JP5162437B2 - Accumulator for refrigeration cycle - Google Patents

Accumulator for refrigeration cycle Download PDF

Info

Publication number
JP5162437B2
JP5162437B2 JP2008333393A JP2008333393A JP5162437B2 JP 5162437 B2 JP5162437 B2 JP 5162437B2 JP 2008333393 A JP2008333393 A JP 2008333393A JP 2008333393 A JP2008333393 A JP 2008333393A JP 5162437 B2 JP5162437 B2 JP 5162437B2
Authority
JP
Japan
Prior art keywords
accumulator
screw portion
refrigeration cycle
container body
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008333393A
Other languages
Japanese (ja)
Other versions
JP2010156472A (en
Inventor
宏行 斗谷
信之介 前多
陽一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2008333393A priority Critical patent/JP5162437B2/en
Publication of JP2010156472A publication Critical patent/JP2010156472A/en
Application granted granted Critical
Publication of JP5162437B2 publication Critical patent/JP5162437B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、例えば、二酸化炭素(CO2)を冷媒とした超臨界冷凍サイクルに用いられるアキュムレータに関する。 The present invention relates to an accumulator used in, for example, a supercritical refrigeration cycle using carbon dioxide (CO 2 ) as a refrigerant.

従来、フロンガス(CFC、クロロフルオロカーボン)やその代替フロン(HFC、ハイドロフルオロカーボン)を冷媒に使用した冷凍サイクルは環境に負荷をかけるため、環境にあまり負荷をかけないCO2を冷媒に用いたCO2冷凍サイクルによる冷却システムの開発が進められている。 Traditionally, chlorofluorocarbons (CFC, chlorofluorocarbon) or its substitute chlorofluorocarbon (HFC, hydrofluorocarbon) for applying load to the refrigerating cycle environment using the refrigerant, CO 2 using CO 2 not to apply too much load on the environment in a refrigerant Development of a cooling system using a refrigeration cycle is underway.

二酸化炭素CO2は、臨界温度(圧縮してもそれ以下の温度でなければ液体にできない境界温度)が31.1℃と低く、このCO2を冷媒とするCO2冷凍サイクルにおいて高圧側では冷媒圧力をCO2の臨界圧(7.4MPa)を超えるように設定することで冷媒を高温高圧の超臨界状態として、超臨界冷凍サイクルにおいて高温となる高圧側を設け、この超臨界冷凍サイクルにおいて低温度となる低圧側との熱交換に利用する。このようにCO2臨界圧を超えるように冷媒圧力を設定するため、CO2冷凍サイクルは超臨界冷凍サイクルと呼ばれる。 Carbon dioxide CO 2 has a low critical temperature (boundary temperature that cannot be converted to a liquid unless compressed to a temperature below it) as low as 31.1 ° C., and in the CO 2 refrigeration cycle using this CO 2 as a refrigerant, it is a refrigerant on the high pressure side. By setting the pressure to exceed the critical pressure of CO 2 (7.4 MPa), the refrigerant is placed in a supercritical state of high temperature and high pressure, and a high pressure side that is high in the supercritical refrigeration cycle is provided. It is used for heat exchange with the low-pressure side that is the temperature. Since the refrigerant pressure is set to exceed the CO 2 critical pressure in this way, the CO 2 refrigeration cycle is called a supercritical refrigeration cycle.

高圧側の超臨界運転を利用すると比較的容易に高温(80 ℃以上)が取り出せることより,冷・温熱同時取り出し装置(いわゆる熱回収機)としての総合効率(冷熱,温熱,両側のエネルギー効率の和)が高い。   By using supercritical operation on the high-pressure side, high temperature (80 ° C or higher) can be taken out relatively easily, so the total efficiency (cooling, heating, energy efficiency on both sides) as a cold and hot simultaneous take-out device (so-called heat recovery machine) Sum) is high.

この超臨界冷凍サイクルは、従来のフロンガスのような冷媒を用いる冷凍サイクルに比べて数倍の高圧条件下で稼動するため、超臨界冷凍サイクルにはこの高圧条件にも耐えうるアキュムレータが用いられる(例えば特許文献1参照)。   Since this supercritical refrigeration cycle operates under a high pressure condition several times that of a conventional refrigeration cycle using a refrigerant such as chlorofluorocarbon, an accumulator that can withstand this high pressure condition is used for the supercritical refrigeration cycle ( For example, see Patent Document 1).

この特許文献1のアキュムレータ1は、超臨界冷凍サイクル用のもので、図9に示すように、一端が開口した筒状の胴(容器本体)2と、この胴(容器本体)2内に配置され気冷媒を通すためのU字状のサクションパイプ3と、この胴(容器本体)2の上端部に溶接などにより固定されるとともに胴(容器本体)の開口を塞ぐ閉鎖部材(ヘッド部)4等を有し、超臨界冷凍サイクルにおいて気冷媒と液冷媒が混在する混合冷媒を気液分離して液冷媒を貯留する。
特開2007−212007号公報
The accumulator 1 of this patent document 1 is for a supercritical refrigeration cycle. As shown in FIG. 9, the accumulator 1 is disposed in a cylindrical body (container body) 2 having one end opened, and in the body (container body) 2. The U-shaped suction pipe 3 for passing the gas refrigerant and the closing member (head portion) 4 which is fixed to the upper end portion of the barrel (container body) 2 by welding or the like and closes the opening of the barrel (container body). In the supercritical refrigeration cycle, the mixed refrigerant in which the gas refrigerant and the liquid refrigerant are mixed is gas-liquid separated to store the liquid refrigerant.
JP 2007-212007 A

しかしながら、特許文献1のアキュムレータ1にあっては、胴(容器本体)2と閉鎖部材(ヘッド部)4とが溶接Sのみで連結されており、耐圧強度を高めるためには銅2の肉厚を厚くする必要があり、アキュムレータ1の重量が増加してしまう問題があった。
また、アキュムレータの厚さを変更すると、アキュムレータの重量、必要な溶接温度、必要な溶接の深さなどの各種条件が変わってしまう為、最適な条件とするための条件設定など管理が面倒であった。
However, in the accumulator 1 of Patent Document 1, the body (container body) 2 and the closing member (head portion) 4 are connected only by welding S, and the thickness of the copper 2 is increased in order to increase the pressure resistance. There is a problem that the weight of the accumulator 1 increases.
Also, changing the thickness of the accumulator changes various conditions such as the accumulator weight, required welding temperature, and required welding depth, making it difficult to manage conditions such as setting conditions for optimum conditions. It was.

本発明は、上記問題に着目してなされたもので、比較的薄肉軽量で、より耐圧強度が高く、溶接部の管理が容易な冷凍サイクル用のアキュムレータを提供することを目的とする。   The present invention has been made by paying attention to the above problems, and an object thereof is to provide an accumulator for a refrigeration cycle which is relatively thin and light, has a higher pressure resistance, and can easily manage a welded portion.

上記目的を達成するため、本発明では、一端が開口した円筒状の容器本体と、他端が開口した筒状の蓋部材とを備え、前記容器本体の一端開口に前記蓋部材の他端開口を溶接する冷凍サイクル用のアキュムレータにおいて、
前記容器本体および前記蓋部材の開口近傍の内周壁にそれぞれ雌ネジ部を形成し、
前記容器本体の雌ネジ部に螺合する第1雄ネジ部と前記蓋部材の雌ネジ部に螺合する第2雄ネジ部が外周面に形成された筒状の連結部材を設け、
この連結部材の第1,第2雄ネジ部を前記容器本体の雌ネジ部と蓋部材の雌ネジ部に螺合させ、
前記容器本体と前記蓋部材を溶接するとともに、この溶接の際の溶融熱により、前記連結部材を溶融して前記蓋部材および容器に融着させることを特徴とする。
In order to achieve the above object, the present invention comprises a cylindrical container body having one end opened and a cylindrical lid member having the other end opened, and the other end opening of the lid member is provided at one end opening of the container body. In the accumulator for the refrigeration cycle that welds
Forming internal thread portions on the inner peripheral wall in the vicinity of the opening of the container body and the lid member,
Providing a cylindrical connecting member having a first male screw portion screwed into the female screw portion of the container body and a second male screw portion screwed into the female screw portion of the lid member formed on the outer peripheral surface;
The first and second male screw portions of the connecting member are screwed into the female screw portion of the container body and the female screw portion of the lid member,
The container main body and the lid member are welded, and the connecting member is melted and fused to the lid member and the container by heat of fusion at the time of welding.

本発明のアキュムレータにより、軽量で耐圧強度を高く、溶接部の管理が容易な冷凍サイクル用のアキュムレータを提供することができる。   According to the accumulator of the present invention, it is possible to provide an accumulator for a refrigeration cycle that is lightweight, has high pressure strength, and can easily manage a welded portion.

以下、本発明の冷凍サイクル用のアキュムレータを実現する最良の形態を、図面に示す実施例に基づいて説明する。   Hereinafter, the best mode for realizing an accumulator for a refrigeration cycle according to the present invention will be described based on an embodiment shown in the drawings.

図1は、実施例のアキュムレータが適用された車両用空調装置のCO2冷凍サイクル(超臨界冷凍サイクル用)を示すサイクルシステム図である。 FIG. 1 is a cycle system diagram showing a CO 2 refrigeration cycle (for a supercritical refrigeration cycle) of a vehicle air conditioner to which an accumulator of an embodiment is applied.

自然冷媒であるCO2冷媒を用いたCO2冷凍サイクル100は、図1に示すように、コンプレッサ11と、ガスクーラ12と、膨張弁13と、エバポレータ14と、アキュムレータ15をこの順で環状に金属管で接続して構成される。また、CO2冷凍サイクル100は内部熱交換器16を有している。 CO 2 refrigeration cycle 100 using the CO 2 refrigerant is a natural refrigerant, as shown in FIG. 1, a compressor 11, a gas cooler 12, an expansion valve 13, a metal and an evaporator 14, an accumulator 15 annularly in this order Connected with a tube. The CO 2 refrigeration cycle 100 has an internal heat exchanger 16.

コンプレッサ11は、エンジンやモータなどにより駆動され、アキュムレータ15からのガス冷媒を圧縮し、高温・高圧のガス冷媒とする。このコンプレッサ11は、クランク室内の圧力を制御することにより、コンプレッサ11のピストンストロークを変えて吐出容量を変更し、コンプレッサの高圧と低圧の差圧を制御する差圧制御ECV(Electric Control Valve)を有した外部可変容量制御タイプのものである。   The compressor 11 is driven by an engine, a motor, or the like, and compresses the gas refrigerant from the accumulator 15 to obtain a high-temperature / high-pressure gas refrigerant. The compressor 11 controls the pressure in the crank chamber, changes the piston stroke of the compressor 11 to change the discharge capacity, and performs a differential pressure control ECV (Electric Control Valve) that controls the differential pressure between the high pressure and the low pressure of the compressor. It has an external variable capacity control type.

なお、CO2冷凍サイクルを循環するCO2が飽和した高圧のガス冷媒は、従来のフロン類(代替フロン)の冷媒に比べて約7倍の密度であり、フロン類(代替フロン)の約1.2倍の蒸発潜熱(単位質量あたり)であるので、単位体積当たりの冷房能力(蒸発潜熱×気体密度)は、約8倍となる。このため、コンプレッサ11の吐き出し容量は、15〜30cc程度で十分性能が発揮できる。 The high-pressure gas refrigerant saturated with CO 2 that circulates in the CO 2 refrigeration cycle has a density about seven times that of conventional refrigerants of chlorofluorocarbons (alternative chlorofluorocarbons). Since it is twice the latent heat of vaporization (per unit mass), the cooling capacity per unit volume (latent heat of vaporization x gas density) is about eight times. For this reason, the discharge capacity of the compressor 11 can exhibit sufficient performance when it is about 15 to 30 cc.

ガスクーラ12は、コンプレッサ11からの高温・高圧のガス冷媒を外気と熱交換し、中温・高圧のガス冷媒とする熱交換器である。
膨張弁13は、エンジンルーム内に設置され、ガスクーラ12からの中温・高圧のガス冷媒を減圧して断熱膨張させ低温・低圧の液ガス混合冷媒とする。この膨張弁13は、ガスクーラ12出口の冷媒温度および冷媒圧力に基づいて、最大の冷房性能を保持するように弁の開度を制御する。
The gas cooler 12 is a heat exchanger that exchanges heat between the high-temperature and high-pressure gas refrigerant from the compressor 11 and the outside air to obtain a medium-temperature and high-pressure gas refrigerant.
The expansion valve 13 is installed in the engine room, and the medium temperature / high pressure gas refrigerant from the gas cooler 12 is decompressed to adiabatically expand to form a low temperature / low pressure liquid / gas mixed refrigerant. The expansion valve 13 controls the opening degree of the valve so as to maintain the maximum cooling performance based on the refrigerant temperature and refrigerant pressure at the outlet of the gas cooler 12.

エバポレータ14は、車室内の空調を行う車両用空調ユニット7内に、送風機等と共に配置される熱交換器である。膨張弁13からの低温・低圧の液ガス混合冷媒をエバポレータ14のチューブ内に通過させることでチューブ外周囲を流れる空気から熱を奪い、冷媒温度を高めて冷媒のガス化を促進させる。また、チューブ外周囲を通過した空気は低温となり除湿されて、図示しない加熱用熱交換器により空気調和されて車室内へ吹き出す。   The evaporator 14 is a heat exchanger that is disposed together with a blower or the like in the vehicle air conditioning unit 7 that performs air conditioning in the vehicle interior. By passing the low-temperature and low-pressure liquid-gas mixed refrigerant from the expansion valve 13 into the tube of the evaporator 14, heat is taken from the air flowing around the outside of the tube, and the refrigerant temperature is increased to promote gasification of the refrigerant. In addition, the air that has passed through the outer periphery of the tube is dehumidified and dehumidified, and is air-conditioned by a heating heat exchanger (not shown) and blown out into the passenger compartment.

CO2冷凍サイクルにおいて、高圧側でのCO2冷媒の平衡圧は、7MPa(約70bar)以上の高圧になることから、エバボレータ14について車室内への冷媒漏れ防止の信頼性を担保する必要がある。このため、エバボレータ14は、フロン類を冷媒として使用するエバポレータとはその構造が異なり、コア(熱交換部)・配管(冷媒通路)・フランジ(放熱用のフィン)までを一体化する構造としている。これにより、Oリングシールをエバポレータ14に用いずともよいものとなり、Oリングシールを用いた場合に問題となる冷媒のスローリークが生じることがない。 In the CO 2 refrigeration cycle, the equilibrium pressure of the CO 2 refrigerant on the high pressure side becomes a high pressure of 7 MPa (about 70 bar) or higher, and therefore it is necessary to ensure the reliability of the evaporator 14 to prevent refrigerant leakage into the vehicle compartment. . For this reason, the evaporator 14 is different in structure from an evaporator using chlorofluorocarbons as a refrigerant, and has a structure in which the core (heat exchange part), piping (refrigerant passage), and flange (heat radiation fin) are integrated. . Thereby, it is not necessary to use an O-ring seal for the evaporator 14, and a slow leak of refrigerant that becomes a problem when the O-ring seal is used does not occur.

アキュムレータ15は、エバポレータ14で完全にガス化できなかった場合においてエバポレータ14から導入される液ガス混合冷媒から液冷媒とガス冷媒とに分離し、ガス冷媒のみをコンプレッサ11に戻すとともにCO2冷凍サイクル100中の余剰液冷媒を本体内部に貯留する。 The accumulator 15 separates the liquid-gas mixed refrigerant introduced from the evaporator 14 into a liquid refrigerant and a gas refrigerant when the evaporator 14 cannot be completely gasified, returns only the gas refrigerant to the compressor 11, and CO 2 refrigeration cycle. The excess liquid refrigerant in 100 is stored inside the main body.

CO2冷凍サイクルでは高圧側となる箇所ではCO2冷媒の圧力が臨界圧を越えるため冷媒が液相となることがなく、フロン類を用いる一般の冷凍サイクルのように高圧側にリキッドタンクを設けても意味がなく、気相と液相が混在しうる低圧側にアキュムレータを設けてCO2冷凍サイクルの冷媒適正量を管理する。 In the CO 2 refrigeration cycle, the pressure of the CO 2 refrigerant exceeds the critical pressure at the high pressure side, so that the refrigerant does not become a liquid phase, and a liquid tank is provided on the high pressure side as in a general refrigeration cycle using chlorofluorocarbons. However, there is no meaning, and an appropriate amount of refrigerant in the CO 2 refrigeration cycle is managed by providing an accumulator on the low pressure side where the gas phase and liquid phase can coexist.

内部熱交換器16は、ガスクーラ12を出た中温高圧の冷媒とアキュムレータ15を出た低温低圧の冷媒との間で熱交換して膨張弁13の前で液冷媒とする。
この内部熱交換器16により、膨張弁13の入口における冷媒温度をさらに下げて、CO2冷凍サイクル100の成績係数(COP、Coefficient of Performance)を向上させる。
図2は、実施例のアキュムレータ15の内部構造を示す垂直縦断面図である。図3は、図2のアキュムレータ15の斜視図である。図4(a)、図4(b)、図7(a)および図7(b)は、図2のアキュムレータの溶接部分を拡大した図である。
The internal heat exchanger 16 exchanges heat between the medium-temperature and high-pressure refrigerant that has exited the gas cooler 12 and the low-temperature and low-pressure refrigerant that has exited the accumulator 15 to form a liquid refrigerant in front of the expansion valve 13.
The internal heat exchanger 16 further lowers the refrigerant temperature at the inlet of the expansion valve 13 to improve the coefficient of performance (COP, Coefficient of Performance) of the CO 2 refrigeration cycle 100.
FIG. 2 is a vertical longitudinal sectional view showing the internal structure of the accumulator 15 of the embodiment. FIG. 3 is a perspective view of the accumulator 15 of FIG. 4 (a), 4 (b), 7 (a) and 7 (b) are enlarged views of the welded portion of the accumulator of FIG.

アキュムレータ15は、図2および図3に示すように、一端(図上上端)が開口した円筒状の容器本体17と、この開口を塞ぐ他端(図上下端)が開口した円筒状のヘッド部18と、容器本体17内に配置されるU字状のサクションパイプ19と、ヘッド部18と容器本体17を締結する両端が開口した筒状の締結部材20等とを有している。   As shown in FIGS. 2 and 3, the accumulator 15 includes a cylindrical container body 17 having one end (upper end in the figure) opened, and a cylindrical head portion having the other end (lower end in the figure) opened. 18, a U-shaped suction pipe 19 disposed in the container main body 17, a cylindrical fastening member 20 having both ends for fastening the head portion 18 and the container main body 17 open, and the like.

21は、容器本体17内に配置されてエバポレータ14から導入された液ガス混合冷媒から水分を除去する乾燥部材である。   Reference numeral 21 denotes a drying member that is disposed in the container body 17 and removes moisture from the liquid-gas mixed refrigerant introduced from the evaporator 14.

容器本体17は、例えば、アルミニウム合金等の金属製で、超臨界冷凍サイクルの高圧に耐える肉厚を有している。容器本体17の開口近傍の内周壁面には、雌ネジ17aが周方向に沿って切られている。
ヘッド部18は、容器本体17と同一の金属製であり、例えば、アルミニウム合金製である。
The container body 17 is made of a metal such as an aluminum alloy and has a thickness that can withstand the high pressure of the supercritical refrigeration cycle. On the inner peripheral wall surface in the vicinity of the opening of the container body 17, a female screw 17a is cut along the circumferential direction.
The head portion 18 is made of the same metal as the container body 17 and is made of, for example, an aluminum alloy.

ヘッド部18は、内径が容器本体17の内径と略同一且つ他端が開口された円筒部18fを有し、この円筒部18fの一端が一体形成された頂壁部18gによって閉塞されている。
この頂壁部18gには、エバポレータ14から液ガス混合冷媒および冷媒とともに冷凍サイクル内を循環するコンプレッサ11の潤滑油を導入するための冷媒流入口18aと、この冷媒流入口18aの隣に、アキュムレータ15からガス冷媒と潤滑油を吐き出して内部熱交換器16へ送るための冷媒流出口18cとが形成されている。また、ヘッド部18の開口の内周壁面には、略周方向に雌ネジ18dが切られている。
The head portion 18 has a cylindrical portion 18f whose inner diameter is substantially the same as the inner diameter of the container body 17 and the other end is opened, and one end of the cylindrical portion 18f is closed by a top wall portion 18g integrally formed.
The top wall 18g has a refrigerant inlet 18a for introducing the lubricating oil of the compressor 11 circulating in the refrigeration cycle together with the liquid-gas mixed refrigerant and refrigerant from the evaporator 14, and an accumulator next to the refrigerant inlet 18a. A refrigerant outlet 18 c for discharging the gas refrigerant and the lubricating oil from 15 and sending it to the internal heat exchanger 16 is formed. A female screw 18d is cut in the substantially circumferential direction on the inner peripheral wall surface of the opening of the head portion 18.

ヘッド部18の頂壁部18gの下面には、下方に突出する突出部18bが一体形成されており、冷媒流入口18aおよび冷媒流出口18cは、ヘッド部18の頂壁部18gの上面からその突出部18bの下面まで貫通している。   A projecting portion 18b that projects downward is integrally formed on the lower surface of the top wall portion 18g of the head portion 18, and the refrigerant inlet port 18a and the refrigerant outlet port 18c are formed from the upper surface of the top wall portion 18g of the head portion 18. It penetrates to the lower surface of the protrusion 18b.

冷媒流入口18aの下部には、支持部材18hが着脱可能に取り付けられており、この支持部材18hによって冷媒や潤滑油中に存在する粉塵等の異物を取り除くストレーナ18eが支持されている。なお、ヘッド部18の冷媒流入口18aおよび冷媒流出口18cには、金属管8,9が接続されている(図1参照)。   A support member 18h is detachably attached to the lower part of the refrigerant inlet 18a, and a strainer 18e that removes foreign matters such as dust and the like present in the refrigerant and lubricating oil is supported by the support member 18h. Metal pipes 8 and 9 are connected to the refrigerant inlet 18a and the refrigerant outlet 18c of the head portion 18 (see FIG. 1).

サクションパイプ19は、上下方向に伸びる2つの第1直管部19a,第2直管部19bと、両直管部19a,19bの下端に一体形成され2つの直管部19a,19bを連通させる円弧状管部19cを有している。   The suction pipe 19 is integrally formed at the lower ends of the two first straight pipe portions 19a and 19b extending in the vertical direction and the two straight pipe portions 19a and 19b, and communicates the two straight pipe portions 19a and 19b. It has an arcuate tube portion 19c.

第1の直管部19a(図2において左側)の上端部は、冷媒流出口18cに接続されている。この接続によりサクションパイプ19がヘッド部18に支持されている。第2の直管部19b(図2において右側)の上部の開口端は、ヘッド部18内の上方に位置していて、冷媒流入口18aから導入されたガス冷媒が直接サクションパイプ19に導入されるようになっている。   The upper end portion of the first straight pipe portion 19a (left side in FIG. 2) is connected to the refrigerant outlet 18c. With this connection, the suction pipe 19 is supported by the head portion 18. The upper open end of the second straight pipe portion 19b (right side in FIG. 2) is located above the head portion 18, and the gas refrigerant introduced from the refrigerant inlet 18a is directly introduced into the suction pipe 19. It has become so.

サクションパイプ19の円弧状管部19cの底部には潤滑油戻し穴19fが形成されている。この潤滑油戻し穴19fは、容器本体17内底部に溜まる潤滑油(図示略)の油面よりも下方に位置するようになっていて、サクションパイプ19内を流れるガス冷媒に潤滑油が吸引されるようになっている。
乾燥部材21は、フェルト等の通気性を有する材料を袋状に形成し、その内部に乾燥剤が充填して製造される。乾燥部材21は、第1の直管部19aと第2の直管部19bの間に挟み込まれ冷媒中の水分を除去する。
A lubricating oil return hole 19 f is formed at the bottom of the arcuate tube portion 19 c of the suction pipe 19. The lubricating oil return hole 19f is positioned below the oil level of the lubricating oil (not shown) accumulated in the bottom of the container body 17, and the lubricating oil is sucked into the gas refrigerant flowing in the suction pipe 19. It has become so.
The drying member 21 is manufactured by forming a breathable material such as felt in a bag shape and filling the inside with a desiccant. The drying member 21 is sandwiched between the first straight pipe portion 19a and the second straight pipe portion 19b to remove moisture in the refrigerant.

締結部材(連結部材)20は、容器本体17と同一の金属製であり、例えば、アルミニウム合金製である。
締結部材20の外径は、ヘッド部18および容器本体17の内径と同一に設定されている。締結部材20の外周面の一端(図2において下側)には、雄ネジ(第1ネジ部)20aが周方向に沿って切られている。
The fastening member (connecting member) 20 is made of the same metal as the container body 17 and is made of, for example, an aluminum alloy.
The outer diameter of the fastening member 20 is set to be the same as the inner diameters of the head portion 18 and the container body 17. A male screw (first screw portion) 20a is cut along the circumferential direction at one end (lower side in FIG. 2) of the outer peripheral surface of the fastening member 20.

また、締結部材20の外周面の他端(図2において上側)には、雄ネジ(第2ネジ部)20bが周方向に沿って切られている。この2つの雄ネジ20a,20bは、互いに離れており、互いのネジの向きは逆となっている。   Further, a male screw (second screw portion) 20b is cut along the circumferential direction at the other end (upper side in FIG. 2) of the outer peripheral surface of the fastening member 20. The two male screws 20a and 20b are separated from each other, and the directions of the screws are opposite to each other.

雄ネジ20a,20bが互いに離れていることにより、ねじ込み深さの管理が容易となり、また互いのネジの向きが逆となっていることにより、一方のネジを螺合させて締め付けた後に他方のネジを螺合して締め付けていく際に一方のネジの締め付けが緩むことがないので、確実に締結することができる。
両雄ネジ20a,20bは、必ずしも離れている必要はなく、連続して逆ネジとなっていてもよい。この場合、締結部材20の製造が容易となる。
Since the male screws 20a and 20b are separated from each other, the screwing depth can be easily managed, and the directions of the screws are reversed. When the screws are screwed and tightened, the tightening of one of the screws does not loosen, so that the screws can be securely tightened.
Both male screws 20a and 20b do not necessarily need to be separated from each other, and may be continuously reverse screws. In this case, the fastening member 20 can be easily manufactured.

この2つの雄ネジ20a,20bについて、山と谷の数およびその角度は、アキュムレータ15に要求される耐圧要件を満たすように設定されている。   With respect to the two male screws 20a and 20b, the number of ridges and valleys and the angle thereof are set so as to satisfy the pressure resistance requirement required for the accumulator 15.

そして、締結部材20の雄ネジ20aが容器本体の雌ネジ17aに螺合されるとともに締結部材20の雄ネジ20bがヘッド部18の雌ネジ18dに螺合されている。
この螺合によりヘッド部18と容器本体17が締結されるとともに容器本体17の開口端とヘッド部18の開口端が当接されている。この螺合によるヘッド部18と容器本体17の締結のみでも、CO2冷凍サイクル稼動停止時の冷凍サイクル圧力が平衡となった場合の圧力に耐えうるようになっている。また、この当接部分、つまり容器本体17の開口端とヘッド部18の開口端は溶接により接合されている(図7(a)参照)。
The male screw 20a of the fastening member 20 is screwed with the female screw 17a of the container body, and the male screw 20b of the fastening member 20 is screwed with the female screw 18d of the head portion 18.
By this screwing, the head portion 18 and the container body 17 are fastened, and the opening end of the container body 17 and the opening end of the head portion 18 are brought into contact with each other. Only the fastening of the head portion 18 and the container body 17 by this screwing can withstand the pressure when the refrigeration cycle pressure when the CO 2 refrigeration cycle is stopped is balanced. Further, this contact portion, that is, the opening end of the container body 17 and the opening end of the head portion 18 are joined by welding (see FIG. 7A).

この溶接によって、容器本体17の開口端とヘッド部18の開口端が溶融されて互いに融着するが、この溶融熱により締結部材20の雄ネジ20aと雄ネジ20bの間の周壁の一部も溶融されてヘッド部18および容器本体17とともに三者が一体に融着する。   By this welding, the opening end of the container main body 17 and the opening end of the head portion 18 are melted and fused to each other, but part of the peripheral wall between the male screw 20a and the male screw 20b of the fastening member 20 is also melted by this melting heat. The three members are melted together and fused together with the head portion 18 and the container body 17.

図4は、アキュムレータ15内に圧力(26MPa)を加えたときの締結部材20の周壁の厚さTと溶接部分周辺にかかる応力の分布を示す応力分布図である。図6(a)は、図4に示す締結部材20の部分Aと容器本体17とヘッド部18の当接部Bとにおける応力および締結部材20の周壁の厚さTとの関係を表すグラフである。
<締結部材20の周壁の厚さ>
FIG. 4 is a stress distribution diagram showing the thickness T of the peripheral wall of the fastening member 20 when the pressure (26 MPa) is applied to the accumulator 15 and the distribution of stress applied around the welded portion. 6A is a graph showing the relationship between the stress in the portion A of the fastening member 20 shown in FIG. 4, the contact portion B of the container body 17 and the head portion 18, and the thickness T of the peripheral wall of the fastening member 20. is there.
<Thickness of the peripheral wall of the fastening member 20>

この締結部材20の周壁の厚さT(図4参照)を3mmに設定すると、図4(a)に示すように、締結部材20の周壁の部分Aには、応力が集中し、その応力は図6(a)のグラフに示すように180N/mm2となる。
また、図6(a)のグラフから分かるように、周壁の厚さTが厚くなるにしたがって締結部材20の部分Aに加わる応力は図4(b)に示すように分散されて小さくなっていく。なお、図4(b)は締結部材の厚さが5mmの場合を示す。
When the thickness T (see FIG. 4) of the peripheral wall of the fastening member 20 is set to 3 mm, as shown in FIG. 4A, stress concentrates on the portion A of the peripheral wall of the fastening member 20, and the stress is As shown in the graph of FIG. 6A, it is 180 N / mm 2 .
Further, as can be seen from the graph in FIG. 6A, as the thickness T of the peripheral wall increases, the stress applied to the portion A of the fastening member 20 is dispersed and reduced as shown in FIG. 4B. . FIG. 4B shows the case where the thickness of the fastening member is 5 mm.

しかし、容器本体17とヘッド部18の当接部Bに加わる応力は、周壁の厚さTが4mmのとき最小となり、4mmを超えるとその応力は増加していく。
図6(a)のグラフから、締結部材20の部分Aや当接部Bのいずれにも大きな応力が加わらない厚さTの範囲は4〜5.5mmであり、この範囲(図6のTrg参照)で締結部材20の厚さTを設定すれば、大きな応力が加わらないことにより好ましいものとなる。
However, the stress applied to the contact portion B between the container body 17 and the head portion 18 is minimum when the thickness T of the peripheral wall is 4 mm, and the stress increases when the thickness exceeds 4 mm.
From the graph of FIG. 6A, the range of the thickness T in which no great stress is applied to either the portion A or the contact portion B of the fastening member 20 is 4 to 5.5 mm, and this range (Trg in FIG. 6). If the thickness T of the fastening member 20 is set in (see), it is preferable because a large stress is not applied.

また、厚さTが5mmの場合、締結部材20の部分Aと、当接部Bにかかる応力のいずれも155N/mm2に抑えることができるのでより好ましいものとなる。なお、後述する締結部材20の溶接幅Dは一定としている。
<締結部材20の溶接幅D>
Further, when the thickness T is 5 mm, both the stress applied to the portion A of the fastening member 20 and the contact portion B can be suppressed to 155 N / mm 2, which is more preferable. In addition, the welding width D of the fastening member 20 mentioned later is constant.
<Welding width D of the fastening member 20>

図5(a)および(b)は、締結部材20の溶接幅Dと溶接部分周辺にかかる応力の分布を示す応力分布図である。図6(b)は、図5に示す締結部材20の当接部Bにおける応力と締結部材20の溶接幅Dとの関係を表すグラフである。
この締結部材20の溶接幅Dを6mmに設定すると、図6(b)のグラフから分かるように、アキュムレータ15の当接部分Bには190N/mm2の応力がかかるが、溶接幅Dを2mmに設定すると、より小さい約168N/mm2の応力がかかる。
FIGS. 5A and 5B are stress distribution diagrams showing the distribution of the stress applied to the weld width D of the fastening member 20 and the periphery of the welded portion. FIG. 6B is a graph showing the relationship between the stress at the contact portion B of the fastening member 20 and the welding width D of the fastening member 20 shown in FIG.
When the welding width D of the fastening member 20 is set to 6 mm, as can be seen from the graph of FIG. 6B, a stress of 190 N / mm 2 is applied to the contact portion B of the accumulator 15, but the welding width D is set to 2 mm. Is set, a smaller stress of about 168 N / mm 2 is applied.

なお、図5(a)は溶接幅Dを6mmに設定した場合を示し、図5(b)は溶接幅Dを2mmに設定した場合を示す。
さらに、この溶接幅Dを2mmより短くしていくと締結部材20の当接部Bに加わる応力は小さくなっていく(不図示)。
5A shows a case where the welding width D is set to 6 mm, and FIG. 5B shows a case where the welding width D is set to 2 mm.
Further, when the welding width D is made shorter than 2 mm, the stress applied to the contact portion B of the fastening member 20 becomes smaller (not shown).

しかし、溶接幅Dは、短くしすぎると溶接として必要な幅を確保できなくなることから、溶接として必要な幅を確保でき大きな応力が加わらない2〜6mmが好ましいものとなり、より好ましくは2mmである。なお、締結部材の周壁の厚さTは一定としている。   However, if the welding width D is too short, the width necessary for welding cannot be secured, so 2 to 6 mm is preferable, and the width necessary for welding can be secured and no large stress is applied, and more preferably 2 mm. . Note that the thickness T of the peripheral wall of the fastening member is constant.

上述した容器本体17、ヘッド部18および締結部材20は、アルミニウム合金製としたが、これに限らず要求されるアキュムレータ15の耐圧性の条件を満たし、アーク溶接、電子ビーム溶接、摩擦攪拌溶接できるものであればよい。
<溶接について>
上述した溶接には、アーク溶接、電子ビーム溶接、摩擦攪拌溶接などが適用できる。
The container body 17, the head portion 18, and the fastening member 20 described above are made of an aluminum alloy. However, the container body 17, the head portion 18, and the fastening member 20 can satisfy arc pressure, electron beam welding, and friction stir welding without being limited thereto. Anything is acceptable.
<About welding>
Arc welding, electron beam welding, friction stir welding, or the like can be applied to the above-described welding.

摩擦攪拌溶接の場合は、通常アルミニウムアロイ等の2枚の金属プレートを突き合わせ、金属プレートからみてプローブが配置される側とは反対側に当て板を設けるが、アキュムレータ15のヘッド部18と容器本体17を溶接する場合には、両者の開口端を突き合わせることでそれらの内部が閉じられるのでアキュムレータ15内に当て板を設けることはできない。
しかし、締結部材20の周壁がその当て板として機能するので、摩擦攪拌溶接が可能となる。また、この摩擦攪拌溶接によりその締結部材20の周壁はヘッド部18および容器本体17に溶接される。
In the case of friction stir welding, usually two metal plates such as aluminum alloy are abutted, and a contact plate is provided on the side opposite to the side where the probe is arranged when viewed from the metal plate. However, the head portion 18 of the accumulator 15 and the container body In the case of welding 17, the inner ends of the two are closed by abutting the opening ends of the two, so that a backing plate cannot be provided in the accumulator 15.
However, since the peripheral wall of the fastening member 20 functions as the contact plate, friction stir welding is possible. Further, the peripheral wall of the fastening member 20 is welded to the head portion 18 and the container body 17 by this friction stir welding.

さらに、締結部材20を用いてヘッド部18と容器本体17を締結することにより、ヘッド部18と容器本体17の両端部が確実に当接するようになるので摩擦攪拌溶接が確実に行われる。   Furthermore, by fastening the head part 18 and the container main body 17 using the fastening member 20, the both ends of the head part 18 and the container main body 17 come into contact with each other reliably, so that friction stir welding is reliably performed.

次に、本実施例のアキュムレータの作用・効果を説明する。
本実施例のアキュムレータ15によれば、容器本体17の雌ネジ17aとヘッド部18の雌ネジ18dを締結手段20の周壁の2つの雄ネジ20a,20bにそれぞれ螺合させることにより、容器本体17とヘッド部18を締結するので、容器本体17とヘッド部18にそれぞれ雄ネジと雌ネジを切って直接締結する場合のように、容器本体17やヘッド部18よりも小径もしくは大径の筒部を形成する必要がない(図8(a)および(b)参照)。このため、両者にネジを切って締結させる場合でも、ヘッド部18と容器本体17を略同一径に設定でき、互いの開口端を突き当て溶接することができる。このため、容器本体17の開口やヘッド部18の開口の構造が複雑とならず、また、構造が複雑であることに起因する応力の集中も生じない。
Next, the operation and effect of the accumulator of this embodiment will be described.
According to the accumulator 15 of the present embodiment, the container main body 17 is formed by screwing the female screw 17a of the container main body 17 and the female screw 18d of the head portion 18 with the two male screws 20a and 20b of the peripheral wall of the fastening means 20, respectively. And the head portion 18 are fastened, so that a cylindrical portion having a smaller or larger diameter than the container main body 17 and the head portion 18 as in the case of directly fastening the male and female screws 17 to the container main body 17 and the head portion 18 respectively. Need not be formed (see FIGS. 8A and 8B). For this reason, even when both are screwed and fastened, the head portion 18 and the container body 17 can be set to substantially the same diameter, and the opening ends of each other can be abutted and welded. For this reason, the structure of the opening of the container body 17 and the opening of the head portion 18 is not complicated, and stress concentration due to the complicated structure does not occur.

ヘッド部18と容器本体17との溶接部分がヘッド部18の雌ネジ18dと容器本体17の雌ネジ17aとの間、換言すれば、締結手段20の雄ネジ20a,20bの間に位置しているため、締結部材20によるヘッド部18と容器本体17の締結で溶接部分にかかる力が低減され、容器本体17の肉厚を厚くしなくとも耐圧強度を高めることができる。このため、比較的薄肉軽量で耐圧強度がより高く、溶接部分の管理が比較的容易な冷凍サイクル用アキュムレータを提供することができる。   The welded portion between the head portion 18 and the container body 17 is located between the female screw 18d of the head portion 18 and the female screw 17a of the container body 17, in other words, between the male screws 20a and 20b of the fastening means 20. Therefore, the force applied to the welded portion is reduced by fastening the head portion 18 and the container main body 17 by the fastening member 20, and the pressure resistance can be increased without increasing the thickness of the container main body 17. Therefore, it is possible to provide an accumulator for a refrigeration cycle that is relatively thin and lightweight, has a higher pressure resistance, and can easily manage a welded portion.

締結部材20の厚さを好ましくは4〜5.5mmに、より好ましくは5mmに設定したので、溶接部近くの締結部材20の周壁にかかる応力を分散させることができる。
また、締結部材20の溶接幅Dを好ましくは2〜6mmに、より好ましくは2mmに設定したため、応力が分散させることが出来るとともに溶接に必要な距離を確保できる。
ヘッド部18と容器本体17を溶接するとき、溶接の溶融熱が締結部材20により遮られるため、締結部材20の内側に配置された乾燥剤21に溶融熱が伝わりにくいものとなり、この溶融熱に乾燥剤21が割れたりするおそれがない。
締結部材20の締結によりヘッド部18と容器本体17が一体となるので、溶接時や移送時の取り扱いが便利となる。
Since the thickness of the fastening member 20 is preferably set to 4 to 5.5 mm, more preferably 5 mm, the stress applied to the peripheral wall of the fastening member 20 near the welded portion can be dispersed.
Moreover, since the welding width D of the fastening member 20 is preferably set to 2 to 6 mm, more preferably 2 mm, the stress can be dispersed and the distance necessary for welding can be secured.
When the head portion 18 and the container body 17 are welded, the fusion heat of the welding is blocked by the fastening member 20, so that the fusion heat is difficult to be transmitted to the desiccant 21 disposed inside the fastening member 20, and this melting heat is prevented. There is no possibility that the desiccant 21 is broken.
Since the head portion 18 and the container main body 17 are integrated by fastening the fastening member 20, handling during welding and transfer is convenient.

何らかの原因でアキュムレータ15が振動してアキュムレータ15内の液冷媒がその内周壁をつたって上方へ移動しても、締結部材20によりこの液冷媒が遮られるので、液冷媒がサクションパイプ19に入り込む虞がない。
摩擦攪拌溶接する際には、締結部材20の周壁が摩擦攪拌溶接時の当て板の代わりとなるので、アキュムレータ15のヘッド部18と容器本体17とを摩擦攪拌溶接することができるようになる。
Even if the accumulator 15 vibrates for some reason and the liquid refrigerant in the accumulator 15 moves upward through its inner peripheral wall, the liquid refrigerant is blocked by the fastening member 20, so that the liquid refrigerant may enter the suction pipe 19. There is no.
When the friction stir welding is performed, the peripheral wall of the fastening member 20 serves as a backing plate during the friction stir welding, so that the head portion 18 of the accumulator 15 and the container body 17 can be friction stir welded.

電子ビーム溶接をする際には、ヘッド部18と容器本体17とのそれぞれの開口端の接合部分に電子ビームを当てて溶接していくが、この際に、溶接された部分とこれから溶接される部分とに締結部材20が当接しているため、両部分の温度差を緩和することができ、温度差によって磁界が乱れて電子ビームがそれる問題を抑制させることができる。
図7(b)は、実施例のアキュムレータの他の例である。図7(b)に示すように、締結部材(連結部材)200の周壁の厚さは、締結部材20の雄ネジ20a(第1雄ネジ部),20b(第2雄ネジ部)間の周壁中央部から周壁上端および周壁下端に向かうにつれて薄くなるように形成されている(図9(b)の部分C参照)。締結部材200の上端と下端のそれぞれの周壁の厚さは略同一に設定されている。
When performing electron beam welding, welding is performed by applying an electron beam to the joint portion of each opening end of the head portion 18 and the container body 17. At this time, the welded portion and the welded portion are welded. Since the fastening member 20 is in contact with the portion, the temperature difference between the two portions can be reduced, and the problem that the magnetic field is disturbed by the temperature difference and the electron beam is deflected can be suppressed.
FIG. 7B is another example of the accumulator of the embodiment. As shown in FIG. 7B, the thickness of the peripheral wall of the fastening member (connecting member) 200 is the peripheral wall between the male screw 20a (first male screw portion) and 20b (second male screw portion) of the fastening member 20. It forms so that it may become thin as it goes to a peripheral wall upper end and a peripheral wall lower end from a center part (refer the part C of FIG.9 (b)). The thickness of each peripheral wall of the upper end and the lower end of the fastening member 200 is set to be substantially the same.

このアキュムレータ150によれば、先の実施例と同様の作用・効果が得られる他、締結部材200の周壁にかかる応力を分散させることができる。   According to this accumulator 150, the same operation and effect as in the previous embodiment can be obtained, and the stress applied to the peripheral wall of the fastening member 200 can be dispersed.

超臨界冷凍サイクルの冷媒としてCO2を用い、CO2冷凍サイクルに本実施例のアキュムレータを適用したが、CO2以外にも、エチレン、エタン、酸化窒素などを用いた冷凍サイクルにも本実施例のアキュムレータを適用できる。 Although CO 2 was used as a refrigerant for the supercritical refrigeration cycle and the accumulator of this example was applied to the CO 2 refrigeration cycle, this example was also applied to a refrigeration cycle using ethylene, ethane, nitrogen oxide, etc. in addition to CO 2. The accumulator can be applied.

実施例のアキュムレータが適用されたCO2冷凍サイクル(超臨界冷凍サイクル用)を示すサイクルシステム図であるIs a cycle system diagram showing the accumulator applied CO 2 refrigeration cycle of the embodiment (for supercritical refrigeration cycle) 実施例のアキュムレータの内部構造を示す垂直縦断面図である。It is a vertical longitudinal cross-sectional view which shows the internal structure of the accumulator of an Example. 図2のアキュムレータの斜視図である。FIG. 3 is a perspective view of the accumulator of FIG. 2. (a)締結部材20の周壁の厚さTと溶接部分周辺にかかる応力の分布を示す応力分布図である。(b)締結部材20の周壁の厚さTと溶接部分周辺にかかる応力の分布を示す応力分布図である。(A) It is a stress distribution figure which shows distribution of the stress concerning the thickness T of the surrounding wall of the fastening member 20, and a welding part periphery. (B) It is a stress distribution figure which shows distribution of the stress concerning the thickness T of the surrounding wall of the fastening member 20, and a welding part periphery. (a)締結部材20の溶接幅Dと溶接部分周辺にかかる応力の分布を示す応力分布図である。(b)締結部材20の溶接幅Dと溶接部分周辺にかかる応力の分布を示す応力分布図である。(A) It is a stress distribution figure which shows distribution of the stress concerning the welding width D of the fastening member 20, and a welding part periphery. (B) It is a stress distribution figure which shows distribution of the stress concerning the welding width D of the fastening member 20, and a welding part periphery. (a)図4に示す締結部材20の部分Aと容器本体17とヘッド部18の当接部分Bにおける応力と締結部材20の周壁の厚さTとの関係を表すグラフである。(b)図5に示す締結部材20の当接部分Bにおける応力と締結部材20の溶接幅Dとの関係を表すグラフである。(A) It is a graph showing the relationship between the stress in the part A of the fastening member 20 shown in FIG. 4, the contact part B of the container main body 17, and the head part 18, and the thickness T of the surrounding wall of the fastening member 20. FIG. (B) It is a graph showing the relationship between the stress in the contact part B of the fastening member 20 shown in FIG. 5, and the welding width D of the fastening member 20. FIG. (a)図2のアキュムレータの溶接部分を拡大した図である。(b)実施例の他の例のアキュムレータの溶接部分を拡大した図である。(A) It is the figure which expanded the welding part of the accumulator of FIG. (B) It is the figure which expanded the welding part of the accumulator of the other example of an Example. 雄ネジと雌ネジをヘッド部と容器本体に形成して互いに直接締結する場合を示す図である。It is a figure which shows the case where a male screw and a female screw are formed in a head part and a container main body, and are mutually fastened. 従来のアキュムレータの垂直縦断面図である。It is a vertical longitudinal cross-sectional view of a conventional accumulator.

符号の説明Explanation of symbols

17 容器本体
18 ヘッド部(蓋部材)
17a,18d 雌ネジ(雌ネジ部)
20b 雄ネジ(第1雄ネジ部)
20a 雄ネジ(第2雄ネジ部)
20 締結部材(連結部材)
17 Container body 18 Head (lid member)
17a, 18d Female thread (Female thread part)
20b Male thread (first male thread part)
20a Male thread (second male thread part)
20 Fastening member (connection member)

Claims (7)

一端が開口した円筒状の容器本体と、他端が開口した筒状の蓋部材とを備え、前記容器本体の一端開口に前記蓋部材の他端開口を溶接する冷凍サイクル用のアキュムレータにおいて、
前記容器本体および前記蓋部材の開口近傍の内周壁にそれぞれ雌ネジ部を形成し、
前記容器本体の雌ネジ部に螺合する第1雄ネジ部と前記蓋部材の雌ネジ部に螺合する第2雄ネジ部が外周面に形成された筒状の連結部材を設け、
この連結部材の第1,第2雄ネジ部を前記容器本体の雌ネジ部と蓋部材の雌ネジ部に螺合させ、
前記容器本体と前記蓋部材を溶接するとともに、この溶接の際の溶融熱により、前記連結部材を溶融して前記蓋部材および容器に融着させることを特徴とする冷凍サイクル用アキュムレータ。
In an accumulator for a refrigeration cycle comprising a cylindrical container body having one end opened and a cylindrical lid member having the other end opened, and welding the other end opening of the lid member to one end opening of the container body,
Forming internal thread portions on the inner peripheral wall in the vicinity of the opening of the container body and the lid member,
Providing a cylindrical connecting member having a first male screw portion screwed into the female screw portion of the container body and a second male screw portion screwed into the female screw portion of the lid member formed on the outer peripheral surface;
The first and second male screw portions of the connecting member are screwed into the female screw portion of the container body and the female screw portion of the lid member,
An accumulator for a refrigeration cycle, wherein the container body and the lid member are welded, and the connecting member is melted and fused to the lid member and the container by heat of fusion at the time of welding.
前記連結部材の第1雄ネジ部と第2雄ネジ部は離間し、
前記容器本体の開口と前記蓋部材の開口は略同一径でそれぞれの開口端を略接合させ、
前記容器本体の開口端と前記蓋部材の開口端を前記溶接するとともに、この溶接の溶融熱により前記連結部材の第1雄ネジ部と第2雄ネジ部の間の周壁を溶融して前記連結部材を前記蓋部材および前記容器に融着させることを特徴とする請求項1に記載の冷凍サイクル用アキュムレータ。
The first male screw portion and the second male screw portion of the connecting member are separated from each other,
The opening of the container body and the opening of the lid member are approximately the same diameter, and the respective opening ends are substantially joined,
The opening end of the container body and the opening end of the lid member are welded, and the peripheral wall between the first male screw portion and the second male screw portion of the connecting member is melted by the heat of fusion of the welding to connect the connecting body. The accumulator for a refrigeration cycle according to claim 1, wherein a member is fused to the lid member and the container.
前記連結部材の周壁の厚さは、第1ネジ部と第2ネジ部の間の周壁中央部から周壁両端部に向かうにつれて薄くなることを特徴とする請求項1または請求項2に記載の冷凍サイクル用アキュムレータ。   3. The refrigeration according to claim 1, wherein a thickness of the peripheral wall of the connecting member decreases from the central portion of the peripheral wall between the first screw portion and the second screw portion toward both ends of the peripheral wall. Cycle accumulator. 電子ビームを用いて前記溶接を行うことを特徴とする請求項1乃至請求項3いずれか一つに記載の冷凍サイクル用アキュムレータ。   The refrigeration cycle accumulator according to any one of claims 1 to 3, wherein the welding is performed using an electron beam. 前記溶接が摩擦攪拌溶接であることを特徴とする請求項1乃至請求項4のいずれか一つに記載の冷凍サイクル用アキュムレータ。   The accumulator for a refrigeration cycle according to any one of claims 1 to 4, wherein the welding is friction stir welding. 前記連結部材の周壁の厚さが4mm〜5.5mmの範囲にあることを特徴とする請求項1乃至請求項4のいずれか一つに記載の冷凍サイクル用アキュムレータ。 The accumulator for a refrigeration cycle according to any one of claims 1 to 4, wherein a thickness of a peripheral wall of the connecting member is in a range of 4 mm to 5.5 mm. 前記連結部材の第1雄ネジ部と第2雄ネジ部の距離が2mm〜6mmの範囲にあることを特徴とする請求項1乃至請求項6のいずれか一つに記載の冷凍サイクル用アキュムレータ。 The accumulator for a refrigeration cycle according to any one of claims 1 to 6, wherein a distance between the first male screw portion and the second male screw portion of the connecting member is in a range of 2 mm to 6 mm.
JP2008333393A 2008-12-26 2008-12-26 Accumulator for refrigeration cycle Expired - Fee Related JP5162437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333393A JP5162437B2 (en) 2008-12-26 2008-12-26 Accumulator for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333393A JP5162437B2 (en) 2008-12-26 2008-12-26 Accumulator for refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2010156472A JP2010156472A (en) 2010-07-15
JP5162437B2 true JP5162437B2 (en) 2013-03-13

Family

ID=42574514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333393A Expired - Fee Related JP5162437B2 (en) 2008-12-26 2008-12-26 Accumulator for refrigeration cycle

Country Status (1)

Country Link
JP (1) JP5162437B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597372U (en) * 1982-07-07 1984-01-18 ダイキン工業株式会社 gas liquid separator
JPH0646268U (en) * 1992-11-18 1994-06-24 昭和アルミニウム株式会社 Receiver
JP3366799B2 (en) * 1996-01-24 2003-01-14 昭和電工株式会社 Liquid receiver

Also Published As

Publication number Publication date
JP2010156472A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
US6164086A (en) Air conditioner
JP3365273B2 (en) Refrigeration cycle
CN102788452A (en) Condenser for vehicle and air conditioning system for vehicle
JP2007192429A (en) Gas-liquid separator module
JPWO2012017681A1 (en) Heat exchanger and refrigeration air conditioner
JP2007113904A (en) Cold storage tank apparatus and refrigeration cycle apparatus using the same
KR101938713B1 (en) Refrigerator
JP3617083B2 (en) Receiver integrated refrigerant condenser
JP4006861B2 (en) Integrated heat exchanger
JP4508006B2 (en) Refrigeration cycle equipment for vehicles
JP2008256350A (en) Refrigerant cycle device
JP2006003071A (en) Heat exchanger
JP5509942B2 (en) Ejector unit, heat exchanger unit, and refrigerant short circuit detection method for ejector unit
JP2001124442A (en) Accumulation receiver and its manufacturing method
US20030062152A1 (en) Radiator for supercritical vapor compression type refrigerating cycle
EP3156744B1 (en) Condenser and refrigerator having same
JP2001133075A (en) Heat exchanger in refrigerating circuit
JP2009024939A (en) Refrigerant tank and heat pump system
JP5162437B2 (en) Accumulator for refrigeration cycle
JP2007071511A (en) Accumulator structure
KR20120067406A (en) Cold reserving heat exchanger
JP4167397B2 (en) Heat exchanger
JP4842022B2 (en) Vapor compression refrigeration circuit and vehicle air conditioning system using the circuit
JP4897464B2 (en) Vapor compression refrigeration cycle
JP4720510B2 (en) Refrigerant cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees