JP5162857B2 - Manufacturing method of coated product, coating apparatus, and manufacturing method of parts for electrophotographic apparatus - Google Patents

Manufacturing method of coated product, coating apparatus, and manufacturing method of parts for electrophotographic apparatus Download PDF

Info

Publication number
JP5162857B2
JP5162857B2 JP2006213406A JP2006213406A JP5162857B2 JP 5162857 B2 JP5162857 B2 JP 5162857B2 JP 2006213406 A JP2006213406 A JP 2006213406A JP 2006213406 A JP2006213406 A JP 2006213406A JP 5162857 B2 JP5162857 B2 JP 5162857B2
Authority
JP
Japan
Prior art keywords
coating
coated
electrostatic spray
booth
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006213406A
Other languages
Japanese (ja)
Other versions
JP2008012520A (en
Inventor
栄一 玉田
進 村松
明宏 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006213406A priority Critical patent/JP5162857B2/en
Publication of JP2008012520A publication Critical patent/JP2008012520A/en
Application granted granted Critical
Publication of JP5162857B2 publication Critical patent/JP5162857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、塗装品の製造方法、塗装装置及び電子写真装置用部品の製造方法に関する。   The present invention relates to a method for manufacturing a coated product, a coating apparatus, and a method for manufacturing a part for an electrophotographic apparatus.

電子写真装置は複写機、プリンター等として広く実用化されているが、近年はその高解像度化、フルカラー化が進展している。高解像度化について述べると、従来は600dpiであった解像度が1200dpi、あるいはそれ以上が要求されるようになっている。また、カラーもフルカラーとして、銀塩に匹敵するフルカラー品質が要求されている。これらの高解像度化、あるいはフルカラー化した電子写真装置では、画像形成に直接かかわる部品も従来品よりも高い品質が求められている。例えば、電子写真感光体は静電潜像を形成したのち、トナーを付着させてトナー像を形成する重要な部品であるが、この欠陥は静電潜像、及び、トナー像に直接悪影響を与えるので、均一で欠陥の無いことが求められている。   Electrophotographic apparatuses have been widely put into practical use as copying machines, printers, and the like, but in recent years, their resolution and full color have been advanced. As for higher resolution, a resolution of 1200 dpi, which has been 600 dpi in the past, is now required. Further, the color is full color, and full color quality comparable to silver salt is required. In these high-resolution or full-color electrophotographic apparatuses, parts directly related to image formation are required to have higher quality than conventional products. For example, an electrophotographic photosensitive member is an important part that forms an electrostatic latent image, and then attaches toner to form a toner image. This defect directly affects the electrostatic latent image and the toner image. Therefore, it is required to be uniform and free from defects.

電子写真感光体はアモルファスシリコン等を使用した無機感光体と、有機光半導体を使用した有機感光体(以下OPCと略す)とがある。有機感光体は感光体基体への感光体材料の塗工によって製造することができ、塗膜の構成と各塗膜の成分、厚さによって特性を制御できるので、広く使用されている。一般に、電子写真感光体の製造は以下のようにして行われる。先ず、所定の長さに切削された円筒状の導電性基体を洗浄する洗浄工程があり、ここで切削時の油分、切粉等の不純物の除去を行う。通常、洗浄工程は水系洗浄液で行われる。洗浄後、導電性基体表面に残る水分を除去するために乾燥工程が設けられている。続いて、洗浄乾燥された導電性基体の外周面に下引き層、感光層、保護層等を形成する工程がある。前記各層の形成には、一般的に溶剤に溶解された感光材料が使用されている。導電性基体の外周面に下引き層、感光層、保護層等を塗布する塗工法としては、浸漬塗工法、リング塗工法、スプレー塗工法等が知られている。   Electrophotographic photoreceptors include inorganic photoreceptors using amorphous silicon and the like, and organic photoreceptors (hereinafter abbreviated as OPC) using organic optical semiconductors. Organic photoreceptors are widely used because they can be produced by applying a photoreceptor material to a photoreceptor substrate, and the characteristics can be controlled by the composition of the coating film and the components and thickness of each coating film. In general, the electrophotographic photosensitive member is produced as follows. First, there is a cleaning step of cleaning the cylindrical conductive substrate cut to a predetermined length, and here, impurities such as oil and chips during cutting are removed. Usually, the cleaning step is performed with an aqueous cleaning solution. After cleaning, a drying process is provided to remove moisture remaining on the surface of the conductive substrate. Subsequently, there is a step of forming an undercoat layer, a photosensitive layer, a protective layer, etc. on the outer peripheral surface of the washed and dried conductive substrate. In forming each layer, a photosensitive material dissolved in a solvent is generally used. As a coating method for applying an undercoat layer, a photosensitive layer, a protective layer and the like to the outer peripheral surface of a conductive substrate, a dip coating method, a ring coating method, a spray coating method and the like are known.

電子写真感光体の製造には、装置の簡便性や多品種生産への適応性等の観点からスプレー塗工法が適用されることが多い。例えば、特許文献1によれば、スプレー塗工においてスプレーを固定し、被塗装物を移動させるとともに回転させながらスプレー塗工することにより塗装むらをなくすことができる。また、特許文献2によれば、スプレー塗工における塗工ブース内を排気をするとともに、塗工ブース内に配置された被塗装物の表面を事前にエアースプレーなどにより除塵してから塗工することにより、塗工面の塗装品質の向上を図っている。   In the production of an electrophotographic photosensitive member, a spray coating method is often applied from the viewpoint of simplicity of the apparatus and adaptability to multi-product production. For example, according to Patent Document 1, it is possible to eliminate coating unevenness by fixing spray in spray coating, moving the object to be coated, and spray coating while rotating. According to Patent Document 2, the inside of a coating booth in spray coating is evacuated, and the surface of an object to be coated placed in the coating booth is dusted beforehand by air spray or the like before coating. As a result, the coating quality of the coated surface is improved.

しかし、スプレー塗工法では噴霧した液滴の一部は塗装物に付着せず、塗液の利用効率が低くなる場合が多い。塗液の利用効率を向上させるスプレー塗工法としては、静電スプレー塗工法が知られている。静電スプレー塗工法は、帯電した塗装液の微粒子を噴霧して、帯電した塗装液の微粒子と被塗装物との間に静電力による吸引力を発生させて、被塗装物に塗装液を塗工する方法である。これにより、塗装液の付着効率を向上させることができる。特許文献3には、回転板により塗料を霧化して、塗装物に吹き付ける静電スプレー塗工法が開示されている。また、特許文献4には、回転する円筒状被塗装物に均一な膜厚の塗工面を形成する静電スプレー塗工法が開示されている。静電スプレー塗工法は、被塗装物への塗料の付着効率は向上させられるが、静電スプレーにより帯電した塗装液の微粒子と被塗布物やスプレー塗工ブースとの間に静電気による火花が発生し易い。通常、静電スプレー塗工法の塗装液には、有機溶剤が使用されており、塗工ブース内が可燃性雰囲気となっており、火花によって引火爆発を起こす危険性が高くなる。一般に、静電スプレーを使用する場合、このような危険性を回避するため被塗装物やスプレー塗工ブース等を接地しているが、接地状態不良や短絡の可能性等安全性の確保には十分配慮せねばならなかった。また、静電スプレー塗工法では、スプレーガンと被塗装物の間の距離を短くすれば、その間に形成される静電界が強くなるため、塗装液の付着効率を向上させることができるが、被塗装物に到達する塗装液の速度が大きくなりすぎ、塗膜むらが発生し塗装の品質が安定しないという問題があり、塗料の利用効率と製品の品質確保とのバランスが難しかった。また、スプレーガンと被塗装物との間の距離が短すぎると、スプレーガンと被塗装物の間の短絡が起るという安全上の問題があった。
特開2003−122035号公報 特開2006−65149号公報 特開昭62−6172号公報 特許第3166270号公報
However, in the spray coating method, some of the sprayed droplets do not adhere to the coating, and the use efficiency of the coating liquid is often lowered. As a spray coating method for improving the utilization efficiency of the coating liquid, an electrostatic spray coating method is known. In the electrostatic spray coating method, fine particles of the charged coating liquid are sprayed to generate an attractive force by electrostatic force between the fine particles of the charged coating liquid and the object to be coated. It is a method to work. Thereby, the adhesion efficiency of the coating liquid can be improved. Patent Document 3 discloses an electrostatic spray coating method in which paint is atomized by a rotating plate and sprayed on a coated object. Patent Document 4 discloses an electrostatic spray coating method for forming a coating surface having a uniform film thickness on a rotating cylindrical workpiece. The electrostatic spray coating method improves the adhesion efficiency of paint to the object to be coated, but sparks are generated between the coating liquid particles charged by electrostatic spray and the object to be coated and the spray coating booth. Easy to do. Usually, an organic solvent is used in the coating liquid of the electrostatic spray coating method, and the inside of the coating booth has a flammable atmosphere, which increases the risk of causing a flammable explosion due to a spark. In general, when using electrostatic spray, to avoid such danger, the work piece or spray coating booth is grounded, but to ensure safety such as poor grounding and possible short circuit. I had to be careful. In addition, in the electrostatic spray coating method, if the distance between the spray gun and the object to be coated is shortened, the electrostatic field formed between the spray gun and the object to be coated becomes stronger, so that the adhesion efficiency of the coating liquid can be improved. The speed of the coating liquid that reaches the coated product becomes too high, and there is a problem that the coating film unevenness occurs and the quality of the coating is not stable, and it is difficult to balance the use efficiency of the coating and the product quality assurance. Further, if the distance between the spray gun and the object to be coated is too short, there is a safety problem that a short circuit occurs between the spray gun and the object to be coated.
JP 2003-122035 A JP 2006-65149 A Japanese Patent Application Laid-Open No. 62-6172 Japanese Patent No. 3166270

本発明の目的は、優れた塗膜品質を確保すると共に、爆発、火災等の危険性を回避する静電スプレー塗工法による電子写真装置用部品などの塗装品の製造方法、及び静電スプレー塗工法による塗装装置を提供することである。   An object of the present invention is to provide a method for producing a coated product such as a part for an electrophotographic apparatus by an electrostatic spray coating method that ensures excellent coating film quality and avoids dangers such as explosion and fire, and electrostatic spray coating. It is to provide a painting device by a construction method.

本発明における課題を解決するための手段は、以下の通りである。   Means for solving the problems in the present invention are as follows.

本発明は、塗工ブース内で被塗装物をスプレー塗工する塗装品の製造方法において、被塗装物の塗工面を移動させながら静電スプレーガンにより−50kV以上−15kV以下の電圧を印加して帯電をさせた塗装液粒子を前記塗工面に噴射し、前記塗工ブース内に前記塗装液粒子の噴射方向と略平行な方向の気流を形成し、前記被塗装物を挟んで配置され、前記気流の上流側より下流側の間隔が狭い整流板により前記気流を整流して、前記気流中で前記被塗装物をスプレー塗工することを特徴とする塗装品の製造方法である。 The present invention is a method for manufacturing a coated product in which a coating object is spray-coated in a coating booth, and a voltage of −50 kV or more and −15 kV or less is applied by an electrostatic spray gun while moving the coating surface of the coating object. Spraying the charged coating liquid particles onto the coating surface, forming an air flow in a direction substantially parallel to the spraying direction of the coating liquid particles in the coating booth, and being disposed across the object to be coated, In the method for producing a coated product, the air flow is rectified by a rectifying plate having a narrower interval on the downstream side than the upstream side of the air flow, and the object to be coated is spray-coated in the air flow .

好ましい本発明は、前記塗工面付近の気流の流速を0.2m/秒以上1m/秒以下としてスプレー塗工する前記塗装品の製造方法である。 Preferred invention is said coated product manufacturing method for spray coating the velocity of the air current of the coated surface near as below 0.2 m / sec or more 1 m / sec.

好ましい本発明は、吸気側圧力が0.01MPa以上0.2MPa以下である気体供給装置により前記塗工ブースに気体を供給して気流を形成する前記塗装品の製造方法である。 A preferred aspect of the present invention is the method for manufacturing a coated product, wherein gas is supplied to the coating booth by a gas supply device having an intake side pressure of 0.01 MPa or more and 0.2 MPa or less to form an air flow.

好ましい本発明は、前記塗工ブース内の酸素濃度を10容量%以下とする前記塗装品の製造方法である。 A preferred aspect of the present invention is the method for producing a coated product, wherein the oxygen concentration in the coating booth is 10% by volume or less.

好ましい本発明は、スプレー塗工時に前記塗工ブース内における気流の上流側から窒素を供給する前記塗装品の製造方法である。 Preferred invention is said method for manufacturing a coated article for supplying nitrogen from the upstream side of the air flow within the coating booth during spray coating.

好ましい本発明は、前記塗工ブース内における気流の上流側から供給する窒素濃度を95容量%以上とする前記塗装品の製造方法である。 A preferred aspect of the present invention is the method for producing a coated product, wherein the concentration of nitrogen supplied from the upstream side of the airflow in the coating booth is 95% by volume or more.

好ましい本発明は、前記静電スプレーガンの噴射口と前記塗工面との間隔を100mm以上200mm以下とする前記塗装品の製造方法である。 A preferable aspect of the present invention is the method for producing a coated product, wherein an interval between the spray port of the electrostatic spray gun and the coating surface is 100 mm or more and 200 mm or less.

本発明は、被塗装物をスプレー塗工するための塗工ブースと、該塗工ブース内に被塗装物を支持し該被塗装物の塗工面を移動させる支持手段と、−50kV以上−15kV以下の電圧を印加して帯電させた塗装液粒子を前記塗工面に噴射する静電スプレーガンと、前記塗装液粒子の噴射方向と略平行な方向の気流を形成し、該気流中で前記被塗装物にスプレー塗工するための気体供給装置と、前記塗工ブース内に、前記被塗装物を挟んで配置され、前記気流の上流側より下流側の間隔を狭くして前記気流を整流する整流板と、を備える塗装装置である。 The present invention includes a coating booth for spray coating an object to be coated, a supporting means for supporting the object to be coated in the coating booth and moving the coated surface of the object to be coated, and −50 kV or more to −15 kV An electrostatic spray gun that sprays the coating liquid particles charged by applying the following voltage to the coating surface and an air flow in a direction substantially parallel to the spray direction of the coating liquid particles are formed, and A gas supply device for spray-coating a coating object and the coating booth are arranged with the object to be coated interposed therebetween, and the air flow is rectified by narrowing the interval downstream from the upstream side of the air flow. And a current plate .

好ましい本発明は、前記塗工ブース内の気体を排出する排気装置を備えた前記塗装装置である。 Preferred invention is said coating apparatus equipped with an exhaust system for discharging the gas in the coating booth.

好ましい本発明は、前記気体供給装置は、0.01MPa以上0.2MPa以下の圧力の気体を収容した気体供給用タンクと、該気体供給用タンクから気体を吸入して前記塗工ブース内に供給する気体供給用ブロアとを有する前記塗装装置である。 Preferably, in the present invention, the gas supply device includes a gas supply tank containing a gas having a pressure of 0.01 MPa or more and 0.2 MPa or less, and sucks the gas from the gas supply tank and supplies the gas into the coating booth. It is the said coating apparatus which has a blower for gas supply to perform.

好ましい本発明は、前記整流板と被塗装物との間隔を、40mm以上100mm以下にできる前記塗装装置である。 Preferred invention, the distance between the rectifying plate and the object to be coated, which is the coating apparatus which can be made 40mm or 100mm or less.

好ましい本発明は、前記整流板は、導電性材料からなる前記塗装装置である。 Preferred invention, the rectifying plate is the coating apparatus comprising a conductive material.

好ましい本発明は、前記整流板は、前記塗工ブースへの着脱及び取り付け角度の調節が可能である前記塗装装置である。 Preferred invention, the rectifying plate is the possible adjustment of the detachable and attachment angle of the coating booth said coating device.

好ましい本発明は、被塗装物は静電スプレーガンより下部に配置された円筒体であり、前記円筒体の中心軸が略水平になるように支持し、且つ前記円筒体の中心軸を中心に回転させる支持手段を有しており、前記静電スプレーガンの噴射方向は下向きの鉛直方向に対して3°以上6°以下の傾きを有し、前記静電スプレーガンの噴射方向を表す噴射の中心線と前記円筒体の外表面との交点は前記円筒体が回転する際に前記円筒体の外表面が下方へ下がっていく位置にある前記塗装装置である。 According to a preferred embodiment of the present invention, the object to be coated is a cylindrical body disposed below the electrostatic spray gun, the central axis of the cylindrical body is supported so as to be substantially horizontal, and the central axis of the cylindrical body is the center. A support means for rotating, the spray direction of the electrostatic spray gun has an inclination of 3 ° or more and 6 ° or less with respect to the downward vertical direction, and represents the spray direction of the electrostatic spray gun. the intersection of the outer surface of the center line between the cylinder outer surface of the cylindrical body when the cylindrical body is rotated is the coating apparatus in a position going down downward.

好ましい本発明は、前記静電スプレーガンの噴射方向を表す噴射の中心線と、前記円筒体の外表面との交点は、前記円筒体の中心軸を含む鉛直面から7mm以上13mm以下の距離にある前記塗装装置である。 In a preferred aspect of the present invention, the intersection of the injection center line representing the injection direction of the electrostatic spray gun and the outer surface of the cylindrical body is at a distance of 7 mm or more and 13 mm or less from a vertical plane including the central axis of the cylindrical body. is there the coating apparatus.

好ましい本発明は、前記支持手段は、130rpm以上180rpm以下で前記円筒体を回転させることができる前記塗装装置である。 Preferred invention, the supporting means is a said coating apparatus capable of rotating the cylindrical body inclusive 130 rpm 180 rpm.

好ましい本発明は、前記塗装装置のいずれかを用いて、電子写真装置用部品の基体表面に塗工液を塗工する電子写真装置用部品の製造方法である。 A preferred embodiment of the present invention is a method for producing a part for an electrophotographic apparatus in which a coating solution is applied to the surface of a substrate of the part for an electrophotographic apparatus using any one of the coating apparatuses .

本発明の塗装品の製造方法によれば、塗膜品質を確保すると共に、爆発、火災等の危険性を回避する静電スプレー塗工法による塗装品の製造方法を提供することができる。特に、好ましい本発明の塗装品の製造方法は、塗膜品質に優れた塗装品の製造に適していたり好ましい本発明の塗装品の製造方法は、爆発、火災等の危険性を回避する静電スプレー塗工法による塗装品の製造に適していたりするAccording to the method for producing a coated product of the present invention , it is possible to provide a method for producing a coated product by an electrostatic spray coating method that ensures coating film quality and avoids dangers such as explosion and fire. In particular, the preferred method for producing a coated product of the present invention is suitable for producing a coated product having excellent coating film quality, and the preferred method for producing a coated product of the present invention is a static method that avoids dangers such as explosion and fire. to reach suitable for the production of coated product due to electrostatic spray coating method.

本発明の塗装装置によれば、塗膜品質を確保すると共に、爆発、火災等の危険性を回避する塗装装置を提供することができる。特に、好ましい本発明の塗装装置には、塗膜品質に優れた塗装品の製造に適した塗装装置あり、好ましい本発明の塗装装置には、爆発、火災等の危険性を回避する静電スプレー塗工法による塗装品の製造に適した塗装装置ある。また、好ましい本発明の塗装装置には、塗料の利用効率がよい塗装品の製造に適した塗装装置ある。さらに、本発明の電子写真装置用部品の製造方法によれば、高品質の電子写真装置用部品を安全に製造することができる。 According to the coating apparatus of the present invention , it is possible to provide a coating apparatus that ensures coating film quality and avoids dangers such as explosion and fire. Particularly preferred coating apparatus of the present invention, there is coating apparatus suitable for the manufacture of coated product having excellent coating quality, preferably the coating apparatus of the present invention, an electrostatic to avoid explosion, fire hazard, etc. There are coating equipment suitable for the manufacture of coated products by spray coating. The preferred coating apparatus of the present invention, there is coating apparatus suitable for the manufacture of paint utilization efficient painted. Furthermore, according to the method for producing a part for an electrophotographic apparatus of the present invention , a high-quality part for an electrophotographic apparatus can be produced safely.

本発明の実施の形態を図面と共に説明する。   Embodiments of the present invention will be described with reference to the drawings.

本発明の塗装品の製造方法においては、塗工ブース内で被塗装物をスプレー塗工する塗装品の製造方法において、被塗装物の塗工面を移動させながら静電スプレーガンにより噴霧された塗装液粒子に、−50kV以上−15kV以下、好ましくは−40kV以上−20kV以下の電圧を印加して帯電をさせて塗工面に噴射する塗装品の製造方法である。この塗装品の製造方法を実現するための塗工装置の構成を図1に例示する。図1に示す塗工装置26には、スプレー塗工ブース1内に円筒形の被塗工物2、例えば電子写真装置用感光体の基体を設置し、これを支持しながら回転させる支持装置3と、被塗工物2の軸線と平行に移動させながら塗装液を噴射する静電スプレーガン4を備えている。静電スプレーガン4は、塗装液を供給する塗装液タンク7、送液ポンプ8、及び供給された塗装液を霧化し噴射する噴霧用気体供給装置9を備えている。静電スプレーガン4によってスプレー塗工を行なって被塗工物2の外周面に塗膜を形成することによって塗装品を製造する。   In the method for manufacturing a coated product according to the present invention, in the method for manufacturing a coated product in which a coating object is spray-coated in a coating booth, the coating sprayed by an electrostatic spray gun while moving the coating surface of the coating material. This is a method for producing a coated product in which a voltage of −50 kV or more and −15 kV or less, preferably −40 kV or more and −20 kV or less is applied to a liquid particle to be charged and sprayed onto a coated surface. The structure of the coating apparatus for implement | achieving this manufacturing method of a coated article is illustrated in FIG. In a coating apparatus 26 shown in FIG. 1, a cylindrical coating object 2, for example, a photosensitive body for an electrophotographic apparatus, is installed in a spray coating booth 1, and a supporting apparatus 3 that rotates while supporting it. And an electrostatic spray gun 4 that sprays the coating liquid while moving in parallel with the axis of the workpiece 2. The electrostatic spray gun 4 includes a coating liquid tank 7 for supplying a coating liquid, a liquid feed pump 8, and a spraying gas supply device 9 for atomizing and spraying the supplied coating liquid. Spray coating is performed by the electrostatic spray gun 4 to form a coating film on the outer peripheral surface of the object to be coated 2 to produce a coated product.

ここで、静電スプレーガン4は、静電スプレーガンとなっている。静電スプレーガンは、電圧印加装置5、電圧変換用コントローラ6を備えている。通常、電圧印加装置5は接地電圧に対しマイナスの電圧を印加する。本発明においては、静電スプレーガン4のスプレーノズルの先端22に−50〜−15kV、好ましくは−20〜−40kVの電圧を印加しておき(図7参照)、静電スプレーガン4のスプレーノズルの先端22から被塗工物2に向けて塗装液を噴射すれば、噴霧された塗装液粒子は上述のマイナス電荷を帯びながら噴霧される。一方、被塗装物2を支持装置3等を介して接地しておけば、被塗工物2と塗装液粒子との間に−50〜−15kVの静電場が生じる。この静電場の引力により、塗装液粒子は被塗工物2に吸い寄せられるようにして付着する。このため、静電スプレー塗工は、通常のスプレー塗工に比べ塗装液の利用効率が非常に高くなる。静電スプレー塗工法を適用する事で、高価な塗装液でも塗着効率を高め塗装液コストを1/2以下にできることがある。塗装液粒子を帯電するための印加電圧は、−50kVより低すぎる(接地電圧との電位差が大きすぎる)と付着引力が増大しすぎ、塗膜むらができ易く、塗膜品質が悪くなる。印加電圧が−15kVより高すぎる(接地電圧との電位差が小さすぎる)と静電気力が弱まり、付着効率が悪くなる。また、印加電圧が−50kVより低すぎると静電気火花による引火爆発の危険性が高まる。   Here, the electrostatic spray gun 4 is an electrostatic spray gun. The electrostatic spray gun includes a voltage application device 5 and a voltage conversion controller 6. Usually, the voltage application device 5 applies a negative voltage to the ground voltage. In the present invention, a voltage of −50 to −15 kV, preferably −20 to −40 kV is applied to the tip 22 of the spray nozzle of the electrostatic spray gun 4 (see FIG. 7), and the spray of the electrostatic spray gun 4 is applied. When the coating liquid is sprayed from the tip 22 of the nozzle toward the workpiece 2, the sprayed coating liquid particles are sprayed with the above-described negative charge. On the other hand, if the workpiece 2 is grounded via the support device 3 or the like, an electrostatic field of −50 to −15 kV is generated between the workpiece 2 and the coating liquid particles. Due to the attractive force of the electrostatic field, the coating liquid particles adhere to the workpiece 2 so as to be sucked. For this reason, the electrostatic spray coating has a very high utilization efficiency of the coating liquid compared to the ordinary spray coating. By applying the electrostatic spray coating method, even with an expensive coating liquid, the coating efficiency can be increased and the coating liquid cost can be reduced to ½ or less. If the applied voltage for charging the coating liquid particles is too lower than −50 kV (potential difference from the ground voltage is too large), the adhesion attractive force is increased too much, and coating film unevenness is likely to occur, resulting in poor coating film quality. If the applied voltage is too higher than −15 kV (the potential difference from the ground voltage is too small), the electrostatic force is weakened and the adhesion efficiency is deteriorated. On the other hand, if the applied voltage is too lower than −50 kV, the risk of ignition explosion due to electrostatic spark increases.

本発明の好ましい態様として、上述の塗装方法において、塗工ブース内に塗装液粒子の噴射方向と略平行な流れ方向の気流を形成し、この気流中でスプレー塗工する方法がある。図2に示す様に、静電スプレーガンの噴射方向10に対して上流側から下流側に新鮮な気体を流す事で被塗工物2に塗工できなかった塗装液粒子や塗装液中に含まれる溶剤等の可燃物の滞留を防ぐことができる。これにより、爆発、火災の危険性を低下できる。また、塗工ブース内に上述の気流を形成することにより、被塗工物に正常に付着できなかった塗装液粒子が塗工ブース内に滞留して、被塗工物の乾燥工程などにおいて意図しない被塗工物への付着が起こり、塗膜の異常を来すことも防ぐことができる。図2は、本発明の塗工装置における静電スプレーガンの噴射方向を矢印で表しており、気流の形成方向もこの矢印と同一方向である。なお、気流の方向は、厳密なものではなく、被塗工物付近において図2におけるスプレー方向を表す矢印と同じ方向に、塗工ノズル4よりも上流側から被塗工物2の下流側へと向かっておればよい。現実には、塗工ノズルの噴射口付近や被塗工物の近傍の気体は、厳密にスプレー方向を表す矢印の方向には流れ得ない。例えば図6に示すような被塗工物の回転に伴う気体の連れまわりなどが起こっている。ここでいう塗装液粒子の噴射方向と略平行な流れ方向の気流とは、塗工ノズルから噴射された塗装液粒子のうち、正常に被塗工物に付着できなかった塗装液粒子を滞留させないで気流に乗せて除去できる気流であればよい。また、静電スプレーガンの噴射方向とは、噴射される塗装液粒子が形成する円錐形の中心軸線上を塗装液粒子が進んでいく方向である。   As a preferred embodiment of the present invention, in the above-described coating method, there is a method in which an air flow in a flow direction substantially parallel to the spray direction of the coating liquid particles is formed in the coating booth, and spray coating is performed in this air flow. As shown in FIG. 2, in the coating liquid particles or coating liquid that could not be applied to the workpiece 2 by flowing fresh gas from the upstream side to the downstream side with respect to the injection direction 10 of the electrostatic spray gun. It is possible to prevent flammable substances such as solvents contained from staying. This can reduce the risk of explosion and fire. In addition, by forming the above-mentioned air flow in the coating booth, the coating liquid particles that could not adhere normally to the coating object stay in the coating booth and are intended for the drying process of the coating object. It is possible to prevent adhesion to the object to be coated and to cause abnormal coating. FIG. 2 shows the injection direction of the electrostatic spray gun in the coating apparatus of the present invention by arrows, and the direction of airflow formation is also the same direction as this arrow. Note that the direction of the airflow is not strict, and in the same direction as the arrow indicating the spray direction in FIG. 2 in the vicinity of the coating object, from the upstream side of the coating nozzle 4 to the downstream side of the coating object 2. Just go to. In reality, the gas in the vicinity of the injection nozzle of the coating nozzle or in the vicinity of the object to be coated cannot flow strictly in the direction of the arrow indicating the spray direction. For example, as shown in FIG. 6, gas is accompanied by rotation of the object to be coated. The airflow in the flow direction substantially parallel to the spraying direction of the coating liquid particles here means that the coating liquid particles that cannot be normally adhered to the coating object among the coating liquid particles sprayed from the coating nozzle are not retained. As long as the airflow can be removed by placing it on the airflow. The spray direction of the electrostatic spray gun is a direction in which the coating liquid particles travel on a conical central axis formed by the sprayed coating liquid particles.

気流の形成においては、塗工面付近の気流の流速を0.2m/秒以上1m/秒以下、好ましくは0.3m/秒以上0.6m/秒以下とすることが望ましい。気流の流速が0.2m/秒より遅いと上述の塗装液粒子の除去効果が不十分となり、1m/秒より早いと正常に塗工面に付着すべき塗装液粒子まで気流により流されてしまい、塗工面に付着できないため塗装液の利用効率が落ちることがある。気流の流速を上述の範囲とする事により、被塗工物周辺の気流の巻き上がりを防ぎ整流化が可能となり、スプレー塗工時に発生する被塗工物周辺に漂う被塗工物に付着しなかったオーバーミストを効率よく排気口側に流す事が出来、塗膜欠陥が低減できる。   In forming the airflow, the flow velocity of the airflow in the vicinity of the coating surface is preferably 0.2 m / second or more and 1 m / second or less, and preferably 0.3 m / second or more and 0.6 m / second or less. If the flow velocity of the airflow is slower than 0.2 m / sec, the above-mentioned effect of removing the coating liquid particles is insufficient, and if it is earlier than 1 m / sec, the coating liquid particles that should normally adhere to the coating surface are flowed by the airflow, Since it cannot adhere to the coated surface, the utilization efficiency of the coating liquid may decrease. By setting the flow velocity of the airflow within the above range, the airflow around the work piece can be prevented from being rolled up and rectified, and adheres to the work piece drifting around the work piece that occurs during spray coating. The overmist that did not exist can be efficiently flowed to the exhaust port side, and coating film defects can be reduced.

通常、気流を形成するために、塗工ブース内の気流の上流側に気体供給装置を設置することが好ましい。気体供給装置は、高圧ボンベのような高圧気体の直接供給装置であってもよく、気体供給用ブロアであっても良い。気体供給用ブロアの場合、吸気側圧力を0.01MPa以上0.2MPa以下とすることが好ましい。気体供給用ブロアの吸気側圧力を0.01MPa以上0.2MPa以下とすることにより、気体が送気される塗工ブース内の気流の脈動を防ぎ、適度な動力で塗工ブース内に0.2m/秒以上1m/秒以下の流速の気流を形成することができる。   Usually, in order to form an airflow, it is preferable to install a gas supply device upstream of the airflow in the coating booth. The gas supply device may be a high pressure gas direct supply device such as a high pressure cylinder or a gas supply blower. In the case of a gas supply blower, the intake side pressure is preferably set to 0.01 MPa or more and 0.2 MPa or less. By setting the pressure on the intake side of the gas supply blower to 0.01 MPa or more and 0.2 MPa or less, pulsation of the air current in the coating booth where the gas is supplied is prevented, and 0. An airflow having a flow velocity of 2 m / sec or more and 1 m / sec or less can be formed.

塗工ブース内での引火爆発の危険性を抑える態様として、塗工ブース内の酸素濃度を10容量%以下、好ましくは5%容量以下とする上記の静電スプレー塗装法がある。酸素濃度が10%容量以下好ましくは5容量%以下であれば、空気中で静電塗装を施す際には発生する静電気火花が着火源となりうる着火エネルギーに達しても爆発、火災が発生しない場合がある。この方法は、着火、爆発の三原則である酸素・着火源・可燃物の一つである酸素量を少なくし、通常の酸素濃度21%程度であれば最小着火エネルギーが0.1mJ〜1.0mJ程度の一般的な塗料用溶剤を塗装液の稀釈溶媒として使用しても着火しないようにしている。例えば、酸素濃度が10%容量以下の環境下では、前記溶媒でも最小着火エネルギーが1mJとなることが多い。本発明における印加電圧で静電スプレー塗工をしていれば、1mJ以上の静電火花のエネルギーが発生することは少なく貧家爆発の危険がなくなる。塗工ブース内の酸素濃度を10容量%以下とする具体的方法として、例えば、スプレー塗工時に塗工ブース内における気流の上流側から窒素、好ましくは窒素濃度を95容量%以上、さらに好ましくは99容量%以上の高濃度窒素を供給する方法がある。塗工ブース内に給気する窒素ガス純度が95容量%以上好ましくは、99容量%以上であれば、塗工ブース1内の酸素濃度を10%以下好ましくは5%以下に維持でき、静電塗装を施す際に発生する静電気による火花エネルギーが溶剤等の着火エネルギー源となり得ず、爆発、火災を防止出来る。   As an aspect for suppressing the risk of flammable explosion in the coating booth, there is the above-described electrostatic spray coating method in which the oxygen concentration in the coating booth is 10% by volume or less, preferably 5% or less. If the oxygen concentration is 10% or less, preferably 5% or less, no explosion or fire occurs even when the electrostatic spark generated in the air reaches the ignition energy that can be the ignition source when electrostatic coating is applied. There is a case. This method reduces the amount of oxygen, which is one of the three principles of ignition and explosion, oxygen, ignition source, and combustible material. If the normal oxygen concentration is about 21%, the minimum ignition energy is 0.1 mJ-1 Even if a general coating solvent of about 0.0 mJ is used as a dilution solvent of the coating liquid, ignition is prevented. For example, in an environment where the oxygen concentration is 10% or less, the minimum ignition energy is often 1 mJ even with the solvent. If electrostatic spray coating is performed with the applied voltage in the present invention, the energy of electrostatic sparks of 1 mJ or more is rarely generated, and the danger of poor explosion is eliminated. As a specific method for setting the oxygen concentration in the coating booth to 10% by volume or less, for example, nitrogen from the upstream side of the air flow in the coating booth during spray coating, preferably the nitrogen concentration is 95% by volume or more, more preferably There is a method of supplying high concentration nitrogen of 99% by volume or more. If the purity of the nitrogen gas supplied into the coating booth is 95% by volume or more, preferably 99% by volume or more, the oxygen concentration in the coating booth 1 can be maintained at 10% or less, preferably 5% or less. Spark energy due to static electricity generated during painting cannot be a source of ignition energy such as solvent, preventing explosion and fire.

図3には、給気ブロアおよび排気ファンを備えた本発明の塗装装置を示した。この塗装置は、塗工ブース1内において、スプレー方向10に対して上流側に給気口11、スプレー方向10に対して下流側に排気口12を有している。給気口11には給気ブロア18が付設されている。排気口12には排気ファン19が付設されている。スプレー方向10に対して上流側に給気口11、スプレー方向10に対して下流側に排気口12を設け、給気ブロア18と排気ファン19を付設する事により、スプレー塗工時に発生する被塗工物に付着しなかったオーバーミストを効率よく排気とともに除去出来、塗工ブース内を清浄に維持できる。このようにすれば、塗工ブース内のクリーン度としては非塗工時にてクラス100以下が達成できる。   FIG. 3 shows a coating apparatus of the present invention provided with an air supply blower and an exhaust fan. In the coating booth 1, this coating apparatus has an air supply port 11 on the upstream side with respect to the spray direction 10 and an exhaust port 12 on the downstream side with respect to the spray direction 10. An air supply blower 18 is attached to the air supply port 11. An exhaust fan 19 is attached to the exhaust port 12. An air supply port 11 is provided on the upstream side with respect to the spray direction 10 and an exhaust port 12 is provided on the downstream side with respect to the spray direction 10, and an air supply blower 18 and an exhaust fan 19 are additionally provided. Overmist that has not adhered to the coated material can be efficiently removed together with the exhaust, and the interior of the coating booth can be kept clean. In this way, the degree of cleanliness in the coating booth can be achieved to a class of 100 or less at the time of non-coating.

通常、本発明の塗装品の製造方法においては、塗工ブース内においてスプレー塗工をした後、塗布された塗膜の乾燥を行う。塗膜の乾燥はスプレー塗工よりも長時間を要することが多く、この間に窒素を塗工ブース内に供給し続けることは経済的ではない。そこで、火災爆発の原因となる塗装液の噴射が終わり、塗工工程から乾燥工程に移ったら窒素供給は停止することが好ましい。スプレー塗工中のみ窒素ガスを供給することにより、窒素供給量が50%以上削減され、窒素供給装置自体を小型化でき窒素供給装置の投資額が半分以下となることもある。   Usually, in the manufacturing method of the coated article of this invention, after apply | coating in a coating booth, the applied coating film is dried. The drying of the coating film often takes a longer time than spray coating, and it is not economical to continue supplying nitrogen into the coating booth during this time. Therefore, it is preferable that the supply of nitrogen is stopped when the spraying of the coating liquid that causes a fire explosion ends and the process moves from the coating process to the drying process. By supplying nitrogen gas only during spray coating, the nitrogen supply amount can be reduced by 50% or more, the nitrogen supply device itself can be downsized, and the investment amount of the nitrogen supply device can be reduced to half or less.

静電スプレーガンのスプレーノズルの先端にある噴射口と塗工面との間隔は、100mm以上200mm以下、好ましくは110mm以上150mmmm以下とすることが望ましい。図7に示す静電スプレーガンのスプレーノズルの先端22の噴射口から被塗工物2の塗工面までの距離23が、100mmよりも近いと塗膜の膜質が荒れるとともに、膜厚のバラツキが大きくなり、塗膜品質が劣化する。また、スプレーノズルの先端22の電荷電極部分と被塗工物2との間に放電が起きる可能性があり、安全上の問題が発生する。また、スプレーノズルの先端22の噴射口から被塗工物2の塗工面までの距離23が200mmよりも遠いと塗装液粒子の付着効率が低下し、不経済的である。   The distance between the spray nozzle at the tip of the spray nozzle of the electrostatic spray gun and the coating surface is desirably 100 mm or more and 200 mm or less, preferably 110 mm or more and 150 mm mm or less. When the distance 23 from the spray nozzle tip 22 of the spray nozzle of the electrostatic spray gun shown in FIG. 7 to the coating surface of the workpiece 2 is closer than 100 mm, the film quality of the coating film becomes rough and the film thickness varies. It becomes larger and the coating quality deteriorates. Further, there is a possibility that electric discharge occurs between the charged electrode portion at the tip 22 of the spray nozzle and the workpiece 2, which causes a safety problem. Further, if the distance 23 from the spray nozzle at the tip 22 of the spray nozzle to the coating surface of the workpiece 2 is longer than 200 mm, the coating liquid particle deposition efficiency is lowered, which is uneconomical.

本発明の塗装装置は、被塗装物をスプレー塗工するための塗工ブースと、塗工ブース内に塗装物を支持し該塗装物の塗工面を移動させる移動手段と、−50kV以上−15kV以下の電圧を印加して帯電させた塗装液粒子を前記塗工面に噴射する静電スプレーガンとを有する。好ましい本発明の塗装装置は、塗工ブース内に静電スプレーガンの噴射方向と平行な流れ方向の気流を形成するための気体を供給する気体供給装置、及び塗工ブース内の気体を排出する排気装置を備えている。さらに好ましい本発明の塗装装置は、0.01MPa以上0.2MPa以下の圧力の気体を収容した気体供給用タンクと、前記気体を気体供給用タンクから吸入して前記塗工ブース内に供給する気体供給装置とを有する。   The coating apparatus of the present invention includes a coating booth for spray coating an object to be coated, a moving means for supporting the coated object in the coating booth and moving the coated surface of the coated object, and −50 kV or more to −15 kV An electrostatic spray gun that sprays coating liquid particles charged by applying the following voltage onto the coated surface; A preferred coating apparatus of the present invention is a gas supply device for supplying a gas for forming an air flow in a flow direction parallel to the spraying direction of the electrostatic spray gun in the coating booth, and discharges the gas in the coating booth. An exhaust device is provided. Furthermore, a preferable coating apparatus of the present invention includes a gas supply tank containing a gas having a pressure of 0.01 MPa or more and 0.2 MPa or less, and a gas that is sucked from the gas supply tank and supplied into the coating booth. A supply device.

図4に窒素気流形成に好ましい態様の本発明の塗装装置を示した。この塗装装置は、塗工ブース1へ供給される供給ガスは、空気でも良いが通常は窒素ガスを用いることが好ましいので窒素発生装置20にて生成され、窒素発生装置20から供給された窒素ガスのレシーバータンク21にて0.01MPa〜0.2MPa好ましくは0.01MPa〜0.05MPaへ減圧して保管され、給気ブロア18にて塗工ブース1へ供給される。このため、給気ブロア18の吸気側は、0.01MPa〜0.2MPa好ましくは0.01MPa〜0.05MPaとすることができる。給気ブロア18の吸気をこのようにすると、給気ブロア18の吐出圧力が安定し、塗工ブース1内に常に脈動のない安定した窒素ガスを送気する事が可能となり、気流の脈動による塗工ブース内のオーバーミストの滞留や被塗工物への再付着による塗膜欠陥を防止できる。   FIG. 4 shows a coating apparatus of the present invention which is a preferred embodiment for forming a nitrogen stream. In this coating apparatus, the supply gas supplied to the coating booth 1 may be air, but normally it is preferable to use nitrogen gas, so that the nitrogen gas generated by the nitrogen generator 20 and supplied from the nitrogen generator 20 is used. In the receiver tank 21, the pressure is reduced to 0.01 MPa to 0.2 MPa, preferably 0.01 MPa to 0.05 MPa, and is supplied to the coating booth 1 by the air supply blower 18. For this reason, the suction side of the air supply blower 18 can be set to 0.01 MPa to 0.2 MPa, preferably 0.01 MPa to 0.05 MPa. If the intake air of the air supply blower 18 is set in this way, the discharge pressure of the air supply blower 18 is stabilized, and stable nitrogen gas without pulsation can always be supplied into the coating booth 1, which is caused by the pulsation of the airflow. It is possible to prevent coating film defects due to overmisting in the coating booth and re-adhesion to the object to be coated.

図8及び図9には、本発明の好適な塗工装置の構成例を示した。図8の塗工装置は、上から見た図であり、被塗工物2は円筒状の電子写真装置用の感光体を想定している。塗工ブース1の右側、すなわち気流の上流側から窒素を供給するための窒素発生装置20、レシーバータンク21及び給気ブロア18を備えている。気流の塗工ブース1の下流側には、排気ファン19を備えている。静電スプレーガン4は、被塗工物2の右側、すなわち気流の上流側から被塗工物2の塗工面上に塗装液を噴霧するように配置されている。被塗工物2は円筒軸を中心に回転し、静電スプレーガン4は円筒形の被塗工物2の外表面全体、図でいえば上から下までを塗工できるように塗工ブース1内を上下に移動できるようになっている。このように被塗工物2と静電スプレーガン4とが動くことにより、円筒形の被塗工物の外表面全体が塗工できる。   8 and 9 show a configuration example of a preferred coating apparatus of the present invention. The coating apparatus in FIG. 8 is a view from above, and the article 2 is assumed to be a cylindrical electrophotographic photosensitive member. A nitrogen generator 20 for supplying nitrogen from the right side of the coating booth 1, that is, the upstream side of the airflow, a receiver tank 21, and an air supply blower 18 are provided. An exhaust fan 19 is provided on the downstream side of the airflow coating booth 1. The electrostatic spray gun 4 is arranged so as to spray the coating liquid on the coating surface of the workpiece 2 from the right side of the workpiece 2, that is, from the upstream side of the airflow. The coating object 2 rotates around a cylindrical axis, and the electrostatic spray gun 4 is a coating booth so that the entire outer surface of the cylindrical coating object 2 can be coated from top to bottom in the figure. The inside of 1 can be moved up and down. Thus, the entire outer surface of the cylindrical object to be coated can be applied by moving the object to be coated 2 and the electrostatic spray gun 4.

本発明の塗装装置においては、塗工ブース内の気流の流れ方向を整えるために塗工ブース内に整流板を備えることが好ましい。図9は、図8における塗工ブース1を図の上部(Aの矢印の方向)、すなわち被塗工物2内を円筒の軸方向から見た図である。図9からわかるように、2枚の整流板13は被塗工物を挟んで配置され、2枚の整流板13の間隔は気流の上流側より下流側の方が狭くなっている。なお、この整流板13は着脱可能であり、また給気ガス下流側における間隔16の距離を変動可能である。整流板13は、気流が流通するための被塗装物2との間隔が40mm以上100mm以下であることが好ましく、導電性材料からなる整流板13であることがさらに好ましい。このような整流板13は、塗工ブース1内への着脱及び取り付け角度の調節が可能であることが好ましい。   In the coating apparatus of this invention, in order to arrange the flow direction of the airflow in a coating booth, it is preferable to provide a baffle plate in a coating booth. FIG. 9 is a view of the coating booth 1 in FIG. 8 as viewed from the upper part of the drawing (in the direction of the arrow A), that is, the inside of the workpiece 2 from the axial direction of the cylinder. As can be seen from FIG. 9, the two rectifying plates 13 are arranged with the object to be coated interposed therebetween, and the distance between the two rectifying plates 13 is narrower on the downstream side than on the upstream side of the airflow. In addition, this baffle plate 13 can be attached or detached, and the distance of the space | interval 16 in the supply gas downstream side can be changed. The rectifying plate 13 is preferably 40 mm or more and 100 mm or less in distance from the object to be coated 2 for airflow to flow, and more preferably the rectifying plate 13 made of a conductive material. Such a rectifying plate 13 is preferably attachable to and detachable from the coating booth 1 and adjustment of the mounting angle.

図5、図6及び図9には、塗工ブース内に備えられた整流板の説明図を示した。これらの図は、例えば図3の塗工ブース1内を上から見た図である。これらの図では、塗工ブース1内に円筒状の被塗工物2を設置し、これを回転させながら被塗工物2の表面に塗膜を形成する際、被塗工物2の円筒の軸線と平行な位置に被塗工物2をはさむ形で2枚の整流板13が設けられている。なお、図5,6では静電スプレーガンは図示していないが、図の右側にあり、右側が気流の上流側になる。整流板13を設ける事で、塗工ブース1内の気流を整流出来、且つ、被塗工物2と整流板13との間の気流の流速を少ない給気風量で整流する事が可能となる。   5, 6, and 9 are explanatory diagrams of the current plate provided in the coating booth. These drawings are, for example, views of the inside of the coating booth 1 shown in FIG. 3 as viewed from above. In these figures, when a cylindrical coating object 2 is installed in the coating booth 1 and a coating film is formed on the surface of the coating object 2 while rotating it, the cylinder of the coating object 2 is used. Two rectifying plates 13 are provided so as to sandwich the workpiece 2 at a position parallel to the axis. 5 and 6, the electrostatic spray gun is not shown, but it is on the right side of the figure, and the right side is the upstream side of the airflow. By providing the rectifying plate 13, the air flow in the coating booth 1 can be rectified, and the flow velocity of the air flow between the workpiece 2 and the rectifying plate 13 can be rectified with a small amount of supplied air. .

図5に示す気流の上流側における整流板間の間隔15と気流の下流側における整流板間の間隔16との比は1.5対1乃至3対1、好ましくは略2対1とすることが望ましい。この比を1.5対1乃至3対1、好ましくは略2対1とすることで、塗工ブース内全体の気流の流速が比較的遅くても、整流板が被塗工物2周辺の気流を整流化する効果が大きくなり、スプレー塗工時に発生する被塗工物2周辺に漂う被塗工物に付着しなかったオーバーミストを効率よく排気口側に排出する事が出来る。これにより、被塗工物2に意図しないミストの付着が防げ、塗膜欠陥が低減できる。また、溶剤などの滞留による爆発の危険性も予防できる。   The ratio of the distance 15 between the rectifying plates on the upstream side of the air flow shown in FIG. 5 to the distance 16 between the rectifying plates on the downstream side of the air flow is 1.5 to 1 to 3 to 1, preferably approximately 2 to 1. Is desirable. By setting this ratio to 1.5 to 1 to 3 to 1, preferably approximately 2 to 1, even if the flow velocity of the entire air in the coating booth is relatively slow, the current plate is around the workpiece 2. The effect of rectifying the airflow is increased, and the overmist that has not adhered to the coating object floating around the coating object 2 generated during spray coating can be efficiently discharged to the exhaust port side. Thereby, adhesion of the mist which is not intended to the to-be-coated article 2 can be prevented, and a coating film defect can be reduced. In addition, the danger of explosion due to the retention of solvents and the like can be prevented.

図6には、塗工ブース内の気流が、被塗工物2の近傍で被塗工物の回転に伴う気流の連れまわりで乱れている様子を表している。この場合、整流板13と被塗工物2との間隔が40mm以上好ましくは60mm以上で、100mm以下好ましくは80mm以下であると、被塗工物2の回転によって発生する被塗工物2近傍の連れまわり気流17による気流の乱れに影響されずに、オーバーミストを効率よく排気口側に排出する事が出来、オーバーミストの被塗工物2への再付着による塗膜欠陥が低減できる。   FIG. 6 shows a state in which the airflow in the coating booth is disturbed by the airflow accompanying the rotation of the workpiece in the vicinity of the workpiece 2. In this case, when the distance between the current plate 13 and the workpiece 2 is 40 mm or more, preferably 60 mm or more, and 100 mm or less, preferably 80 mm or less, the vicinity of the coating object 2 generated by the rotation of the coating object 2 The overmist can be efficiently discharged to the exhaust port side without being affected by the turbulence of the airflow due to the accompanying airflow 17, and the coating film defect due to the reattachment of the overmist to the workpiece 2 can be reduced.

好ましい態様の本発明の塗装装置として、被塗工物は静電スプレーガンより下部に配置された円筒体であり、円筒体の中心軸を略水平になるように支持し、且つ前記円筒体の中心軸を中心に回転させることができる支持体を有しており、静電スプレーガンの噴射方向を表す中心線は下向きの鉛直方向に対して3°以上6°以下の傾きを有し、静電スプレーガンの噴射方向を表す中心線と円筒体の外表面との交点は円筒体が回転する際に円筒体の外表面が下方へ下がっていく位置にある塗装装置がある。   In a preferred embodiment of the coating apparatus according to the present invention, the object to be coated is a cylindrical body disposed below the electrostatic spray gun, supports the central axis of the cylindrical body to be substantially horizontal, and It has a support that can be rotated around the central axis, and the center line representing the spray direction of the electrostatic spray gun has an inclination of 3 ° to 6 ° with respect to the downward vertical direction. There is a coating apparatus in which the intersection between the center line representing the injection direction of the electrospray gun and the outer surface of the cylindrical body is at a position where the outer surface of the cylindrical body descends downward when the cylindrical body rotates.

図10に、この塗装装置の構成の一例を示す。図10は、静電スプレーガン4を用いて、円筒体の被塗工物2上に塗装液を塗工する際の説明用に記号を追記している。この塗工装置26は、図示したように塗工ブース1の上下関係が決まっている。図の上が塗工ブース1の上部である。被塗工物2は、支持装置3(不図示)によって支持され被塗工物2の円筒体の中心軸Oを中心にして回転可能となっている。被塗工物2は、円筒体の中心軸Oが略水平方向になるように配置されている。静電スプレーガン4は、被塗工物2の上部にあり、被塗工物2の円筒体の中心軸Oに平行に移動可能である。さらに、給気ブロア18から清浄な気体、例えば空気や窒素などが給気され、塗工ブース1の下側から排気される。なお、静電スプレーガン4は、塗装液を霧化し、霧化された塗装液に電圧を印加することにより帯電させることができる。帯電された塗装液粒子は、円筒状の被塗工物2に向かって噴射され被塗工物2の外表面を塗装する。被塗工物2は接地されており、静電スプレーガン4から噴出された塗装液粒子と被塗工物2との間に電界が形成され静電引力が作用するため、塗装液粒子は、噴射力に加えて、静電引力により被塗工物2に引き付けられ、塗装液の付着効率が向上する。なお、霧化された塗装液に印加する電圧は、要求される塗装液の付着効率等に応じて、−15kV〜−50kV、好ましくは−20kV〜−40kVの間で適宜変更することが可能である。   FIG. 10 shows an example of the configuration of this coating apparatus. In FIG. 10, symbols are added for explanation when the coating liquid is applied onto the cylindrical workpiece 2 using the electrostatic spray gun 4. In this coating apparatus 26, the vertical relationship of the coating booth 1 is determined as shown in the figure. The upper part of the figure is the upper part of the coating booth 1. The object to be coated 2 is supported by a support device 3 (not shown) and is rotatable about the central axis O of the cylindrical body of the object to be coated 2. The article to be coated 2 is arranged so that the central axis O of the cylindrical body is in a substantially horizontal direction. The electrostatic spray gun 4 is above the workpiece 2 and is movable in parallel to the central axis O of the cylindrical body of the workpiece 2. Further, a clean gas such as air or nitrogen is supplied from the air supply blower 18 and exhausted from the lower side of the coating booth 1. The electrostatic spray gun 4 can be charged by atomizing the coating liquid and applying a voltage to the atomized coating liquid. The charged coating liquid particles are sprayed toward the cylindrical workpiece 2 to coat the outer surface of the workpiece 2. The object to be coated 2 is grounded, and since an electric field is formed between the coating liquid particles ejected from the electrostatic spray gun 4 and the object to be coated 2 and an electrostatic attractive force acts, the coating liquid particles are In addition to the spraying force, it is attracted to the workpiece 2 by electrostatic attraction, thereby improving the coating liquid adhesion efficiency. The voltage applied to the atomized coating liquid can be appropriately changed between −15 kV to −50 kV, preferably −20 kV to −40 kV, depending on the required adhesion efficiency of the coating liquid. is there.

図10に示す塗装装置は、気流を整流する整流板13が、円筒状の被塗工物2の左右両側に設置されている。整流板13は、気流の上流側の幅Wより下流側の幅Wの方が狭くなっている。整流板13により、乱流及び気流の滞留部の発生を抑制することができる。そのため、被塗工物2に付着しなかった塗装液の被塗工物2への再付着を抑制することができ、被塗工物2の塗膜品質、歩留まりが向上する。また、整流板13が鉛直下向きに幅が狭くなる構造をしているため、気流の下流側で、気流の流速が上昇して噴射された塗装液粒子の移動速度が上昇する。これにより、塗装液の被塗工物2への付着効率を向上させることができる。 In the coating apparatus shown in FIG. 10, rectifying plates 13 that rectify the airflow are installed on both the left and right sides of the cylindrical workpiece 2. The rectifying plate 13 has a width W 2 on the downstream side that is narrower than a width W 1 on the upstream side of the airflow. The rectifying plate 13 can suppress the generation of a turbulent flow and a stagnant portion of the airflow. Therefore, it is possible to suppress the re-adhesion of the coating liquid that has not adhered to the object to be coated 2 to the object to be coated 2, and the coating film quality and the yield of the object to be coated 2 are improved. Further, since the rectifying plate 13 has a structure in which the width is narrowed vertically downward, on the downstream side of the airflow, the flow velocity of the airflow increases and the movement speed of the sprayed coating liquid particles increases. Thereby, the adhesion efficiency of the coating liquid to the workpiece 2 can be improved.

整流板13の材料は、特に限定されないが、導電性材料からなることが好ましい。これにより、噴出された塗装液による整流板13の帯電を抑制することができる。その結果、スパーク等の発生を抑制することができ、塗装工程の安全を確保することができる。整流板13は、脱着可能で取り付け位置及び取り付け角度の調節が可能であることが好ましい。例えば、塗工ブース1の側面に複数の整流板13の取り付けガイドを設けることにより、整流板13の脱着可能とし、取り付け位置及び取り付け角度を調節することができる。   The material of the current plate 13 is not particularly limited, but is preferably made of a conductive material. Thereby, the electrification of the rectifying plate 13 due to the sprayed coating liquid can be suppressed. As a result, the occurrence of sparks and the like can be suppressed, and the safety of the painting process can be ensured. It is preferable that the current plate 13 is detachable and the attachment position and the attachment angle can be adjusted. For example, by providing attachment guides for a plurality of rectifying plates 13 on the side surface of the coating booth 1, the rectifying plates 13 can be attached and detached, and the attachment position and the attachment angle can be adjusted.

本発明において、静電スプレーガン4が帯電された塗装液を噴射する方向は、すなわち噴射される塗装液竜の形成する円錐形の中心線方向に相当する噴射方向は、鉛直方向に対して、被塗工物2の回転方向に3°〜6°傾いていることが好ましく、4°〜5°傾いていることがさらに好ましい(図10中ではこの角度をθで表している。)。これにより、被塗工物2上のスプレーパターンが被塗工物2の外径を超えない範囲で広げることができ、このような範囲で塗装液が噴射されるため、塗装液の付着効率を向上させることができる。θが3°未満である場合は、被塗工物2上のスプレーパターンがほとんど広がらないことがある。また、θが6°を超える場合は、被塗工物2上のスプレーパターンが円筒状導電性基体1の外径を超えることがある。   In the present invention, the direction in which the electrostatic spray gun 4 sprays the charged coating liquid, that is, the spray direction corresponding to the center line direction of the conical shape formed by the sprayed coating liquid dragon, The substrate 2 is preferably inclined 3 ° to 6 ° in the rotational direction, more preferably 4 ° to 5 ° (this angle is represented by θ in FIG. 10). As a result, the spray pattern on the object to be coated 2 can be widened in a range not exceeding the outer diameter of the object to be coated 2, and the coating liquid is sprayed in such a range. Can be improved. When θ is less than 3 °, the spray pattern on the workpiece 2 may hardly spread. When θ exceeds 6 °, the spray pattern on the workpiece 2 may exceed the outer diameter of the cylindrical conductive substrate 1.

この塗装装置においては、静電スプレーガン4の噴射方向を表す中心線と、被塗工物2である円筒体の外表面との交点は、円筒体の中心軸を含む鉛直面からの距離dが7mm以上好ましくは9mm以上、13mm以下好ましくは11mm以下にあることが望ましい。この場合、静電スプレーガン4の噴射方向を表す中心線と、被塗工物2である円筒体の外表面との交点は、円筒体の中心軸を含む鉛直面に対して静電スプレーガン4と同じ側にあることが好ましい。これにより、被塗工物2上のスプレーパターンを被塗工物2の外径を超えない範囲で広げることができる。上記距離dが7mm未満である場合は、被塗工物2上のスプレーパターンがほとんど広がらないことがある。また、dが13mmを超える場合は、被塗工物2上のスプレーパターンが被塗工物2の外径を超えることがある。   In this coating apparatus, the intersection of the center line representing the spraying direction of the electrostatic spray gun 4 and the outer surface of the cylindrical body that is the workpiece 2 is the distance d from the vertical plane including the central axis of the cylindrical body. Is 7 mm or more, preferably 9 mm or more, 13 mm or less, preferably 11 mm or less. In this case, the intersection of the center line representing the spray direction of the electrostatic spray gun 4 and the outer surface of the cylindrical body that is the workpiece 2 is an electrostatic spray gun with respect to a vertical plane including the central axis of the cylindrical body. 4 is preferably on the same side as 4. Thereby, the spray pattern on the to-be-coated object 2 can be expanded in the range which does not exceed the outer diameter of the to-be-coated object 2. When the distance d is less than 7 mm, the spray pattern on the workpiece 2 may hardly spread. Moreover, when d exceeds 13 mm, the spray pattern on the workpiece 2 may exceed the outer diameter of the workpiece 2.

本発明において、支持装置3が被塗工物2を回転させる回転数は、130〜180rpmであることが好ましく、150〜160rpmであることがさらに好ましい。このようにすることにより、静電スプレーガン4から噴霧された塗装液粒子を含む気流の被塗工物2の回転による巻き上がりの発生を抑制することができ、被塗工物2表面への塗工のむらを防止できる。このため、被塗工物2への塗工における膜厚の安定性に優れ、塗膜品質を向上させることができる。被塗工物2の回転数が130rpm未満である場合は、塗装むらが発生して膜厚の安定性が低下しやすく、被塗工物2の回転数が180rpmを超える場合は、被塗工物2の近傍で気流に影響を及ぼして、気流の巻き上がりが発生し、膜厚の安定性が低下することがある。   In this invention, it is preferable that the rotation speed which the support apparatus 3 rotates the to-be-coated article 2 is 130-180 rpm, and it is further more preferable that it is 150-160 rpm. By doing in this way, generation | occurrence | production of the rolling-up by rotation of the to-be-coated object 2 of the airflow containing the coating liquid particle sprayed from the electrostatic spray gun 4 can be suppressed, and the surface to the to-be-coated object 2 can be suppressed. Uneven coating can be prevented. For this reason, it is excellent in the stability of the film thickness in the coating to the to-be-coated article 2, and can improve the coating-film quality. When the rotational speed of the workpiece 2 is less than 130 rpm, uneven coating tends to occur and the stability of the film thickness tends to decrease. When the rotational speed of the workpiece 2 exceeds 180 rpm, the coating is performed. The airflow is affected in the vicinity of the object 2, so that the airflow may roll up and the stability of the film thickness may be lowered.

本発明の塗装装置においては、静電スプレーガン4が帯電された塗装液を噴出するスプレーノズルの先端22と被塗工物2の塗工面との距離lを、100mm〜200mm、好ましくは110mm〜150mm、さらに好ましくは120mm〜130mmの間で可変にすることが望ましい。これにより、被塗工物2に形成された塗装の高い塗膜安定性が得られる。スプレーノズルの先端22と被塗工物2の塗工面との距離lが100mm未満である場合は、噴射される塗装液粒子の勢いが強い状態で被塗工物2に到達して、塗膜品質に問題が生じることがあり、この距離lが200mmを超えると、被塗工物2上の塗装液の利用効率が悪くなる虞がある。   In the coating apparatus of the present invention, the distance l between the tip 22 of the spray nozzle that ejects the charged coating liquid from the electrostatic spray gun 4 and the coating surface of the workpiece 2 is 100 mm to 200 mm, preferably 110 mm to It is desirable to make it variable between 150 mm, more preferably between 120 mm and 130 mm. Thereby, the high coating-film stability of the coating formed in the to-be-coated article 2 is obtained. When the distance l between the tip 22 of the spray nozzle and the coating surface of the workpiece 2 is less than 100 mm, the sprayed coating liquid particles reach the workpiece 2 with a strong momentum, and the coating film If the distance l exceeds 200 mm, the use efficiency of the coating liquid on the workpiece 2 may be deteriorated.

なお、図10に示す塗装装置においては、静電スプレーガン4を被塗工物2の円筒の中心軸Oに対して略平行に移動させる代わりに、支持装置又はその他の移動手段をにより、被塗工物2を中心軸Oを中心に回転させるとともに、中心軸Oの方向に沿って移動させてもよい。このようにすれば、静電スプレーガン4を移動させなくても、被塗工物2の外表面全体に塗工ができる。   In the coating apparatus shown in FIG. 10, instead of moving the electrostatic spray gun 4 substantially parallel to the central axis O of the cylinder of the article 2 to be coated, a supporting device or other moving means is used to The coated object 2 may be rotated about the central axis O and may be moved along the direction of the central axis O. In this way, the entire outer surface of the article to be coated 2 can be applied without moving the electrostatic spray gun 4.

以上説明した塗装装置を用いて、電子写真装置の感光体基体をはじめとする電子写真装置の部品その他の被塗装品を塗装することにより、感光体をはじめとする電子写真装置の部品その他の塗装品を製造することができる。   Using the coating apparatus described above, the parts of the electrophotographic apparatus including the photosensitive member base of the electrophotographic apparatus and other parts to be coated are coated, so that the parts and other parts of the electrophotographic apparatus including the photosensitive member are coated. Product can be manufactured.

以下に本発明を実施例と比較例によって説明するが、本発明は以下に示す実施例に限定されるものではない。 EXAMPLES The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to the examples shown below.

(実施例1)
アルキッド樹脂(ベッコゾール1307−60−EL(大日本インキ化学工業社製))15質量部、メラミ樹脂(スーパーベッカミンG−821−60(大日本インキ化学工業社製))10質量部をメチルエチルケトン150質量部に溶解し、これに酸化チタン粉末(タイペールCR−EL(石原産業社製))90質量部を加えボールミルで12時間分散し分散液を作成した。この分散液を容器に取り出し固形分が25質量%となるようにシクロヘキサノンで稀釈し、下引層用塗装液を作製した。この下引層用塗装液をφ80mm、長さ380mm、厚さ2mmの筒状のアルミ製ドラムの外表面に浸漬塗工法によって塗布し、塗布後、130℃で20分間乾燥し、膜厚が8.2μm、有効画像領域の最大膜厚差が0.4μmの下引層を塗工したアルミ製ドラムを得た。
Example 1
15 parts by mass of alkyd resin (Beccosol 1307-60-EL (Dainippon Ink Chemical Co., Ltd.)) and 10 parts by mass of melamine resin (Super Becamine G-821-60 (Dainippon Ink Chemical Co., Ltd.)) It melt | dissolved in the mass part, 90 mass parts of titanium oxide powder (Typer CR-EL (made by Ishihara Sangyo Co., Ltd.)) was added to this, and it disperse | distributed for 12 hours with the ball mill, and created the dispersion liquid. This dispersion was taken out into a container and diluted with cyclohexanone so that the solid content was 25% by mass to prepare an undercoat layer coating liquid. This coating solution for the undercoat layer is applied to the outer surface of a cylindrical aluminum drum having a diameter of 80 mm, a length of 380 mm, and a thickness of 2 mm by a dip coating method. After coating, the coating liquid is dried at 130 ° C. for 20 minutes and has a film thickness of 8 An aluminum drum coated with an undercoat layer having a maximum film thickness difference of 0.4 μm and an effective image area of 2 μm was obtained.

次にポリビニルブチラール樹脂(エスレックHL−S(積水化学工業社製))4質量部をシクロヘキサノン150質量部に溶解し、この溶解液に下記の構造式に示すトリスアゾ顔料(1)10質量部を加え、ボールミルで48時間分散後、さらにシクロヘキサノン210質量部を加えて3時間分散し分散液を作成した。   Next, 4 parts by mass of polyvinyl butyral resin (ESREC HL-S (manufactured by Sekisui Chemical Co., Ltd.)) is dissolved in 150 parts by mass of cyclohexanone, and 10 parts by mass of the trisazo pigment (1) represented by the following structural formula is added to this solution. After dispersion for 48 hours with a ball mill, 210 parts by mass of cyclohexanone was further added and dispersed for 3 hours to prepare a dispersion.

Figure 0005162857
Figure 0005162857

この分散液を容器に取り出し固形分が1.5質量%となるようにシクロヘキサノンで稀釈し電荷発生層用塗装液を作成した。この電荷発生層用塗装液を、前記下引層を塗工したアルミ製ドラム上に浸漬塗工法によって塗布後、130℃
20分間乾燥し、波長690nmにおける透過率が4%で、有効画像領域の最大透過率差が0.2%の電荷発生層を塗工したアルミ製ドラムを得た。
This dispersion was taken out into a container and diluted with cyclohexanone so that the solid content was 1.5% by mass to prepare a coating solution for a charge generation layer. The charge generation layer coating liquid is applied by dip coating on an aluminum drum coated with the undercoat layer, and then 130 ° C.
An aluminum drum coated with a charge generation layer having a transmittance of 4% at a wavelength of 690 nm and a maximum transmittance difference of 0.2% in the effective image area was obtained by drying for 20 minutes.

次に、テトラヒドロフラン83質量部に、ビスフェノールA型ポリカーボネート樹脂10質量部、シリコンオイル(KF−50(信越化学工業社製))0.002質量部を溶解し、これに下記の構造式に示す電荷輸送物質(2)8質量部を加えて溶解させ、固形分が8質
量%となるようにシクロヘキサノンで稀釈し電荷輸送層用塗装液を作製した。
Next, 10 parts by mass of bisphenol A type polycarbonate resin and 0.002 parts by mass of silicon oil (KF-50 (manufactured by Shin-Etsu Chemical Co., Ltd.)) are dissolved in 83 parts by mass of tetrahydrofuran, and the charge shown in the following structural formula is dissolved therein. 8 parts by mass of the transport material (2) was added and dissolved, and diluted with cyclohexanone so that the solid content was 8% by mass to prepare a coating liquid for a charge transport layer.

Figure 0005162857
Figure 0005162857

こうして得られた電荷輸送層用塗装液を、電荷発生層を塗工したアルミ製ドラム上に、図8及び9に示す構成の静電スプレー塗工装置を使用してスプレー塗工法によって塗布した。塗工条件を以下に記す。   The coating liquid for charge transport layer thus obtained was applied on the aluminum drum coated with the charge generation layer by a spray coating method using an electrostatic spray coating apparatus having the configuration shown in FIGS. The coating conditions are described below.

静電スプレーノズル22への印加電圧:−40KV
塗工ブース1内のアルミ製ドラム2付近の上流から下流への気流の速度:0.3m/秒
塗工ブース1内の酸素濃度:5%
塗工ブース1内の窒素濃度:95%
塗工ブース1への窒素ガスの供給:スプレー塗工時のみ有り(塗膜乾燥時は無し)
レシーバータンク内の窒素ガス圧力:0.01MPa
静電スプレーノズル22と被塗工面との距離:110mm
整流板13の有無又は、材質:ステンレス
整流板13の上流側15の間隔と下流側16の間隔との比率:2:1
整流板13とアルミ製ドラム2との距離24:80mm
アルミ製ドラム2の回転速度:80rpm
静電スプレー4移動速度:5mm/秒
静電スプレー4の塗装液吐出量:25ml/分
静電スプレー塗工後、塗工ブース1内で、130℃で20分間乾燥し、膜厚25μm、有効画像領域の最大膜厚差1.2μmの電荷輸送層を形成した、3層被膜で被覆された被覆アルミ製ドラムを作製した。この被覆アルミ製ドラムは、電子写真感光体として使用することができ、電子写真感光体(1)とした。同様にして、実施例1の電子写真感光体用の電子写真感光体(1)を10本作製した。
Applied voltage to electrostatic spray nozzle 22: -40 KV
Air velocity from upstream to downstream near aluminum drum 2 in coating booth 1: 0.3 m / sec Oxygen concentration in coating booth 1: 5%
Nitrogen concentration in coating booth 1: 95%
Nitrogen gas supply to coating booth 1: Available only when spray coating (not when drying coating)
Nitrogen gas pressure in the receiver tank: 0.01 MPa
Distance between electrostatic spray nozzle 22 and surface to be coated: 110 mm
Presence or absence of the current plate 13 or material: stainless steel Ratio of the distance between the upstream side 15 and the distance between the downstream side 16 of the current plate 13: 2: 1
Distance 24: 80mm between rectifying plate 13 and aluminum drum 2
Rotating speed of aluminum drum 2: 80 rpm
Electrostatic spray 4 moving speed: 5 mm / sec Electrostatic spray 4 coating liquid discharge rate: 25 ml / min After electrostatic spray coating, it is dried in coating booth 1 at 130 ° C. for 20 minutes, film thickness 25 μm, effective A coated aluminum drum coated with a three-layer coating film having a charge transport layer having a maximum film thickness difference of 1.2 μm in the image region was produced. This coated aluminum drum can be used as an electrophotographic photosensitive member, and is used as an electrophotographic photosensitive member (1). Similarly, ten electrophotographic photosensitive members (1) for the electrophotographic photosensitive member of Example 1 were produced.

なお、上記の電子写真感光体(1)の下引層及び電荷輸送層の膜厚及びそのばらつきの測定においては、それぞれアルミ製ドラム上に単独の膜を設け、渦電流式膜厚測定器(フィッシャー社製)により任意の測定点80点における膜厚を測定し、その平均値を膜厚、最大値と最小値の差を最大膜厚差とした。電荷発生層の透過率及び最大透過率差は、透明PETフィルム上に同様に単独の膜を設け、分光光度計により690nmにおける透過率を任意の測定点60点について測定し、その平均値及び最大値と最小値の差として算出した。   In the measurement of the thickness of the undercoat layer and the charge transport layer of the electrophotographic photoreceptor (1) and the variation thereof, a single film is provided on each aluminum drum, and an eddy current film thickness measuring instrument ( The film thickness at 80 arbitrary measurement points was measured by Fischer), and the average value was the film thickness, and the difference between the maximum value and the minimum value was the maximum film thickness difference. For the transmittance and maximum transmittance difference of the charge generation layer, a single film was similarly provided on the transparent PET film, and the transmittance at 690 nm was measured at 60 arbitrary measurement points with a spectrophotometer. It was calculated as the difference between the value and the minimum value.

(実施例2)
以下に示す電荷輸送層の塗工条件以外は実施例1と同様にして、被覆アルミ製ドラムである電子写真感光体(2)を10本作製した。
印加電圧:−20KV
塗工ブース1内のアルミ製ドラム2付近の上流から下流への気流の速度:0.5m/秒
塗工ブース1内の酸素濃度:2%
塗工ブース1内の窒素濃度:98%
塗工ブース1への窒素ガスの供給:スプレー塗工時のみ有り(塗膜乾燥時は無し)
レシーバータンク内の窒素ガス圧力:0.05MPa
静電スプレーノズル22と被塗工面との距離:150mm
整流板13とアルミ製ドラム2との距離24:60mm
得られた電子写真感光体(2)の膜厚および最大膜厚差は実施例1の電子写真感光体(1)とほぼ同じであった。
(Example 2)
Ten electrophotographic photoreceptors (2), which are coated aluminum drums, were produced in the same manner as in Example 1 except for the coating conditions for the charge transport layer shown below.
Applied voltage: -20KV
Air velocity from upstream to downstream in the vicinity of the aluminum drum 2 in the coating booth 1: 0.5 m / sec Oxygen concentration in the coating booth 1: 2%
Nitrogen concentration in coating booth 1: 98%
Nitrogen gas supply to coating booth 1: Available only when spray coating (not when drying coating)
Nitrogen gas pressure in receiver tank: 0.05 MPa
Distance between electrostatic spray nozzle 22 and surface to be coated: 150 mm
Distance 24: 60mm between current plate 13 and aluminum drum 2
The film thickness and the maximum film thickness difference of the obtained electrophotographic photosensitive member (2) were almost the same as those of the electrophotographic photosensitive member (1) of Example 1.

(比較例1)
以下に示す電荷輸送層の塗工条件以外は実施例1と同様にして、被覆アルミ製ドラムである電子写真感光体(3)を10本作製した。
(Comparative Example 1)
Ten electrophotographic photosensitive members (3), which are coated aluminum drums, were produced in the same manner as in Example 1 except for the coating conditions for the charge transport layer shown below.

静電スプレーノズル22への印加電圧:−10KV
塗工ブース1内のアルミ製ドラム2付近の上流から下流への気流の速度:0.1m/秒
塗工ブース1内の酸素濃度:15%
塗工ブース1内の窒素濃度:85%
レシーバータンク内の窒素ガス圧力:0.3MPa
静電スプレーノズル22と被塗工面との距離:200mm
整流板13の上流側15の間隔と下流側16の間隔との比率:1:1
整流板13とアルミ製ドラム2との距離24:150mm
得られた電子写真感光体(3)の膜厚および最大膜厚差は実施例1の電子写真感光体(1)とほぼ同じであった。
Applied voltage to electrostatic spray nozzle 22: -10 KV
Air velocity from upstream to downstream in the vicinity of aluminum drum 2 in coating booth 1: 0.1 m / sec Oxygen concentration in coating booth 1: 15%
Nitrogen concentration in coating booth 1: 85%
Nitrogen gas pressure in the receiver tank: 0.3 MPa
Distance between electrostatic spray nozzle 22 and surface to be coated: 200 mm
Ratio of the distance between the upstream side 15 and the distance between the downstream side 16 of the current plate 13: 1: 1
Distance 24: 150mm between current plate 13 and aluminum drum 2
The film thickness and the maximum film thickness difference of the obtained electrophotographic photosensitive member (3) were almost the same as those of the electrophotographic photosensitive member (1) of Example 1.

(比較例2)
以下に示す電荷輸送層の塗工条件以外は実施例1と同様にして、被覆アルミ製ドラムである電子写真感光体(4)を10本作製した。
静電スプレーノズル22への印加電圧:−10KV
塗工ブース1内のアルミ製ドラム2付近の上流から下流への気流の速度:1m/秒
塗工ブース1内の酸素濃度:10%
塗工ブース1内の窒素濃度:90%
塗工ブース1への窒素ガスの供給:スプレー塗工時のみ有り(塗膜乾燥時は無し)
レシーバータンク内の窒素ガス圧力:0.25MPa
静電スプレーノズル22と被塗工面との距離:185mm
整流板13の有無又は、材質:ステンレス
整流板13の上流側15の間隔と下流側16の間隔との比率:1.2:1
整流板13とアルミ製ドラム2との距離24:200mm
得られた電子写真感光体(4)の膜厚および最大膜厚差は実施例1の電子写真感光体(1)とほぼ同じであった。
(Comparative Example 2)
Ten electrophotographic photosensitive members (4), which are coated aluminum drums, were produced in the same manner as in Example 1 except for the coating conditions for the charge transport layer shown below.
Applied voltage to electrostatic spray nozzle 22: -10 KV
Air velocity from upstream to downstream near the aluminum drum 2 in the coating booth 1: 1 m / sec Oxygen concentration in the coating booth 1: 10%
Nitrogen concentration in coating booth 1: 90%
Nitrogen gas supply to coating booth 1: Available only when spray coating (not when drying coating)
Nitrogen gas pressure in receiver tank: 0.25 MPa
Distance between electrostatic spray nozzle 22 and surface to be coated: 185 mm
Presence or absence of the current plate 13 or material: stainless steel Ratio of the distance between the upstream side 15 and the distance between the downstream side 16 of the current plate 13: 1.2: 1
Distance 24: 200mm between current plate 13 and aluminum drum 2
The film thickness and the maximum film thickness difference of the obtained electrophotographic photosensitive member (4) were almost the same as those of the electrophotographic photosensitive member (1) of Example 1.

(実施例1、2及び比較例1、2で得られた電子写真感光体(1)乃至(4)の評価)
実施例1、2、比較1、2で得られた電子写真感光体(1)、電子写真感光体(2)、電子写真感光体(3)及び電子写真感光体(4)(被覆アルミ製ドラム)10本づつをそれぞれ感光体として、株式会社リコー製フルカラーレーザープリンターIPSIO Color 5000の改造機(λ=655nm、1200dpi、ビームスポット2.7×10-3mm2に改造したもの)を用いて、画像形成を行ない、画像の品質を目視で判定した。なお、ハーフトーン画像は2×2のドット画像である。画像評価結果を表1に示す。表1から判るように、本発明の実施例1、2により作製した電子写真感光体(1)、電子写真感光体(2)はすべて異常の発生はなく、好適な感光ドラムとして使用できる。しかし、比較例1、2により作製した電子写真感光体(3)及び電子写真感光体(4)の半数以上が異常の発生を示し、感光ドラムとして使用するには不適当であった。
(Evaluation of electrophotographic photoreceptors (1) to (4) obtained in Examples 1 and 2 and Comparative Examples 1 and 2)
Electrophotographic photosensitive member (1), electrophotographic photosensitive member (2), electrophotographic photosensitive member (3) and electrophotographic photosensitive member (4) obtained in Examples 1 and 2 and Comparatives 1 and 2 (coated aluminum drum) ) Using 10 units each as a photoconductor, using a remodeled machine (λ = 655 nm, 1200 dpi, beam spot 2.7 × 10 −3 mm 2 ) of Ricoh's full color laser printer IPSIO Color 5000, Image formation was performed and the quality of the image was judged visually. The halftone image is a 2 × 2 dot image. Table 1 shows the image evaluation results. As can be seen from Table 1, the electrophotographic photosensitive member (1) and the electrophotographic photosensitive member (2) produced according to Examples 1 and 2 of the present invention do not cause any abnormality and can be used as suitable photosensitive drums. However, more than half of the electrophotographic photoreceptors (3) and electrophotographic photoreceptors (4) produced according to Comparative Examples 1 and 2 showed abnormalities and were not suitable for use as photosensitive drums.

Figure 0005162857
Figure 0005162857

本発明のような静電スプレー塗工における静電火花の発生するエネルギーは0.24mJ程度である。表2に示すように、スプレー塗工時の塗工ブース内の酸素濃度を本発明の要件である5%未満としておけば(実施例1及び2)、通常の溶剤、例えばメチルエチルケトン、シクロヘキサン、テトラヒドロフランなどに対する必要最小着火エネルギーは1.0mJ以上になるとされており、静電気火花による引火爆発の危険性が無く、安全な静電スプレー塗工が可能となる。一方、酸素濃度10%以上の雰囲気下(比較例1及び2)では、例えばメチルエチルケトン、シクロヘキサン、テトラヒドロフランなどのような一般的な溶剤に対する、必要最小着火エネルギーは、0.1mJ〜1.0mJ程度である。それ故、比較例1、2においては静電気火花による引火爆発の危険性が無いとはいえない。   The energy generated by the electrostatic spark in the electrostatic spray coating as in the present invention is about 0.24 mJ. As shown in Table 2, when the oxygen concentration in the coating booth during spray coating is set to less than 5%, which is a requirement of the present invention (Examples 1 and 2), ordinary solvents such as methyl ethyl ketone, cyclohexane, and tetrahydrofuran are used. The minimum required ignition energy for such as is said to be 1.0 mJ or more, and there is no danger of ignition explosion due to electrostatic sparks, and safe electrostatic spray coating is possible. On the other hand, in an atmosphere having an oxygen concentration of 10% or more (Comparative Examples 1 and 2), for example, the necessary minimum ignition energy for a general solvent such as methyl ethyl ketone, cyclohexane, and tetrahydrofuran is about 0.1 mJ to 1.0 mJ. is there. Therefore, it cannot be said in Comparative Examples 1 and 2 that there is no risk of a flammable explosion due to electrostatic sparks.

Figure 0005162857
Figure 0005162857

(実施例3)
図1に示す塗工装置26を用いて、外径100mm及び全長360mmの被塗工物2である円筒状導電性基体の外表面にそれぞれ静電スプレー塗工により下引層、電荷発生層及び電荷輸送層を順に形成した。
(Example 3)
Using the coating apparatus 26 shown in FIG. 1, an undercoat layer, a charge generation layer, and an outer surface of a cylindrical conductive substrate, which is an object to be coated 2 having an outer diameter of 100 mm and a total length of 360 mm, are applied by electrostatic spray coating, respectively. A charge transport layer was formed in order.

(下引き層の形成)
下引層用塗装液は実施例1と同じものを用いた。塗工は、静電スプレー塗工法によった。静電スプレー塗工時の条件を以下に記す。
(Formation of undercoat layer)
The undercoat layer coating solution used was the same as in Example 1. Coating was performed by an electrostatic spray coating method. The conditions for electrostatic spray coating are described below.

静電スプレーノズル22への印加電圧:−35KV
塗工ブース1内のアルミ製ドラム2付近の上流から下流への気流の速度:0.4m/秒
静電スプレーノズル22と被塗工面との距離:120mm
整流板13の有無又は、材質:ステンレス
整流板13の上流側の間隔と下流側の間隔との比率:2:1
静電スプレーガンの噴射方向を表す中心線の鉛直方向に対する傾き角θ:4°
静電スプレーガンの噴射方向を表す中心線と被塗装物2の外表面との交点から、被塗装物2の円筒の中心軸を含む鉛直面までの距離d:9mm
被塗装物2の回転速度:150rpm
静電スプレー4移動速度:2.5mm/秒
静電スプレー4の塗装液吐出量:6.0ml/分
静電スプレー4の霧化エアー(圧縮空気)の圧力:25kPa
下引層用塗装液を被塗装物2上にスプレー塗工した後、塗工ブース1内で130℃で20分間乾燥させ、下引層を形成した。なお、静電スプレーガンの噴射方向を表す中心線の鉛直方向に対する傾き角θは、鉛直線から静電スプレーガンの噴射方向を表す中心線へ向かう回転方向が被塗装物2の回転方向と同じ場合を正とし、反対方向への回転角を負とする。又、静電スプレーガンの噴射方向を表す中心線と被塗装物2の外表面との交点から、被塗装物2の円筒の中心軸を含む鉛直面までの距離dは、前記交点が被塗装物2の円筒の頂点から回転して下がっていく場合を正、被塗装物2の円筒の頂点に向かって上がっていく場合を負とする。
Applied voltage to electrostatic spray nozzle 22: -35 KV
Air velocity from upstream to downstream in the vicinity of the aluminum drum 2 in the coating booth 1: 0.4 m / sec Distance between the electrostatic spray nozzle 22 and the surface to be coated: 120 mm
Presence or absence of the current plate 13 or material: stainless steel Ratio of the upstream space and the downstream space of the current plate 13: 2: 1
Tilt angle θ with respect to the vertical direction of the center line representing the spray direction of the electrostatic spray gun: 4 °
Distance d: 9 mm from the intersection of the center line representing the spray direction of the electrostatic spray gun and the outer surface of the object 2 to be coated and the vertical plane including the central axis of the cylinder of the object 2
Rotation speed of workpiece 2: 150 rpm
Electrostatic spray 4 moving speed: 2.5 mm / sec Coating liquid discharge amount of electrostatic spray 4: 6.0 ml / min Pressure of atomized air (compressed air) of electrostatic spray 4: 25 kPa
After the undercoat layer coating liquid was spray-coated on the object 2 to be coated, it was dried in the coating booth 1 at 130 ° C. for 20 minutes to form an undercoat layer. The inclination angle θ of the center line representing the spray direction of the electrostatic spray gun with respect to the vertical direction is the same as the rotation direction of the article 2 in the direction of rotation from the vertical line to the center line representing the spray direction of the electrostatic spray gun. The case is positive and the rotation angle in the opposite direction is negative. Further, the distance d from the intersection of the center line representing the spray direction of the electrostatic spray gun and the outer surface of the object 2 to the vertical plane including the central axis of the cylinder of the object 2 is such that the intersection is the object to be painted. The case of rotating down from the top of the cylinder of the object 2 is positive, and the case of going up toward the top of the cylinder of the object 2 is negative.

(電荷発生層の形成)
ポリビニルブチラール樹脂エスレックHL−S(積水化学工業社製)5質量部をメチルエチルケトン150質量部に溶解させた溶液に、実施例1で使用したトリスアゾ顔料(1)10質量部を加え、ボールミルで48時間分散させた後、固形分が1.5質量%となるようにシクロヘキサノンで希釈し、電荷発生層用塗装液を調製した。この電荷発生層用塗布を用いて、上記の下引層を形成した被塗装物2上に電荷発生層を形成した。塗工条件を下引層の塗工条件から以下のように変更した以外は、乾燥条件も含めて下引層の塗工条件と同様にして、電荷発生層を形成した。
(Formation of charge generation layer)
10 parts by mass of the trisazo pigment (1) used in Example 1 was added to a solution in which 5 parts by mass of polyvinyl butyral resin S-LEC HL-S (manufactured by Sekisui Chemical Co., Ltd.) was dissolved in 150 parts by mass of methyl ethyl ketone, and 48 hours by a ball mill. After the dispersion, the charge generation layer coating solution was prepared by diluting with cyclohexanone so that the solid content was 1.5% by mass. Using this charge generation layer coating, a charge generation layer was formed on the article 2 on which the undercoat layer was formed. A charge generation layer was formed in the same manner as the undercoat layer coating conditions including the drying conditions except that the undercoat layer coating conditions were changed as follows.

静電スプレー4の移動速度:12mm/秒
静電スプレー4の塗装液吐出量:5.0ml/分
静電スプレー4の霧化エアー(圧縮空気)の圧力:90kPa
以上で、電荷発生層を形成した被塗装物2を得た。
Electrostatic spray 4 moving speed: 12 mm / sec Coating liquid discharge amount of electrostatic spray 4: 5.0 ml / min Pressure of atomized air (compressed air) of electrostatic spray 4: 90 kPa
Thus, the article 2 to be coated on which the charge generation layer was formed was obtained.

(電荷輸送層の形成)
実施例1で調製した電荷輸送層用塗装液を用いて、電荷発生層を形成した被塗装物2上に電荷発生層を形成した。塗工条件を下引層の塗工条件から以下のように変更した以外は、乾燥条件も含めて下引層の塗工条件と同様にして、電荷発生層を形成した。
静電スプレー4の移動速度:2.0mm/秒
静電スプレー4の塗装液吐出量:11ml/分
静電スプレー4の霧化エアー(圧縮空気)の圧力:45kPa
以上で、下引き層、電荷発生層及び電荷発生層を順に形成した被塗装物を得た。この下引き層、電荷発生層及び電荷発生層を順に形成した被塗装物を電子写真感光体(5)とする。電子写真感光体(5)は感光体として使用することができる。なお、評価のために電子写真感光体(5)を50本作製した。
(Formation of charge transport layer)
Using the charge transport layer coating liquid prepared in Example 1, a charge generation layer was formed on the object to be coated 2 on which the charge generation layer was formed. A charge generation layer was formed in the same manner as the undercoat layer coating conditions including the drying conditions except that the undercoat layer coating conditions were changed as follows.
Electrostatic spray 4 moving speed: 2.0 mm / sec Coating liquid discharge rate of electrostatic spray 4: 11 ml / min Pressure of atomized air (compressed air) of electrostatic spray 4: 45 kPa
As described above, an object to be coated on which an undercoat layer, a charge generation layer, and a charge generation layer were formed in order was obtained. An object to be coated on which the undercoat layer, the charge generation layer, and the charge generation layer are formed in this order is referred to as an electrophotographic photosensitive member (5). The electrophotographic photoreceptor (5) can be used as a photoreceptor. For evaluation, 50 electrophotographic photoreceptors (5) were prepared.

(実施例4)
実施例3から下引層、電荷発生層及び電荷輸送層の塗工条件を、それぞれ以下のように変更した以外は、実施例3と同様にして、電子写真感光体(6)を作製した。
Example 4
An electrophotographic photoreceptor (6) was produced in the same manner as in Example 3 except that the coating conditions for the undercoat layer, the charge generation layer, and the charge transport layer were changed from Example 3 as follows.

静電スプレーノズル22への印加電圧:−40KV
塗工ブース1内のアルミ製ドラム2付近の上流から下流への気流の速度:0.6m/秒
静電スプレーノズル22と被塗工面との距離l:130mm
静電スプレーガンの噴射方向を表す中心線の鉛直方向に対する傾き角θ:5°
静電スプレーガンの噴射方向を表す中心線と被塗装物2の外表面との交点から、被塗装物2の円筒の中心軸を含む鉛直面までの距離d:11mm
被塗装物2の回転速度:160rpm
電子写真感光体(6)を50本作製した。
Applied voltage to electrostatic spray nozzle 22: -40 KV
Air velocity from upstream to downstream in the vicinity of the aluminum drum 2 in the coating booth 1: 0.6 m / sec Distance between the electrostatic spray nozzle 22 and the surface to be coated: 130 mm
Tilt angle θ with respect to the vertical direction of the center line representing the spray direction of the electrostatic spray gun: 5 °
Distance d: 11 mm from the intersection of the center line representing the spray direction of the electrostatic spray gun and the outer surface of the object 2 to be coated to the vertical plane including the center axis of the cylinder of the object 2
Rotation speed of workpiece 2: 160 rpm
50 electrophotographic photoreceptors (6) were produced.

(実施例5)
実施例3から下引層、電荷発生層及び電荷輸送層の塗工条件を、それぞれ以下のように変更した以外は、実施例3と同様にして、電子写真感光体(7)を作製した。
(Example 5)
An electrophotographic photoreceptor (7) was produced in the same manner as in Example 3, except that the coating conditions for the undercoat layer, the charge generation layer, and the charge transport layer were changed from Example 3 as follows.

静電スプレーノズル22への印加電圧:−40KV
塗工ブース1内のアルミ製ドラム2付近の上流から下流への気流の速度:0.6m/秒
静電スプレーガンの噴射方向を表す中心線と被塗装物2の外表面との交点から、被塗装物2の円筒の中心軸を含む鉛直面までの距離d:11mm
電子写真感光体(7)を50本作製した。
Applied voltage to electrostatic spray nozzle 22: -40 KV
Air velocity from upstream to downstream in the vicinity of the aluminum drum 2 in the coating booth 1: 0.6 m / sec From the intersection of the center line representing the spray direction of the electrostatic spray gun and the outer surface of the workpiece 2 Distance d to the vertical plane including the central axis of the cylinder of the workpiece 2 d: 11 mm
50 electrophotographic photoreceptors (7) were produced.

(実施例6)
実施例3から下引層、電荷発生層及び電荷輸送層の塗工条件を、それぞれ以下のように変更した以外は、実施例3と同様にして、電子写真感光体(8)を作製した。
(Example 6)
An electrophotographic photoreceptor (8) was produced in the same manner as in Example 3, except that the coating conditions for the undercoat layer, the charge generation layer, and the charge transport layer were changed from Example 3 as follows.

静電スプレーノズル22への印加電圧:−45KV
静電スプレーノズル22と被塗工面との距離:130mm
静電スプレーガンの噴射方向を表す中心線の鉛直方向に対する傾き角θ:5°
被塗装物2の回転速度:160rpm
電子写真感光体(8)を50本作製した。
Applied voltage to electrostatic spray nozzle 22: -45 KV
Distance between electrostatic spray nozzle 22 and surface to be coated: 130 mm
Tilt angle θ with respect to the vertical direction of the center line representing the spray direction of the electrostatic spray gun: 5 °
Rotation speed of workpiece 2: 160 rpm
50 electrophotographic photoreceptors (8) were produced.

(比較例3)
実施例3から下引層、電荷発生層及び電荷輸送層の塗工条件を、それぞれ以下のように変更した以外は、実施例3と同様にして、電子写真感光体(9)を作製した。
(Comparative Example 3)
An electrophotographic photoreceptor (9) was produced in the same manner as in Example 3, except that the coating conditions for the undercoat layer, the charge generation layer, and the charge transport layer were changed from Example 3 as follows.

静電スプレーノズル22への印加電圧:−0KV
静電スプレーノズル22と被塗工面との距離:180mm
整流板13の有無又は、材質:ナイロン樹脂製
静電スプレーガンの噴射方向を表す中心線の鉛直方向に対する傾き角θ:10°
静電スプレーガンの噴射方向を表す中心線と被塗装物2の外表面との交点から、被塗装物2の円筒の中心軸を含む鉛直面までの距離d:15mm
被塗装物2の回転速度:80rpm
電子写真感光体(9)を50本作製した。
Applied voltage to electrostatic spray nozzle 22: −0 KV
Distance between electrostatic spray nozzle 22 and surface to be coated: 180 mm
Presence / absence of the current plate 13 or material: nylon resin Inclination angle θ with respect to the vertical direction of the center line representing the spray direction of the electrostatic spray gun: 10 °
Distance d: 15 mm from the intersection of the center line representing the spraying direction of the electrostatic spray gun and the outer surface of the workpiece 2 to the vertical plane including the central axis of the cylinder of the workpiece 2
Rotation speed of workpiece 2: 80 rpm
50 electrophotographic photoreceptors (9) were produced.

(比較例4)
実施例3から下引層、電荷発生層及び電荷輸送層の塗工条件を、それぞれ以下のように変更した以外は、実施例3と同様にして、電子写真感光体(10)を作製した。
(Comparative Example 4)
An electrophotographic photoreceptor (10) was produced in the same manner as in Example 3, except that the coating conditions for the undercoat layer, the charge generation layer, and the charge transport layer were changed from Example 3 as follows.

静電スプレーノズル22への印加電圧:0KV
塗工ブース1内のアルミ製ドラム2付近の上流から下流への気流の速度:0.6m/秒
静電スプレーノズル22と被塗工面との距離:80mm
整流板13の有無又は、材質:ナイロン樹脂製
静電スプレーガンの噴射方向を表す中心線の鉛直方向に対する傾き角θ:−5°
静電スプレーガンの噴射方向を表す中心線と被塗装物2の外表面との交点から、被塗装物2の円筒の中心軸を含む鉛直面までの距離d:−9mm
被塗装物2の回転速度:200rpm
電子写真感光体(10)を50本作製した。
Applied voltage to electrostatic spray nozzle 22: 0 KV
Air velocity from upstream to downstream in the vicinity of the aluminum drum 2 in the coating booth 1: 0.6 m / second Distance between the electrostatic spray nozzle 22 and the surface to be coated: 80 mm
Presence or absence of current plate 13 or material: nylon resin Inclination angle θ with respect to the vertical direction of the center line representing the spray direction of the electrostatic spray gun: −5 °
Distance d: −9 mm from the intersection of the center line representing the spraying direction of the electrostatic spray gun and the outer surface of the object 2 to be coated and the vertical plane including the central axis of the cylinder of the object 2
Rotation speed of workpiece 2: 200 rpm
50 electrophotographic photoreceptors (10) were produced.

(比較例5)
実施例3から下引層、電荷発生層及び電荷輸送層の塗工条件を、それぞれ以下のように変更した以外は、実施例3と同様にして、電子写真感光体(11)を作製した。
(Comparative Example 5)
An electrophotographic photoreceptor (11) was produced in the same manner as in Example 3, except that the coating conditions for the undercoat layer, the charge generation layer, and the charge transport layer were changed from Example 3 as follows.

静電スプレーノズル22への印加電圧:0KV
塗工ブース1内のアルミ製ドラム2付近の上流から下流への気流の速度:0.2m/秒
整流板13の有無又は、材質:ナイロン樹脂製
静電スプレーガンの噴射方向を表す中心線の鉛直方向に対する傾き角θ:2°
静電スプレーガンの噴射方向を表す中心線と被塗装物2の外表面との交点から、被塗装物2の円筒の中心軸を含む鉛直面までの距離d:−11mm
被塗装物2の回転速度:160rpm
電子写真感光体(11)を50本作製した。
Applied voltage to electrostatic spray nozzle 22: 0 KV
Air velocity from upstream to downstream in the vicinity of the aluminum drum 2 in the coating booth 1: 0.2 m / second Presence or absence of the current plate 13 or material: Nylon resin Center line indicating the spray direction of the electrostatic spray gun Tilt angle to the vertical direction θ: 2 °
Distance d: −11 mm from the intersection of the center line representing the spray direction of the electrostatic spray gun and the outer surface of the object 2 to be coated and the vertical plane including the central axis of the cylinder of the object 2
Rotation speed of workpiece 2: 160 rpm
50 electrophotographic photoreceptors (11) were produced.

(比較例6)
実施例3から下引層、電荷発生層及び電荷輸送層の塗工条件を、それぞれ以下のように変更した以外は、実施例3と同様にして、電子写真感光体(12)を作製した。
(Comparative Example 6)
An electrophotographic photoreceptor (12) was produced in the same manner as in Example 3, except that the coating conditions for the undercoat layer, the charge generation layer, and the charge transport layer were changed from Example 3 as follows.

静電スプレーノズル22への印加電圧:0KV
塗工ブース1内のアルミ製ドラム2付近の上流から下流への気流の速度:1.2m/秒
静電スプレーノズル22と被塗工面との距離:120mm
整流板13の有無又は、材質:無し
電子写真感光体(12)を50本作製した。
Applied voltage to electrostatic spray nozzle 22: 0 KV
Air velocity from upstream to downstream near the aluminum drum 2 in the coating booth 1: 1.2 m / sec Distance between the electrostatic spray nozzle 22 and the surface to be coated: 120 mm
Presence or absence of rectifying plate 13 or material: none 50 electrophotographic photosensitive members (12) were produced.

(実施例3乃至6及び比較例3乃至6で得られた電子写真感光体(5)乃至(12)の評価)
実施例3乃至6及び比較例3乃至6で得られた電子写真感光体(5)乃至(12)を用いて、以下の(A)乃至(D)の評価を行った。
(A)下引層、電荷発生層及び電荷輸送層のスプレー塗工時の塗装液の噴出量と電子写真感光体への付着量とから、塗装液の平均付着効率(%)を算出した。
(B)クリーンエアートレーサーと液体窒素を用いて、窒素ガスの気流を可視化することにより、塗工ブース内の乱流及び気流の滞留部の有無を目視により確認した。
(C)作製した電子写真感光体をレーザープリンター(リコー社製)に取り付けて、印刷画面の画像欠陥の有無を確認した。画像欠陥有りの本数は評価本数50本中の数である。
(D)塗装液をスプレー塗布した直後に、静電気測定器により整流板13の帯電量を測定した。
(Evaluation of electrophotographic photoreceptors (5) to (12) obtained in Examples 3 to 6 and Comparative Examples 3 to 6)
Using the electrophotographic photoreceptors (5) to (12) obtained in Examples 3 to 6 and Comparative Examples 3 to 6, the following (A) to (D) were evaluated.
(A) The average deposition efficiency (%) of the coating liquid was calculated from the amount of the coating liquid ejected during spray coating of the undercoat layer, the charge generation layer and the charge transport layer and the amount deposited on the electrophotographic photosensitive member.
(B) Using a clean air tracer and liquid nitrogen, the flow of nitrogen gas was visualized to visually confirm the presence of turbulent flow in the coating booth and the stagnant portion of the air flow.
(C) The produced electrophotographic photosensitive member was attached to a laser printer (manufactured by Ricoh Company), and the presence or absence of image defects on the print screen was confirmed. The number with image defects is the number out of 50 evaluations.
(D) Immediately after spraying the coating liquid, the charge amount of the rectifying plate 13 was measured with a static electricity meter.

以上の評価結果を表3に示す。   The above evaluation results are shown in Table 3.

Figure 0005162857
Figure 0005162857

表3から判るように、比較例3乃至4における電子写真感光体(9)乃至(12)の塗料に比べ、実施例3乃至4における電子写真感光体(5)乃至(8)は塗料は、平均付着率が高く、経済的な塗装方法である。また、塗工ブース内の乱流及び気流の滞留部がなく、結果としてレーザープリンターによる印刷画面の画像試験においても画像欠陥は無かった。さらに、整流板の帯電電圧も非常に低く静電火花の発生の可能性が低いことも判った。   As can be seen from Table 3, the electrophotographic photoreceptors (5) to (8) in Examples 3 to 4 are the paints compared to the paints of the electrophotographic photoreceptors (9) to (12) in Comparative Examples 3 to 4. It is an economical coating method with a high average adhesion rate. In addition, there was no turbulent flow or airflow retention in the coating booth, and as a result, there were no image defects in the image test of the print screen using a laser printer. It was also found that the charging voltage of the rectifying plate was very low and the possibility of electrostatic sparks was low.

本発明は、静電スプレー工法による塗装品の製造、特に電子写真感光体の製造に好適に適用することができる。   The present invention can be suitably applied to the manufacture of a coated product by an electrostatic spray method, particularly to the manufacture of an electrophotographic photoreceptor.

本発明の塗工装置の構成の例示図Illustration of the configuration of the coating apparatus of the present invention 本発明の塗工装置におけるスプレー方向の説明図Explanatory drawing of the spray direction in the coating apparatus of this invention 本発明の塗工装置の構成の例示図Illustration of the configuration of the coating apparatus of the present invention 本発明の塗工装置の構成の例示図Illustration of the configuration of the coating apparatus of the present invention 本発明の塗工装置における整流板の説明図Explanatory drawing of the baffle plate in the coating apparatus of this invention 本発明の塗工装置における連れまわり気流の説明図Explanatory drawing of the accompanying airflow in the coating apparatus of the present invention スプレーノズルと塗工面との距離を表す説明図Explanatory drawing showing the distance between the spray nozzle and the coating surface 本発明の塗工装置の構成の例示図Illustration of the configuration of the coating apparatus of the present invention 図3における塗工ブース内をA方向から見た説明図Explanatory drawing of the coating booth in Fig. 3 as seen from the A direction 本発明の塗工装置の構成の例示図Illustration of the configuration of the coating apparatus of the present invention

符号の説明Explanation of symbols

1:塗工ブース
2:被塗工物
3:支持装置
4:静電スプレーガン
5:電圧印加装置
6:電圧変換用コントローラ
7:塗装液タンク
8:送液ポンプ
9:噴霧用気体供給装置
10:スプレーノズルの噴射方向を表す矢印
11:給気口
12:排気口
13:整流板
14:給気ガス進行方向
15:気流の上流側における整流板の間隔
16:気流の下流側における整流板の間隔
17:被塗工物周辺の連れまわり気流を表す矢印
18:給気ブロア
19:排気ファン
20:窒素発生装置
21:レシーバータンク
22:スプレーノズルの先端
23:スプレーノズルの先端から塗工面までの距離
24:整流板から被塗工物までの距離
25:被塗工物の回転方向を表す矢印
26:塗工装置(塗装装置ともいう)
1: Coating booth 2: Object to be coated 3: Support device 4: Electrostatic spray gun 5: Voltage application device 6: Voltage conversion controller 7: Coating liquid tank 8: Liquid feed pump 9: Spray gas supply device 10 : Arrow indicating the spraying direction of the spray nozzle 11: Air supply port 12: Exhaust port 13: Current flow plate 14: Air supply gas traveling direction 15: Spacing of the current flow plate on the upstream side of the air flow 16: Current flow on the current flow plate on the downstream side of the air flow Interval 17: An arrow indicating the airflow around the workpiece 18: Supply blower 19: Exhaust fan 20: Nitrogen generator 21: Receiver tank 22: Tip of spray nozzle 23: From tip of spray nozzle to coating surface Distance 24: Distance from the current plate to the object to be coated 25: Arrow indicating the rotation direction of the object to be coated 26: Coating apparatus (also referred to as coating apparatus)

Claims (17)

塗工ブース内で被塗装物をスプレー塗工する塗装品の製造方法において、
被塗装物の塗工面を移動させながら静電スプレーガンにより−50kV以上−15kV以下の電圧を印加して帯電をさせた塗装液粒子を前記塗工面に噴射し、
前記塗工ブース内に前記塗装液粒子の噴射方向と略平行な方向の気流を形成し、
前記被塗装物を挟んで配置され、前記気流の上流側より下流側の間隔が狭い整流板により前記気流を整流して、
前記気流中で前記被塗装物をスプレー塗工することを特徴とする塗装品の製造方法。
In the manufacturing method of the coated product that sprays the object to be coated in the coating booth,
Spraying coating liquid particles charged by applying a voltage of −50 kV to −15 kV with an electrostatic spray gun while moving the coated surface of the object to be coated ;
Forming an air flow in a direction substantially parallel to the spray direction of the coating liquid particles in the coating booth;
Arranged across the object to be coated, rectifies the airflow with a rectifying plate having a narrower interval on the downstream side than the upstream side of the airflow,
A method for producing a coated product, characterized in that the object to be coated is spray-coated in the air stream .
前記塗工面付近の気流の流速を0.2m/秒以上1m/秒以下としてスプレー塗工する請求項に記載の塗装品の製造方法。 The manufacturing method of the coated goods of Claim 1 which spray-coats by making the flow velocity of the airflow of the said coating surface vicinity into 0.2 m / sec or more and 1 m / sec or less. 吸気側圧力が0.01MPa以上0.2MPa以下である気体供給装置により前記塗工ブースに気体を供給して気流を形成する請求項又はに記載の塗装品の製造方法。 The manufacturing method of the coated goods of Claim 1 or 2 which forms gas flow by supplying gas to the said coating booth with the gas supply apparatus whose intake side pressure is 0.01 Mpa or more and 0.2 Mpa or less. 前記塗工ブース内の酸素濃度を10容量%以下とする請求項1乃至のいずれか一項に記載の塗装品の製造方法。 The manufacturing method of the coated goods as described in any one of Claims 1 thru | or 3 which makes oxygen concentration in the said coating booth 10 volume% or less. スプレー塗工時に前記塗工ブース内における気流の上流側から窒素を供給する請求項乃至のいずれか一項に記載の塗装品の製造方法。 The manufacturing method of the coated goods as described in any one of Claims 1 thru | or 4 which supplies nitrogen from the upstream of the airflow in the said coating booth at the time of spray coating. 前記塗工ブース内における気流の上流側から供給する窒素濃度を95容量%以上とする請求項に記載の塗装品の製造方法。 The manufacturing method of the coated goods of Claim 5 which makes the nitrogen concentration supplied from the upstream of the airflow in the said coating booth 95 volume% or more. 前記静電スプレーガンの噴射口と前記塗工面との間隔を100mm以上200mm以下とする請求項1乃至のいずれか一項に記載の塗装品の製造方法。 The manufacturing method of the coated goods as described in any one of Claims 1 thru | or 6 which makes the space | interval of the spray port of the said electrostatic spray gun and the said coating surface 100 mm or more and 200 mm or less. 被塗装物をスプレー塗工するための塗工ブースと、
該塗工ブース内に被塗装物を支持し該被塗装物の塗工面を移動させる支持手段と、
−50kV以上−15kV以下の電圧を印加して帯電させた塗装液粒子を前記塗工面に噴射する静電スプレーガンと
前記塗装液粒子の噴射方向と略平行な方向の気流を形成し、該気流中で前記被塗装物にスプレー塗工するための気体供給装置と、
前記塗工ブース内に、前記被塗装物を挟んで配置され、前記気流の上流側より下流側の間隔を狭くして前記気流を整流する整流板と、
を備える塗装装置。
A coating booth for spray coating the object to be coated,
A supporting means for supporting an object to be coated in the coating booth and moving a coated surface of the object to be coated;
An electrostatic spray gun that sprays coating liquid particles charged by applying a voltage of −50 kV or more and −15 kV or less onto the coated surface ;
A gas supply device for forming an air flow in a direction substantially parallel to the spray direction of the coating liquid particles, and spray coating the object to be coated in the air flow;
In the coating booth, arranged across the object to be coated, a rectifying plate that rectifies the air flow by narrowing the interval on the downstream side from the upstream side of the air flow, and
A painting device comprising:
前記塗工ブース内の気体を排出する排気装置を備えた請求項に記載の塗装装置。 The coating apparatus of Claim 8 provided with the exhaust apparatus which discharges | emits the gas in the said coating booth. 前記気体供給装置は、0.01MPa以上0.2MPa以下の圧力の気体を収容した気体供給用タンクと、該気体供給用タンクから気体を吸入して前記塗工ブース内に供給する気体供給用ブロアとを有する請求項8又は9に記載の塗装装置。 The gas supply device includes a gas supply tank containing a gas having a pressure of 0.01 MPa or more and 0.2 MPa or less, and a gas supply blower that sucks gas from the gas supply tank and supplies the gas into the coating booth. The coating apparatus according to claim 8 or 9 , comprising: 前記整流板と被塗装物との間隔を、40mm以上100mm以下である請求項8乃至10のいずれか一項に記載の塗装装置。 Painting device according to any one of claims 8 to 10 interval is 40mm or more than 100mm between the rectifier plate and the object to be coated. 前記整流板は、導電性材料からなる請求項8乃至11のいずれか一項に記載の塗装装置。 The coating apparatus according to claim 8 , wherein the current plate is made of a conductive material. 前記整流板は、前記塗工ブースへの着脱及び取り付け角度の調節が可能である請求項乃至12のいずれか一項に記載の塗装装置。 The said baffle plate is a coating apparatus as described in any one of Claims 8 thru | or 12 in which attachment or detachment to the said coating booth and adjustment of an attachment angle are possible. 被塗装物は静電スプレーガンより下部に配置された円筒体であり、前記円筒体の中心軸が略水平になるように支持し、且つ前記円筒体の中心軸を中心に回転させる支持手段を有しており、前記静電スプレーガンの噴射方向は下向きの鉛直方向に対して3°以上6°以下の傾きを有し、前記静電スプレーガンの噴射方向を表す噴射の中心線と前記円筒体の外表面との交点は前記円筒体が回転する際に前記円筒体の外表面が下方へ下がっていく位置にある請求項乃至13のいずれか一項に記載の塗装装置。 The object to be coated is a cylindrical body arranged below the electrostatic spray gun, and supports the central axis of the cylindrical body to be substantially horizontal, and supporting means for rotating about the central axis of the cylindrical body. And the injection direction of the electrostatic spray gun has an inclination of 3 ° or more and 6 ° or less with respect to the downward vertical direction, and the injection center line representing the injection direction of the electrostatic spray gun and the cylinder The coating apparatus according to any one of claims 8 to 13 , wherein an intersection with an outer surface of the body is at a position where the outer surface of the cylindrical body is lowered downward when the cylindrical body rotates. 前記静電スプレーガンの噴射方向を表す噴射の中心線と、前記円筒体の外表面との交点は、前記円筒体の中心軸を含む鉛直面から7mm以上13mm以下の距離にある請求項14に記載の塗装装置。 And the center line of the jet which represents the injection direction of the electrostatic spray gun, the intersection of the outer surface of the cylindrical body, to claim 14 at a distance of 7mm or more 13mm or less from the vertical plane including the central axis of the cylindrical body The coating equipment described. 前記支持手段は、130rpm以上180rpm以下で前記円筒体を回転させることができる請求項14又は15に記載の塗装装置。 The coating apparatus according to claim 14 or 15 , wherein the support means can rotate the cylindrical body at 130 rpm or more and 180 rpm or less. 請求項乃至16のいずれか一項に記載の塗装装置を用いて、電子写真装置用部品の基体表面に塗工液を塗工する電子写真装置用部品の製造方法。 A method for producing an electrophotographic apparatus part, wherein the coating apparatus according to any one of claims 8 to 16 is used to apply a coating liquid to a surface of a substrate of the electrophotographic apparatus part.
JP2006213406A 2006-06-05 2006-08-04 Manufacturing method of coated product, coating apparatus, and manufacturing method of parts for electrophotographic apparatus Expired - Fee Related JP5162857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213406A JP5162857B2 (en) 2006-06-05 2006-08-04 Manufacturing method of coated product, coating apparatus, and manufacturing method of parts for electrophotographic apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006156361 2006-06-05
JP2006156361 2006-06-05
JP2006213406A JP5162857B2 (en) 2006-06-05 2006-08-04 Manufacturing method of coated product, coating apparatus, and manufacturing method of parts for electrophotographic apparatus

Publications (2)

Publication Number Publication Date
JP2008012520A JP2008012520A (en) 2008-01-24
JP5162857B2 true JP5162857B2 (en) 2013-03-13

Family

ID=39070080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213406A Expired - Fee Related JP5162857B2 (en) 2006-06-05 2006-08-04 Manufacturing method of coated product, coating apparatus, and manufacturing method of parts for electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JP5162857B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009079078A1 (en) 2007-12-14 2009-06-25 Labogroup S.A.S. Delivering aerosolizable food products
KR101151165B1 (en) * 2012-02-08 2012-06-01 최형준 Ultrasonic atomizer coater with removable nozzle
CN102921615B (en) * 2012-11-09 2014-03-05 福州闽岳机电有限公司 Electrostatic spraying process for belt pulleys

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273566A (en) * 1989-04-13 1990-11-08 Tokico Ltd Painting apparatus
US5219690A (en) * 1991-04-12 1993-06-15 Xerox Corporation Substrate and process for coating a substrate with multi-pigment charge generation layers
FR2747384B1 (en) * 1996-04-16 1998-12-31 Saverglass Verrerie PROCESS FOR APPLYING A PRODUCT TO WATER, IN PARTICULAR VARNISHES AND / OR WATER-BASED PAINTS ON GLASS ARTICLES
JPH10165882A (en) * 1996-12-10 1998-06-23 Kansai Paint Co Ltd Method of preventing spark discharge from being generated on electrostatic spray coating
JPH1176889A (en) * 1997-09-02 1999-03-23 Nikon Corp Coating equipment

Also Published As

Publication number Publication date
JP2008012520A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
WO2006030991A1 (en) Electrostatic coating system
US20200254480A1 (en) Electrostatic atomizing coating apparatus and coating method
JP5162857B2 (en) Manufacturing method of coated product, coating apparatus, and manufacturing method of parts for electrophotographic apparatus
CN104684653A (en) Bell cup for rotary atomizing type electrostatic coating device
JPH0567345B2 (en)
JP4414352B2 (en) Spray coating apparatus for electrophotographic photoreceptor and method for producing electrophotographic photoreceptor
JP2006259053A (en) Spray coating apparatus for parts of electrophotographic apparatus and method for manufacturing electrophotographic photoreceptor
WO2013105558A1 (en) Electrostatic spray device and manufacturing method of organic thin film device
WO2017141964A1 (en) Rotary atomizing head-type coater
JP2015058367A (en) Spray gun for coating, spray coating device and method for production of electrophotographic photoreceptor
JP4838673B2 (en) Spray coating apparatus for parts of electrophotographic apparatus and method for producing electrophotographic photosensitive member
JP2021058838A (en) Painting booth and painting method
JP2001113207A (en) Electrostatic coating device
JP4294240B2 (en) Spray coating method, method for producing parts for electrophotographic apparatus, and electrophotographic apparatus using the same
JP2016534876A (en) Electrostatic sprayer for coating product and projection assembly comprising such sprayer
JPH07256156A (en) Rotary-atomization electrostatic coating application device
JP4445097B2 (en) Powder coating equipment
JP2005087960A (en) Method and apparatus for coating
JP7449438B1 (en) Rotating atomizing head type paint machine
JP2005315963A (en) Spray coating apparatus for electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor
JP2003334491A (en) Coating method for water-based coating material
JP6634532B2 (en) Vehicle body coating method and vehicle body coating system
JP2001235885A (en) Substrate for electrophotographic photoreceptor, electrophotographic photoreceptor using the same and substrate treating method
JPS6331570A (en) Method for painting running web
JP2000267396A (en) Production of member for image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5162857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees