JP5162584B2 - Inorganic fiber - Google Patents

Inorganic fiber Download PDF

Info

Publication number
JP5162584B2
JP5162584B2 JP2009518078A JP2009518078A JP5162584B2 JP 5162584 B2 JP5162584 B2 JP 5162584B2 JP 2009518078 A JP2009518078 A JP 2009518078A JP 2009518078 A JP2009518078 A JP 2009518078A JP 5162584 B2 JP5162584 B2 JP 5162584B2
Authority
JP
Japan
Prior art keywords
fibers
mass
fiber
alumina
calcia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009518078A
Other languages
Japanese (ja)
Other versions
JP2009542927A (en
Inventor
ブルース ケイ ゾイトス
マイケル ジェイ アンダージャック
ポール エム ボイメル
Original Assignee
ユニフラックス I リミテッド ライアビリティ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニフラックス I リミテッド ライアビリティ カンパニー filed Critical ユニフラックス I リミテッド ライアビリティ カンパニー
Publication of JP2009542927A publication Critical patent/JP2009542927A/en
Application granted granted Critical
Publication of JP5162584B2 publication Critical patent/JP5162584B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Fibers (AREA)
  • Glass Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

使用温度が1,100℃もしくはそれ以上である、熱的、電気的もしくは音響的絶縁性材料として有用な高温耐熱性無機繊維を提供する。該高温耐熱性無機繊維は容易に製造出来、使用温度に長時間曝した後でも、収縮性が低くしかも良好な機械的強度を維持し、且つ生理的流体(physiological fluids)に可溶である。   Provided is a high-temperature heat-resistant inorganic fiber useful as a thermal, electrical or acoustic insulating material having a use temperature of 1,100 ° C. or higher. The high-temperature heat-resistant inorganic fiber can be easily produced, has low shrinkage, maintains good mechanical strength, and is soluble in physiological fluids even after being exposed to a use temperature for a long time.

絶縁性材料業界では、生理的流体中で耐久性のない、即ち生体耐久性が弱い繊維組成物の代替として、熱的及び音響的絶縁用途に繊維材料を利用することが望ましい、と決めてきている。候補材料は種々提案されてきたが、これらの材料の使用温度限界が十分高くないので、ガラス繊維やセラミック繊維を含む高温耐熱性繊維類が応用されている多くの用途に対応できなかった。合成ガラス繊維材料類の範囲内で、生理的媒体中で耐久性が無いか、もしくは分解性である多くの組成物が提案されてきた。   The insulating material industry has determined that it is desirable to utilize fiber materials for thermal and acoustic insulation applications as an alternative to fiber compositions that are not durable in physiological fluids, i.e. poorly biodurable. Yes. Various candidate materials have been proposed, but the use temperature limit of these materials is not sufficiently high, so that it has not been possible to cope with many uses to which high-temperature heat-resistant fibers including glass fibers and ceramic fibers are applied. Within the scope of synthetic glass fiber materials, many compositions have been proposed that are not durable or degradable in physiological media.

高温耐熱性繊維類はまた、絶縁される製品に対して有効な熱的防御を提供するため、想定される暴露温度で、しかも長時間もしくは連続的な暴露後でも線形収縮性が最小限度でなければならない。
絶縁用途に用いられる繊維にとって重要な収縮特性として表示される耐熱性に加えて、使用もしくはサービス温度に暴露中及び暴露後でも繊維が機械強度特性を有することが必要であり、それによって繊維が本来の構造的状態(structural integrity)と使用時の絶縁特性を維持することになる。
ある繊維にとっての一つの本来の機械的特性(mechanical integrity)は使用後の脆さ(friability)である。繊維が脆ければ脆いほど、即ち、粉砕されてぼろぼろに崩れて粉体になり易く、本来の機械的状態を保有しなくなる。一般に、高温耐熱性があって生理的流体中で耐久性が無い無機繊維類は使用後に高度の脆性も呈する。それは、サービス温度に暴露後に該繊維が強度もしくは本来の機械的特性を欠く結果となり、絶縁目的を達成するために必要な構造を提供することができる。
High temperature heat resistant fibers also provide effective thermal protection against the product being insulated, so the linear shrinkage must be minimal at the expected exposure temperature and even after prolonged or continuous exposure. I must.
In addition to heat resistance, which is indicated as an important shrinkage property for fibers used in insulation applications, it is necessary that the fibers have mechanical strength properties during and after exposure to use or service temperatures, so that the fibers are inherently Maintain its structural integrity and insulation properties during use.
One inherent mechanical integrity for a fiber is friability after use. The more brittle the fibers are, that is, they tend to be crushed and broken into powder, so that the original mechanical state is not retained. In general, inorganic fibers that have high temperature heat resistance and are not durable in physiological fluids also exhibit a high degree of brittleness after use. It can result in the fiber lacking strength or inherent mechanical properties after exposure to service temperature, and can provide the necessary structure to achieve the insulation purpose.

かようにして、1,100℃もしくはそれ以上のサービス温度での暴露中及び暴露後にも低収縮性を呈する所望成分の繊維化可能な溶融物から直ちに製造可能な、改良された無機繊維組成物を製造することは未だ必要であり、それによって1,100℃もしくはそれ以上の使用温度における暴露後にも低い脆性(low brittleness)を呈し、本来の機械的特性を維持することになる。   In this way, an improved inorganic fiber composition can be produced immediately from a fiberizable melt of the desired component that exhibits low shrinkage during and after exposure at 1,100 ° C or higher service temperatures. It is still necessary to do so, thereby exhibiting low brittleness after exposure at service temperatures of 1,100 ° C. or higher and maintaining the original mechanical properties.

熱的、電気的もしくは音響的絶縁性材料として有用な高温耐熱性無機繊維を提供する。該無機繊維の使用温度は1,100℃もしくはそれ以上である。該高温耐熱性無機繊維は繊維成分の溶融物から容易に製造可能であり、線形収縮性が低く、使用温度に暴露後も良好な機械的強度と特性を維持し、しかも生理的流体に可溶である。   A high temperature heat resistant inorganic fiber useful as a thermal, electrical or acoustic insulating material is provided. The use temperature of the inorganic fiber is 1,100 ° C. or higher. The high-temperature heat-resistant inorganic fiber can be easily produced from a melt of fiber components, has low linear shrinkage, maintains good mechanical strength and properties even after exposure to use temperature, and is soluble in physiological fluids It is.

該無機繊維の90質量%以上が、50%超のカルシア(calcia)と0%超〜50%未満のアルミナとの繊維化生成物を含む。
又、無機繊維の製造プロセスも提供され、該プロセスはカルシアとアルミナを含む成分で溶融物を形成させて、その溶融物から繊維を製造し、該成分は総計でその90質量%以上が、50%超のカルシア(calcia)と0%超〜50%未満のアルミナを含む。
さらに、断熱性物品も提供され、該断熱性物品は繊維化生成物を含む無機繊維を含み、該繊維化生成物の90質量%以上が50%超のカルシア(calcia)と0%超〜50%未満のアルミナを含む。
さらに、物品を断熱性にする方法も提供され、該方法は物品の上か、中か、近くか或いは周りに繊維化生成物を含む無機繊維を含む断熱性材料を配置することを含み、繊維化生成物の90質量%以上が50%超のカルシア(calcia)と0%超〜50%未満のアルミナを含む。
More than 90% by weight of the inorganic fibers comprise a fiberized product of more than 50% calcia and more than 0% to less than 50% alumina.
Also provided is a process for producing inorganic fibers, wherein the process forms a melt with ingredients including calcia and alumina to produce fibers from the melt, the ingredients being 90% by weight or more in total, 50% Contains more than% calcia and more than 0% to less than 50% alumina.
In addition, a thermal insulation article is also provided, the thermal insulation article comprising inorganic fibers comprising a fiberized product, wherein 90% or more by weight of the fiberized product is greater than 50% calcia and greater than 0% to 50%. % Alumina.
Further provided is a method of making an article insulating, the method comprising disposing an insulating material comprising inorganic fibers comprising a fiberized product on, in, near, or around the article, the fiber More than 90% by weight of the conversion product contains more than 50% calcia and more than 0% to less than 50% alumina.

図1は、約65質量%のアルミナと約33質量%のカルシアとの繊維化生成物を含むカルシウム−アルミネート繊維の走査型電子顕微鏡写真である。FIG. 1 is a scanning electron micrograph of a calcium-aluminate fiber containing a fiberization product of about 65 wt% alumina and about 33 wt% calcia. 図2は、約55.8質量%のアルミナと約42.1質量%のカルシアとの繊維化生成物を含むカルシウム−アルミネート繊維の走査型電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph of a calcium-aluminate fiber containing a fiberization product of about 55.8 wt% alumina and about 42.1 wt% calcia. 図3は、約43.5質量%のアルミナと約53質量%のカルシアとの繊維化生成物を含むカルシウム−アルミネート繊維の走査型電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of a calcium-aluminate fiber containing a fiberization product of about 43.5 wt% alumina and about 53 wt% calcia. 図4は、約55.8質量%のアルミナと約42.1質量%のカルシアとを含むカルシウム−アルミネート繊維溶融物の粘度対温度曲線である。FIG. 4 is a viscosity versus temperature curve for a calcium-aluminate fiber melt containing about 55.8 wt% alumina and about 42.1 wt% calcia. 図5A−5Cは、Na2Oフラックスに曝した後の、耐火性セラミック繊維製断熱ブランケットの写真である。Figure 5A-5C are, after exposure to Na 2 O flux is a photograph of a refractory ceramic fiber thermal insulation blankets. 図6A−6Dは、Na2Oフラックスに曝した後の、カルシウム−アルミネート繊維を含む断熱ブランケットの写真である。6A-6D are photographs of an insulating blanket containing calcium-aluminate fibers after exposure to Na 2 O flux.

熱的、電気的もしくは音響的絶縁性材料として有用な無機繊維を提供する。該無機繊維の連続サービスもしくは使用温度は1,100℃かそれ以上である。或る実施態様に拠れば、ガラス無機繊維は1,260℃以上の連続サービスもしくは使用温度を有する。
無機繊維は生理的流体中で耐久性が無い。生理的流体中で「耐久性が無い」ということは、無機繊維が試験管内テスト時において模擬肺液の様な流体中で少なくとも部分的に可溶化するか分解する、ことを意味する。該無機ガラス繊維は、下記に示す試験方法に拠れば、使用温度1,260℃に24時間暴露しても、線形収縮率は5%未満である。この様に、無機繊維は生理的流体中での生体耐久性が非常に低く、そして優れた低線形収縮性を有する。
低収縮で、高温耐熱性のある無機繊維は、主成分としてカルシアとアルミナを含む溶融物からの繊維化生成物を含む。カルシアとアルミナの繊維化生成物を含む該無機繊維は「カルシウム−アルミネート」繊維と呼称される。
Inorganic fibers useful as thermal, electrical or acoustic insulating materials are provided. The continuous service or use temperature of the inorganic fiber is 1,100 ° C. or higher. According to certain embodiments, the glass inorganic fibers have a continuous service or use temperature of 1,260 ° C. or higher.
Inorganic fibers are not durable in physiological fluids. “Non-durable” in a physiological fluid means that the inorganic fibers are at least partially solubilized or degraded in a fluid such as simulated lung fluid during in vitro testing. According to the test method described below, the inorganic glass fiber has a linear shrinkage rate of less than 5% even when exposed to a use temperature of 1,260 ° C. for 24 hours. Thus, inorganic fibers have very low biodurability in physiological fluids and have excellent low linear shrinkage.
Inorganic fibers having low shrinkage and high temperature resistance include a fiberized product from a melt containing calcia and alumina as main components. The inorganic fibers containing the fiberized product of calcia and alumina are referred to as “calcium-aluminate” fibers.

或る実施態様に拠れば、カルシウム−アルミネート繊維の90質量%以上が、50質量%超のカルシアと0質量%超〜50質量%未満のアルミナとの繊維化生成物を含む。
別の実施態様では、カルシウム−アルミネート繊維の90質量%以上が、50質量%超〜約60質量%のカルシアと約40質量%〜50質量%未満のアルミナとの繊維化生成物を含む。
また別の実施態様では、カルシウム−アルミネート繊維の90質量%以上が、50質量%超〜約80質量%のカルシアと約20質量%〜50質量%未満のアルミナを含む繊維化生成物を含む。
さらにまた別の実施態様では、カルシウム−アルミネート繊維の90質量%以上が、約60〜約80質量%のカルシアと約20〜約40質量%のアルミナとの繊維化生成物を含む。
さらにまた別の実施態様では、カルシウム−アルミネート繊維の90質量%以上が、50質量%超〜約70質量%のカルシアと約30質量%〜50質量%未満のアルミナとの繊維化生成物を含む。
According to some embodiments, 90% or more of the calcium-aluminate fibers comprise a fiberized product of greater than 50% calcia and greater than 0% to less than 50% alumina.
In another embodiment, at least 90% by weight of the calcium-aluminate fibers comprise a fiberized product of greater than 50% to about 60% by weight calcia and less than about 40% to less than 50% alumina.
In yet another embodiment, 90% by weight or more of the calcium-aluminate fiber comprises a fiberized product comprising greater than 50% to about 80% calcia by weight and less than about 20% to less than 50% alumina. .
In yet another embodiment, 90% by weight or more of the calcium-aluminate fiber comprises a fiberized product of about 60 to about 80% by weight calcia and about 20 to about 40% by weight alumina.
In yet another embodiment, 90% or more by weight of the calcium-aluminate fiber comprises a fiberized product of greater than 50% to about 70% by weight calcia and less than about 30% to less than 50% alumina. Including.

該溶融物の原料は必要な化学成分と純度を供給可能であれば、如何なる適当な原料源からでも入手可能である。これに限定されるものではないが、酸化カルシウムの適当な供給源としては所望のCaO/Al2O3比を有するカルシウム−アルミネートセメント、石灰、石灰石、生石灰を含む。これに限定されるものではないが、アルミナの適当な供給源は所望の純度を有するものであり、所望の化学組成を達成するために必要に応じてCaOを含む原料とブレンドしたものでもよい。
カルシアとアルミナの他に、カルシウム−アルミネート繊維は約10質量%までの不純物を含んでもよい。そのような不純物としては酸化鉄を含んでも良い。もし出発原料からの繊維化溶融物中に酸化鉄不純物が存在する場合、Fe2O3としての計算量1質量%まで通常存在する。
カルシウム−アルミネート繊維中の不純物としては、繊維の総質量に対してシリカ不純物を10質量%まで含んでもよい。しかしながら、或る実施態様においては、カルシウム−アルミネート繊維は約5質量%未満、もしくは約2質量%もしくはそれ未満の低含有率のシリカしか許容されないことがある。
The raw material of the melt can be obtained from any suitable source as long as it can supply the necessary chemical components and purity. But are not limited to, calcium Suitable sources of calcium oxide having a desired CaO / Al 2 O 3 ratio - including aluminate cement, lime, limestone, quicklime. Although not limited to this, a suitable source of alumina is of the desired purity and may be blended with a raw material containing CaO as needed to achieve the desired chemical composition.
In addition to calcia and alumina, the calcium-aluminate fibers may contain up to about 10% by weight impurities. Such impurities may include iron oxide. If iron oxide impurities are present in the fiberized melt from the starting material, it is usually present up to a calculated amount of 1% by mass as Fe 2 O 3 .
As impurities in the calcium-aluminate fiber, silica impurities may be contained up to 10% by mass with respect to the total mass of the fiber. However, in some embodiments, the calcium-aluminate fibers may only tolerate a low content of silica of less than about 5%, or about 2% or less.

無機繊維の線形収縮は繊維の高温耐熱性もしくは特定の連続サービスもしくは使用温度における性能に関する良い指標である。カルシウム−アルミネート繊維は1,260℃のサービス温度で24時間暴露しても、5%以下の線形収縮である。即ち、カルシウム−アルミネート繊維は1,260℃以上の連続サービスもしくは操作温度における断熱用途に有用である。更に、カルシウム−アルミネート繊維は1,320℃以上の温度に暴露されるまでは溶融しないことが判明した。   Linear shrinkage of inorganic fibers is a good indicator of the high temperature heat resistance of a fiber or its performance at a specific continuous service or operating temperature. Calcium-aluminate fibers have a linear shrinkage of 5% or less even after 24 hours exposure at a service temperature of 1,260 ° C. That is, calcium-aluminate fibers are useful for thermal insulation applications at continuous service or operating temperatures above 1,260 ° C. Furthermore, it has been found that calcium-aluminate fibers do not melt until exposed to temperatures above 1,320 ° C.

使用温度1,100℃以上において低収縮性で高温耐熱性があり、非耐久性(non-durable)のカルシウム−アルミネート繊維を調製する方法も提供する。該カルシウム−アルミネート繊維を形成させる方法は、カルシアとアルミナを含む原料成分の溶融物を形成させる工程と、その原料溶融物から繊維を形成する工程を含む。該カルシウム−アルミネート繊維は原料成分溶融物から標準的な溶融回転紡糸法(standard melt spinning technique)もしくは繊維ブロー法(fiber blowing technique)によって製造可能である。   Also provided is a method of preparing calcium-aluminate fibers that are low shrinkage, high temperature heat resistance and non-durable at operating temperatures above 1,100 ° C. The method for forming the calcium-aluminate fibers includes a step of forming a melt of raw material components including calcia and alumina, and a step of forming fibers from the raw material melt. The calcium-aluminate fibers can be produced from the raw material melt by a standard melt spinning technique or a fiber blowing technique.

或る実施態様に拠れば、カルシウム−アルミネート繊維を形成させる方法には総量基準で90質量%以上の成分が50質量%超のカルシアと0質量%超〜50質量%未満のアルミナとを含む原料成分の溶融物を形成させる工程と、その原料溶融物から繊維を形成させる工程とを含む。原料成分溶融物の各成分は夫々がこのカルシア:アルミナ比や、ここに記載されている他のカルシア:アルミナ比である必要性はない。むしろ、原料成分溶融物に含まれるカルシアとアルミナの総量がこの比率かここに記載されている他のカルシア:アルミナ比を含むものであればよい。即ち、この実施態様や次に続く実施態様では、各成分が開示される範囲でカルシアとアルミナを含んでいる必要性はなく、各成分の総量が開示される範囲内で含まなければならない。   According to one embodiment, the method of forming calcium-aluminate fibers comprises more than 90% by weight of the component based on the total amount of calcia greater than 50% by weight and greater than 0% to less than 50% alumina. A step of forming a raw material component melt, and a step of forming fibers from the raw material melt. Each component of the raw material melt need not have this calcia: alumina ratio or any other calcia: alumina ratio described herein. Rather, it is sufficient that the total amount of calcia and alumina contained in the raw material melt includes this ratio or other calcia: alumina ratios described herein. That is, in this embodiment and the embodiments that follow, there is no need for each component to include calcia and alumina in the disclosed range, but the total amount of each component must be included within the disclosed range.

他の実施態様に拠れば、カルシウム−アルミネート繊維を形成させる方法として、総量基準で90質量%以上の成分が50質量%超〜約60質量%のカルシアと約40質量%〜50質量%未満のアルミナとを含む原料成分の溶融物を形成させる工程と、その原料溶融物から繊維を形成させる工程とを含む。
別の実施態様に拠れば、カルシウム−アルミネート繊維を形成させる方法として、総量基準で90質量%以上の成分が50質量%超〜約80質量%のカルシアと約20質量%〜50質量%未満のアルミナとを含む原料成分の溶融物を形成させる工程を含む。
別の実施態様に拠れば、カルシウム−アルミネート繊維を形成させる方法として、総量基準で90質量%以上の成分が約60〜約80質量%のカルシアと約20〜約40質量%のアルミナとを含む原料成分の溶融物を形成させる工程を含む。
別の実施態様に拠れば、カルシウム−アルミネート繊維を形成させる方法として、総量基準で90質量%以上の成分が50質量%超〜約70質量%のカルシアと約30質量%〜50質量%未満のアルミナとを含む原料成分の溶融物を形成させる工程を含む。
According to another embodiment, the method for forming calcium-aluminate fibers includes more than 90% by weight of the component based on the total weight of more than 50% to about 60% by weight of calcia and about 40% to less than 50% by weight. A step of forming a raw material component melt containing alumina and a step of forming fibers from the raw material melt.
According to another embodiment, as a method of forming calcium-aluminate fibers, 90% by weight or more of the components based on the total amount is more than 50% by weight to about 80% by weight calcia and about 20% by weight to less than 50% by weight. Forming a raw material component melt containing alumina.
According to another embodiment, the method of forming calcium-aluminate fibers comprises about 60% to about 80% calcia by weight and about 20% to about 40% alumina by weight, based on the total weight. A step of forming a melt of the raw material components to be included.
According to another embodiment, as a method of forming calcium-aluminate fibers, 90% by weight or more of the components based on the total amount is more than 50% by weight to about 70% by weight calcia and about 30% by weight to less than 50% by weight. Forming a raw material component melt containing alumina.

原料成分の溶融物の粘度は、所望の用途に必須な繊維化を提供できる充分な量で、適宜粘度調整剤(viscosity modifiers)の存在により調整され得る。粘度調整剤は溶融物の主成分を供給する原料中に存在するか、もしくは少なくとも部分的には別個に添加される。原料の所望の粒子径は、炉のサイズ、注入速度、溶融温度、滞留時間(residence time)などの炉の条件によって決まってくる。   The viscosity of the raw material melt can be adjusted as appropriate by the presence of viscosity modifiers, in an amount sufficient to provide the necessary fiberization for the desired application. The viscosity modifier is present in the raw material supplying the main component of the melt or is at least partially added separately. The desired particle size of the raw material is determined by furnace conditions such as furnace size, injection rate, melting temperature, residence time and the like.

上述した通り、カルシウム−アルミネート繊維は繊維ブロー法や繊維回転紡糸法によって製造可能である。最適な繊維ブロー法にはカルシアとアルミナを含む出発原料を互いに混合して原料成分の混合物を形成する工程、原料成分混合物を適当な容器もしくはコンテナーに導入する工程、原料成分の混合物を溶融させて最適なノズルを通して排出する工程、及び原料の溶融混合物の排出フロー上に高圧ガス吹き付けてカルシウム−アルミネート繊維を形成させる工程を含む。
最適な繊維回転紡糸法は、カルシアとアルミナを含む出発原料を互いに混合して原料成分混合物を形成させる工程、該原料成分混合物を適当な容器かコンテナーに導入する工程、該原料成分混合物を溶融して適当なノズルから紡糸ホイール上に排出する工程を含む。しかる後、該溶融物はホイール上をカスケード式に流れ、ホイールをコーティングして、向心力によって放り出される結果(being thrown off through centripetal forces)、繊維を形成する。
As described above, the calcium-aluminate fiber can be produced by a fiber blowing method or a fiber spinning method. The optimum fiber blowing method involves mixing a raw material containing calcia and alumina with each other to form a mixture of raw material components, introducing the raw material component mixture into an appropriate container or container, and melting the raw material component mixture. Discharging through an optimal nozzle, and blowing high pressure gas onto the discharge flow of the molten mixture of raw materials to form calcium-aluminate fibers.
The optimum fiber spinning method includes a step of mixing starting materials containing calcia and alumina with each other to form a raw material component mixture, a step of introducing the raw material component mixture into an appropriate container or container, and melting the raw material component mixture. And discharging from a suitable nozzle onto the spinning wheel. Thereafter, the melt flows in cascade on the wheel, coating the wheel and forming fibers as a result of being thrown off through centripetal forces.

カルシウム−アルミネート繊維を含む断熱性材料を用いて物品を断熱化する方法を提供する。物品を断熱化する方法は、断熱化される物品の上か、中か、近傍か、或いは周りに、カルシウム−アルミネート繊維を含む断熱性材料を配置することを含む。該断熱性材料に含まれるカルシウム−アルミネート繊維は、繊維の90質量%以上が50質量%超のカルシアと0質量%超〜50質量%未満のアルミナとの繊維化生成物を含む。
或る実施態様に拠れば、断熱性材料に含まれるカルシウム−アルミネート繊維は、繊維の90質量%以上が50質量%超〜約60質量%のカルシアと約40質量%〜50質量%未満のアルミナとの繊維化生成物を含む。
或る実施態様に拠れば、断熱性材料に含まれるカルシウム−アルミネート繊維は、繊維の90質量%以上が約50質量%超〜約80質量%のカルシアと約20質量%〜50質量%未満のアルミナとを含む繊維化生成物を含む。
或る実施態様に拠れば、断熱性材料に含まれるカルシウム−アルミネート繊維は、繊維の90質量%以上が約60〜約80質量%のカルシアと約20〜約40質量%のアルミナとの繊維化生成物を含む。
或る実施態様に拠れば、断熱性材料に含まれるカルシウム−アルミネート繊維は、繊維の90質量%以上が50質量%超〜約70質量%のカルシアと約30質量%〜50質量%未満のアルミナとの繊維化生成物を含む。
A method is provided for insulating an article using an insulating material comprising calcium-aluminate fibers. A method of insulating an article includes disposing an insulating material comprising calcium-aluminate fibers on, in, in the vicinity of, or around the article to be insulated. The calcium-aluminate fiber contained in the heat-insulating material includes a fiberized product of 90% by mass or more of the fiber and more than 50% by mass of calcia and more than 0% by mass to less than 50% by mass of alumina.
According to some embodiments, the calcium-aluminate fiber included in the thermal insulating material comprises greater than 90% by weight of the fiber and greater than 50% to about 60% by weight calcia and less than about 40% to less than 50% by weight. Contains the fiberized product with alumina.
According to certain embodiments, the calcium-aluminate fibers included in the thermal insulating material comprise greater than about 50% to about 80% calcia by weight and greater than about 20% to less than 50% by weight of the fibers. A fiberized product comprising alumina.
According to some embodiments, the calcium-aluminate fibers included in the thermal insulating material are fibers of about 60 to about 80% by weight calcia and about 20 to about 40% by weight alumina comprising 90% or more by weight of the fibers. Product.
According to some embodiments, the calcium-aluminate fibers included in the thermal insulating material comprise greater than 90% by weight of the fiber and greater than 50% to about 70% by weight calcia and less than about 30% to less than 50% by weight. Contains the fiberized product with alumina.

カルシウム−アルミネート繊維を含む断熱技術は標準の鉱物綿(mineral wool)かアルミノシリケート製耐火性セラミック繊維の代替として断熱用途に応用することが可能である。カルシウム−アルミネート繊維を含む断熱材料は1,100℃以上の耐熱性を要する断熱用途に利用可能である。のみならず、カルシウム−アルミネート繊維を含む断熱材料は約1,260℃までの耐熱性を要する断熱用途に利用可能である。これに限定されるものではないが、カルシウム−アルミネート繊維を含む断熱技術は、化学プロセス、石油プロセス、セラミックプロセス、ガラスプロセス、金属製造、プロセス工業、もしくは自動車工業、航空機工業、器具設備工業(appliance)、及び防火工業における、例えば炉の様な、加熱容器を断熱する用途に用いてもよい。   Thermal insulation technology including calcium-aluminate fibers can be applied in thermal insulation applications as an alternative to standard mineral wool or aluminosilicate refractory ceramic fibers. Thermal insulation materials containing calcium-aluminate fibers can be used for thermal insulation applications requiring heat resistance of 1,100 ° C. or higher. In addition, the heat insulating material containing calcium-aluminate fiber can be used for heat insulating applications requiring heat resistance up to about 1,260 ° C. Insulation technology including, but not limited to, calcium-aluminate fibers includes chemical processes, petroleum processes, ceramic processes, glass processes, metal manufacturing, process industries, or automotive, aircraft, and equipment industries ( appliances) and in the fire protection industry, for example, for applications that insulate heating vessels, such as furnaces.

カルシウム−アルミネート繊維はバルク繊維の形態で提供してもよい。加えて、カルシウム−アルミネート繊維は物品もしくは製品に対する広範囲の音響的、電気的、熱的絶縁用途に組み込まれてもよい。例えば、これに限定されるものではないが、カルシウム−アルミネート繊維は、針で縫い付けたブランケット(needled and stitched blankets)、ボード、編組(braids)、布、拡張紙(expanding papers)、非拡張紙、繊維、フェルト、鋳型、回路部品(modules)、結合回路部品(bonded modules)、まっと、パッキング、ロープ、テープ、スリーブ、真空鋳型、織物、高温耐熱性のコーク、セメント、コーティング、モルタルを含む加工性組成物(workable compositions)、ポンプ輸送可能な組成物、パテ、及び成型性組成物を含む高温耐熱性繊維に加工してもよい。   Calcium-aluminate fibers may be provided in the form of bulk fibers. In addition, calcium-aluminate fibers may be incorporated into a wide range of acoustic, electrical, and thermal insulation applications for articles or products. For example, but not limited to, calcium-aluminate fibers are needled and stitched blankets, boards, braids, fabrics, expanding papers, non-expanded Paper, fiber, felt, mold, circuit modules, bonded modules, mat, packing, rope, tape, sleeve, vacuum mold, fabric, high temperature and heat resistant coke, cement, coating, mortar It may be processed into high temperature heat resistant fibers including workable compositions, pumpable compositions, putty, and moldable compositions.

カルシウム−アルミネート繊維の実証的実施態様の性質について更に説明するため、下記の実施例を提示する。しかしながら、該実施例は繊維、繊維を含む物品、もしくはそれらを如何なる形において断熱材料として製造又は使用するプロセスに限定して解釈してはならない。   In order to further illustrate the nature of the empirical embodiment of calcium-aluminate fibers, the following examples are presented. However, the examples should not be construed as limited to fibers, articles containing fibers, or processes that produce or use them in any way as thermal insulation materials.

カルシウム−アルミネート繊維のフラックス抵抗性を評価した。ここで、フラックス(fluxing)という用語は、比較的少量の成分(フラックス)が作用して第二の材料の融点を顕著に低下する反応を意味する。フラックス現象(fluxing process)は断熱材料の構造(integrity)を著しく損なう。高温耐熱性の断熱用途、例えば、キルンの断熱用途においては、キルンの着火に用いられる燃料中にフラックスが存在させてもよい。高温耐熱性キルンの断熱用途において遭遇する2種類の通常のフラックスとしてはNa2OとK2Oがあり、それらは耐火性セラミック繊維にダメージを与える。もし、Na2OとK2Oが十分な濃度で存在して耐火性セラミック繊維と接触することになれば、耐火性セラミック繊維を溶かして、その結果断熱材料の構造(integrity)を著しく損なうことになる。 The flux resistance of the calcium-aluminate fiber was evaluated. Here, the term fluxing means a reaction in which a relatively small amount of a component (flux) acts to significantly lower the melting point of the second material. The fluxing process significantly impairs the integrity of the insulation material. In high temperature heat resistant heat insulation applications, for example, kiln heat insulation applications, a flux may be present in the fuel used to ignite the kiln. Two common fluxes encountered in thermal insulation applications in high temperature heat resistant kilns are Na 2 O and K 2 O, which damage refractory ceramic fibers. If Na 2 O and K 2 O are present in sufficient concentrations and come into contact with the refractory ceramic fibers, they will melt the refractory ceramic fibers and consequently significantly impair the structure of the insulation material. become.

フラックス試験は高温において繊維に対する不純物(フラックス)の影響度(aggressiveness of an impurity)を評価するために設計されている。簡単に述べると、粉体化したフラックス試料1gを繊維ブランケット表面の面積1平方インチ上に乗せる。次いで、その評価用セットを1,260℃(もしくは所望の試験温度)に加熱し、24時間保持する。加熱に続き、ブランケットへのフラックスの攻撃を視覚検査に基づき決定する。フラックスによる攻撃があれば、フラックスと接触している繊維が溶融する結果となる。その攻撃度合いは溶融した繊維の量で見積ることができる。フラックス試験結果を表Iに示す。   The flux test is designed to evaluate the aggressiveness of an impurity at high temperatures. Briefly, 1 g of powdered flux sample is placed on an area of 1 square inch on the fiber blanket surface. The evaluation set is then heated to 1,260 ° C. (or desired test temperature) and held for 24 hours. Following heating, the flux attack on the blanket is determined based on visual inspection. If there is an attack by the flux, the fiber in contact with the flux will be melted. The degree of attack can be estimated by the amount of melted fiber. The flux test results are shown in Table I.

Figure 0005162584
Figure 0005162584

比較例C1とC2は商業的に入手可能なアルミナ−ジルコニア−シリカ繊維のブランケットについて示し、比較例C3は商業的に入手可能なアルミノシリケートセラミック繊維のブランケットについて示す。その結果、商業的に入手可能なアルミナ−ジルコニア−シリカ及びアルミノシリケートのブランケットはNa2Oフラックスによって攻撃され、その結果、断熱材料の構造(integrity)を損なう。比較例に示した耐火性セラミック繊維材料ブランケットの場合、フラックスと接触した1平方インチのブランケットが溶融した。比較例に示した耐火性セラミック繊維材料と対照的に、カルシウム−アルミネート繊維から製造した断熱ブランケットについてはフラックスによる攻撃は全く認められなかった。 Comparative Examples C1 and C2 show a commercially available alumina-zirconia-silica fiber blanket and Comparative Example C3 shows a commercially available aluminosilicate ceramic fiber blanket. As a result, commercially available alumina-zirconia-silica and aluminosilicate blankets are attacked by the Na 2 O flux, resulting in damage to the integrity of the thermal insulation material. In the case of the refractory ceramic fiber material blanket shown in the comparative example, the 1 square inch blanket in contact with the flux melted. In contrast to the refractory ceramic fiber material shown in the comparative example, no attack by flux was observed for the insulating blanket made from calcium-aluminate fiber.

無機繊維組成物、該無機繊維組成物の製造方法、種々の無機繊維を含む物品、及び物品の絶縁方法は上記した実施態様に限定されず、全てのバリエーション、修整、及び均等な実施態様を含む。本発明の種々の実施態様は所望の特徴を提供するために組み合せることが可能なので、夫々別個に開示された実施態様は代替実施態様に必ずしも含まれない。よって、無機繊維、該繊維を含有する物品、該繊維の調製方法、及び断熱材料としての該繊維の使用は、如何なる単独の実施態様にも制限されず、むしろ特許請求の範囲の詳説に従って一定の幅と視野をもって解釈されるべきである。   The inorganic fiber composition, the method for producing the inorganic fiber composition, the article containing various inorganic fibers, and the insulation method for the article are not limited to the above-described embodiments, but include all variations, modifications, and equivalent embodiments. . Since the various embodiments of the present invention can be combined to provide the desired features, each separately disclosed embodiment is not necessarily included in an alternative embodiment. Thus, the use of inorganic fibers, articles containing the fibers, methods of preparing the fibers, and the fibers as thermal insulation materials is not limited to any single embodiment, but rather is consistent with the details of the claims. Should be interpreted with width and field of view.

Claims (5)

無機繊維の90質量%以上が50質量%超〜60質量%のカルシアと40質量%〜50質量%未満のアルミナとの繊維化生成物を含む、無機繊維であって、繊維化生成物が2質量%もしくはそれ未満の量のシリカを含む前記無機繊維90% by mass or more of the inorganic fiber is an inorganic fiber containing a fiberized product of more than 50% by mass to 60% by mass of calcia and 40% by mass to less than 50% by mass of alumina. The inorganic fiber comprising silica in an amount of mass% or less . さらに、以下の1つ以上によって特徴付けられる請求項1記載の無機繊維:
(i)繊維化生成物がアルカリ金属酸化物を含まない、
(ii)繊維化生成物が、Fe2O3として計算して、1質量%もしくはそれ未満の酸化鉄を含む、又は
(iii)繊維化生成物が1,100℃以上の連続使用温度を有する。
The inorganic fiber of claim 1, further characterized by one or more of the following:
(I) the fiberized product does not contain alkali metal oxides,
(Ii) the fiberized product contains 1% by weight or less of iron oxide, calculated as Fe 2 O 3 , or (iii) the fiberized product has a continuous use temperature of 1,100 ° C. or higher.
請求項1記載の無機繊維を含む断熱性の無機繊維含有物品であって、バルク繊維、ブランケット、ニードルドブランケット(needled blankets)、紙、フェルト、キャスト物(cast shapes)、真空キャスト物、もしくは組成物の内から1種以上選択された断熱性の無機繊維含有物品。  A heat-insulating inorganic fiber-containing article comprising the inorganic fiber according to claim 1, comprising bulk fiber, blanket, needled blankets, paper, felt, cast shapes, vacuum cast, or composition A heat-insulating inorganic fiber-containing article selected from one or more of the products. カルシアとアルミナとを含む成分の溶融物を形成させ、ここで、総量基準で、該成分の90質量%以上が50質量%超〜60質量%のカルシアと40質量%〜50質量%未満のアルミナとを含み、繊維化生成物が2質量%もしくはそれ未満の量のシリカを含み、
(i)溶融物からの紡糸法、又は(ii)溶融物からの繊維ブロー法のいずれか1つによって該溶融物から繊維を製造する
ことを含む無機繊維の製造方法。
Forming a melt of a component comprising calcia and alumina, wherein 90% by mass or more of the component is more than 50% by mass to 60% by mass calcia and 40% by mass to less than 50% by mass of alumina based on the total amount And the fiberized product comprises silica in an amount of 2% by weight or less,
A method for producing inorganic fibers, comprising producing fibers from the melt by any one of (i) a spinning method from the melt, or (ii) a fiber blowing method from the melt.
物品の上か、中か、近くか或いは周りに、請求項1記載の繊維化生成物を含む無機繊維を含む断熱性材料を配置することを含む、物品の断熱方法。  A method of insulating an article comprising disposing an insulating material comprising inorganic fibers comprising the fiberized product of claim 1 on, in, near or around the article.
JP2009518078A 2006-06-30 2006-06-30 Inorganic fiber Expired - Fee Related JP5162584B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/025840 WO2008005008A2 (en) 2006-06-30 2006-06-30 Inorganic fiber

Publications (2)

Publication Number Publication Date
JP2009542927A JP2009542927A (en) 2009-12-03
JP5162584B2 true JP5162584B2 (en) 2013-03-13

Family

ID=38895042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009518078A Expired - Fee Related JP5162584B2 (en) 2006-06-30 2006-06-30 Inorganic fiber

Country Status (7)

Country Link
EP (1) EP2038116A4 (en)
JP (1) JP5162584B2 (en)
CN (1) CN101528623B (en)
AU (1) AU2006345730B2 (en)
BR (1) BRPI0621848A2 (en)
MX (1) MX2008016366A (en)
WO (1) WO2008005008A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2640878B1 (en) * 2010-11-16 2018-11-07 Unifrax I LLC Inorganic fiber
JP5856541B2 (en) * 2012-06-07 2016-02-09 ニチアス株式会社 Al-Ca inorganic fiber soluble in physiological saline and composition thereof
JP2014141367A (en) * 2013-01-23 2014-08-07 Nichias Corp Bio-soluble inorganic fiber and composition thereof
WO2019074794A1 (en) 2017-10-10 2019-04-18 Unifrax 1 Llc Crystalline silica free low biopersistence inorganic fiber

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469729A (en) * 1966-06-30 1969-09-30 Westinghouse Electric Corp Sealing compositions for bonding ceramics to metals
DE4228353C1 (en) * 1992-08-26 1994-04-28 Didier Werke Ag Inorganic fiber
DE4228355C1 (en) * 1992-08-26 1994-02-24 Didier Werke Ag Fireproof lightweight molded body
CA2353566C (en) * 1998-12-08 2007-01-09 Unifrax Corporation Amorphous non-intumescent inorganic fiber mat for low temperature exhaust gas treatment devices
US6953757B2 (en) * 2002-01-10 2005-10-11 Unifrax Corporation High temperature a resistant vitreous inorganic fiber
WO2005000971A2 (en) * 2003-06-27 2005-01-06 Unifrax Corporation High temperature resistant vitreous inorganic fiber
US6856298B1 (en) * 2003-08-18 2005-02-15 Golden Bridge Electech Inc. Dual band linear antenna array
FR2876165B1 (en) * 2004-10-05 2006-12-01 Danfoss Commercial Compressors COMPRESSOR FOR COMPRESSING FLUID FOR A REFRIGERATION OR AIR CONDITIONING FACILITY
JP2007303011A (en) * 2006-05-10 2007-11-22 Denki Kagaku Kogyo Kk Inorganic fiber and monolithic refractory using the same

Also Published As

Publication number Publication date
CN101528623A (en) 2009-09-09
AU2006345730A1 (en) 2008-01-10
EP2038116A2 (en) 2009-03-25
MX2008016366A (en) 2009-02-23
BRPI0621848A2 (en) 2011-04-19
AU2006345730B2 (en) 2011-11-03
WO2008005008A3 (en) 2009-04-30
JP2009542927A (en) 2009-12-03
WO2008005008A2 (en) 2008-01-10
CN101528623B (en) 2013-09-25
EP2038116A4 (en) 2010-05-05

Similar Documents

Publication Publication Date Title
US7887917B2 (en) Inorganic fiber
US8641868B2 (en) Inorganic fiber paper and method of producing the same
KR102168895B1 (en) Bio-soluble inorganic fiber
JP5162584B2 (en) Inorganic fiber
WO1995015932A1 (en) Chromium-free brick
JP6105478B2 (en) Inorganic fiber
KR20170015981A (en) Biosoluble inorganic fiber
JP5166598B1 (en) Highly flexible inorganic fiber shaped body
JP6453824B2 (en) Inorganic fiber molded body
JP7127084B2 (en) Heat-resistant inorganic fiber soluble in physiological saline
JPH0782044A (en) Monolithic refractory

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110523

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110530

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110621

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110912

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees