JP5162483B2 - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
JP5162483B2
JP5162483B2 JP2009015708A JP2009015708A JP5162483B2 JP 5162483 B2 JP5162483 B2 JP 5162483B2 JP 2009015708 A JP2009015708 A JP 2009015708A JP 2009015708 A JP2009015708 A JP 2009015708A JP 5162483 B2 JP5162483 B2 JP 5162483B2
Authority
JP
Japan
Prior art keywords
water vapor
tank
chamber
diaphragm
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009015708A
Other languages
Japanese (ja)
Other versions
JP2010175294A (en
Inventor
大一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2009015708A priority Critical patent/JP5162483B2/en
Publication of JP2010175294A publication Critical patent/JP2010175294A/en
Application granted granted Critical
Publication of JP5162483B2 publication Critical patent/JP5162483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は、隔膜型の圧力センサに関し、特に、真空チャンバに水蒸気を供給する水蒸気タンク(以下「タンク」という)内の水蒸気圧を測定するものに関する。   The present invention relates to a diaphragm type pressure sensor, and more particularly, to a device for measuring a water vapor pressure in a water vapor tank (hereinafter referred to as “tank”) for supplying water vapor to a vacuum chamber.

透明電極膜の成膜プロセスにおいては、反応ガスとして水蒸気を真空チャンバに供給する場合がある。このようなプロセスでは、タンク内の水蒸気が、タンクと真空チャンバとの間を連通する供給路を介して真空チャンバに供給される。真空チャンバに供給される水蒸気の流量は、供給路の途中に設けられたマスフローコントローラを用いて制御される。この流量制御が適正に行われているか否かを判断するため、圧力センサを用いてタンク内の水蒸気圧を測定することが行われている。   In the film forming process of the transparent electrode film, water vapor may be supplied to the vacuum chamber as a reaction gas. In such a process, water vapor in the tank is supplied to the vacuum chamber via a supply path that communicates between the tank and the vacuum chamber. The flow rate of water vapor supplied to the vacuum chamber is controlled using a mass flow controller provided in the middle of the supply path. In order to determine whether or not this flow rate control is properly performed, the water vapor pressure in the tank is measured using a pressure sensor.

ここで、真空チャンバ内の圧力はタンク内の水蒸気圧よりも低いため、タンクから真空チャンバに水蒸気を供給するためにタンクと真空チャンバとを連通させると、タンク内の水蒸気圧が下がり、水蒸気から気化熱が奪われる。その結果、水蒸気の凝結が起こり、凝結した水蒸気の一部が圧力センサの隔膜表面で氷結する。隔膜表面で水蒸気が氷結すると、水蒸気圧の計測精度が低下するという問題がある。   Here, since the pressure in the vacuum chamber is lower than the water vapor pressure in the tank, when the tank and the vacuum chamber are connected to supply water vapor from the tank to the vacuum chamber, the water vapor pressure in the tank decreases, The heat of vaporization is taken away. As a result, condensation of water vapor occurs, and a part of the condensed water vapor freezes on the diaphragm surface of the pressure sensor. When water vapor freezes on the surface of the diaphragm, there is a problem that the measurement accuracy of the water vapor pressure is lowered.

ところで、従来、真空チャンバ内の圧力を測定する圧力センサとして、隔膜を加熱するヒータを備えたものが知られている(例えば、特許文献1参照)。このような構成を上記用途のものに適用し、隔膜表面での水蒸気の氷結を防ぐことが考えられる。   By the way, conventionally, a pressure sensor that measures a pressure in a vacuum chamber is known that includes a heater that heats a diaphragm (see, for example, Patent Document 1). It can be considered that such a configuration is applied to the above-mentioned use to prevent water vapor icing on the surface of the diaphragm.

然し、ヒータにより隔膜を加熱すると、熱変形を起こし、水蒸気圧の測定精度の低下を招くという問題が生じる。さらに、ヒータにより隔膜を加熱する場合、隔膜の温度に応じて測定結果を校正する演算処理や、隔膜の温度を一定に保つためにヒータを周期的にON又はOFFする制御を行うための構成を別途設ける必要があり、圧力センサの構成が複雑化するという問題が生じる。   However, when the diaphragm is heated by the heater, there arises a problem that thermal deformation is caused and the measurement accuracy of the water vapor pressure is lowered. Furthermore, when the diaphragm is heated by a heater, there is a configuration for performing a calculation process for calibrating the measurement result according to the temperature of the diaphragm and a control for periodically turning the heater ON or OFF in order to keep the diaphragm temperature constant. There is a problem that the configuration of the pressure sensor becomes complicated because it is necessary to provide the pressure sensor separately.

特開平10−153510号公報JP-A-10-153510

本発明は、以上の点に鑑み、隔膜表面での水蒸気の氷結を防止しつつ、タンク内の水蒸気圧を高精度に測定することができる簡単な構成の圧力センサを提供することをその課題とする。   In view of the above points, the present invention has an object to provide a pressure sensor with a simple configuration capable of measuring the water vapor pressure in the tank with high accuracy while preventing freezing of water vapor on the surface of the diaphragm. To do.

上記課題を解決するため、本発明は、一定圧力に保たれた第一室と、真空チャンバに水蒸気を供給するタンクに連通する第二室と、第一室と第二室とを隔絶する隔膜とを備え、タンク内の水蒸気圧変動に応じて生ずる前記第一室と第二室との間の圧力差に応じた隔膜の変位量に基づいて、タンク内の水蒸気圧を測定する圧力センサにおいて、第二室からタンクへと通じる連通路中に発熱体を設け、発熱体からの輻射熱が隔膜に達しないように隔膜から発熱体を離間させたことを特徴とする。   In order to solve the above problems, the present invention provides a first chamber maintained at a constant pressure, a second chamber communicating with a tank that supplies water vapor to the vacuum chamber, and a diaphragm that isolates the first chamber from the second chamber. And a pressure sensor for measuring the water vapor pressure in the tank based on the amount of displacement of the diaphragm in accordance with the pressure difference between the first chamber and the second chamber that occurs in response to the water vapor pressure fluctuation in the tank. The heating element is provided in the communication path from the second chamber to the tank, and the heating element is separated from the diaphragm so that the radiant heat from the heating element does not reach the diaphragm.

本発明において、上記発熱体は、メッシュ電極であってもよい。   In the present invention, the heating element may be a mesh electrode.

本発明によれば、タンク内の水蒸気を真空チャンバに供給するためにタンクと真空チャンバとを連通させると、タンク内の圧力が低下して、気化熱が奪われるが、タンクから第二室へと通じる連通路中に設けられた発熱体によって上記奪われた気化熱を補うことで、隔膜表面での水蒸気の氷結を防止でき、タンク内の水蒸気圧を高精度に測定することができる。また、発熱体からの輻射熱により隔膜が加熱されないため、隔膜の熱変形を防止できる。また、連通路中に発熱体を設けるだけで隔膜表面での水蒸気の氷結を防止できるため、圧力センサの構成が簡単である。   According to the present invention, when the tank and the vacuum chamber are connected to supply the water vapor in the tank to the vacuum chamber, the pressure in the tank is reduced and the vaporization heat is removed, but the tank is transferred to the second chamber. By supplementing the heat of vaporization taken away by the heating element provided in the communication path communicating with the water vapor, icing of water vapor on the surface of the diaphragm can be prevented, and the water vapor pressure in the tank can be measured with high accuracy. Moreover, since the diaphragm is not heated by the radiant heat from the heating element, thermal deformation of the diaphragm can be prevented. Further, since the water vapor can be prevented from icing on the surface of the diaphragm simply by providing a heating element in the communication path, the configuration of the pressure sensor is simple.

本発明の実施の形態において水蒸気の供給システムを示す概略図である。It is the schematic which shows the supply system of water vapor | steam in embodiment of this invention. 圧力センサ1を拡大して示す図である。It is a figure which expands and shows the pressure sensor.

以下、図面を参照して、本発明の実施の形態による圧力センサについて説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。   Hereinafter, a pressure sensor according to an embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

図1に示す隔膜型の圧力センサ1は、タンク2内に連通して設けられている。タンク2内には、水20が貯留されると共に、水蒸気が満たされる。タンク2は、水蒸気供給通路3を介して真空チャンバ4に連通している。   A diaphragm type pressure sensor 1 shown in FIG. 1 is provided in communication with a tank 2. The tank 2 stores water 20 and is filled with water vapor. The tank 2 communicates with the vacuum chamber 4 through the water vapor supply passage 3.

真空チャンバ4は、例えば、反応ガスとして水蒸気を用いる透明電極膜の成膜プロセスが行われる処理室である。タンク2と真空チャンバ4との間を連通する水蒸気供給通路3には、タンク2に近い方からバルブ5及びマスフローコントローラ6が設けられている。マスフローコントローラ6は、真空チャンバ4内に供給される水蒸気の流量を制御するものである。   The vacuum chamber 4 is a processing chamber in which, for example, a transparent electrode film forming process using water vapor as a reaction gas is performed. The water vapor supply passage 3 that communicates between the tank 2 and the vacuum chamber 4 is provided with a valve 5 and a mass flow controller 6 from the side closer to the tank 2. The mass flow controller 6 controls the flow rate of water vapor supplied into the vacuum chamber 4.

次に、図2を参照して、圧力センサ1の詳細について説明する。圧力センサ1は、筐体10を備えている。筐体10内には、一定圧力に保たれた第一室11と、タンク2と連通路17を介して連通する第二室12と、これら第一室11と第二室12とを隔絶する隔膜(ダイヤフラム)13とが設けられている。   Next, the details of the pressure sensor 1 will be described with reference to FIG. The pressure sensor 1 includes a housing 10. In the housing 10, the first chamber 11 maintained at a constant pressure, the second chamber 12 communicating with the tank 2 via the communication passage 17, and the first chamber 11 and the second chamber 12 are isolated. A diaphragm (diaphragm) 13 is provided.

隔膜13は、例えば、ニッケル系の金属の薄膜によって構成され、第一室11と第二室12との間の圧力差に応じて変位するものである。上記したように第一室11の圧力は一定であるため、隔膜13は、タンク2内の水蒸気圧変動に応じて生じる上記圧力差に応じて変位する。   The diaphragm 13 is made of, for example, a nickel-based metal thin film, and is displaced according to the pressure difference between the first chamber 11 and the second chamber 12. As described above, since the pressure in the first chamber 11 is constant, the diaphragm 13 is displaced according to the pressure difference generated according to the water vapor pressure fluctuation in the tank 2.

第一室11の中には、隔膜13に対向して固定電極14が配置されている。固定電極14は、信号線15を介して測定部16に接続されている。固定電極14と隔膜13との間には、隔膜13の変位量に応じた静電容量が発生し、その静電容量の値が固定電極14から出力される。測定部16は、固定電極14から入力された静電容量の値に基づいて、第二室12内の水蒸気圧、つまり、第二室12と連通するタンク2内の水蒸気圧を測定する。   A fixed electrode 14 is arranged in the first chamber 11 so as to face the diaphragm 13. The fixed electrode 14 is connected to the measurement unit 16 via the signal line 15. An electrostatic capacity corresponding to the amount of displacement of the diaphragm 13 is generated between the fixed electrode 14 and the diaphragm 13, and the value of the electrostatic capacity is output from the fixed electrode 14. The measuring unit 16 measures the water vapor pressure in the second chamber 12, that is, the water vapor pressure in the tank 2 communicating with the second chamber 12 based on the capacitance value input from the fixed electrode 14.

圧力測定室12からタンク2へと通じる連通路17中には、水蒸気の通過を許容するように発熱体18が設けられている。つまり、発熱体18の第二室12側とタンク2側との間で圧力差が生じないように、発熱体18が構成されている。   A heating element 18 is provided in the communication path 17 leading from the pressure measurement chamber 12 to the tank 2 so as to allow passage of water vapor. That is, the heating element 18 is configured so as not to cause a pressure difference between the second chamber 12 side and the tank 2 side of the heating element 18.

発熱体18として、メッシュ電極を用いることができる。メッシュ電極18を構成する金属線18aの材料は、例えば、タングステン、ニッケルクロムの中から選択できる。金属線18aの直径は、例えば、0.5mm〜1.5mmの範囲内で設定することが好適であり、1mmに設定することができる。金属線18aの間隔は、水蒸気の通過を考慮して、例えば、1mm〜5mmの範囲内に設定することが好適であり、1mmに設定することができる。   A mesh electrode can be used as the heating element 18. The material of the metal wire 18a constituting the mesh electrode 18 can be selected from, for example, tungsten and nickel chrome. The diameter of the metal wire 18a is preferably set within a range of 0.5 mm to 1.5 mm, for example, and can be set to 1 mm. Considering the passage of water vapor, the interval between the metal wires 18a is preferably set within a range of 1 mm to 5 mm, for example, and can be set to 1 mm.

尚、発熱体18は、上記のメッシュ電極に限らず、コイル状の金属線であってもよい。   The heating element 18 is not limited to the mesh electrode, and may be a coiled metal wire.

発熱体18に電力供給部19から電力供給されると、発熱体18は、例えば40℃〜50℃に加熱される。発熱体18からの輻射熱が隔膜13に達しないように、つまり、発熱体18によって隔膜13が加熱されないように、発熱体18は隔膜13から距離dだけ離間している。距離dは、配管径が、例えば、3/8インチ(9.5mm)〜1/2インチ(12.7mm)の範囲内である場合に、配管径の3倍乃至7倍の範囲内で設定することが好適である。これは、輻射熱の伝熱量は距離の2乗に逆比例(反比例)することによるもので、距離dが配管径の3倍の長さよりも短いと発熱体18からの輻射熱が隔膜13に達する虞がある。また、距離dが配管径の7倍の長さよりも長いと、タンク2内の奪われた気化熱を十分に補うことができず、水蒸気の凝結が起こり、凝結した水蒸気の一部が隔膜13表面で氷結し、水蒸気圧の計測精度が低下する虞がある。   When power is supplied to the heating element 18 from the power supply unit 19, the heating element 18 is heated to 40 ° C. to 50 ° C., for example. The heating element 18 is separated from the diaphragm 13 by a distance d so that the radiant heat from the heating element 18 does not reach the diaphragm 13, that is, the diaphragm 13 is not heated by the heating element 18. The distance d is set within a range of 3 to 7 times the pipe diameter when the pipe diameter is, for example, in the range of 3/8 inch (9.5 mm) to 1/2 inch (12.7 mm). It is preferable to do. This is because the amount of radiant heat transfer is inversely proportional (in inverse proportion) to the square of the distance. If the distance d is shorter than three times the pipe diameter, the radiant heat from the heating element 18 may reach the diaphragm 13. There is. On the other hand, if the distance d is longer than seven times the pipe diameter, the heat of vaporization in the tank 2 cannot be sufficiently compensated for, and water vapor condenses, and a part of the condensed water vapor is separated from the diaphragm 13. There is a possibility that the measurement accuracy of water vapor pressure may be reduced due to icing on the surface.

次に、図1及び図2を参照して、上記圧力センサ1を用いた水蒸気圧の測定について説明する。   Next, with reference to FIG.1 and FIG.2, the measurement of the water vapor pressure using the said pressure sensor 1 is demonstrated.

真空チャンバ4に水蒸気を供給するためには、大気圧にてタンク2内に予め水20を貯留しておく必要がある。その後、タンク2内を約10kP程度に減圧してから、水20を供給するのがよい。   In order to supply water vapor to the vacuum chamber 4, it is necessary to store the water 20 in advance in the tank 2 at atmospheric pressure. Then, after reducing the pressure in the tank 2 to about 10 kP, the water 20 is preferably supplied.

タンク2内に水20が貯留されると、タンク2内に水蒸気が満たされる。この状態で、バルブ5を開操作すると共に、マスフローコントローラ6に対して目標流量を例えば、0.1sccm〜10sccmの範囲内で設定すると、タンク2内の水蒸気が水蒸気供給通路3を介して真空チャンバ4に供給される。   When the water 20 is stored in the tank 2, the tank 2 is filled with water vapor. In this state, when the valve 5 is opened and the target flow rate is set to the mass flow controller 6 within a range of 0.1 sccm to 10 sccm, for example, the water vapor in the tank 2 passes through the water vapor supply passage 3 to the vacuum chamber. 4 is supplied.

ここで、真空チャンバ4に供給される水蒸気の流量がマスフローコントローラ6により適正に制御されているか否かを判断するために、圧力センサ1を用いてタンク2内の水蒸気圧が測定される。つまり、マスフローコントローラ6の設定流量に応じた所定の圧力範囲内(例えば、数kPa〜10kPa)にタンク2内の水蒸気圧が収まっているか否かがモニタされる。タンク2内の水蒸気圧が変動すると、連通路17を介してタンク2と連通する第二室12の圧力が変動し、第一室11と第二室12との間の圧力差が変動するため、隔膜13が変位する。この隔膜13の変位に応じて隔膜13と電極14との間に生じる静電容量に基づいて、タンク2内の水蒸気圧が測定部16により測定される。   Here, in order to determine whether or not the flow rate of the water vapor supplied to the vacuum chamber 4 is properly controlled by the mass flow controller 6, the water vapor pressure in the tank 2 is measured using the pressure sensor 1. That is, it is monitored whether or not the water vapor pressure in the tank 2 is within a predetermined pressure range (for example, several kPa to 10 kPa) according to the set flow rate of the mass flow controller 6. When the water vapor pressure in the tank 2 fluctuates, the pressure in the second chamber 12 communicating with the tank 2 through the communication passage 17 fluctuates, and the pressure difference between the first chamber 11 and the second chamber 12 fluctuates. The diaphragm 13 is displaced. Based on the capacitance generated between the diaphragm 13 and the electrode 14 in accordance with the displacement of the diaphragm 13, the water vapor pressure in the tank 2 is measured by the measuring unit 16.

ところで、真空チャンバ4内の圧力は、タンク2内の水蒸気圧よりも低く、例えば、約0.5Pa〜1Paの範囲内である。このため、上記のようにバルブ5及びマスフローコントローラ6を操作して真空チャンバ4とタンク2とを連通させると、タンク2内の水蒸気圧が下がることから、水蒸気から気化熱が奪われる。   By the way, the pressure in the vacuum chamber 4 is lower than the water vapor pressure in the tank 2 and is, for example, in the range of about 0.5 Pa to 1 Pa. For this reason, when the valve 5 and the mass flow controller 6 are operated as described above to cause the vacuum chamber 4 and the tank 2 to communicate with each other, the water vapor pressure in the tank 2 decreases, so that the heat of vaporization is deprived from the water vapor.

この奪われた気化熱を、上記したように連通路17中に設けられた発熱体18により補うことによって、隔膜13表面での水蒸気の氷結を防ぐことができる。   By supplementing the deprived heat of vaporization with the heating element 18 provided in the communication passage 17 as described above, freezing of water vapor on the surface of the diaphragm 13 can be prevented.

以上説明したように、本実施の形態によれば、タンク2内の水蒸気を真空チャンバ4に供給するためにタンク2と真空チャンバ4とを連通させると、タンク2内の圧力が低下して、気化熱が奪われるが、タンク2から第二室12へと通じる連通路17中に設けられた発熱体18によって上記奪われた気化熱を補うことで、隔膜13表面での水蒸気の氷結を防ぐことができ、タンク2内の水蒸気圧を高精度に測定できる。また、発熱体18からの輻射熱により隔膜13が加熱されないため、隔膜13の熱変形を防止できる。発熱体18を設けただけで隔膜13表面での水蒸気の氷結を防止できるため、圧力センサ1の構成を簡単にすることができる。   As described above, according to the present embodiment, when the tank 2 and the vacuum chamber 4 are communicated to supply the water vapor in the tank 2 to the vacuum chamber 4, the pressure in the tank 2 decreases, Although the heat of vaporization is deprived, the heat generated by the heating element 18 provided in the communication passage 17 leading from the tank 2 to the second chamber 12 is supplemented to prevent the vaporization of water vapor on the surface of the diaphragm 13. The water vapor pressure in the tank 2 can be measured with high accuracy. Moreover, since the diaphragm 13 is not heated by the radiant heat from the heat generating body 18, the thermal deformation of the diaphragm 13 can be prevented. Since the freezing of water vapor on the surface of the diaphragm 13 can be prevented only by providing the heating element 18, the configuration of the pressure sensor 1 can be simplified.

1 圧力センサ
2 タンク
4 真空チャンバ
11 第一室
12 第二室
13 隔膜
17 連通路
18 発熱体
DESCRIPTION OF SYMBOLS 1 Pressure sensor 2 Tank 4 Vacuum chamber 11 1st chamber 12 2nd chamber 13 Diaphragm 17 Communication path 18 Heating body

Claims (2)

一定圧力に保たれた第一室と、
真空チャンバに水蒸気を供給するタンクに連通する第二室と、
前記第一室と前記第二室とを隔絶する隔膜とを備え、タンク内の水蒸気圧変動に応じて生ずる前記第一室と第二室との間の圧力差に応じた前記隔膜の変位量に基づいて、前記タンク内の水蒸気圧を測定する圧力センサにおいて、
前記第二室からタンクへと通じる連通路中に発熱体を設け、この発熱体からの輻射熱が前記隔膜に達しないように前記隔膜から前記発熱体を離間させたことを特徴とする圧力センサ。
A first chamber maintained at a constant pressure;
A second chamber communicating with a tank for supplying water vapor to the vacuum chamber;
A diaphragm that separates the first chamber from the second chamber, and a displacement amount of the diaphragm according to a pressure difference between the first chamber and the second chamber that occurs in response to a change in water vapor pressure in the tank In the pressure sensor for measuring the water vapor pressure in the tank,
A pressure sensor characterized in that a heating element is provided in a communication path leading from the second chamber to the tank, and the heating element is separated from the diaphragm so that radiant heat from the heating element does not reach the diaphragm.
前記発熱体は、メッシュ電極であることを特徴とする請求項1記載の圧力センサ。   The pressure sensor according to claim 1, wherein the heating element is a mesh electrode.
JP2009015708A 2009-01-27 2009-01-27 Pressure sensor Expired - Fee Related JP5162483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015708A JP5162483B2 (en) 2009-01-27 2009-01-27 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015708A JP5162483B2 (en) 2009-01-27 2009-01-27 Pressure sensor

Publications (2)

Publication Number Publication Date
JP2010175294A JP2010175294A (en) 2010-08-12
JP5162483B2 true JP5162483B2 (en) 2013-03-13

Family

ID=42706425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015708A Expired - Fee Related JP5162483B2 (en) 2009-01-27 2009-01-27 Pressure sensor

Country Status (1)

Country Link
JP (1) JP5162483B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754197B2 (en) * 2011-03-24 2015-07-29 株式会社富士通ゼネラル Four-way valve and heat pump device equipped with it
JP6787636B2 (en) * 2016-01-13 2020-11-18 国立大学法人 東京大学 Vacuum measurement sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637341U (en) * 1986-07-02 1988-01-19
JPH01152232U (en) * 1988-04-13 1989-10-20
JPH10135195A (en) * 1996-10-30 1998-05-22 Hitachi Ltd Manufacture of semiconductor, semiconductor wafer, semiconductor element, and semiconductor manufacturing apparatus
JPH10153510A (en) * 1996-11-21 1998-06-09 Nec Kansai Ltd Vacuum apparatus and diaphragm vacuum gauge
JP2000273625A (en) * 1999-03-18 2000-10-03 Toshiba Corp Plasma process device
JP2007292547A (en) * 2006-04-24 2007-11-08 Mitsubishi Electric Corp Pressure sensor, and inspection method for pressure sensor
JP2008008712A (en) * 2006-06-28 2008-01-17 Nissan Motor Co Ltd Pressure detecting device
TW200946888A (en) * 2008-01-31 2009-11-16 Eagle Ind Co Ltd Heating device for pressure measurement and pressure measuring device

Also Published As

Publication number Publication date
JP2010175294A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
TWI578133B (en) Methods for in-situ calibration of a flow controller and apparatus thereof
JP6578125B2 (en) Vaporization supply device
US10585010B2 (en) Pressure sensor having a temperature control unit and a temperature difference calculation unit
TWI583927B (en) Methods for monitoring a flow controller coupled to a process chamber
TWI628717B (en) Heating vaporization system and heating vaporization method
US11066746B1 (en) Liquid material vaporization and supply device, and control program
JP7097085B2 (en) Fluid control device
JP6718363B2 (en) Humidity sensor and manufacturing method thereof
JP5162483B2 (en) Pressure sensor
JP2020503615A5 (en)
CN108398204B (en) Pressure sensor
JP2020523549A5 (en)
JP2015158341A (en) scale adhesion determining device
WO2009096379A1 (en) Heating device for pressure measurement and pressure measuring device
WO2021200227A1 (en) Gas supply amount measurement method and gas supply amount control method
JP2016200409A (en) Steam flow rate measuring system and method
JP6401584B2 (en) Liquid level detection device and liquid level detection system
WO2016114117A1 (en) Temperature controlling apparatus, lithography apparatus, and method of manufacturing article
JP2016200413A (en) Wetness measuring system and method
JP5157767B2 (en) Flow control device
JP2010065870A (en) Method and device for controlling superheated-steam generating amount and temperature
JP6613609B2 (en) Measuring system and method
JP2016133927A5 (en)
TW202133230A (en) Vaporization supply method and vaporization supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5162483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees