JP4670256B2 - Battery status detection method - Google Patents

Battery status detection method Download PDF

Info

Publication number
JP4670256B2
JP4670256B2 JP2004144630A JP2004144630A JP4670256B2 JP 4670256 B2 JP4670256 B2 JP 4670256B2 JP 2004144630 A JP2004144630 A JP 2004144630A JP 2004144630 A JP2004144630 A JP 2004144630A JP 4670256 B2 JP4670256 B2 JP 4670256B2
Authority
JP
Japan
Prior art keywords
battery
remaining capacity
battery state
lead battery
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004144630A
Other languages
Japanese (ja)
Other versions
JP2005326268A (en
Inventor
惠造 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004144630A priority Critical patent/JP4670256B2/en
Publication of JP2005326268A publication Critical patent/JP2005326268A/en
Application granted granted Critical
Publication of JP4670256B2 publication Critical patent/JP4670256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は電池状態検出方法に係り、特に、残容量、SOC等の電池状態を検出する電池状態検出方法に関する。   The present invention relates to a battery state detection method, and more particularly to a battery state detection method for detecting a battery state such as remaining capacity and SOC.

近年、自動車、携帯機器などの高性能化に伴ってそれらに使用される電池の負荷が大きくなるに従い、電池状態監視や電池状態制御の役割が益々重要性となってきている。例えば、自動車用の電池では、排ガス削減のために行われるアイドルストップ・スタート(ISS)や回生充電などに対応するため、これらの用途に適した電池状態に電池を保つ技術が望まれている。鉛電池はこれらの用途に応用できる代表的な電池のひとつである。   In recent years, the role of battery state monitoring and battery state control has become more and more important as the load on batteries used in automobiles, portable devices, and the like has become higher. For example, in the case of a battery for an automobile, a technique for keeping the battery in a battery state suitable for these uses is desired in order to cope with idle stop start (ISS) or regenerative charging performed to reduce exhaust gas. Lead batteries are one of the typical batteries that can be applied to these applications.

従来、内部抵抗、放電電圧、開回路電圧、残容量、充電状態などが電池状態を表すパラメータ又は電池状態を演算するための測定パラメータとして用いられてきている。例えば、車両用電池については、エンジン始動時の電圧や直流内部抵抗をあらかじめ測定したデータマップと比較して電池状態を算出する技術が各種提案されている(例えば、特許文献1参照)。また、満充電状態での開回路電圧から電池の劣化度合いを検出する技術も知られている。   Conventionally, internal resistance, discharge voltage, open circuit voltage, remaining capacity, state of charge, etc. have been used as parameters representing battery state or measurement parameters for calculating battery state. For example, regarding a vehicle battery, various techniques for calculating a battery state by comparing a voltage map at the time of starting an engine and a data map obtained by measuring DC internal resistance in advance have been proposed (see, for example, Patent Document 1). In addition, a technique for detecting the degree of battery deterioration from an open circuit voltage in a fully charged state is also known.

特開平7−63830号公報JP-A-7-63830

開回路電圧からの電池状態の測定は高精度であるが、電池使用中や使用直後しばらくの間は開回路電圧の測定ができない。このため、開回路電圧からの電池状態の測定は電池状態のリアルタイムな検出に単独で利用することはできず、電流積算と組み合わせて使用される。しかし、電流積算は時間経過に伴い誤差が蓄積するため、ISSなど内部抵抗や放電電圧の測定タイミングが存在する用途であれば、放電電圧や内部抵抗から電池状態を演算し直して内部抵抗等から電池状態を検出する。しかしながら、開回路電圧から算出した電池状態を放電電圧や内部抵抗から算出した電池状態に置換えたために精度がむしろ悪くなる場合があった。   Measurement of the battery state from the open circuit voltage is highly accurate, but the open circuit voltage cannot be measured while using the battery or for a while immediately after use. For this reason, the measurement of the battery state from the open circuit voltage cannot be used alone for real-time detection of the battery state, and is used in combination with current integration. However, current integration accumulates errors over time, so for applications such as ISS where internal resistance and discharge voltage measurement timings exist, recalculate the battery state from the discharge voltage and internal resistance and calculate the internal resistance. Detect battery status. However, since the battery state calculated from the open circuit voltage is replaced with the battery state calculated from the discharge voltage or internal resistance, the accuracy may be deteriorated.

本発明は上記事案に鑑み、電池状態を精度良く検出可能な電池状態検出方法を提供することを課題とする。   An object of the present invention is to provide a battery state detection method capable of accurately detecting a battery state in view of the above case.

上記課題を解決するために、本発明は、電池状態検出方法であって、電池の少なくとも1の電池状態を演算するための複数の演算方法を有し、前記電池の放電開始からの時間に応じて前記複数の演算方法のうち最も精度の高い演算方法を採用して前記少なくとも1の電池状態を検出する電池状態検出方法であって、前記電池の放電開始後所定時間までは第1の演算方法で前記少なくとも1の電池状態を演算し、前記所定時間経過後は第2の演算方法で前記少なくとも1の電池状態を演算し、前記第1の演算方法は開回路電圧から求まる前記少なくとも1の電池状態を電流積算で補正し、前記第2の演算方法は内部抵抗又は放電電圧から求まる前記少なくとも1つの電池状態を電流積算で補正することを特徴とする。 In order to solve the above-mentioned problem, the present invention is a battery state detection method, comprising a plurality of calculation methods for calculating at least one battery state of a battery, and according to the time from the start of discharge of the battery. Te a most accurate calculation method adopted by the at least one battery state detection to that batteries state detecting method of the plurality of calculation methods, the first is to discharge a predetermined time after the start of the battery The at least one battery state is calculated by a calculation method, and after the predetermined time has elapsed, the at least one battery state is calculated by a second calculation method, and the first calculation method is obtained from an open circuit voltage. correcting the battery state current integration, the second calculation method is characterized that you correct the at least one battery state obtained from the internal resistance or the discharge voltage in the current integration.

本発明では、電池の少なくとも1の電池状態を演算するための複数の演算方法を有しており、電池の放電開始からの時間に応じて複数の演算方法のうち最も精度の高い演算方法を採用するので、電池状態を精度よく検出することができる。   The present invention has a plurality of calculation methods for calculating at least one battery state of the battery, and adopts the most accurate calculation method among the plurality of calculation methods according to the time from the start of battery discharge. Therefore, the battery state can be detected with high accuracy.

本発明において、所定時間は、電流積算での誤差が時間に比例すると仮定したときの比例定数をα、第2の演算方式で演算した電池状態の真値からの誤差に対し第1の演算方式で演算した電池状態の真値からの誤差を差し引いた値をβとしたときに、β/αで表される。 In the present invention, Jo Tokoro time, the proportionality constant when the error in the current integration is assumed to be proportional to the time alpha, the first operation on the error from the true value of the battery state calculated in the second calculation method When the value obtained by subtracting the error from the true value of the battery state calculated by the method is β, it is expressed by β / α.

本発明によれば、電池の少なくとも1の電池状態を演算するための複数の演算方法を有しており、電池の放電開始からの時間に応じて複数の演算方法のうち最も精度の高い演算方法を採用するので、電池状態を精度よく検出することができる、という効果を得ることができる。   According to the present invention, there are a plurality of calculation methods for calculating at least one battery state of a battery, and the most accurate calculation method among the plurality of calculation methods according to the time from the start of battery discharge. Therefore, the effect that the battery state can be detected with high accuracy can be obtained.

以下、図面を参照して、本発明を車両用鉛電池の残容量を検出する残容量検出装置に適用した実施の形態について説明する。   Hereinafter, an embodiment in which the present invention is applied to a remaining capacity detection device for detecting the remaining capacity of a lead battery for a vehicle will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態の残容量検出装置11は、鉛電池1のベント栓から離れた側の鉛電池1の側面に固着されており、鉛電池1の残容量Qを演算するマイクロコンピュータ(以下、マイコンと略称する。)8を有している。鉛電池1には、例えば、正極6枚、負極7枚、6セル直列で、公称12V、5時間率容量55Ahの80D26を用いることができる。鉛電池1の電槽中央部の隔壁にはセンサ挿入孔が形成されており、センサ挿入孔にはサーミスタ等の温度センサ7が挿入され接着剤で固定されている。
(Constitution)
As shown in FIG. 1, the remaining capacity detection device 11 of the present embodiment is fixed to the side surface of the lead battery 1 on the side away from the vent plug of the lead battery 1 and calculates the remaining capacity Q of the lead battery 1. A microcomputer (hereinafter simply referred to as a microcomputer) 8 is provided. For the lead battery 1, for example, 80D26 with 6 positive electrodes, 7 negative electrodes, and 6 cells in series, having a nominal 12 V, 5 hour rate capacity 55 Ah can be used. A sensor insertion hole is formed in the partition wall in the central part of the battery case of the lead battery 1, and a temperature sensor 7 such as a thermistor is inserted into the sensor insertion hole and fixed with an adhesive.

マイコン8は、中央演算処理装置として機能するCPU、残容量検出装置11の基本制御プログラムや後述するマップ等のデータを記憶したROM、CPUのワークエリアとして働くRAM、A/Dコンバータ、及び、上位の車両側マイコン10と通信するためのインターフェース等を含んで構成されている。   The microcomputer 8 includes a CPU that functions as a central processing unit, a ROM that stores data such as a basic control program for the remaining capacity detection device 11 and a map that will be described later, a RAM that functions as a work area for the CPU, an A / D converter, and a host. An interface for communicating with the vehicle-side microcomputer 10 is included.

鉛電池1の正極端子は、電流センサ6を介してイグニッションスイッチ(以下、IGNスイッチという。)9の中央端子に接続されている。IGNスイッチ9は、中央端子とは別に、OFF端子、ON/ACC端子及びSTART端子を有しており、ロータリー式に切り替え接続が可能である。   A positive terminal of the lead battery 1 is connected to a central terminal of an ignition switch (hereinafter referred to as IGN switch) 9 through a current sensor 6. The IGN switch 9 has an OFF terminal, an ON / ACC terminal, and a START terminal in addition to the center terminal, and can be switched and connected in a rotary manner.

電流センサ6の出力端子はマイコン8に内蔵されたA/Dコンバータに接続されており、電流センサ6から出力されたホール電圧はA/Dコンバータでデジタル値に変換され、マイコン8は鉛電池1に流れる電流をデジタル値として取り込むことができる。また、鉛電池1の両極端子はマイコン8に内蔵された他のA/Dコンバータに接続されており、マイコン8は鉛電池1の両端電圧をデジタル値で取り込むことができる。更に、温度センサ7の出力端子は別のA/Dコンバータに接続されており、マイコン8は鉛電池1の温度をデジタル値で取り込むことができる。なお、残容量検出装置11は、このような配線を含んで構成されている。   The output terminal of the current sensor 6 is connected to an A / D converter built in the microcomputer 8, and the Hall voltage output from the current sensor 6 is converted into a digital value by the A / D converter. Can be captured as a digital value. Further, the bipolar terminals of the lead battery 1 are connected to another A / D converter built in the microcomputer 8, and the microcomputer 8 can take in the voltage across the lead battery 1 as a digital value. Furthermore, the output terminal of the temperature sensor 7 is connected to another A / D converter, and the microcomputer 8 can capture the temperature of the lead battery 1 as a digital value. Note that the remaining capacity detection device 11 includes such wiring.

一方、車両側には、図示しないクラッチ機構を介してエンジン4の回転軸に回転駆動力を伝達させエンジン4を始動させるスタータ3が配されている。また、エンジン4の回転軸は、不図示のクラッチ機構を介して発電機2に動力の伝達が可能であり、エンジン4が回転状態にあるときは、このクラッチ機構を介して発電機2が作動し発電機2からの電力がエアコン、ラジオ等の補機5乃至鉛電池1に供給(充電)される。このようなエンジン制御等は車両側マイコン10により実行される。   On the other hand, a starter 3 for starting the engine 4 by transmitting the rotational driving force to the rotating shaft of the engine 4 via a clutch mechanism (not shown) is disposed on the vehicle side. Further, the rotation shaft of the engine 4 can transmit power to the generator 2 via a clutch mechanism (not shown). When the engine 4 is in a rotating state, the generator 2 is operated via this clutch mechanism. Then, the electric power from the generator 2 is supplied (charged) to the auxiliary machine 5 such as an air conditioner and a radio or the lead battery 1. Such engine control and the like are executed by the vehicle-side microcomputer 10.

IGNスイッチ9のON/ACC端子は、補機5及び一方向への電流の流れを許容する整流素子を介して発電機2の一端に接続されている。また、START端子はスタータ3の一端に接続されている。更に、発電機2、スタータ3及び補機5の他端、鉛電池1の負極端子及びマイコン8は、それぞれグランドに接続されている。   The ON / ACC terminal of the IGN switch 9 is connected to one end of the generator 2 through the auxiliary machine 5 and a rectifying element that allows current flow in one direction. The START terminal is connected to one end of the starter 3. Furthermore, the other end of the generator 2, the starter 3 and the auxiliary machine 5, the negative terminal of the lead battery 1, and the microcomputer 8 are connected to the ground, respectively.

ここで、本実施形態の残存量延出装置11による鉛電池1の残存量Qの検出(演算)原理について、図2を参照して説明する。残存量延出装置11は、開回路電圧(OCV)から求まる鉛電池1の残容量Q1を電流積算で補正した現在の鉛電池1の残容量を演算する第1の演算方法と、高率放電時の鉛電池1の内部抵抗Rから求まる鉛電池1の残容量Q2を電流積算で補正した現在の鉛電池1の残容量を演算する第2の演算方法とで、鉛電池1の放電開始からの時間に応じて、第1、第2の演算方法のうち精度の高い方の残容量を鉛電池1の残容量Qとして演算して車両用マイコン10に出力するものである。   Here, the principle of detection (calculation) of the remaining amount Q of the lead battery 1 by the remaining amount extending device 11 of the present embodiment will be described with reference to FIG. The remaining amount extending device 11 includes a first calculation method for calculating a current remaining capacity of the lead battery 1 obtained by correcting the remaining capacity Q1 of the lead battery 1 obtained from an open circuit voltage (OCV) by current integration, and a high rate discharge. A second calculation method of calculating the current remaining capacity of the lead battery 1 obtained by correcting the remaining capacity Q2 of the lead battery 1 obtained from the internal resistance R of the lead battery 1 at the time of current integration, from the start of discharge of the lead battery 1 The remaining capacity of the higher accuracy of the first and second calculation methods is calculated as the remaining capacity Q of the lead battery 1 and output to the vehicle microcomputer 10 according to the time.

OCVから求まる鉛電池1の残容量Q1は、内部抵抗から求まる鉛電池1の残容量Q2より精度が高い(OCVからの鉛電池1の残容量の測定誤差は、内部抵抗からの鉛電池の残容量の測定誤差より小さい。)。このため、積算電流による誤差が小さいうちは、第2の演算方法で鉛電池1の現在の残容量を演算するより、第1の演算方法で鉛電池1の現在の残容量を演算した方が測定誤差を小さくする(精度を高める)ことができる。電流積算による誤差が時間に比例すると仮定したときの比例定数をαとし、(内部抵抗Rからの鉛電池1の残容量の演算誤差−OCVからの鉛電池の鉛電池1の残容量の演算誤差)を定数βとすると、放電開始後第1の演算方法による残容量が第2の演算方法による残容量より精度が高い状態を維持できる時間、換言すれば、放電開始後第2の演算方法による残容量が有効になるまでの時間tOCVは、tOCV=β/αで表される(以下、この数式を式1という。)。従って、鉛電池1の放電開始からtOCVまでは第1の演算方法により、tOCV経過後は第2の演算方法により鉛電池1の残容量を演算すれば、精度良く残容量を演算することができる。   The remaining capacity Q1 of the lead battery 1 obtained from the OCV is more accurate than the remaining capacity Q2 of the lead battery 1 obtained from the internal resistance (the measurement error of the remaining capacity of the lead battery 1 from the OCV is due to the remaining capacity of the lead battery from the internal resistance. Less than the capacity measurement error.) Therefore, while the error due to the integrated current is small, it is better to calculate the current remaining capacity of the lead battery 1 by the first calculation method than to calculate the current remaining capacity of the lead battery 1 by the second calculation method. Measurement error can be reduced (increased accuracy). The proportionality constant assuming that the error due to current integration is proportional to time is α, (calculation error of the remaining capacity of the lead battery 1 from the internal resistance R−calculation error of the remaining capacity of the lead battery 1 of the lead battery from the OCV ) Is a constant β, a time during which the remaining capacity by the first calculation method can be maintained with higher accuracy than the remaining capacity by the second calculation method after the start of discharge, in other words, by the second calculation method after the start of discharge. The time tOCV until the remaining capacity becomes effective is represented by tOCV = β / α (hereinafter, this mathematical expression is referred to as Expression 1). Therefore, if the remaining capacity of the lead battery 1 is calculated by the first calculation method from the start of discharge of the lead battery 1 to tOCV, and after the lapse of tOCV, the remaining capacity can be calculated with high accuracy. .

(動作)
次に、フローチャートを参照して、本実施形態の残容量検出装置11の動作について、マイコン8のCPU(以下、単にCPUという。)を主体として説明する。CPUは、マイコン8に電源が投入されると、鉛電池1の残容量Qを演算する残容量演算ルーチンを実行する。
(Operation)
Next, with reference to a flowchart, the operation of the remaining capacity detection device 11 of the present embodiment will be described with a CPU of the microcomputer 8 (hereinafter simply referred to as a CPU) as a subject. When the microcomputer 8 is powered on, the CPU executes a remaining capacity calculation routine for calculating the remaining capacity Q of the lead battery 1.

図3に示すように、残容量演算ルーチンでは、まず、ステップ102において、電流センサ6に流れる電流が所定値(例えば、0.05A)以上か否かを判断することで、IGNスイッチ9の中央端子がON/ACC端子又はSTART端子に接続されたか否かを判定する。   As shown in FIG. 3, in the remaining capacity calculation routine, first, in step 102, it is determined whether or not the current flowing through the current sensor 6 is a predetermined value (for example, 0.05 A) or more. It is determined whether the terminal is connected to the ON / ACC terminal or the START terminal.

ステップ102での判断が否定のときは、すなわち、IGNスイッチ9の中央端子がOFF端子に接続されている(イグニッションがオフ状態となっている)ときは、ステップ104において、イグニッションがオフ状態となってから6時間が経過したか否かを判断する。なお、イグニッションがオフ状態となったか否かの判断は、上記と同様に、電流センサ6に流れる電流が所定値未満となったときに、イグニッションがオフ状態となったとみなせばよく、この時刻からCPUの内部時計による時間カウントを開始することで判断することができる。   If the determination in step 102 is negative, that is, if the center terminal of the IGN switch 9 is connected to the OFF terminal (ignition is off), the ignition is off in step 104. It is determined whether 6 hours have passed since then. Note that the determination as to whether or not the ignition has been turned off can be made by assuming that the ignition has been turned off when the current flowing through the current sensor 6 becomes less than a predetermined value, as described above. This can be determined by starting the time count by the CPU internal clock.

ステップ104で否定判断のときは、ステップ102に戻り、肯定判断のときは、次のステップ106で、鉛電池1のOCVを取り込む。従って、鉛電池1のOCVは、イグニッションがオフ状態となってから6時間毎に測定される。次のステップ108では、下表1に示すQ−OCVマップにより、ステップ106で測定したOCVに対応する鉛電池1の残容量Q1を演算しRAMに記憶して、ステップ102に戻る。なお、表1に示すQ−OCVマップは新品の80D26用のものであり、型式の異なる電池ではその電池に応じたQ−OCVマップを用いればよい。また、劣化した電池では、Q−OCVマップを、例えば、電池の劣化状態(SOH)に応じて補正して使用することで、OCVから残容量Qを適正に演算することができる。   When a negative determination is made at step 104, the process returns to step 102. When an affirmative determination is made, the OCV of the lead battery 1 is captured at the next step 106. Accordingly, the OCV of the lead battery 1 is measured every 6 hours after the ignition is turned off. In the next step 108, the remaining capacity Q1 of the lead battery 1 corresponding to the OCV measured in step 106 is calculated from the Q-OCV map shown in Table 1 below, stored in the RAM, and the process returns to step 102. In addition, the Q-OCV map shown in Table 1 is for a new 80D26. For batteries of different types, a Q-OCV map corresponding to the battery may be used. Further, in the case of a deteriorated battery, the remaining capacity Q can be appropriately calculated from the OCV by using the Q-OCV map after correcting it according to, for example, the deterioration state (SOH) of the battery.

一方、ステップ102での判断が肯定のときは、すなわち、IGNスイッチ9の中央端子がON/ACC端子又はSTART端子に接続されている(イグニッションがオン状態となっている)ときは、ステップ122で、鉛電池1に流れる電流I、鉛電池1の放電電圧E、温度T及び現在の時刻tを測定する。   On the other hand, when the determination in step 102 is affirmative, that is, when the center terminal of the IGN switch 9 is connected to the ON / ACC terminal or the START terminal (ignition is in the on state), in step 122 The current I flowing through the lead battery 1, the discharge voltage E, the temperature T, and the current time t of the lead battery 1 are measured.

次のステップ124では、ステップ122で測定した電流Iにより、IGNスイッチ9がSTART端子に接続されたか否かを判断する。図5は、エンジン始動時の鉛電池1(電流センサ6)に流れる電流を模式的に示したものである。エンジン始動時の鉛電池1の電流波形は、IGNスイッチ9がSTART位置に位置したエンジン始動電流通電開始時(時刻ts)の後、スタータ3への急激な1段目のパルス放電が行われ、電流波形は急激な立下りとなり約50ms経過後にピークが現れる(時刻tp)。その後、減衰する数回の増減を経てエンジン始動が完了する。電流波形は、エンジン4の構造、エンジン4とスタータ3とを繋ぐクラッチの摩擦等に影響されるが、概ね図5に示すような波形となる。従って、ステップ124では、所定値以上の大電流が流れたか否かを判断することで、IGNスイッチ9がSTART端子に接続されたか否かを判断することができる。   In the next step 124, it is determined from the current I measured in step 122 whether or not the IGN switch 9 is connected to the START terminal. FIG. 5 schematically shows the current flowing through the lead battery 1 (current sensor 6) when the engine is started. The current waveform of the lead battery 1 at the start of the engine is such that after the start of energization of the engine start current when the IGN switch 9 is located at the START position (time ts), a rapid first-stage pulse discharge to the starter 3 is performed. The current waveform falls sharply and a peak appears after about 50 ms (time tp). After that, the engine start is completed after a few attenuations. Although the current waveform is affected by the structure of the engine 4, the friction of the clutch connecting the engine 4 and the starter 3, etc., the waveform is generally as shown in FIG. Accordingly, in step 124, it is possible to determine whether or not the IGN switch 9 is connected to the START terminal by determining whether or not a large current of a predetermined value or more has flowed.

ステップ124で否定判断のときは、ステップ136に進み、肯定判断のときは、次のステップ126で、OCV測定(ステップ106参照)後最初のエンジン始動か否かを判断する。このような判断には、例えば、公知のフラグを用いることができる。ステップ126で否定判断のときは、ステップ132に進み、肯定判断のときは、次のステップ128において、ステップ106で測定したOCVが12.2V以上か否かを判断する。なお、この12.2Vは、新品の80D26の場合であって、劣化した電池では上述したようにSOH等に応じて補正すればよい。   If the determination in step 124 is negative, the process proceeds to step 136. If the determination is affirmative, in next step 126, it is determined whether or not the engine has been started for the first time after the OCV measurement (see step 106). For such a determination, for example, a known flag can be used. If the determination in step 126 is negative, the process proceeds to step 132. If the determination is affirmative, in the next step 128, it is determined whether the OCV measured in step 106 is 12.2V or higher. This 12.2 V is for a new 80D26, and for a deteriorated battery, it may be corrected according to SOH or the like as described above.

ステップ128で否定判断のときは、ステップ132に進み、肯定判断のときは、次のステップ130で、鉛電池1の内部抵抗個体差δを、δ=内部抵抗R−R(I,OCV,T)により演算してRAMに記憶する。内部抵抗Rは、例えば、R=ΔE/ΔI=(前回ステップ122で測定した電圧E−今回ステップ122で測定した電圧E)/(前記ステップ122で測定した電流I−今回ステップ122で測定した電流I)で演算することができる。一方、R(I,OCV,T)は、ステップ106及びステップ122で測定したOCV、電流I、温度Tを、下表2に示すQ−OCV−I−T−Rマップに当てはめ、按分計算をすることで演算することができる。   If the determination in step 128 is negative, the process proceeds to step 132. If the determination is affirmative, in step 130, the internal resistance individual difference δ of the lead battery 1 is calculated as δ = internal resistance R−R (I, OCV, T ) And is stored in the RAM. The internal resistance R is, for example, R = ΔE / ΔI = (voltage E measured at the previous step 122−voltage E measured at the current step 122) / (current I measured at the step 122−current measured at the current step 122) I). On the other hand, R (I, OCV, T) is an apportioning calculation by applying the OCV, current I, and temperature T measured in Step 106 and Step 122 to the Q-OCV-ITR map shown in Table 2 below. It is possible to calculate by doing.

ステップ132では、内部抵抗Rを、ステップ130と同様に演算する。従って、ステップ128で肯定判断されたときは、既にステップ130で内部抵抗Rは演算されているので、再度演算する必要はない。次のステップ134では、ステップ122で測定した電流I、温度T、及び、内部抵抗Rにステップ130でRAMに記憶した鉛電池1の内部抵抗個体差δを加えることで補正した内部抵抗(R+δ)の値を、表2のQ−OCV−I−T−Rマップに当てはめ、按分計算をすることで、高率放電時の鉛電池1の残容量Q2を演算しステップ136に進む。   In step 132, the internal resistance R is calculated in the same manner as in step 130. Therefore, when an affirmative determination is made in step 128, the internal resistance R has already been calculated in step 130, so there is no need to calculate again. In the next step 134, the internal resistance (R + δ) corrected by adding the internal resistance individual difference δ of the lead battery 1 stored in the RAM in step 130 to the current I, temperature T, and internal resistance R measured in step 122. Is applied to the Q-OCV-ITR map in Table 2 and the distribution is calculated to calculate the remaining capacity Q2 of the lead battery 1 at the time of high rate discharge, and the process proceeds to step 136.

ステップ136では、ステップ122で測定した現在の時刻tが上述した時間tRを経過したか否かを判断する。本実施形態では、低コストの電流センサ6とマイコン8に内蔵されたA/Dコンバータの性能の制約から、電流積算の精度は±6Ah/hである。また、経験的に、鉛電池1(80D26)でのOCVからの残容量Qの誤差は±3Ah、内部抵抗Rからの残容量Qの測定誤差は±15Ahである。このとき、α=6Ah/h、β=15Ah−3Ah=12Ahであり、上述した式1より、tOCV=tR=2hとなる。このため、ステップ136では、tRを2hとして演算した。   In step 136, it is determined whether or not the current time t measured in step 122 has passed the time tR described above. In the present embodiment, the accuracy of current integration is ± 6 Ah / h due to the performance limitations of the low-cost current sensor 6 and the A / D converter built in the microcomputer 8. Further, from experience, the error of the remaining capacity Q from the OCV in the lead battery 1 (80D26) is ± 3 Ah, and the measurement error of the remaining capacity Q from the internal resistance R is ± 15 Ah. At this time, α = 6 Ah / h, β = 15 Ah−3 Ah = 12 Ah, and tOCV = tR = 2h from Equation 1 described above. For this reason, in step 136, tR was calculated as 2h.

ステップ136で否定判断のとき(最大時間tmaxを経過していない)は、ステップ138において、ステップ108でOCVから演算した鉛電池1の残容量Q1を電流積算値で補正した方がステップ134で内部抵抗から演算した鉛電池1の残容量Q2を電流積算値で補正するより精度が高いため、Q=Q1−電流積算値により、鉛電池1の残容量Qを演算する。一方、肯定判断のとき(最大時間tmaxを経過したとき)は、ステップ140において、内部抵抗から演算した鉛電池1の残容量Q2を電流積算値で補正する方がOCVから演算した鉛電池1の残容量Q1を電流積算値で補正するより精度が高いため、Q=Q2−電流積算値により、鉛電池1の残容量Qを演算する。なお、電流積算値は、(ステップ122で計測した電流I)×(ステップ102からステップ142までの1ルーチンの処理時間Δt)の値を、イグニッションがオン状態となったときから現在の時刻tまで合計することで算出することができる。   When a negative determination is made in step 136 (the maximum time tmax has not elapsed), in step 138, the remaining capacity Q1 of the lead battery 1 calculated from the OCV in step 108 is corrected by the integrated current value in step 134. Since the accuracy is higher than when the remaining capacity Q2 of the lead battery 1 calculated from the resistance is corrected by the current integrated value, the remaining capacity Q of the lead battery 1 is calculated by Q = Q1−current integrated value. On the other hand, when the determination is affirmative (when the maximum time tmax has elapsed), in step 140, it is better to correct the remaining capacity Q2 of the lead battery 1 calculated from the internal resistance with the current integrated value of the lead battery 1 calculated from the OCV. Since the accuracy is higher than when the remaining capacity Q1 is corrected with the current integrated value, the remaining capacity Q of the lead battery 1 is calculated from Q = Q2−current integrated value. The integrated current value is a value of (current I measured in step 122) × (processing time Δt of one routine from step 102 to step 142) from the time when the ignition is turned on to the current time t. It can be calculated by summing up.

次のステップ142では、鉛電池1の残容量Qを、インターフェースを介して車両側マイコン10に出力してステップ102に戻る。車両側マイコン10は、マイコン8から報知された鉛電池1の残容量Qを車両のインストールメントパネルを制御する図示しないパネル制御部に伝え、インストールメントパネルには文字又はグラフ等で鉛電池1の残容量Qが表示される。従って、ドライバはインストールメントパネルを見ることで鉛電池1の電池状態を把握することができる。   In the next step 142, the remaining capacity Q of the lead battery 1 is output to the vehicle-side microcomputer 10 via the interface, and the process returns to step 102. The vehicle-side microcomputer 10 transmits the remaining capacity Q of the lead battery 1 notified from the microcomputer 8 to a panel control unit (not shown) that controls the vehicle installation panel. The remaining capacity Q is displayed. Therefore, the driver can grasp the battery state of the lead battery 1 by looking at the installation panel.

(作用等)
次に、本実施形態の残容量検出装置11の作用、効果等について説明する。
(Action etc.)
Next, functions, effects, and the like of the remaining capacity detection device 11 of the present embodiment will be described.

本実施形態の残容量検出装置11では、OCVから求まる鉛電池1の残容量Q1を電流積算で補正した現在の鉛電池1の残容量を演算する第1の演算方法と、高率放電時の鉛電池1の内部抵抗Rから求まる鉛電池1の残容量Q2を電流積算で補正した現在の鉛電池1の残容量を演算する第2の演算方法とで、鉛電池1の放電開始からの時刻tに応じて、第1、第2の演算方法のうち精度の高い方の残容量を鉛電池1の残容量Qとして演算するようにしたので、従来の残存容量検出装置に比べ、鉛電池1の残容量Qを精度よく演算することができる。   In the remaining capacity detection device 11 of the present embodiment, a first calculation method for calculating the current remaining capacity of the lead battery 1 obtained by correcting the remaining capacity Q1 of the lead battery 1 obtained from the OCV by current integration, and at the time of high rate discharge A second calculation method for calculating the current remaining capacity of the lead battery 1 in which the remaining capacity Q2 of the lead battery 1 obtained from the internal resistance R of the lead battery 1 is corrected by current integration; According to t, the more accurate remaining capacity of the first and second calculation methods is calculated as the remaining capacity Q of the lead battery 1, so that the lead battery 1 is compared with the conventional remaining capacity detecting device. Can be calculated with high accuracy.

すなわち、イグニッションがオフ状態の放電休止中にOCVから鉛電池1の残容量Q1を演算しておき(ステップ108)、イグニッションがオン状態となった後(放電開始後)、電流積算による誤差が小さい時刻tOCVまでは、第1の演算方法で演算し(ステップ138)、時刻tOCV経過後は、内部抵抗から演算した鉛電池1の残容量Q2の精度が高いため、第2の演算方法で演算することで(ステップ140)、鉛電池1の残容量Qの演算精度を高めている。   That is, the remaining capacity Q1 of the lead battery 1 is calculated from the OCV during the discharge pause when the ignition is off (step 108), and after the ignition is turned on (after the start of discharge), the error due to current integration is small. Until the time tOCV, the calculation is performed by the first calculation method (step 138). After the time tOCV has elapsed, the remaining capacity Q2 of the lead battery 1 calculated from the internal resistance is high in accuracy, so the calculation is performed by the second calculation method. (Step 140), the calculation accuracy of the remaining capacity Q of the lead battery 1 is increased.

また、本実施形態の残容量検出装置11では、第2の演算方法で鉛電池1の残容量Q2を演算する際に、鉛電池1の内部抵抗を内部抵抗個体差δで補正してQ−OCV−I−T−Rマップに当てはめているので(ステップ134)、鉛電池1の残容量Q2、ひいては、第2の演算方法で演算した鉛電池1の残容量Qの精度を高めることができる。   Further, in the remaining capacity detecting device 11 of the present embodiment, when calculating the remaining capacity Q2 of the lead battery 1 by the second calculation method, the internal resistance of the lead battery 1 is corrected by the internal resistance individual difference δ, and Q− Since it is applied to the OCV-ITR map (step 134), the accuracy of the remaining capacity Q2 of the lead battery 1 and thus the remaining capacity Q of the lead battery 1 calculated by the second calculation method can be improved. .

なお、本実施形態では、放電休止中に鉛電池1の残容量Q1を演算する例を示したが(ステップ108)、イグニッションがオン状態となった後、直ちに残容量Q1を演算し、ステップ142で鉛電池1の残容量Qを車両側マイコン10に出力した後、ステップ122へ戻るようにしてもよい。   In the present embodiment, an example is shown in which the remaining capacity Q1 of the lead battery 1 is calculated while the discharge is stopped (step 108). However, immediately after the ignition is turned on, the remaining capacity Q1 is calculated, and step 142 is performed. Then, after the remaining capacity Q of the lead battery 1 is output to the vehicle-side microcomputer 10, the process may return to step 122.

また、本実施形態では、鉛電池1が車両用電池であることを考慮して、エンジン始動を内部抵抗の測定タイミングとした例を示したが、本発明はこれに限定されず、エアコン等の補機5の使用開始時を内部抵抗の測定タイミングとするようにしてもよい。更に、本実施形態では、インストールパネルへの表示との関係でイグニッションがオン状態のときに鉛電池1の残容量Qを演算する例を示したが、放電休止中に鉛電池1の残容量Qの報知が必要な用途では、ステップ108での演算結果を報知(出力)するようにすればよい。   Further, in the present embodiment, taking into account that the lead battery 1 is a vehicle battery, an example is shown in which the engine start is the measurement timing of the internal resistance. However, the present invention is not limited to this, and an air conditioner or the like is used. The start time of use of the auxiliary machine 5 may be set as the measurement timing of the internal resistance. Further, in the present embodiment, an example is shown in which the remaining capacity Q of the lead battery 1 is calculated when the ignition is on in relation to the display on the installation panel. However, the remaining capacity Q of the lead battery 1 during the discharge pause is shown. For applications that require this notification, the calculation result in step 108 may be notified (output).

更に、本実施形態では、鉛電池1の電池状態として残容量を例示したが、内部抵抗、放電電圧、開回路電圧や充電状態等の電池状態の演算でも精度を向上させることができる。従って、鉛電池1の複数の電池状態について、例示した残容量の演算と同様に算出するようにしてもよい。   Furthermore, although the remaining capacity is exemplified as the battery state of the lead battery 1 in the present embodiment, the accuracy can be improved even by calculating the battery state such as the internal resistance, the discharge voltage, the open circuit voltage, and the charged state. Accordingly, the plurality of battery states of the lead battery 1 may be calculated in the same manner as the remaining capacity calculation exemplified.

次に、上記実施形態に従って作製した残容量検出装置の実施例について説明する。なお、比較のために作製した残容量検出装置についても併記する。実施例及び比較例の残容量検出装置は、マイコン8をノートパソコンに接続した点で、マイコン8を車両側マイコン10と接続した上記実施形態と構成が異なっている。従って、鉛電池1の残容量Qはノートパソコンに出力され、出力されたデータは、ノートパソコンのディスプレイに表示されると共に、ノートパソコンのメモリに記憶される。   Next, an example of the remaining capacity detection device manufactured according to the above embodiment will be described. The remaining capacity detector manufactured for comparison is also shown. The remaining capacity detection devices of the example and the comparative example differ from the above-described embodiment in which the microcomputer 8 is connected to the vehicle-side microcomputer 10 in that the microcomputer 8 is connected to a notebook computer. Therefore, the remaining capacity Q of the lead battery 1 is output to the notebook computer, and the output data is displayed on the display of the notebook computer and stored in the memory of the notebook computer.

(実施例1)
実施例1の残容量検出装置では、CPUに、図3に示した残容量演算ルーチンを実行させた。
Example 1
In the remaining capacity detection device of the first embodiment, the CPU is caused to execute the remaining capacity calculation routine shown in FIG.

(比較例1)
比較例1の残容量検出装置では、CPUに、図4に示す残容量演算ルーチンを実行させた。この残容量演算ルーチンは、図3のステップ136〜ステップ140に代えて、ステップ141を実行する点で、実施例1の電池状態演算ルーチンとは異なっている。すなわち、比較例1の残容量検出装置は、時間tOCV内でもエンジン始動を検出すると、エンジン始動時の内部抵抗から求まる残容量Q2を積算電流値で補正して鉛電池1の残容量Qを演算した。
(Comparative Example 1)
In the remaining capacity detection device of Comparative Example 1, the CPU was caused to execute the remaining capacity calculation routine shown in FIG. This remaining capacity calculation routine is different from the battery state calculation routine of the first embodiment in that step 141 is executed instead of steps 136 to 140 in FIG. That is, when the remaining capacity detection device of Comparative Example 1 detects engine start even within the time tOCV, the remaining capacity Q2 obtained from the internal resistance at the time of engine start is corrected with the integrated current value, and the remaining capacity Q of the lead battery 1 is calculated. did.

(試験)
2500ccのエンジンと80D26の電池を搭載した車両で実車試験を行った。走行パターンは40km定速10分後エンジン停止し1分間ブレーキを踏みながらイグニッションON状態を保った後、エンジンを再始動し、これを21回繰り返した。なお、エンジン作動中に鉛電池は充電され、1分間ブレーキを踏んで放電させても10分間エンジンを作動させると鉛電池は全体として充電される。
(test)
An actual vehicle test was conducted on a vehicle equipped with a 2500 cc engine and an 80D26 battery. As for the running pattern, the engine was stopped after 10 minutes at a constant speed of 40 km, the ignition was turned on while stepping on the brake for 1 minute, the engine was restarted, and this was repeated 21 times. The lead battery is charged while the engine is operating, and the lead battery is charged as a whole when the engine is operated for 10 minutes even if the brake is applied for 1 minute to discharge the battery.

表3に、実施例1及び比較例1の残容量検出装置の残容量Qの経時演算結果を示す。表3に示す時間は、鉛電池1の充放電の開始からの時間である。時間0で電流積算もエンジン始動もないので残容量Qの演算結果はOCVから求めたQ1を表す。真値は、試験電池を5時間率で放電して10.5Vに電圧が下がるまでの残容量を測定して真値とした。   Table 3 shows the calculation results of the remaining capacity Q of the remaining capacity detection devices of Example 1 and Comparative Example 1 with time. The time shown in Table 3 is the time from the start of charging / discharging of the lead battery 1. Since there is no current integration or engine start at time 0, the calculation result of the remaining capacity Q represents Q1 obtained from the OCV. The true value was determined by measuring the remaining capacity until the test battery was discharged at a rate of 5 hours and the voltage dropped to 10.5 V.

表3から明らかな通り、tOCV(2時間)内の15分、50分、90分の残容量Q演算結果で、比較例1の残容量検出装置は実施例1の残容量検出装置より誤差が大きくなっていた。従って、実施例1の残容量検出装置が優れていることが分かる。   As is apparent from Table 3, the remaining capacity detection device of Comparative Example 1 has an error more than the remaining capacity detection device of Example 1 in the remaining capacity Q calculation results of 15 minutes, 50 minutes, and 90 minutes within tOCV (2 hours). It was getting bigger. Therefore, it can be seen that the remaining capacity detection device of Example 1 is excellent.

本発明は、電池状態を精度良く検出可能な電池状態検出方法に係り、この方法が実施される残容量検出装置の製造、販売に寄与するため、産業上の利用可能性を有する。   The present invention relates to a battery state detection method capable of accurately detecting a battery state, and contributes to the manufacture and sale of a remaining capacity detection device in which this method is implemented, and thus has industrial applicability.

本発明を適用した実施形態の残容量検出装置の概略ブロック図である。It is a schematic block diagram of the remaining capacity detection apparatus of embodiment to which this invention is applied. 実施形態の残容量検出装置の鉛電池の残容量検出原理を説明するための説明図である。It is explanatory drawing for demonstrating the remaining capacity detection principle of the lead battery of the remaining capacity detection apparatus of embodiment. 実施形態の残容量検出装置のCPUが実行する電池状態演算ルーチンのフローチャートである。It is a flowchart of the battery state calculation routine which CPU of the remaining capacity detection apparatus of embodiment performs. 比較例1の残容量検出装置のCPUが実行する電池状態演算ルーチンのフローチャートである。6 is a flowchart of a battery state calculation routine executed by a CPU of a remaining capacity detection device of Comparative Example 1; エンジン始動時の鉛電池に流れる電流の波形を模式的に示す説明図である。It is explanatory drawing which shows typically the waveform of the electric current which flows into the lead battery at the time of engine starting.

符号の説明Explanation of symbols

1 鉛電池(電池)
8 マイコン
11 残容量検出装置
1 Lead battery (battery)
8 Microcomputer 11 Remaining capacity detector

Claims (2)

電池の少なくとも1の電池状態を演算するための複数の演算方法を有し、前記電池の放電開始からの時間に応じて前記複数の演算方法のうち最も精度の高い演算方法を採用して前記少なくとも1の電池状態を検出する電池状態検出方法であって、前記電池の放電開始後所定時間までは第1の演算方法で前記少なくとも1の電池状態を演算し、前記所定時間経過後は第2の演算方法で前記少なくとも1の電池状態を演算し、前記第1の演算方法は開回路電圧から求まる前記少なくとも1の電池状態を電流積算で補正し、前記第2の演算方法は内部抵抗又は放電電圧から求まる前記少なくとも1つの電池状態を電流積算で補正することを特徴とする電池状態検出方法。 A plurality of calculation methods for calculating at least one battery state of the battery, and adopting the calculation method with the highest accuracy among the plurality of calculation methods according to the time from the start of discharge of the battery; a that batteries state detecting method to detect one of the battery state until said discharge start after a predetermined time of the battery is computed said at least one battery state at the first computing method, after the predetermined time the The at least one battery state is calculated by a calculation method of 2, the first calculation method corrects the at least one battery state obtained from an open circuit voltage by current integration, and the second calculation method is an internal resistance or the battery state detecting method characterized that you correct the at least one battery state current integration obtained from the discharge voltage. 前記所定時間は、電流積算での誤差が時間に比例すると仮定したときの比例定数をα、前記第2の演算方式で演算した前記少なくとも1の電池状態の真値からの誤差に対し前記第1の演算方式で演算した前記少なくとも1の電池状態の真値からの誤差を差し引いた値をβとしたときに、β/αで表されることを特徴とする請求項に記載の電池状態検出方法。 The predetermined time, the relative error from the true value of the at least one battery state error is calculated proportional constant when it is assumed to be proportional to the time alpha, before Symbol second computing method in current integration the battery state according to claim 1, a value obtained by subtracting the error from the true value of the at least one battery state calculated in the first calculation method when the beta, characterized by being represented by the beta / alpha Detection method.
JP2004144630A 2004-05-14 2004-05-14 Battery status detection method Expired - Fee Related JP4670256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004144630A JP4670256B2 (en) 2004-05-14 2004-05-14 Battery status detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004144630A JP4670256B2 (en) 2004-05-14 2004-05-14 Battery status detection method

Publications (2)

Publication Number Publication Date
JP2005326268A JP2005326268A (en) 2005-11-24
JP4670256B2 true JP4670256B2 (en) 2011-04-13

Family

ID=35472740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004144630A Expired - Fee Related JP4670256B2 (en) 2004-05-14 2004-05-14 Battery status detection method

Country Status (1)

Country Link
JP (1) JP4670256B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703439B2 (en) * 2006-03-09 2011-06-15 富士通テン株式会社 Eco-run control device and eco-run control method
JP6201899B2 (en) * 2014-06-02 2017-09-27 マツダ株式会社 Battery charge state estimation method and battery charge state estimation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281711A (en) * 1993-01-27 1994-10-07 Nippon Soken Inc Device for detecting residual capacity of battery
JPH07260907A (en) * 1994-03-23 1995-10-13 Nippondenso Co Ltd Capacity detection device for vehicular battery
JP2003243045A (en) * 2002-02-21 2003-08-29 Toyota Motor Corp Method and device for calculating residual capacity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281711A (en) * 1993-01-27 1994-10-07 Nippon Soken Inc Device for detecting residual capacity of battery
JPH07260907A (en) * 1994-03-23 1995-10-13 Nippondenso Co Ltd Capacity detection device for vehicular battery
JP2003243045A (en) * 2002-02-21 2003-08-29 Toyota Motor Corp Method and device for calculating residual capacity

Also Published As

Publication number Publication date
JP2005326268A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP4984527B2 (en) Secondary battery charge state estimation device and charge state estimation method
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP4457781B2 (en) Deterioration degree estimation method and deterioration degree estimation apparatus
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP6603888B2 (en) Battery type determination device and battery type determination method
JP5163229B2 (en) Battery state detection system and automobile equipped with the same
JP4844044B2 (en) Battery state detection system and automobile equipped with the same
JP4193745B2 (en) Battery state detection method and battery state detection device
JP5162971B2 (en) Battery state detection system and automobile
JPWO2009118910A1 (en) Battery state determination method and automobile
EP1736789A1 (en) Method and equipment for estimating residual capacity of storage battery
JPH1138104A (en) Residual capacity detecting device for battery
JP4415074B2 (en) Charge / discharge control system
JP2009241646A (en) Battery state determination system, and automobile having the system
JP2008074257A (en) Battery deterioration determination device
JP5163739B2 (en) Battery state detection system and automobile equipped with the same
JP4702115B2 (en) Battery status judgment device
JP4548011B2 (en) Deterioration degree judging device
WO2016194271A1 (en) Auxiliary battery status determination device and auxiliary battery status determination method
JP2007278851A (en) Battery state detection system
JP2005292035A (en) Method of detecting battery condition
JP4670256B2 (en) Battery status detection method
JP2004257785A (en) Battery status detection system
JP4572518B2 (en) Battery status detection method
JP4442262B2 (en) Battery state detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R150 Certificate of patent or registration of utility model

Ref document number: 4670256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees