JP6453824B2 - Inorganic fiber molded body - Google Patents

Inorganic fiber molded body Download PDF

Info

Publication number
JP6453824B2
JP6453824B2 JP2016174558A JP2016174558A JP6453824B2 JP 6453824 B2 JP6453824 B2 JP 6453824B2 JP 2016174558 A JP2016174558 A JP 2016174558A JP 2016174558 A JP2016174558 A JP 2016174558A JP 6453824 B2 JP6453824 B2 JP 6453824B2
Authority
JP
Japan
Prior art keywords
weight
inorganic fiber
silica
inorganic
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016174558A
Other languages
Japanese (ja)
Other versions
JP2018040536A (en
Inventor
賢 米内山
賢 米内山
耕治 岩田
耕治 岩田
弘樹 森田
弘樹 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2016174558A priority Critical patent/JP6453824B2/en
Priority to PCT/JP2017/031889 priority patent/WO2018047801A1/en
Publication of JP2018040536A publication Critical patent/JP2018040536A/en
Application granted granted Critical
Publication of JP6453824B2 publication Critical patent/JP6453824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Glass Compositions (AREA)

Description

本発明は、無機繊維質成形体に関する。   The present invention relates to an inorganic fibrous molded body.

アスベストは、軽量で扱いやすく且つ耐熱性に優れるため、断熱材等として使用されていた。しかしアスベストは人体に吸入されて肺に疾患を引き起こすため使用が禁止され、これに代わりに耐熱性セラミック繊維(RCF)が使用されている。耐熱性セラミック繊維は通常シリカを40〜60重量%、アルミナを30〜60重量%含む無機繊維であり、耐熱性がアスベストより高く、健康上の問題はアスベストより低いと考えられているが、依然発がん性が疑われている。そこで、人体に吸入されても問題を起こさない又は起こしにくい生体溶解性無機繊維として様々なアルカリアースシリケート(AES)ウールが開発された。一般的にアルカリアースシリケートウールは、シリカとマグネシア及び/又はカルシアを含む無機繊維であり、通常マグネシアとカルシアを合わせて18〜50重量%、シリカを50〜82重量%含む。   Asbestos has been used as a heat insulating material and the like because it is lightweight, easy to handle, and excellent in heat resistance. However, asbestos is banned because it is inhaled by the human body and causes diseases in the lungs. Instead, heat-resistant ceramic fibers (RCF) are used. The heat-resistant ceramic fiber is usually an inorganic fiber containing 40 to 60% by weight of silica and 30 to 60% by weight of alumina, and is considered to have higher heat resistance than asbestos and lower health problems than asbestos. Carcinogenicity is suspected. Accordingly, various alkaline earth silicate (AES) wool has been developed as a biosoluble inorganic fiber that does not cause a problem even when inhaled by the human body, or hardly occurs. Generally, alkaline earth silicate wool is an inorganic fiber containing silica and magnesia and / or calcia, and usually contains 18 to 50 wt% of magnesia and calcia, and 50 to 82 wt% of silica.

従来の無機繊維は、アスベストと同様に、様々なバインダーや添加物とともに、定形物や不定形物に二次加工されて、熱処理装置、工業窯炉や焼却炉等の炉における目地材、耐火タイル、断熱レンガ、鉄皮、断熱材等として用いられている。使用の際は高温に晒されることが多く、耐熱性を有することが求められている。   Conventional inorganic fibers, like asbestos, are secondary-processed into regular and irregular shapes, together with various binders and additives, and are used as joint materials and fireproof tiles in furnaces such as heat treatment equipment, industrial kilns, and incinerators. It is used as a heat insulating brick, iron skin, heat insulating material and the like. When used, it is often exposed to high temperatures and is required to have heat resistance.

さらに、炉内の部材にアルミナが使用されていることが多く、二次加工品に含まれる繊維が、このアルミナと反応し二次加工品や部材が付着したり溶融したりする問題もあった。   In addition, alumina is often used as a member in the furnace, and there is a problem that the fibers contained in the secondary processed product react with the alumina and the secondary processed product or member adheres or melts. .

AESウールは、一般に耐熱性や耐アルミナ反応性がRCFより劣る。生体溶解性を有しながら、RCFに匹敵する耐熱性及び耐アルミナ反応性を有する無機繊維が研究され開発されている(例えば特許文献1〜3)。これらのAESウールはシリカの含有量が70重量%以上と高く、従来のAESウールに比べ耐熱性が高く、耐熱温度がRCFと同様の1300℃まで達するものもある。   AES wool is generally inferior to RCF in heat resistance and alumina resistance. Inorganic fibers having biosolubility and heat resistance and alumina reactivity comparable to RCF have been studied and developed (for example, Patent Documents 1 to 3). These AES wools have a high silica content of 70% by weight or more, have higher heat resistance than conventional AES wools, and some have a heat-resistant temperature as high as 1300 ° C., similar to RCF.

特表2005−515307号公報JP 2005-515307 A 特表2005−514318号公報JP-T-2005-514318 特開2016−37427号公報JP 2016-37427 A

無機繊維を用いた断熱性ボードは、炉内の壁面に貼られることが多く、その場合、炉内側の片面だけが強く加熱され、割れが生じるという問題があった。
本発明の課題は、耐熱性が高いシリカ含量が70重量%以上のAESウールを含み片面加熱で割れ難い無機繊維質成形体を提供することである。
Insulating boards using inorganic fibers are often affixed to the wall surface in the furnace, and in that case, only one side inside the furnace is strongly heated, causing a problem of cracking.
The subject of this invention is providing the inorganic fiber molded object which is hard to break by single-sided heating including AES wool whose silica content is 70 weight% or more with high heat resistance.

本発明者らは、鋭意研究の結果、シリカを高含量で含むAESウールからなる成形体では、1100℃まで加熱するとシリカのクリストバライト結晶が生成し、これが割れの原因となることを見い出した。さらに、成形体中におけるこのクリストバライト結晶の生成割合を抑制するために、シリカの含有量の低いAESウールを混合すると、割れを抑えられることを見い出し、本発明を完成させた。   As a result of diligent research, the present inventors have found that when a molded body made of AES wool containing a high content of silica is heated to 1100 ° C., cristobalite crystals of silica are formed, which causes cracking. Furthermore, in order to suppress the formation ratio of the cristobalite crystals in the molded body, it was found that cracking could be suppressed by mixing AES wool having a low silica content, and the present invention was completed.

本発明によれば、以下の無機繊維質成形体が提供される。
1.カルシア及びマグネシアから選択される1以上の金属酸化物と、シリカを含み、前記金属酸化物を18〜30重量%、前記シリカを70〜82重量%含む第1の無機繊維と、
カルシア及びマグネシアから選択される1以上の金属酸化物と、シリカを含み、前記金属酸化物を18〜50重量%、前記シリカを50重量%以上70重量%未満含む第2の無機繊維と
を含む無機繊維質成形体。
2.前記第1の無機繊維と前記第2の無機繊維の重量比が、第1の無機繊維:第2の無機繊維=5〜95:95〜5である1記載の無機繊維質成形体。
3.前記第1の無機繊維は、前記金属酸化物とシリカを90重量%以上含み、
前記第2の無機繊維は、前記金属酸化物とシリカを90重量%以上含む1又は2記載の無機繊維質成形体。
4.前記第1の無機繊維が以下の成分を以下の含有量で含む1〜3のいずれか記載の無機繊維質成形体。
SiO:70重量%〜82重量%
MgO及びCaOから選択される1以上:18重量%〜30重量%
Al、TiO及びZrOから選択される1以上:0重量%〜6重量%
5.前記第1の無機繊維が以下の成分を以下の含有量で含む1〜4のいずれか記載の無機繊維質成形体。
SiO:72重量%〜82重量%
MgO:8重量%〜22重量%
CaO:4重量%〜14重量%
Al:0重量%〜3重量%
SiO、MgO及びCaOの3成分を主成分とする
6.前記第2の無機繊維が以下の成分を以下の含有量で含む1〜5のいずれか記載の無機繊維質成形体。
SiO:57重量%以上70重量%未満
MgO及びCaOから選択される1以上:30重量%〜43重量%
Al、TiO及びZrOから選択される1以上:0重量%〜3重量%
7.前記第2の無機繊維が以下の成分を以下の含有量で含む1〜6のいずれか記載の無機繊維質成形体。
SiO 58重量%以上70重量%未満
CaO 25〜38重量%
MgO 2〜10重量%
Al 0重量%〜3重量%
8.Si,Ca,Mg及びAlが、ディオプサイド、ワラストナイト、エンスタタイト及びムライトの結晶を最大限生成したと仮定したときの余剰シリカの含有量が50モル%以下である1〜7のいずれか記載の無機繊維質成形体。
9.シリカの含有量が75重量%以下である1〜8のいずれか記載の無機繊維質成形体。
10.1100℃で片面を24時間加熱したとき、割れを生じない1〜9のいずれか記載の無機繊維質成形体。
11.1200℃で片面を24時間加熱したとき、割れを生じない1〜10のいずれか記載の無機繊維質成形体。
According to the present invention, the following inorganic fibrous molded body is provided.
1. One or more metal oxides selected from calcia and magnesia, silica, a first inorganic fiber containing 18-30 wt% of the metal oxide and 70-82 wt% of the silica;
One or more metal oxides selected from calcia and magnesia, and containing silica, 18 to 50% by weight of the metal oxide, and a second inorganic fiber containing 50 to 70% by weight of the silica. Inorganic fibrous molded body.
2. 2. The inorganic fibrous molded body according to 1, wherein a weight ratio of the first inorganic fiber to the second inorganic fiber is 1st inorganic fiber: 2nd inorganic fiber = 5 to 95: 95-5.
3. The first inorganic fiber includes 90% by weight or more of the metal oxide and silica,
3. The inorganic fiber molded body according to 1 or 2, wherein the second inorganic fiber includes 90% by weight or more of the metal oxide and silica.
4). The inorganic fiber molded body according to any one of 1 to 3, wherein the first inorganic fiber includes the following components in the following content.
SiO 2 : 70% by weight to 82% by weight
One or more selected from MgO and CaO: 18% by weight to 30% by weight
One or more selected from Al 2 O 3 , TiO 2 and ZrO 2 : 0 wt% to 6 wt%
5. The inorganic fiber molded body according to any one of 1 to 4, wherein the first inorganic fiber includes the following components in the following content.
SiO 2: 72 wt% to 82 wt%
MgO: 8 to 22% by weight
CaO: 4 to 14% by weight
Al 2 O 3: 0 wt% to 3 wt%
5. Mainly composed of three components of SiO 2 , MgO and CaO The inorganic fiber molded body according to any one of 1 to 5, wherein the second inorganic fiber includes the following components in the following content.
SiO 2: 57 wt% to 70 wt% less than MgO and one or more selected from CaO: 30 wt% to 43 wt%
One or more selected from Al 2 O 3 , TiO 2 and ZrO 2 : 0 wt% to 3 wt%
7). The inorganic fiber molded body according to any one of 1 to 6, wherein the second inorganic fiber includes the following components in the following content.
SiO 2 58 wt% or more and less than 70 wt% CaO 25 to 38 wt%
MgO 2 to 10% by weight
Al 2 O 3 0% by weight to 3% by weight
8). Any one of 1 to 7 wherein the content of surplus silica is 50 mol% or less when it is assumed that Si, Ca, Mg and Al have produced crystals of diopside, wollastonite, enstatite and mullite to the maximum extent. An inorganic fibrous molded body according to any one of the above.
9. The inorganic fibrous molded article according to any one of 1 to 8, wherein the silica content is 75% by weight or less.
10. The inorganic fiber molded body according to any one of 1 to 9, which does not crack when one surface is heated at 10.100 ° C. for 24 hours.
11. The inorganic fiber molded body according to any one of 1 to 10, which does not crack when one surface is heated at 1200 ° C. for 24 hours.

本発明によれば、シリカ含量が70重量%以上のAESウールを含み片面加熱で割れ難い無機繊維質成形体が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the inorganic fiber molded object which contains the AES wool whose silica content is 70 weight% or more, and cannot be easily broken by single-sided heating can be provided.

実験例で用いた片面加熱評価炉の概略断面図である。It is a schematic sectional drawing of the single-sided heating evaluation furnace used in the experiment example. 実験例1(2)で測定した、1100℃で片面加熱したボードの内側、中心、外側部分のXRDチャートである。It is an XRD chart of the inner side, the center, and the outer side part of the board heated in 1100 degreeC measured in Experimental example 1 (2). 実験例3で測定した、混合比が異なるHS1とLS2からなるボードの、1100℃全面加熱後のXRDチャートである。It is the XRD chart after 1100 degreeC whole surface heating of the board which consists of HS1 and LS2 from which the mixing ratio measured in Experimental example 3 differs. 実験例3で測定した、混合比が異なるHS1とLS2からなるボードの、加熱による収縮率を示すグラフである。It is a graph which shows the shrinkage | contraction rate by heating of the board which consists of HS1 and LS2 from which the mixing ratio measured in Experimental example 3 differs.

本発明の無機繊維質成形体は、シリカを70重量%以上の高含量で含むAESウールと、シリカを70重量%未満の低含量で含むAESウールを混合して用いたものである。具体的には、本発明の無機繊維質成形体は、カルシア及びマグネシアから選択される1以上の金属酸化物と、シリカを含み、金属酸化物を18〜30重量%、シリカを70〜82重量%含む第1の無機繊維と、カルシア及びマグネシアから選択される1以上の金属酸化物と、シリカを含み、金属酸化物を18〜50重量%、シリカを50重量%以上70重量%未満含む第2の無機繊維とを含む。第1及び第2の無機繊維は、シリカ、カルシア、マグネシア以外に他の酸化物を含むことができる。   The inorganic fibrous molded body of the present invention is a mixture of AES wool containing silica at a high content of 70% by weight or more and AES wool containing silica at a low content of less than 70% by weight. Specifically, the inorganic fibrous molded body of the present invention includes one or more metal oxides selected from calcia and magnesia, and silica, 18 to 30% by weight of metal oxide, and 70 to 82% by weight of silica. A first inorganic fiber containing 1%, one or more metal oxides selected from calcia and magnesia, and silica, 18 to 50% by weight of metal oxide, and 50% to less than 70% by weight of silica. 2 inorganic fibers. The first and second inorganic fibers can contain other oxides in addition to silica, calcia, and magnesia.

第1の無機繊維は、好ましくは以下の成分を以下の含有量で含む。
SiO:70重量%〜82重量%
MgO及びCaOから選択される1以上:18重量%〜30重量%
Al、TiO及びZrOから選択される1以上:0重量%〜6重量%
The first inorganic fiber preferably contains the following components in the following content.
SiO 2 : 70% by weight to 82% by weight
One or more selected from MgO and CaO: 18% by weight to 30% by weight
One or more selected from Al 2 O 3 , TiO 2 and ZrO 2 : 0 wt% to 6 wt%

第1の無機繊維のSiOの含量は、好ましくは70重量%〜82重量%、より好ましくは72重量%〜81重量%、さらに好ましくは73重量%〜80重量%、特に好ましくは75重量%〜80重量%である。
第1の無機繊維のMgO及びCaOから選択される1以上の金属酸化物の含量は、好ましくは18重量%〜29重量%、より好ましくは19重量%〜28重量%、さらに好ましくは20重量%〜27重量%である。
第1の無機繊維のAl、TiO及びZrOから選択される1以上の金属酸化物の含量は、好ましくは0重量%〜4重量%であり、例えば0重量%〜3重量%又は1重量%〜2重量%とできる。
The content of SiO 2 in the first inorganic fiber is preferably 70% by weight to 82% by weight, more preferably 72% by weight to 81% by weight, still more preferably 73% by weight to 80% by weight, particularly preferably 75% by weight. ~ 80% by weight.
The content of one or more metal oxides selected from MgO and CaO in the first inorganic fiber is preferably 18% by weight to 29% by weight, more preferably 19% by weight to 28% by weight, and even more preferably 20% by weight. -27% by weight.
The content of one or more metal oxides selected from Al 2 O 3 , TiO 2 and ZrO 2 in the first inorganic fiber is preferably 0% by weight to 4% by weight, for example 0% by weight to 3% by weight. Or it can be 1 to 2 weight%.

第1の無機繊維は、以下の成分を以下の含有量で含むことができる。
SiO 70重量%〜82重量%
CaO 0.5重量%〜9重量%
MgO 10重量%〜29.5重量%
Al 0重量%〜3重量%
The 1st inorganic fiber can contain the following ingredients with the following contents.
SiO 2 70 wt% to 82 wt%
CaO 0.5 wt% to 9 wt%
MgO 10 wt% to 29.5 wt%
Al 2 O 3 0% by weight to 3% by weight

また、第1の無機繊維は、以下の成分を以下の含有量で含むことができる。
SiO 70重量%〜82重量%
CaO 15重量%〜30重量%
MgO 0重量%〜3重量%
Al 0重量%〜5重量%
Moreover, the 1st inorganic fiber can contain the following components with the following content.
SiO 2 70 wt% to 82 wt%
CaO 15 wt% to 30 wt%
MgO 0% to 3% by weight
Al 2 O 3 0% by weight to 5% by weight

また、第1の無機繊維は、以下の成分を以下の含有量で含むことができる。この繊維は、耐熱性、耐アルミナ反応性、生体溶解性に優れる。
SiO:72重量%〜82重量%
MgO:8重量%〜22重量%
CaO:4重量%〜14重量%
Al:0重量%〜3重量%
SiO、MgO及びCaOの3成分を主成分とする。
主成分とは、無機繊維が含む全ての成分のうち最も含有量(重量%)の高い3成分(1番含有量が高い成分、2番目に含有量が高い成分、及び3番目に含有量が高い成分の3成分)がSiO、MgO及びCaOであることを意味する。
Moreover, the 1st inorganic fiber can contain the following components with the following content. This fiber is excellent in heat resistance, alumina reaction resistance and biosolubility.
SiO 2: 72 wt% to 82 wt%
MgO: 8 to 22% by weight
CaO: 4 to 14% by weight
Al 2 O 3: 0 wt% to 3 wt%
The main component is three components of SiO 2 , MgO and CaO.
The main component is the three components with the highest content (% by weight) among all the components contained in the inorganic fiber (the component with the highest content, the component with the second highest content, and the content with the third It means that three of the higher components are SiO 2 , MgO and CaO.

また、第1の無機繊維は、以下の成分を以下の含有量で含むことができる。この繊維は、耐熱性、耐アルミナ反応性、生体溶解性に優れる。
SiO:73.6重量%〜82重量%
MgO:9.0重量%〜21.3重量%
CaO:5.1重量%〜12.4重量%
Al:0重量%以上2.3重量%未満
Fe:0重量%〜0.50重量%
SiO、MgO及びCaOの3成分を主成分とする。
Moreover, the 1st inorganic fiber can contain the following components with the following content. This fiber is excellent in heat resistance, alumina reaction resistance and biosolubility.
SiO 2: 73.6 wt% to 82 wt%
MgO: 9.0 to 21.3% by weight
CaO: 5.1 wt% to 12.4 wt%
Al 2 O 3: 0 wt% to less than 2.3 wt.% Fe 2 O 3: 0 wt% to 0.50 wt%
The main component is three components of SiO 2 , MgO and CaO.

第1の無機繊維は、MgO及びCaOから選択される1以上とシリカを、好ましくは90重量%以上含み、例えば95重量%以上、97重量%以上、98重量%以上、又は99重量%以上含むことができる。   The first inorganic fiber contains one or more selected from MgO and CaO and silica, preferably 90% by weight or more, for example, 95% by weight, 97% by weight, 98% by weight or 99% by weight or more. be able to.

第2の無機繊維のSiOの含量は、好ましくは55重量%〜69重量%、より好ましくは57重量%〜67重量%、さらに好ましくは58重量%〜65重量%、特に好ましくは59重量%〜64重量%である。
第2の無機繊維のMgO及びCaOから選択される1以上の金属酸化物の含量は、好ましくは20重量%〜45重量%、より好ましくは25重量%〜43重量%であり、例えば30重量%〜43重量%、31重量%〜43重量%、32重量%〜42重量%、又は33重量%〜40重量%とできる。
第2の無機繊維のAl、TiO及びZrOから選択される1以上の金属酸化物の含量は、好ましくは0重量%〜6重量%であり、例えば0重量%〜4重量%又は0.1重量%〜2重量%とできる。
The content of SiO 2 in the second inorganic fiber is preferably 55% to 69% by weight, more preferably 57% to 67% by weight, still more preferably 58% to 65% by weight, particularly preferably 59% by weight. ~ 64% by weight.
The content of one or more metal oxides selected from MgO and CaO in the second inorganic fiber is preferably 20% to 45% by weight, more preferably 25% to 43% by weight, for example 30% by weight. ˜43 wt%, 31 wt% ˜43 wt%, 32 wt% ˜42 wt%, or 33 wt% ˜40 wt%.
The content of one or more metal oxides selected from Al 2 O 3 , TiO 2 and ZrO 2 in the second inorganic fiber is preferably 0% to 6% by weight, for example 0% to 4% by weight. Or it can be 0.1 to 2 weight%.

第2の無機繊維は、好ましくは以下の成分を以下の含有量で含む。
SiO:57重量%以上70重量%未満
MgO及びCaOから選択される1以上:30重量%〜43重量%
Al、TiO及びZrOから選択される1以上:0重量%〜3重量%
The second inorganic fiber preferably contains the following components in the following content.
SiO 2: 57 wt% to 70 wt% less than MgO and one or more selected from CaO: 30 wt% to 43 wt%
One or more selected from Al 2 O 3 , TiO 2 and ZrO 2 : 0 wt% to 3 wt%

第2の無機繊維は、さらに好ましくは以下の成分を以下の含有量で含む。
SiO:58重量%〜65重量%
MgO及びCaOから選択される1以上:33重量%〜42重量%
Al、TiO及びZrOから選択される1以上:0重量%〜2重量%
The second inorganic fiber more preferably contains the following components in the following content.
SiO 2 : 58% by weight to 65% by weight
One or more selected from MgO and CaO: 33 wt% to 42 wt%
One or more selected from Al 2 O 3 , TiO 2 and ZrO 2 : 0 wt% to 2 wt%

第2の無機繊維は、以下の成分を以下の含有量で含むことができる。
SiO 58重量%以上70重量%未満
CaO 25〜38重量%
MgO 2〜10重量%
Al 0重量%〜3重量%
The 2nd inorganic fiber can contain the following ingredients with the following contents.
SiO 2 58 wt% or more and less than 70 wt% CaO 25 to 38 wt%
MgO 2 to 10% by weight
Al 2 O 3 0% by weight to 3% by weight

第2の無機繊維は、MgO及びCaOから選択される1以上とシリカを、好ましくは90重量%以上含み、例えば95重量%以上、97重量%以上、98重量%以上、又は99重量%以上含むことができる。   The second inorganic fiber contains one or more selected from MgO and CaO and silica, preferably 90% by weight or more, for example, 95% by weight, 97% by weight, 98% by weight, or 99% by weight or more. be able to.

第1及び第2の無機繊維は、Sc,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y又はこれらの混合物から選択されるそれぞれの酸化物を含んでも含まなくてもよい。これらの酸化物の量を、それぞれ3.0重量%以下、2.0重量%以下、1.0重量%以下又は0.5重量%以下としてもよい。   The first and second inorganic fibers are each selected from Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, or a mixture thereof. The oxide may or may not be included. The amount of these oxides may be 3.0% by weight or less, 2.0% by weight or less, 1.0% by weight or less, or 0.5% by weight or less, respectively.

第1及び第2の無機繊維は、アルカリ金属酸化物(NaO、LiO、KO等)の各々を含んでも含まなくてもよく、これらはそれぞれ又は合計で、3重量%以下、2重量%以下、1重量%以下、0.5重量%以下、0.4重量%以下、0.3重量%以下、0.2重量%以下、又は0.10量%以下とすることができる。 The first and second inorganic fibers may or may not contain each of alkali metal oxides (Na 2 O, Li 2 O, K 2 O, etc.), each of which is 3% by weight or less in total. 2% by weight or less, 1% by weight or less, 0.5% by weight or less, 0.4% by weight or less, 0.3% by weight or less, 0.2% by weight or less, or 0.10% by weight or less. it can.

第1及び第2の無機繊維は、ZnO、B、P、SrO、Fe、BaO、Crの各々を含んでも含まなくてもよく、それぞれ、3.0重量%以下、2.0重量%以下、1.0重量%以下、0.5重量%以下、0.1重量%未満又は0.05重量%以下とすることができる。 The first and second inorganic fibers, ZnO, B 2 O 3, P 2 O 5, SrO, Fe 2 O 3, BaO, may or may not contain each of the Cr 2 O 3, respectively, 3. It can be 0 wt% or less, 2.0 wt% or less, 1.0 wt% or less, 0.5 wt% or less, less than 0.1 wt%, or 0.05 wt% or less.

また、上記の各成分の量をそれぞれ任意に組み合わせてもよい。   Moreover, you may combine the quantity of said each component arbitrarily, respectively.

第1の無機繊維と第2の無機繊維の配合割合(重量比)は、第1の無機繊維:第2の無機繊維が5〜95:95〜5でよく、好ましくは10〜90:90〜10、より好ましくは20〜80:80〜20、さらに好ましくは20〜60:80〜40、特に好ましくは25〜55:75〜45、最も好ましくは30〜50:70〜50である。第1の無機繊維と第2の無機繊維は、それぞれ所定の組成を有する無機繊維を単独又は複数混合して用いることができる。   The blend ratio (weight ratio) of the first inorganic fiber and the second inorganic fiber may be 5 to 95:95 to 5, preferably 10 to 90:90 to the first inorganic fiber: second inorganic fiber. 10, more preferably 20-80: 80-20, still more preferably 20-60: 80-40, particularly preferably 25-55: 75-45, most preferably 30-50: 70-50. As the first inorganic fiber and the second inorganic fiber, inorganic fibers each having a predetermined composition can be used alone or in combination.

第1及び第2の無機繊維は溶融法、ゾルゲル法等公知の方法で製造できる。
第1及び第2の無機繊維の平均繊維径は、通常0.1〜50μmであり、例えば0.5〜20μm又は1〜10μmとできる。
The first and second inorganic fibers can be produced by a known method such as a melting method or a sol-gel method.
The average fiber diameter of the first and second inorganic fibers is usually 0.1 to 50 μm, for example, 0.5 to 20 μm or 1 to 10 μm.

第1及び第2の無機繊維は上記の組成を有することにより、pH7.4の生理食塩水に対し溶解する。
溶解速度定数は、実施例記載の測定方法で、好ましくは100ng/cm・h以上、300ng/cm・h以上、500ng/cm・h以上、800ng/cm・h以上、又は1000ng/cm・h以上である。
Since the first and second inorganic fibers have the above composition, they are dissolved in physiological saline having a pH of 7.4.
The dissolution rate constant is a measurement method described in the examples, preferably 100 ng / cm 2 · h or more, 300 ng / cm 2 · h or more, 500 ng / cm 2 · h or more, 800 ng / cm 2 · h or more, or 1000 ng / cm 2 · h or more.

成形体は、無機繊維の他、有機バインダー、無機バインダー、無機粉体、定着剤、凝集剤、キレート剤等を含むことができる。これらは、本発明の効果を損なわない限り、通常使用されているものを使用できる。有機バインダーとして澱粉、アクリル樹脂、ポリアクリルアミド、パルプ、アクリルエマルジョン等が、無機バインダーとして、アニオン性のコロイダルシリカ、カチオン性のコロイダルシリカ等のコロイダルシリカ、アルミナゾル、ベントナイト、粘土鉱物等が例示できる。無機粉体として、シリカ、アルミナ、チタニア、ジルコニア、窒化ケイ素、炭化ケイ素等のセラミックス粉末、カーボンブラック等の炭素粉末等を例示できる。成形体は、好ましくは50重量%以上、より好ましくは75重量%以上、さらに好ましくは80重量%以上を、第1及び第2の無機繊維から構成できる。   The molded body can contain an organic binder, an inorganic binder, an inorganic powder, a fixing agent, an aggregating agent, a chelating agent and the like in addition to inorganic fibers. As long as these do not impair the effects of the present invention, those usually used can be used. Examples of the organic binder include starch, acrylic resin, polyacrylamide, pulp, and acrylic emulsion, and examples of the inorganic binder include colloidal silica such as anionic colloidal silica and cationic colloidal silica, alumina sol, bentonite, and clay mineral. Examples of the inorganic powder include ceramic powder such as silica, alumina, titania, zirconia, silicon nitride, and silicon carbide, and carbon powder such as carbon black. Preferably, the molded body can comprise 50% by weight or more, more preferably 75% by weight or more, and still more preferably 80% by weight or more of the first and second inorganic fibers.

本発明の無機繊維質成形体は、実施例記載の方法で、1100℃又は1200℃で片面を24時間加熱したとき、割れが無いことが好ましい。   The inorganic fibrous molded body of the present invention is preferably free from cracking when one side is heated at 1100 ° C. or 1200 ° C. for 24 hours by the method described in the examples.

本発明の無機繊維質成形体は、耐アルミナ反応性が高いことが好ましい。実施例記載の方法で測定したとき、1200℃8時間の加熱でアルミナペレットと付着しないことが好ましい。また1300℃8時間の加熱でアルミナペレットと接触する部分が溶融しないことが好ましい。   The inorganic fibrous molded body of the present invention preferably has high alumina resistance. When measured by the method described in the examples, it is preferable that the alumina pellets do not adhere by heating at 1200 ° C. for 8 hours. Moreover, it is preferable that the part which contacts an alumina pellet by 1300 degreeC heating for 8 hours does not fuse | melt.

加熱収縮率は、実施例記載の方法で測定したとき、1300℃8時間の加熱において、好ましくは3.5%以下、さらに好ましくは3.3%以下、最も好ましくは3.0%以下である。   The heat shrinkage ratio is preferably 3.5% or less, more preferably 3.3% or less, and most preferably 3.0% or less in heating at 1300 ° C. for 8 hours when measured by the method described in Examples. .

無機繊維質成形体が高温で加熱されるとき、Siの単独酸化物の結晶、SiとCa,Mg及び/又はAlとの複合酸化物の結晶が生成する。ボードに含まれる無機繊維及び他のバインダー等の成分のSi,Ca,Mg,Alが、ディオプサイド、ワラストナイト、エンスタタイト及びムライトの結晶を最大限生成したとした際の残りの未反応のシリカを余剰シリカとする。余剰シリカは、生成し得るクリストバライトの量の指標となり得る。無機繊維質成形体の余剰シリカは、好ましくは50モル%以下であり、より好ましくは45モル%以下、さらに好ましくは40モル%以下、特に好ましくは35モル%以下である。   When the inorganic fibrous molded body is heated at a high temperature, a crystal of a single oxide of Si, or a crystal of a composite oxide of Si and Ca, Mg and / or Al is formed. Remaining unreacted when Si, Ca, Mg, Al, components such as inorganic fibers and other binders contained in the board, produced diopside, wollastonite, enstatite and mullite crystals to the maximum This silica is used as excess silica. Excess silica can be an indicator of the amount of cristobalite that can be produced. The excess silica in the inorganic fibrous molded body is preferably 50 mol% or less, more preferably 45 mol% or less, still more preferably 40 mol% or less, and particularly preferably 35 mol% or less.

無機繊維質成形体が含むシリカ量は、無機繊維が含むシリカ量と他の成分が含むシリカ量によって決まるが、シリカ量が少ない程余剰シリカが減少する傾向にある。従って、無機繊維質成形体が含むシリカ量は、好ましくは75重量%以下であり、より好ましくは70重量%以下である。   The amount of silica contained in the inorganic fibrous molded body is determined by the amount of silica contained in the inorganic fibers and the amount of silica contained in other components, but the amount of excess silica tends to decrease as the amount of silica decreases. Accordingly, the amount of silica contained in the inorganic fibrous molded body is preferably 75% by weight or less, more preferably 70% by weight or less.

無機繊維質成形体の形状は限定されないが、例えば、ブロック、ボード、モールド、不定形品等が挙げられる。   Although the shape of an inorganic fibrous molded object is not limited, For example, a block, a board, a mold, an indeterminate form etc. are mentioned.

以下、具体的な実施例を示すが、本発明はこの実施例に限定されるものではない。
実験に用いた繊維の組成を表1に示す。
Hereinafter, although a specific Example is shown, this invention is not limited to this Example.
Table 1 shows the fiber composition used in the experiment.

AES繊維は、MgOやCaOを含むため、RCF繊維と比べ生体溶解性である。
以下の方法で、HS1とRCF1の生体溶解性を測定した。
無機繊維を、メンブレンフィルター上に置き、繊維上にマイクロポンプによりpH7.4の生理食塩水を滴下させ、繊維、フィルターを通った濾液を容器内に溜めた。溜めた濾液を24時間経過後に取り出し、溶出成分をICP発光分析装置により定量し、溶解度を算出した。HS1の測定元素は主要元素であるSi、Mg、Caの3元素であり、RCF1の測定元素は主要元素であるSi、Alの2元素とした。平均繊維径を測定して単位表面積・単位時間当たりの溶出量である溶解速度定数(単位:ng/cm・h)に換算した。
平均繊維径は、400本以上の繊維を、電子顕微鏡で観察・撮影した後、撮影した繊維について、その径を計測し、全計測繊維の平均値とした。
HS1は約1400ng/cm・hであり、RCF1は約20ng/cm・hであった。
Since AES fibers contain MgO and CaO, they are more biosoluble than RCF fibers.
The biosolubility of HS1 and RCF1 was measured by the following method.
The inorganic fiber was placed on a membrane filter, and physiological saline having a pH of 7.4 was dropped on the fiber with a micropump, and the filtrate that passed through the fiber and the filter was stored in a container. The collected filtrate was taken out after 24 hours, and the eluted components were quantified with an ICP emission spectrometer, and the solubility was calculated. The measurement elements of HS1 are the three elements, Si, Mg, and Ca, which are the main elements, and the measurement elements of RCF1 are the two elements, Si and Al, which are the main elements. The average fiber diameter was measured and converted to a dissolution rate constant (unit: ng / cm 2 · h) which is the amount of elution per unit surface area / unit time.
For the average fiber diameter, 400 or more fibers were observed and photographed with an electron microscope, and then the diameter of the photographed fiber was measured to obtain an average value of all the measured fibers.
HS1 is about 1400ng / cm 2 · h, RCF1 was about 20ng / cm 2 · h.

実験例1(比較例)
(1)割れの発生
表1に記載の組成を有するHS1を用いて、HS1 100重量部に対し、コロイダルシリカを5.5重量部、澱粉を5重量部、キレート剤を1重量部、凝集剤を0.5重量部を配合して、縦860mm,横450mm,厚み50mmのHS1ボードを製造した。以下の方法でHS1ボードを片面加熱したときの割れの有無を調べた。
Experimental example 1 (comparative example)
(1) Generation of cracks Using HS1 having the composition described in Table 1, 5.5 parts by weight of colloidal silica, 5 parts by weight of starch, 1 part by weight of chelating agent, and 1 part by weight of flocculant with respect to 100 parts by weight of HS1 Was blended in an amount of 0.5 parts by weight to produce an HS1 board having a length of 860 mm, a width of 450 mm, and a thickness of 50 mm. The presence or absence of a crack when the HS1 board was heated on one side was examined by the following method.

表1に記載の組成を有するRCF1を用いた他は上記と同様にしてRCF1ボードを製造した。
4層構造の片面加熱評価炉を作製した。図1は片面加熱評価炉の概略断面図である。この図の片面加熱評価炉1は壁面が4層のボードから構成され、内側の1層11としてHS1ボード(測定対象のサンプル)を用い、層12,13はRCF1ボード、外側の層14はケイ酸カルシウムボードを用いた。内部にあるパネルヒーター20により800,900,1000,1100,1200℃にそれぞれ24時間加熱した。結果を表2に示す。HS1ボードは1100℃で加熱し冷却したとき、割れが発生した。
An RCF1 board was produced in the same manner as described above except that RCF1 having the composition shown in Table 1 was used.
A four-layered single-sided heating evaluation furnace was produced. FIG. 1 is a schematic sectional view of a single-sided heating evaluation furnace. In this figure, the single-sided heating evaluation furnace 1 is composed of a board having four layers of walls, an HS1 board (sample to be measured) is used as the inner layer 11, the layers 12 and 13 are RCF1 boards, and the outer layer 14 is a cage. An acid calcium board was used. The panel heater 20 was heated to 800, 900, 1000, 1100, and 1200 ° C. for 24 hours, respectively. The results are shown in Table 2. The HS1 board cracked when heated at 1100 ° C. and cooled.

(2)XRD測定
(1)の1100℃加熱後のHS1ボードの炉内側、中心部、界面側について下記条件でXRD測定をした。その結果を図2に示す。この図に示されるように、炉内側でクリストバライト(SiO)結晶が生成していることが分かった。
また、800,900,1000,1100,1200,1300℃でそれぞれ8時間全面加熱したHS1ボードについて、XRD測定をした。その結果を表2に示す。表2に示されるように、1100℃以上でクリストバライトが多く生成していることが分かる。
XRD測定条件:
測定装置; リガク社製UltimaIII
測定条件; X線:CuKα線、電圧:40KV、電流:30mA、
サンプリング幅; 0.02°、スキャンスピード2.0°/min
(2) XRD measurement The XRD measurement was carried out under the following conditions for the furnace inner side, center part, and interface side of the HS1 board after heating at 1100 ° C. in (1). The result is shown in FIG. As shown in this figure, it was found that cristobalite (SiO 2 ) crystals were generated inside the furnace.
In addition, XRD measurement was performed on the HS1 board heated at 800, 900, 1000, 1100, 1200, and 1300 ° C. for 8 hours. The results are shown in Table 2. As shown in Table 2, it can be seen that a large amount of cristobalite is generated at 1100 ° C. or higher.
XRD measurement conditions:
Measuring device: Ultimate III made by Rigaku
Measurement conditions: X-ray: CuKα ray, voltage: 40 KV, current: 30 mA,
Sampling width: 0.02 °, scan speed 2.0 ° / min

実験例2(比較例)
表1に示す組成を有するRCF1,HS2,HS3,HS4,LS1を用いた他は、実験例1(1)と同様にして、ボードを製造し割れの有無を観察した。結果を表2に示す。1100℃24時間片面加熱にてHS2,HS3,HS4を用いたボードに割れが生じ、LS1を用いたボードには割れが無いかわずかであり、RCF1を用いたボードには割れが無かった。
さらに、実験例1(2)と同様にして800,900,1000,1100,1200,1300℃でそれぞれ8時間全面加熱した各ボードについて、XRD測定をした。その結果を表2に示す。表から、クリストバライトの生成と、割れの発生に相関があることが分かる。
Experimental example 2 (comparative example)
Except for using RCF1, HS2, HS3, HS4, and LS1 having the composition shown in Table 1, a board was manufactured and observed for cracks in the same manner as in Experimental Example 1 (1). The results are shown in Table 2. The board using HS2, HS3, HS4 was cracked by one-side heating at 1100 ° C. for 24 hours, the board using LS1 had no or few cracks, and the board using RCF1 had no cracks.
Further, XRD measurement was performed on each board that was heated for 8 hours at 800, 900, 1000, 1100, 1200, and 1300 ° C. in the same manner as in Experimental Example 1 (2). The results are shown in Table 2. From the table, it can be seen that there is a correlation between the generation of cristobalite and the occurrence of cracks.

実験例3(実施例と比較例)
(1)ボードの製造
使用する繊維として、HS1のみ、LS2のみ、及びHS1とLS2の混合を用いた他は実験例1(1)と同様にしてボードを製造した。混合割合(重量比)は表3に示すように変えた。
(2)割れの評価と結晶
(1)で製造したボードについて、実験例1(1)と同様にして割れの有無を観察した。結果を表3に示す。混合した繊維を用いたボードでは、1200℃の片面加熱でも割れが無いかわずかであり、割れの発生が抑制されていることが分かる。
また、実験例1(2)と同様にして1000,1100,1200,1300℃でそれぞれ8時間全面加熱した各ボードについて、XRD測定をした。その結果を表3に示す。また、1100℃全面加熱したボードのXRDチャートを図3に示す。図3から、LS2の混合割合が増えるとクリストバライトの生成が減少することが分かる。
Experimental Example 3 (Example and Comparative Example)
(1) Production of board A board was produced in the same manner as in Experimental Example 1 (1) except that only HS1, only LS2, and a mixture of HS1 and LS2 were used. The mixing ratio (weight ratio) was changed as shown in Table 3.
(2) Evaluation of crack and crystal About the board manufactured by (1), the presence or absence of the crack was observed like Experimental example 1 (1). The results are shown in Table 3. In the board using the mixed fiber, it can be seen that there is little or no cracking even by single-sided heating at 1200 ° C., and the occurrence of cracking is suppressed.
Further, XRD measurement was performed on each board that was heated at 1000, 1100, 1200, and 1300 ° C. for 8 hours in the same manner as in Experimental Example 1 (2). The results are shown in Table 3. FIG. 3 shows an XRD chart of the board heated at 1100 ° C. over the entire surface. FIG. 3 shows that the generation of cristobalite decreases as the mixing ratio of LS2 increases.

(3)加熱収縮率と耐アルミナ反応性
(1)で製造したボードについて、加熱収縮率と耐アルミナ反応性を以下の方法で測定した。
(i)加熱収縮率(耐熱性)
製造したボードの表面に白金ピンを2点以上打ち込み、その白金ピン間の距離を加熱前後で測定し、その寸法変化率を加熱収縮率とした。結果を図4に示す。LS2の混合割合が約30〜50重量%であると、HS1 100%の場合より、1300℃における加熱収縮率が減少した。
(3) Heat Shrinkage Ratio and Alumina Resistant Resistance With respect to the board manufactured in (1), the heat shrinkage ratio and the alumina resistance resistance were measured by the following methods.
(I) Heat shrinkage rate (heat resistance)
Two or more platinum pins were driven into the surface of the manufactured board, the distance between the platinum pins was measured before and after heating, and the dimensional change rate was defined as the heat shrinkage rate. The results are shown in FIG. When the mixing ratio of LS2 was about 30 to 50% by weight, the heat shrinkage rate at 1300 ° C. was reduced as compared with the case of HS1 100%.

(ii)耐アルミナ反応性
純度99%以上のアルミナ粉末約1gを、直径17mmの金型でプレス成形しペレットとした。このペレットを、ボード上に置いて、1100〜1300℃で8時間加熱した後の反応性を確認した。ペレットと全く反応していない場合を○、ボードと軽く付着している場合を△、ボードが溶融しペレットを外したとき穴が開いた場合を×とした。結果を、表4に示す。LS2が増えると耐アルミナ反応性が低くなる。
(Ii) Alumina resistance About 1 g of alumina powder having a purity of 99% or more was press-molded with a mold having a diameter of 17 mm to form pellets. This pellet was placed on a board and the reactivity after heating at 1100-1300 ° C. for 8 hours was confirmed. The case where it did not react with the pellet at all was marked with ◯, the case where it was lightly attached to the board, and the case where the hole was opened when the board melted and the pellet was removed. The results are shown in Table 4. As LS2 increases, the alumina reactivity decreases.

(4)余剰シリカ
(1)で製造したボードについて余剰シリカを計算した(段落0036参照)。その結果を表5に示す。参考として、1100,1200℃の結晶相と片面加熱時の割れのデータを併記する。余剰シリカが少ないと割れが少ないことが分かる。
(4) Excess silica Excess silica was calculated for the board produced in (1) (see paragraph 0036). The results are shown in Table 5. For reference, the crystal phase at 1100 and 1200 ° C. and the data on cracking during single-sided heating are also shown. It turns out that there are few cracks, when there is little surplus silica.

HS1は、LS2より耐熱性とアルミナ反応性に優れるが、1100℃以上で片面加熱すると割れが生じた。しかしながら、LS2を混合すると、耐熱性とアルミナ反応性をほぼ保ちながら、1100℃以上の片面加熱による割れを抑制できた。   HS1 has better heat resistance and alumina reactivity than LS2, but cracking occurred when heated on one side at 1100 ° C or higher. However, when LS2 was mixed, cracking due to single-sided heating at 1100 ° C. or higher could be suppressed while substantially maintaining heat resistance and alumina reactivity.

本発明の無機繊維質成形体は、一般高温用断熱材、窯炉の天井、炉壁の断熱材用ライニング材、断熱材、バックアップ材として様々な用途に用いることができる。   The inorganic fibrous molded body of the present invention can be used in various applications as a general high-temperature heat insulating material, a furnace furnace ceiling, a furnace wall heat insulating material lining material, a heat insulating material, and a backup material.

1 片面加熱評価炉
11 HS1ボード
12,13,14 RCF1ボード
20 パネルヒーター
1 Single-sided heating evaluation furnace 11 HS1 board 12, 13, 14 RCF1 board 20 Panel heater

Claims (10)

カルシア及びマグネシアから選択される1以上の金属酸化物と、シリカを含み、前記金属酸化物を18〜30重量%、前記シリカを70〜82重量%含む第1の無機繊維と、
カルシア及びマグネシアから選択される1以上の金属酸化物と、シリカを含み、前記金属酸化物を18〜50重量%、前記シリカを50重量%以上70重量%未満含む第2の無機繊維と
を含む無機繊維質成形体(但しマットは除く)
One or more metal oxides selected from calcia and magnesia, silica, a first inorganic fiber containing 18-30 wt% of the metal oxide and 70-82 wt% of the silica;
One or more metal oxides selected from calcia and magnesia, and containing silica, 18 to 50% by weight of the metal oxide, and a second inorganic fiber containing 50 to 70% by weight of the silica. Inorganic fiber molded body (excluding mats) .
カルシア及びマグネシアから選択される1以上の金属酸化物を18〜30重量%、シリカを70〜82重量%、Al 、TiO 及びZrO から選択される1以上を0重量%〜6重量%の含有量で含む第1の無機繊維と、
カルシア及びマグネシアから選択される1以上の金属酸化物を30重量%〜43重量%、シリカを57重量%以上70重量%未満、Al 、TiO 及びZrO から選択される1以上を0重量%〜3重量%の含有量で含む第2の無機繊維と
を含む無機繊維質成形体。
One or more metal oxides selected from calcia and magnesia 18-30 wt%, by silica 70 to 82 wt%, Al 2 O 3, TiO 2 and 0% by weight of one or more selected from ZrO 2 ~ A first inorganic fiber comprising a content of 6% by weight ;
One or more metal oxides selected from calcia and magnesia 30 wt% to 43 wt%, shea silica less than 70 wt% 57 wt% or more, Al 2 O 3, TiO 2 and one or more selected from ZrO 2 And an inorganic fiber molded body containing a second inorganic fiber containing 0 to 3% by weight .
前記第1の無機繊維と前記第2の無機繊維の重量比が、第1の無機繊維:第2の無機繊維=5〜95:95〜5である請求項1又は2記載の無機繊維質成形体。 The inorganic fiber molding according to claim 1 or 2 , wherein a weight ratio of the first inorganic fiber to the second inorganic fiber is first inorganic fiber: second inorganic fiber = 5 to 95: 95-5. body. 前記第1の無機繊維は、前記金属酸化物とシリカを90重量%以上含み、
前記第2の無機繊維は、前記金属酸化物とシリカを90重量%以上含む請求項1〜3のいずれか記載の無機繊維質成形体。
The first inorganic fiber includes 90% by weight or more of the metal oxide and silica,
The inorganic fiber molded body according to any one of claims 1 to 3, wherein the second inorganic fiber includes 90% by weight or more of the metal oxide and silica.
前記第1の無機繊維が以下の成分を以下の含有量で含む請求項1〜4のいずれか記載の無機繊維質成形体。
SiO:72重量%〜82重量%
MgO:8重量%〜22重量%
CaO:4重量%〜14重量%
Al:0重量%〜3重量%
SiO、MgO及びCaOの3成分を主成分とする
The inorganic fiber molded body according to any one of claims 1 to 4, wherein the first inorganic fiber includes the following components in the following content.
SiO 2: 72 wt% to 82 wt%
MgO: 8 to 22% by weight
CaO: 4 to 14% by weight
Al 2 O 3: 0 wt% to 3 wt%
Mainly composed of three components of SiO 2 , MgO and CaO
前記第2の無機繊維が以下の成分を以下の含有量で含む請求項1〜のいずれか記載の無機繊維質成形体。
SiO 58重量%以上70重量%未満
CaO 25〜38重量%
MgO 2〜10重量%
Al 0重量%〜3重量%
The inorganic fiber molded body according to any one of claims 1 to 5 , wherein the second inorganic fiber includes the following components in the following content.
SiO 2 58 wt% or more and less than 70 wt% CaO 25 to 38 wt%
MgO 2 to 10% by weight
Al 2 O 3 0% by weight to 3% by weight
Si,Ca,Mg及びAlが、ディオプサイド、ワラストナイト、エンスタタイト及びムライトの結晶を最大限生成したと仮定したときの余剰シリカの含有量が50モル%以下である請求項1〜のいずれか記載の無機繊維質成形体。 Si, Ca, Mg and Al, claim diopside, wollastonite, the amount of excess silica when enstatite and mullite crystals was assumed to have maximally generated is not more than 50 mol% 1-6 An inorganic fibrous molded article according to any one of the above. シリカの含有量が75重量%以下である請求項1〜のいずれか記載の無機繊維質成形体。 The inorganic fibrous molded body according to any one of claims 1 to 7 , wherein the content of silica is 75% by weight or less. 1100℃で片面を24時間加熱したとき、割れを生じない請求項1〜のいずれか記載の無機繊維質成形体。 The inorganic fiber molded body according to any one of claims 1 to 8 , wherein no cracks are produced when one side is heated at 1100 ° C for 24 hours. 1200℃で片面を24時間加熱したとき、割れを生じない請求項1〜のいずれか記載の無機繊維質成形体。 The inorganic fibrous molded body according to any one of claims 1 to 9 , wherein when one side is heated at 1200 ° C for 24 hours, no crack is generated.
JP2016174558A 2016-09-07 2016-09-07 Inorganic fiber molded body Active JP6453824B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016174558A JP6453824B2 (en) 2016-09-07 2016-09-07 Inorganic fiber molded body
PCT/JP2017/031889 WO2018047801A1 (en) 2016-09-07 2017-09-05 Inorganic fibrous molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016174558A JP6453824B2 (en) 2016-09-07 2016-09-07 Inorganic fiber molded body

Publications (2)

Publication Number Publication Date
JP2018040536A JP2018040536A (en) 2018-03-15
JP6453824B2 true JP6453824B2 (en) 2019-01-16

Family

ID=61562642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016174558A Active JP6453824B2 (en) 2016-09-07 2016-09-07 Inorganic fiber molded body

Country Status (2)

Country Link
JP (1) JP6453824B2 (en)
WO (1) WO2018047801A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359530B2 (en) * 2018-05-22 2023-10-11 イビデン株式会社 Heat transfer suppression sheet for assembled batteries and assembled batteries

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037634A1 (en) * 2009-09-24 2011-03-31 Unifrax I Llc Multiple layer mat and exhaust gas treatment device
US8834758B2 (en) * 2010-04-13 2014-09-16 3M Innovative Properties Company Thick inorganic fiber webs and methods of making and using
JP4975179B2 (en) * 2010-10-14 2012-07-11 ニチアス株式会社 INORGANIC FIBER MOLDED BODY, ITS MANUFACTURING METHOD, AND HEATING EQUIPMENT
JP5743777B2 (en) * 2011-07-25 2015-07-01 ニチアス株式会社 Retaining material for catalytic converter
JP2013170338A (en) * 2012-02-22 2013-09-02 Ibiden Co Ltd Mat material, method for manufacturing mat material, and exhaust gas purification apparatus
JP6228445B2 (en) * 2013-12-06 2017-11-08 イビデン株式会社 Holding sealing material, manufacturing method of holding sealing material, and exhaust gas purification device
JP6595882B2 (en) * 2014-11-20 2019-10-23 花王株式会社 Catalytic fiber structure

Also Published As

Publication number Publication date
JP2018040536A (en) 2018-03-15
WO2018047801A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
KR102168895B1 (en) Bio-soluble inorganic fiber
EP2692946B1 (en) Inorganic-fiber based paper and method for manufacturing same
JP6266250B2 (en) Heat resistant inorganic fiber
JP6554269B2 (en) Method for producing biosoluble inorganic fiber
JP6453824B2 (en) Inorganic fiber molded body
EP2640878B1 (en) Inorganic fiber
JP6288864B2 (en) Refractory insulation structure
WO2014115550A1 (en) Bio-soluble inorganic fiber and bio-soluble inorganic fiber composition
JP6212040B2 (en) Heat resistant inorganic fiber
JP6386232B2 (en) Surface-modified inorganic fiber and method for producing the same
JPWO2014049988A1 (en) Biologically soluble inorganic fiber and composition thereof
JP5945596B2 (en) Si-Mg based inorganic fiber and composition thereof
JP2014058423A (en) Biosoluble inorganic fiber having heat resistance and composition thereof
JP2013136848A (en) Inorganic fibrous formed article having high flexibility
JP6513905B2 (en) Biosoluble inorganic fiber
JP5856541B2 (en) Al-Ca inorganic fiber soluble in physiological saline and composition thereof
JPWO2013132859A1 (en) Sr / Ba-containing inorganic fiber soluble in physiological saline and composition thereof
WO2013132858A1 (en) La/Ce-CONTAINING INORGANIC FIBRES THAT ARE SOLUBLE IN PHYSIOLOGICAL SALINE, AND COMPOSITION THEREOF

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181213

R150 Certificate of patent or registration of utility model

Ref document number: 6453824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250