battery temperature and voltage data into a map or relational expression of charge efficiency corresponding to a plurality of temperatures and voltages. The battery state detection system according to claim 2, wherein charging efficiency is used. 前記OCVは車両停止時に前記鉛電池から車両負荷へ流れる暗電流と前記鉛電池の劣化度(SOH)と電池温度とにより補正されることを特徴とする請求項1に記載の電池状態検知システム。  2. The battery state detection system according to claim 1, wherein the OCV is corrected by a dark current flowing from the lead battery to a vehicle load when the vehicle is stopped, a deterioration degree (SOH) of the lead battery, and a battery temperature. 請求項1ないし請求項14のいずれか1項に記載の電池状態検知システムを備えた自動車。  An automobile provided with the battery state detection system according to any one of claims 1 to 14.
JP2010505127A 2008-03-28 2008-03-28 Battery state detection system and automobile equipped with the same Expired - Fee Related JP5163739B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056203 WO2009118904A1 (en) 2008-03-28 2008-03-28 Battery state detection system and automobile comprising the same

Publications (2)

Publication Number Publication Date
JPWO2009118904A1 JPWO2009118904A1 (en) 2011-07-21
JP5163739B2 true JP5163739B2 (en) 2013-03-13

Family

ID=41113131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010505127A Expired - Fee Related JP5163739B2 (en) 2008-03-28 2008-03-28 Battery state detection system and automobile equipped with the same

Country Status (2)

Country Link
JP (1) JP5163739B2 (en)
WO (1) WO2009118904A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404963B (en) * 2010-02-10 2013-08-11 Chung Shan Inst Of Science Method for detecting battery module status
JP2012189373A (en) * 2011-03-09 2012-10-04 Furukawa Electric Co Ltd:The Secondary battery condition detection device and secondary battery condition detection method
JP5619806B2 (en) * 2012-03-21 2014-11-05 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
CN106199434B (en) * 2016-06-23 2019-12-10 矽力杰半导体技术(杭州)有限公司 Battery and battery pack state detection method and device
JP7038530B2 (en) * 2017-12-05 2022-03-18 昭和電工マテリアルズ株式会社 Device condition detectors, power systems and automobiles
KR102424295B1 (en) * 2018-09-27 2022-07-21 주식회사 엘지에너지솔루션 Apparatus and method for estimating SOC

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207552A (en) * 2001-09-13 2003-07-25 Yazaki Corp Battery charge state operation method and its device
JP2004085574A (en) * 2002-05-14 2004-03-18 Yazaki Corp Method and apparatus for estimating charging state of battery
JP2006153627A (en) * 2004-11-29 2006-06-15 Yazaki Corp Approximation line calculation system and battery status detecting device
WO2007105595A1 (en) * 2006-03-10 2007-09-20 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging device
JP2008056050A (en) * 2006-08-30 2008-03-13 Auto Network Gijutsu Kenkyusho:Kk Battery state judging method, battery state judging apparatus, and computer program
JP2008064584A (en) * 2006-09-07 2008-03-21 Shin Kobe Electric Mach Co Ltd Battery state informing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207552A (en) * 2001-09-13 2003-07-25 Yazaki Corp Battery charge state operation method and its device
JP2004085574A (en) * 2002-05-14 2004-03-18 Yazaki Corp Method and apparatus for estimating charging state of battery
JP2006153627A (en) * 2004-11-29 2006-06-15 Yazaki Corp Approximation line calculation system and battery status detecting device
WO2007105595A1 (en) * 2006-03-10 2007-09-20 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging device
JP2008056050A (en) * 2006-08-30 2008-03-13 Auto Network Gijutsu Kenkyusho:Kk Battery state judging method, battery state judging apparatus, and computer program
JP2008064584A (en) * 2006-09-07 2008-03-21 Shin Kobe Electric Mach Co Ltd Battery state informing method

Also Published As

Publication number Publication date
WO2009118904A1 (en) 2009-10-01
JPWO2009118904A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5163229B2 (en) Battery state detection system and automobile equipped with the same
US7962300B2 (en) Battery state judging method, and battery state judging apparatus
JP4032854B2 (en) Battery state detection system and automobile equipped with the system
JP5338807B2 (en) Battery state determination method and automobile
JP5162971B2 (en) Battery state detection system and automobile
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP4288958B2 (en) Degradation estimation method
JP6603888B2 (en) Battery type determination device and battery type determination method
JP5163739B2 (en) Battery state detection system and automobile equipped with the same
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP2007323999A (en) Battery control device of automobile
JP6674139B2 (en) Vehicle and its battery state detection system
WO2007105595A1 (en) Battery state judging device
US20140100803A1 (en) Power estimation device for estimating chargeable/dischargeable power of electric storage device, electric storage apparatus, and method of estimating chargeable/dischargeable power
JP2007055450A (en) Estimating system for deteriorated state of capacitor device
JP4844044B2 (en) Battery state detection system and automobile equipped with the same
JPH0659003A (en) Remaining capacity meter for battery
JP2009241646A (en) Battery state determination system, and automobile having the system
JP4702115B2 (en) Battery status judgment device
JP2003068370A (en) Detector of charged state of battery
JP4178898B2 (en) Battery status detection system
JP2004257785A (en) Battery status detection system
JP4670256B2 (en) Battery status detection method
JP2008291660A (en) Vehicle condition determination device and automobile
JP4650380B2 (en) Battery state detection system and automobile equipped with the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5163739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees