JP5161630B2 - Inspection method - Google Patents

Inspection method Download PDF

Info

Publication number
JP5161630B2
JP5161630B2 JP2008089530A JP2008089530A JP5161630B2 JP 5161630 B2 JP5161630 B2 JP 5161630B2 JP 2008089530 A JP2008089530 A JP 2008089530A JP 2008089530 A JP2008089530 A JP 2008089530A JP 5161630 B2 JP5161630 B2 JP 5161630B2
Authority
JP
Japan
Prior art keywords
surface temperature
temperature data
inspection object
defect
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008089530A
Other languages
Japanese (ja)
Other versions
JP2009244021A (en
Inventor
正剛 東
精一 川浪
是 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008089530A priority Critical patent/JP5161630B2/en
Publication of JP2009244021A publication Critical patent/JP2009244021A/en
Application granted granted Critical
Publication of JP5161630B2 publication Critical patent/JP5161630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は赤外線検出手段と加熱手段とを用いて検査対象物の表面近傍に亀裂等の欠陥が生じているか否かを検査する検査方法に関する。   The present invention relates to an inspection method for inspecting whether or not a defect such as a crack has occurred near the surface of an inspection object using an infrared detection means and a heating means.

機器類などの検査対象物の健全性評価のために、染色浸透探傷法(PT)、磁粉探傷法(MT)、渦電流探傷法(ECT)、超音波探傷法(UT)等の検査方法によって、前記検査対象物の検査が行われている。しかし、これらの検査方法は検査対象物に接触して検査をする方法であるため、検査対象物の表面状態(温度、粗さ、形状)等によっては、当該検査対象物の検査への適用が困難な場合がある。   In order to evaluate the soundness of inspection objects such as equipment, by inspection methods such as dye penetration testing (PT), magnetic particle testing (MT), eddy current testing (ECT), ultrasonic testing (UT), etc. The inspection object is inspected. However, since these inspection methods are methods in which an inspection object is in contact with each other, depending on the surface state (temperature, roughness, shape) of the inspection object, the inspection object may not be applied. It can be difficult.

一方、検査対象物の表面温度を赤外線検出装置(検出素子)等で計測することによって、検査対象物の表面近傍の欠陥(亀裂等)を検出する方法も広く知られている。また、赤外線検出装置(検出素子)で検査対象物の表面温度を計測する際に、当該検査対象物の表面を加熱又は冷却することによって検出性能の向上を図る方法も広く知られており、この場合の加熱手段としてはレーザー、ランプ、ヒーター等が知られている。   On the other hand, a method for detecting defects (such as cracks) near the surface of an inspection object by measuring the surface temperature of the inspection object with an infrared detection device (detection element) or the like is also widely known. In addition, when measuring the surface temperature of an inspection object with an infrared detection device (detection element), a method for improving detection performance by heating or cooling the surface of the inspection object is also widely known. Lasers, lamps, heaters, and the like are known as heating means.

そして、加熱手段としてレーザーを用いることにより、検査対象物の表面に非接触で欠陥検査を行うことができる、フォトサーマルカメラと呼ばれる検査装置が存在する。この検査装置では赤外線検出装置(検出素子)とレーザービームが検査対象物の表面上を走査する。このときにレーザービームを検査対象物の表面に照射することにより、検査対象物の表面を加熱し、赤外線検出装置(検出素子)ではレーザーよって加熱された検査対象物の表面温度(表面からの輻射熱)を計測する。かくして検査対象物の表面温度データ(温度分布データ)が得られ、この表面温度データに基づいて検査対象物の表面近傍の欠陥(亀裂等)を検出することができる。   There is an inspection apparatus called a photothermal camera that can perform defect inspection on the surface of an inspection object in a non-contact manner by using a laser as a heating means. In this inspection apparatus, an infrared detection device (detection element) and a laser beam scan the surface of the inspection object. At this time, the surface of the inspection object is heated by irradiating the surface of the inspection object, and the surface temperature of the inspection object heated by the laser (radiant heat from the surface) is detected by the infrared detector (detection element). ). Thus, surface temperature data (temperature distribution data) of the inspection object is obtained, and defects (such as cracks) near the surface of the inspection object can be detected based on the surface temperature data.

そして更には、赤外線検出装置(検出素子)とレーザーの走査を往復させることにより(即ち前進走査と後進走査を行うことにより)、前進走査データである第1の表面温度データと、後進走査データである第2の表面温度データとを得た後、前記第2の表面温度データから前記第1の表面温度データを減算して第3の表面温度データを得ることにより、検査対象物の表面付着物や汚れなどのノイズ要因に起因するノイズ信号を低減させるという工夫もなされている(図3(a)及び図4(a)参照:詳細後述)。   Further, by reciprocating the scanning of the infrared detection device (detection element) and the laser (that is, by performing forward scanning and backward scanning), the first surface temperature data as the forward scanning data and the backward scanning data are used. After obtaining the second surface temperature data, the first surface temperature data is subtracted from the second surface temperature data to obtain the third surface temperature data, whereby the surface deposit on the inspection object is obtained. There has also been a contrivance to reduce noise signals caused by noise factors such as dirt and dirt (see FIGS. 3A and 4A: details will be described later).

特開平4−331360号公報JP-A-4-331360

しかしながら、上記従来の減算による検査方法では、検査対象物の表面状態(荒さ、汚れ、付着物、濡れ等の状態)によってはノイズ信号を十分に低減することがでずに欠陥検知信号とノイズ信号を明確に区別することが困難な場合があった。この場合には、検査対象物の表面近傍に欠陥(亀裂等)があっても、当該欠陥を確実に検出することが困難である。   However, in the conventional subtracting inspection method, the noise signal cannot be sufficiently reduced depending on the surface state of the inspection object (roughness, dirt, adhered matter, wetness, etc.), and the defect detection signal and the noise signal can be reduced. In some cases, it was difficult to clearly distinguish them. In this case, even if there is a defect (such as a crack) near the surface of the inspection object, it is difficult to reliably detect the defect.

従って本発明は上記の事情に鑑み、検査対象物の表面状態によらず、表面温度データに含まれている欠陥検知信号とノイズ信号の区別を明確することでき、確実に欠陥(亀裂等)を検出することができる検査方法を提供することを課題とする。   Therefore, in view of the above circumstances, the present invention can clearly distinguish between a defect detection signal and a noise signal included in the surface temperature data regardless of the surface state of the inspection object, and reliably detect defects (such as cracks). It is an object to provide an inspection method that can be detected.

上記課題を解決する発明の検査方法は、赤外線検出手段と加熱手段とを用いて検査対象物の表面上を走査することにより、前記検査対象物の表面近傍を検査する検査方法において、
前記加熱手段で前記検査対象物の表面を加熱せずに、前記赤外線検出手段で前記検査対象物の表面温度を計測して、加熱前の第1の表面温度データを得る第1の走査を行い、
この第1の表面温度データに応じて、温度の高い走査位置では前記加熱手段の出力を下げ、温度の低い走査位置では前記加熱手段の出力を上げるように前記加熱手段の出力を変化させつつ、前記加熱手段で前記検査対象物の表面を加熱しながら、この検査対象物の表面温度を前記赤外線検出手段で計測して、加熱後の第2の表面温度データを得る第2の走査を行うことを特徴とする。
The inspection method of the present invention that solves the above-described problems is an inspection method that inspects the vicinity of the surface of the inspection object by scanning the surface of the inspection object using an infrared detection means and a heating means.
Without heating the surface of the object to be inspected by the heating means, the surface temperature of the object to be inspected is measured by the infrared detecting means, and a first scan is performed to obtain first surface temperature data before heating. ,
In accordance with the first surface temperature data, while changing the output of the heating unit to lower the output of the heating unit at a scanning position with a high temperature and increase the output of the heating unit at a scanning position with a low temperature, While the surface of the inspection object is heated by the heating means, the surface temperature of the inspection object is measured by the infrared detection means, and second scanning is performed to obtain second surface temperature data after heating. It is characterized by.

発明の検査方法によれば、赤外線検出手段と加熱手段とを用いて検査対象物の表面上を走査することにより、前記検査対象物の表面近傍を検査する検査方法において、前記加熱手段で前記検査対象物の表面を加熱せずに、前記赤外線検出手段で前記検査対象物の表面温度を計測して、加熱前の第1の表面温度データを得る第1の走査を行い、この第1の表面温度データに応じて、温度の高い走査位置では前記加熱手段の出力を下げ、温度の低い走査位置では前記加熱手段の出力を上げるように前記加熱手段の出力を変化させつつ、前記加熱手段で前記検査対象物の表面を加熱しながら、この検査対象物の表面温度を前記赤外線検出手段で計測して、加熱後の第2の表面温度データを得る第2の走査を行うことを特徴としているため、検査対象物の表面に欠陥(亀裂等)と、付着物や汚れなどのノイズ要因とがあっても、第2の表面温度データでは、ノイズ信号が十分に低減され、欠陥検知信号とノイズ信号との区別が明確になる。従って、例えば所定の閾値と第2の表面温度データとを比較し、第2の表面温度データに前記閾値以上の信号が含まれているか否かを判定することによって、確実に第2の表面温度データに欠陥(亀裂等)に起因する欠陥検知信号が含まれていると判断することができる。即ち、欠陥(亀裂等)を確実に検出することができる。 According to the inspection method of the present invention, in the inspection method for inspecting the vicinity of the surface of the inspection object by scanning the surface of the inspection object using an infrared detection means and a heating means, the heating means Without heating the surface of the inspection object, the surface temperature of the inspection object is measured by the infrared detection means, and a first scan for obtaining first surface temperature data before heating is performed. According to the surface temperature data, the heating means changes the output of the heating means so as to decrease the output of the heating means at the scanning position where the temperature is high and increases the output of the heating means at the scanning position where the temperature is low. While heating the surface of the inspection object, the surface temperature of the inspection object is measured by the infrared detection means, and second scanning is performed to obtain second surface temperature data after heating. For inspection vs. Even if there are defects (cracks, etc.) on the surface of the object and noise factors such as deposits and dirt, the second surface temperature data sufficiently reduces the noise signal, and distinguishes between the defect detection signal and the noise signal. Becomes clear. Accordingly, for example, by comparing the predetermined threshold value with the second surface temperature data and determining whether or not the second surface temperature data includes a signal equal to or higher than the threshold value, the second surface temperature is surely determined. It can be determined that the data includes a defect detection signal caused by a defect (such as a crack). That is, a defect (such as a crack) can be reliably detected.

以下、本発明の実施の形態例を図面に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

参考例1及び実施の形態例>
図1は本発明の参考例及び実施の形態例に係る検査方法を実施するための検査装置の概要を示す図、図2は前記検査方法の説明図であって、(a)には信号処理内容のイメージ図を示し、(b)には信号処理内容を示す波形図を示す。
< Reference Example 1 and Embodiment >
Figure 1 is an explanatory view of Example 1 and shows an outline of an inspection apparatus for carrying out the inspection method according to an exemplary embodiment, FIG. 2 is the test method of the present invention, the signal in (a) An image diagram of processing contents is shown, and (b) shows a waveform diagram showing signal processing contents.

図1に示す表面検査装置はフォトサーマルカメラと呼ばれる装置であり、赤外線検出手段としての赤外線検出装置(検出素子)1と、加熱手段としてのレーザー2と、信号処理装置3と、図示しないアクチュエータとを備えている。この表面検査装置のハード的な構成自体は従来のものと同様である。赤外線検出装置(検出素子)1とレーザー2は機器類などの検査対象物4に非接触で対向して配置され、アクチュエータに駆動されて図1中に矢印で示す如く往復移動することにより、検査対象物4の表面4a上を往復走査すること(前進走査Fと後進走査Bとを行うこと)ができるようになっている。図1には検査対象物4の表面4aに欠陥(亀裂等)6が生じている状態を示している。なお、往復走査(前進走査F,後進走査B)を行う際、図示例の如く赤外線検出装置(検出素子)1とレーザー2を直線的に移動させるのではなく、赤外線検出装置(検出素子)1とレーザー2を回動軸回りに回動させる(即ち首振り動作をさせる)ようにしてもよい。   The surface inspection apparatus shown in FIG. 1 is an apparatus called a photothermal camera, and includes an infrared detection device (detection element) 1 as an infrared detection means, a laser 2 as a heating means, a signal processing device 3, and an actuator (not shown). It has. The hardware configuration itself of this surface inspection apparatus is the same as the conventional one. The infrared detection device (detection element) 1 and the laser 2 are arranged so as to face the inspection object 4 such as equipment in a non-contact manner, and are driven by an actuator to reciprocate as indicated by arrows in FIG. The surface 4a of the object 4 can be reciprocally scanned (forward scanning F and backward scanning B are performed). FIG. 1 shows a state in which a defect (such as a crack) 6 is generated on the surface 4a of the inspection object 4. FIG. When performing reciprocating scanning (forward scanning F, backward scanning B), the infrared detection device (detection element) 1 is not moved linearly as shown in the illustrated example, but the infrared detection device (detection element) 1 and the laser 2 are not moved linearly. The laser 2 may be rotated around the rotation axis (that is, the head is swung).

走査時にレーザー2ではレーザービーム2aを出射し、このレーザービーム2aが反射ミラー5a,5bを介して検査対象物4の表面aに照射されることより、当該表面4aが加熱される。走査時に赤外線検出装置(検出素子)1では検査対象物4の表面4aの温度(表面4aからの輻射熱)を計測して、表面温度データ(表面温度分布データ)を得る。そして、信号処理装置3では赤外線検出装置(検出素子)1によって得られた表面温度データを処理して、当該表面温度データに含まれる欠陥検知信号とノイズ信号とが明確に区別できるようにして、欠陥6を検出する。   The laser 2 emits a laser beam 2a during scanning, and the surface 4a is heated by irradiating the surface a of the inspection object 4 with the laser beam 2a via the reflection mirrors 5a and 5b. During scanning, the infrared detecting device (detecting element) 1 measures the temperature of the surface 4a of the inspection object 4 (radiant heat from the surface 4a) to obtain surface temperature data (surface temperature distribution data). The signal processing device 3 processes the surface temperature data obtained by the infrared detection device (detection element) 1 so that the defect detection signal and the noise signal included in the surface temperature data can be clearly distinguished, Defect 6 is detected.

この検査方法を図2に基づいて詳述する。図2(a)及び図2(b)に示すように、第1の走査である前進走査Fを行って、加熱前データである第1の表面温度データD1を得た後、第2の走査である後進走査Bを行って、加熱後データである第2の表面温度データD2を得る。即ち、前進走査Fでは、検査対象物4の表面4aをレーザー2で加熱すること(レーザービーム2aを表面4aに照射すること)はせずに、この加熱前の検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱前の第1の表面温度データD1(表面温度分布データ)を得る。後進走査Bでは、検査対象物4の表面4aをレーザー2で加熱(レーザービーム2aを表面4aに照射)しながら、この加熱された検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱後の第2の表面温度データD2(表面温度分布データ)を得る。   This inspection method will be described in detail with reference to FIG. As shown in FIG. 2A and FIG. 2B, the forward scanning F that is the first scanning is performed to obtain the first surface temperature data D1 that is the pre-heating data, and then the second scanning. Reverse scanning B is performed to obtain second surface temperature data D2 that is post-heating data. That is, in the forward scanning F, the surface 4a of the inspection object 4 is not heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), and the surface 4a of the inspection object 4 before the heating is heated. The temperature (radiant heat from the surface 4a) is measured by the infrared detection device (detection element) 1 to obtain first surface temperature data D1 (surface temperature distribution data) before heating. In the backward scanning B, the surface 4a of the inspection object 4 is heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), and the temperature of the heated surface 4a of the inspection object 4 (radiant heat from the surface 4a). Is measured by the infrared detection device (detection element) 1 to obtain second surface temperature data D2 (surface temperature distribution data) after heating.

検査対象物4の表面4aに表面付着物や汚れなどのノイズ要因や欠陥6があっても、加熱前の第1の表面温度データD1には、欠陥6に起因する欠陥検知信号は表れず、ノイズ要因に起因するノイズ信号ND1だけが含まれることになる。一方、検査対象物4の表面4aに表面付着物などのノイズ要因と欠陥6とがある場合、加熱後の第1の表面温度データD2には、欠陥6に起因する欠陥検知信号KD2と、ノイズ要因に起因するノイズ信号ND2とが含まれることになる。   Even if there are noise factors such as surface deposits and dirt or defects 6 on the surface 4a of the inspection object 4, the first surface temperature data D1 before heating does not show a defect detection signal due to the defects 6, Only the noise signal ND1 resulting from the noise factor is included. On the other hand, when there are noise factors such as surface deposits and defects 6 on the surface 4a of the inspection object 4, the first surface temperature data D2 after heating includes a defect detection signal KD2 due to the defects 6 and noise. The noise signal ND2 resulting from the factor is included.

欠陥検知信号KD2が得られる理由は次のとおりである。即ち、図1の後進走査Bにおいてレーザー2で検査対象物4の表面4aを加熱した場合、通常は検査対象物4の表面4aに熱伝導が生じるが、欠陥6の部分では熱伝導が遮断されるために欠陥6の縁部8に熱が蓄積されて当該縁部8の温度(輻射熱)が高くなる。従って、この欠陥6の縁部8の温度が赤外線検出装置(検出素子)1で計測されることによって欠陥検知信号KD2が得られる。なお、同様に、図1の前進走査Fにおいて、レーザー2で検査対象物4の表面4aを加熱した場合には、欠陥6の部分で熱伝導が遮断されるために欠陥6の縁部7に熱が蓄積されて当該縁部7の温度(輻射熱)が高くなるため、この欠陥6の縁部7の温度が赤外線検出装置(検出素子)1で計測されることによって欠陥検知信号が得られる。   The reason why the defect detection signal KD2 is obtained is as follows. That is, when the surface 4a of the inspection object 4 is heated by the laser 2 in the backward scanning B in FIG. 1, heat conduction usually occurs on the surface 4a of the inspection object 4, but the heat conduction is cut off at the defect 6 portion. Therefore, heat is accumulated at the edge 8 of the defect 6 and the temperature (radiant heat) of the edge 8 is increased. Therefore, the defect detection signal KD2 is obtained by measuring the temperature of the edge 8 of the defect 6 by the infrared detection device (detection element) 1. Similarly, in the forward scanning F of FIG. 1, when the surface 4 a of the inspection object 4 is heated by the laser 2, the heat conduction is cut off at the defect 6 portion, so that the edge 7 of the defect 6 is formed. Since heat accumulates and the temperature (radiant heat) of the edge 7 increases, the temperature of the edge 7 of the defect 6 is measured by the infrared detection device (detection element) 1 to obtain a defect detection signal.

そして、信号処理装置3では、加熱後の第2の表面温度データD2から、加熱前の第1の表面温度データD1を減算することにより、第3の表面温度データD3を得る。この第3の表面温度データD3では、前記減算によってノイズ信号ND3が十分に低減されるため、欠陥検知信号KD2に相当する欠陥検知信号KD3と、ノイズ信号ND3との区別が明確になる。従って、例えば所定の閾値S1と第3の表面温度データD3とを比較し、第3の表面温度データD3に閾値S1以上の信号が含まれているか否かを判定することによって、確実に第3の表面温度データD3に欠陥6に起因する欠陥検知信号KD3が含まれていると判断することができる。即ち、欠陥6を確実に検出することができる。   And in the signal processing apparatus 3, the 3rd surface temperature data D3 is obtained by subtracting the 1st surface temperature data D1 before a heating from the 2nd surface temperature data D2 after a heating. In the third surface temperature data D3, since the noise signal ND3 is sufficiently reduced by the subtraction, the distinction between the defect detection signal KD3 corresponding to the defect detection signal KD2 and the noise signal ND3 becomes clear. Therefore, for example, by comparing the predetermined threshold value S1 with the third surface temperature data D3 and determining whether or not the third surface temperature data D3 includes a signal equal to or higher than the threshold value S1, the third surface temperature data D3 can be reliably detected. It can be determined that the surface temperature data D3 includes the defect detection signal KD3 caused by the defect 6. That is, the defect 6 can be reliably detected.

そして、本発明の実施の形態例に係る検査方法では、図示は省略するが、上記のような減算方法の代わりに、第2の走査(後進走査B)において、第1の走査(前進走査F)で得られた第1の表面温度データD1に応じて、レーザー1の出力をレーザー出力調整手段で調整する。この場合、第2の走査(後進走査B)では、第1の表面温度データD1に応じてレーザー2の出力を変化させつつ、レーザー2で検査対象物4の表面4aを加熱しながら、この検査対象物4の表面4aの温度を赤外線検出装置(検出素子)1で計測して、加熱後の第2の表面温度データを得る。具体的には、第1の表面温度データD1に応じて、温度の高い走査位置(検査対象物4の表面4a上の位置)ではレーザー2の出力を下げ、温度の低い走査位置ではレーザー2の出力を上げる。 In the inspection method according to the embodiment of the present invention, the first scanning (forward scanning F) is performed in the second scanning (backward scanning B) instead of the subtraction method as described above, although illustration is omitted. The output of the laser 1 is adjusted by the laser output adjusting means in accordance with the first surface temperature data D1 obtained in (1). In this case, in the second scanning (backward scanning B), the inspection is performed while heating the surface 4a of the inspection object 4 with the laser 2 while changing the output of the laser 2 according to the first surface temperature data D1. The temperature of the surface 4a of the object 4 is measured by the infrared detection device (detection element) 1 to obtain second surface temperature data after heating. Specifically, in accordance with the first surface temperature data D1, the output of the laser 2 is reduced at a scanning position with a high temperature (position on the surface 4a of the inspection object 4), and the laser 2 is scanned at a scanning position with a low temperature. Increase output.

この場合の第2の表面温度データでも、上記減算方法による第3の表面温度データD3の場合と同様、ノイズ信号が十分に低減されるため、欠陥検知信号とノイズ信号との区別が明確になる。従って、この場合も、例えば上記と同様に所定の閾値と第2の表面温度データとを比較し、第2の表面温度データに前記閾値以上の信号が含まれているか否かを判定することによって、確実に第2の表面温度データに欠陥6に起因する欠陥検知信号が含まれていると判断することができる。即ち、欠陥6を確実に検出することができる。   Even in the second surface temperature data in this case, the noise signal is sufficiently reduced as in the case of the third surface temperature data D3 obtained by the subtraction method, so that the distinction between the defect detection signal and the noise signal becomes clear. . Accordingly, in this case as well, for example, a predetermined threshold value is compared with the second surface temperature data in the same manner as described above, and it is determined whether the second surface temperature data includes a signal equal to or higher than the threshold value. It can be reliably determined that the second surface temperature data includes the defect detection signal resulting from the defect 6. That is, the defect 6 can be reliably detected.

以上のように、本参考例の検査方法によれば、赤外線検出装置(検出素子)1とレーザー2とを用いて検査対象物4の表面a上を走査することにより、検査対象物4の表面4a近傍(表面4a近傍に欠陥6(亀裂等)生じているか否か)を検査する検査方法において、レーザー6で検査対象物4の表面4aを加熱せずに、赤外線検出装置(検出素子)1で検査対象物4の表面温度を計測して、加熱前の第1の表面温度データD1を得る第1の走査(前進走査F)と、レーザー2で検査対象物4の表面4aを加熱しながら、この検査対象物4の表面温度を赤外線検出装置(検出素子)1で計測して、加熱後の第2の表面温度データD2を得る第2の走査(後進走査B)とを行い、第2の表面温度データD2から、第1の表面温度データD1を減算することにより、第3の表面温度データD3を得ることを特徴としているため、第2の表面温度データD2に欠陥検知信号KD2とノイズ信号ND2が含まれていても、第3の表面温度データD3では、前記減算によってノイズ信号ND3が十分に低減されて、欠陥検知信号KD3とノイズ信号ND3との区別が明確になる。このため、確実に第3の表面温度データD3に欠陥6に起因する欠陥検知信号KD3が含まれていると判断することができ、欠陥6を確実に検出することができる。 As described above, according to the inspection method of the first reference example, the surface a of the inspection object 4 is scanned by using the infrared detection device (detection element) 1 and the laser 2 to thereby inspect the inspection object 4. In the inspection method for inspecting the vicinity of the surface 4a (whether or not a defect 6 (crack or the like is generated in the vicinity of the surface 4a)), the laser 6 does not heat the surface 4a of the inspection object 4, and an infrared detection device (detection element) 1, the surface temperature of the inspection object 4 is measured, and the surface 4 a of the inspection object 4 is heated by the laser 2 and the first scanning (forward scanning F) for obtaining the first surface temperature data D <b> 1 before heating. However, the surface temperature of the inspection object 4 is measured by the infrared detection device (detection element) 1 and the second scan (reverse scan B) for obtaining the second surface temperature data D2 after heating is performed. From the surface temperature data D2 of 2, the first surface temperature data D1 Since the third surface temperature data D3 is obtained by calculation, even if the second surface temperature data D2 includes the defect detection signal KD2 and the noise signal ND2, the third surface temperature data is obtained. In D3, the noise signal ND3 is sufficiently reduced by the subtraction, and the distinction between the defect detection signal KD3 and the noise signal ND3 becomes clear. For this reason, it can be determined that the defect detection signal KD3 resulting from the defect 6 is included in the third surface temperature data D3, and the defect 6 can be detected reliably.

また、本実施の形態例の検査方法によれば、赤外線検出装置(検出素子)1とレーザー2とを用いて検査対象物4の表面4a上を走査することにより、検査対象物4の表面4a近傍(表面4a近傍に欠陥6(亀裂等)生じているか否か)を検査する検査方法において、レーザー2で検査対象物4の表面4aを加熱せずに、赤外線検出装置(検出素子)1で検査対象物4の表面温度を計測して、加熱前の第1の表面温度データD1を得る第1の走査(前進走査F)を行い、この第1の表面温度データD2に応じてレーザー2の出力を変化させつつ、レーザー2で検査対象物4の表面aを加熱しながら、この検査対象物4の表面温度を赤外線検出装置(検出素子)1で計測して、加熱後の第2の表面温度データを得る第2の走査(後進走査B)を行うことを特徴としているため、検査対象物4の表面4aに欠陥6(亀裂)と、付着物や汚れなどのノイズ要因とがあっても、第2の表面温度データでは、ノイズ信号が十分に低減されて、欠陥検知信号とノイズ信号との区別が明確になる。このため、確実に第2の表面温度データに欠陥6に起因する欠陥検知信号が含まれていると判断することができ、欠陥6を確実に検出することができる。 Further, according to the inspection method of the present embodiment, the surface 4a of the inspection object 4 is scanned by scanning the surface 4a of the inspection object 4 using the infrared detection device (detection element) 1 and the laser 2. In an inspection method for inspecting the vicinity (whether or not a defect 6 (crack or the like is generated in the vicinity of the surface 4a)), the surface 4a of the inspection object 4 is not heated by the laser 2 but by the infrared detection device (detection element) 1. The surface temperature of the inspection object 4 is measured, and a first scan (forward scan F) is performed to obtain first surface temperature data D1 before heating, and the laser 2 is detected in accordance with the first surface temperature data D2. While changing the output, while heating the surface a of the inspection object 4 with the laser 2, the surface temperature of the inspection object 4 is measured by the infrared detection device (detection element) 1, and the second surface after heating A second scan (reverse scan B) for obtaining temperature data Therefore, even if there are defects 6 (cracks) on the surface 4a of the inspection object 4 and noise factors such as deposits and dirt, the second surface temperature data has a sufficient noise signal. As a result, the distinction between the defect detection signal and the noise signal becomes clear. For this reason, it can be determined that the defect detection signal resulting from the defect 6 is included in the second surface temperature data with certainty, and the defect 6 can be reliably detected.

参考例2>
図3(a)は従来の検査方法であって欠陥(亀裂等)が比較的浅い場合の説明図、図3(b)は本発明の参考例2に係る検査方法であって欠陥(亀裂等)が比較的浅い場合の説明図である。また、図4(a)は従来の検査方法であって欠陥(亀裂等)が比較的深い場合の説明図、図4(b)は本発明の参考例2に係る検査方法であって欠陥(亀裂等)が比較的深い場合の説明図である。
< Reference Example 2>
FIG. 3A is an explanatory diagram of a conventional inspection method in which defects (cracks, etc.) are relatively shallow, and FIG. 3B is an inspection method according to Reference Example 2 of the present invention, with defects (cracks, etc.). ) Is an explanatory diagram when the depth is relatively shallow. 4A is an explanatory diagram of a conventional inspection method when a defect (crack or the like) is relatively deep, and FIG. 4B is an inspection method according to Reference Example 2 of the present invention. It is explanatory drawing when a crack etc. are comparatively deep.

なお、本参考例2においても、表面検査装置の構成については上記参考例1及び実施の形態1と同様であるため、図1を参照することとし、ここでの図示及び詳細な説明は省略する。 In the second reference example, the configuration of the surface inspection apparatus is the same as that in the first reference example and the first embodiment. Therefore, FIG. 1 is referred to, and illustration and detailed description thereof are omitted here. .

まず、図3(a)及び図4(a)に基づき、図1に示す表面検査装置を用いて従来の検査方法を行う場合について説明する。   First, based on FIG. 3A and FIG. 4A, a case where a conventional inspection method is performed using the surface inspection apparatus shown in FIG. 1 will be described.

欠陥6が比較的浅い場合について説明すると、図3(a)に示すように、第1の走査である前進走査Fを行って、前進走査データである第1の表面温度データD11を得た後、第2の走査である後進走査Bを行って、後進走査データである第2の表面温度データD12を得る。即ち、前進走査Fでは、検査対象物4の表面4aをレーザー2で加熱(レーザービーム2aを表面4aに照射)しながら、この加熱された検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱後の第1の表面温度データD11(表面温度分布データ)を得る。後進走査Bでも、同様に、検査対象物4の表面4aをレーザー2で加熱(レーザービーム2aを表面4aに照射)しながら、この加熱された検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱後の第2の表面温度データD12(表面温度分布データ)を得る。   The case where the defect 6 is relatively shallow will be described. As shown in FIG. 3A, after the forward scanning F which is the first scanning is performed and the first surface temperature data D11 which is the forward scanning data is obtained. Then, the backward scanning B as the second scanning is performed to obtain the second surface temperature data D12 as the backward scanning data. That is, in the forward scanning F, while the surface 4a of the inspection object 4 is heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), the temperature of the heated surface 4a of the inspection object 4 (from the surface 4a) Radiant heat) is measured by the infrared detecting device (detecting element) 1 to obtain first surface temperature data D11 (surface temperature distribution data) after heating. Similarly, in reverse scanning B, the surface 4a of the inspection object 4 is heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), and the temperature of the heated surface 4a of the inspection object 4 (from the surface 4a). Radiant heat) is measured by the infrared detecting device (detecting element) 1 to obtain second surface temperature data D12 (surface temperature distribution data) after heating.

検査対象物4の表面4aに表面付着物や汚れなどのノイズ要因と欠陥6とがある場合、第1の表面温度データD11には、欠陥6に起因する欠陥検知信号KD11と、ノイズ要因に起因するノイズ信号ND11とが含まれることになり、第2の表面温度データD12にも、欠陥6に起因する欠陥検知信号KD12と、ノイズ要因に起因するノイズ信号ND12とが含まれることになる。   When the surface 4a of the inspection object 4 has noise factors such as surface deposits and dirt and the defect 6, the first surface temperature data D11 includes the defect detection signal KD11 caused by the defect 6 and the noise factor. Therefore, the second surface temperature data D12 also includes the defect detection signal KD12 caused by the defect 6 and the noise signal ND12 caused by the noise factor.

そして、信号処理装置3では、第1の表面温度データD11から、第2の表面温度データD12を減算することにより、第3の表面温度データD13を得る。この第3の表面温度データD13では、前記減算によってノイズ信号ND13が十分に低減される一方、多少の欠陥検知信号KD13が残る。これは前進走査時のノイズ信号ND11と後進走査時のノイズ信号ND12の発生位置は一致する一方、前進走査時の欠陥検知信号KD11と後進走査時のKD12の発生位置は、図1に示すように前進走査時と後進走査時とで蓄熱位置(縁部7,8)が異なることにより、多少ずれるためである。しかしながら、かかる減算を行っても、前述のとおり検査対象物4の表面状態によってはノイズ信号ND13が十分に低減されないことがあり、また、欠陥検知信号KD13も小さなものであるため、欠陥検知信号KD13とノイズ信号ND13を明確に区別することが困難な場合があった。   In the signal processing device 3, the third surface temperature data D13 is obtained by subtracting the second surface temperature data D12 from the first surface temperature data D11. In the third surface temperature data D13, the noise signal ND13 is sufficiently reduced by the subtraction, while some defect detection signals KD13 remain. This is because the generation position of the noise signal ND11 at the time of forward scanning and the generation position of the noise signal ND12 at the time of backward scanning coincide with each other, while the position of the defect detection signal KD11 at the time of forward scanning and the generation position of KD12 at the time of backward scanning are as shown in FIG. This is because the heat storage position (edges 7 and 8) is different between forward scanning and backward scanning, so that there is a slight shift. However, even if such subtraction is performed, the noise signal ND13 may not be sufficiently reduced depending on the surface state of the inspection object 4 as described above, and the defect detection signal KD13 is also small, so the defect detection signal KD13. In some cases, it is difficult to clearly distinguish between the noise signal ND13 and the noise signal ND13.

欠陥6が比較的深い場合ついて説明すると、図4(a)に示すように、第1の走査である前進走査Fを行って、前進走査データである第1の表面温度データD21を得た後、第2の走査である後進走査Bを行って、後進走査データである第2の表面温度データD22を得る。即ち、前進走査Fでは、検査対象物4の表面4aをレーザー2で加熱(レーザービーム2aを表面4aに照射)しながら、この加熱された検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱後の第1の表面温度データD21(表面温度分布データ)を得る。後進走査Bでも、同様に、検査対象物4の表面4aをレーザー2で加熱(レーザービーム2aを表面4aに照射)しながら、この加熱された検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱後の第2の表面温度データD22(表面温度分布データ)を得る。   The case where the defect 6 is relatively deep will be described. As shown in FIG. 4A, after the forward scanning F which is the first scanning is performed, the first surface temperature data D21 which is the forward scanning data is obtained. Then, the backward scanning B as the second scanning is performed to obtain the second surface temperature data D22 as the backward scanning data. That is, in the forward scanning F, while the surface 4a of the inspection object 4 is heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), the temperature of the heated surface 4a of the inspection object 4 (from the surface 4a) Radiant heat) is measured by the infrared detector (detection element) 1 to obtain first surface temperature data D21 (surface temperature distribution data) after heating. Similarly, in reverse scanning B, the surface 4a of the inspection object 4 is heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), and the temperature of the heated surface 4a of the inspection object 4 (from the surface 4a). Radiant heat) is measured by the infrared detection device (detection element) 1 to obtain second surface temperature data D22 (surface temperature distribution data) after heating.

検査対象物4の表面4aに表面付着物や汚れなどのノイズ要因と欠陥6とがある場合、第1の表面温度データD21には、欠陥6に起因する欠陥検知信号KD21と、ノイズ要因に起因するノイズ信号ND21とが含まれることになり、第2の表面温度データD22にも、欠陥6に起因する欠陥検知信号KD22と、ノイズ要因に起因するノイズ信号ND22とが含まれることになる。欠陥6が深い場合には、欠陥検知信号KD21は、前進走査方向の上流側で大きく増加し下流側で大きく減少するような信号となり、欠陥検知信号KD22は、後進走査方向の上流側で大きく増加し下流側で大きく減少するような信号となる。このため、前進走査時の欠陥検知信号KD21と後進走査時の欠陥検知信号KD22は、増加位置と減少位置が逆の関係になる。一方、前進走査時のノイズ信号ND21と後進走査時のノイズ信号ND22は何れも増加しており、発生位置も一致する。   When the surface 4a of the inspection object 4 has noise factors such as surface deposits and dirt and the defect 6, the first surface temperature data D21 includes the defect detection signal KD21 resulting from the defect 6 and the noise factor. Therefore, the second surface temperature data D22 also includes the defect detection signal KD22 caused by the defect 6 and the noise signal ND22 caused by the noise factor. When the defect 6 is deep, the defect detection signal KD21 is a signal that increases greatly on the upstream side in the forward scanning direction and decreases greatly on the downstream side, and the defect detection signal KD22 increases greatly on the upstream side in the backward scanning direction. However, the signal decreases greatly on the downstream side. For this reason, the defect detection signal KD21 at the time of forward scanning and the defect detection signal KD22 at the time of backward scanning have an inverse relationship between the increase position and the decrease position. On the other hand, the noise signal ND21 at the time of forward scanning and the noise signal ND22 at the time of backward scanning both increase, and the generation positions thereof also coincide.

そして、信号処理装置3では、第1の表面温度データD21において所定の第1の基準値K1よりも大きなデータを正、第1の基準値K1よりも小さなデータを負とし、且つ、第2の表面温度データD22において所定の第2の基準値K2よりも大きなデータを正、第2の基準値K2よりも小さなデータを負とした後、第1の表面温度データD21から、第2の表面温度データD22を減算することにより、第3の表面温度データD23を得る。なお、基準値K1,K2は前進走査時の検査対象物4の表面温度の平均値と、後進走査時の検査対象物4の表面温度の平均値であり、例えば第1の表面温度データD21の平均値と第2の表面温度データD22の平均値であってもよく、予め実験や解析などを行って推定した前進走査時の検査対象物4の表面温度の平均値と、後進走査時の検査対象物4の表面温度の平均値であってもよい。   In the signal processing device 3, in the first surface temperature data D21, data larger than the predetermined first reference value K1 is positive, data smaller than the first reference value K1 is negative, and second data In the surface temperature data D22, data larger than the predetermined second reference value K2 is positive, and data smaller than the second reference value K2 is negative, and then the second surface temperature is determined from the first surface temperature data D21. The third surface temperature data D23 is obtained by subtracting the data D22. The reference values K1 and K2 are the average value of the surface temperature of the inspection object 4 at the time of forward scanning and the average value of the surface temperature of the inspection object 4 at the time of backward scanning, and are, for example, the first surface temperature data D21. The average value and the average value of the second surface temperature data D22 may be used. The average value of the surface temperature of the inspection object 4 at the time of forward scanning estimated by conducting experiments and analysis in advance and the inspection at the time of backward scanning. The average value of the surface temperature of the target object 4 may be sufficient.

第3の表面温度データD13では、前記減算によってノイズ信号ND23が十分に低減される一方、大きな欠陥検知信号KD23が残るため、欠陥検知信号KD23とノイズ信号ND23との区別が明確になる。従って、例えば所定の閾値と第3の表面温度データD23とを比較し、第3の表面温度データD23に閾値以上の信号が含まれているか否かを判定することによって、第3の表面温度データD23に欠陥6に起因する欠陥検知信号KD23が含まれていると判断することができる。しかしながら、かかる減算を行っても、前述のとおり検査対象物4の表面状態によってはノイズ信号ND23が十分に低減されないことがあり、欠陥検知信号KD23とノイズ信号ND23を明確に区別することが困難な場合があった。   In the third surface temperature data D13, the noise signal ND23 is sufficiently reduced by the subtraction, but a large defect detection signal KD23 remains, so that the distinction between the defect detection signal KD23 and the noise signal ND23 becomes clear. Therefore, for example, by comparing the predetermined threshold value with the third surface temperature data D23 and determining whether or not the third surface temperature data D23 includes a signal equal to or higher than the threshold value, the third surface temperature data is determined. It can be determined that the defect detection signal KD23 caused by the defect 6 is included in D23. However, even if such subtraction is performed, the noise signal ND23 may not be sufficiently reduced depending on the surface state of the inspection object 4 as described above, and it is difficult to clearly distinguish the defect detection signal KD23 from the noise signal ND23. There was a case.

次に、図3(b)及び図4(b)に基づき、図1に示す表面検査装置を用いて本参考例2の検査方法を行う場合について説明する。 Next, based on FIG. 3B and FIG. 4B, a case where the inspection method of the reference example 2 is performed using the surface inspection apparatus shown in FIG. 1 will be described.

欠陥6が比較的浅い場合ついて説明すると、図3(b)に示すように、第1の走査である前進走査Fを行って、前進走査データである第1の表面温度データD14を得た後、第2の走査である後進走査Bを行って、後進走査データである第2の表面温度データD15を得る。即ち、前進走査Fでは、検査対象物4の表面4aをレーザー2で加熱(レーザービーム2aを表面4aに照射)しながら、この加熱された検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱後の第1の表面温度データD14(表面温度分布データ)を得る。後進走査Bでも、同様に、検査対象物4の表面4aをレーザー2で加熱(レーザービーム2aを表面4aに照射)しながら、この加熱された検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱後の第2の表面温度データD15(表面温度分布データ)を得る。   The case where the defect 6 is relatively shallow will be described. As shown in FIG. 3B, after the forward scanning F that is the first scanning is performed and the first surface temperature data D14 that is the forward scanning data is obtained. Then, the backward scanning B as the second scanning is performed to obtain the second surface temperature data D15 as the backward scanning data. That is, in the forward scanning F, while the surface 4a of the inspection object 4 is heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), the temperature of the heated surface 4a of the inspection object 4 (from the surface 4a) Radiant heat) is measured by the infrared detection device (detection element) 1 to obtain first surface temperature data D14 (surface temperature distribution data) after heating. Similarly, in reverse scanning B, the surface 4a of the inspection object 4 is heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), and the temperature of the heated surface 4a of the inspection object 4 (from the surface 4a). Radiant heat) is measured by the infrared detection device (detection element) 1 to obtain second surface temperature data D15 (surface temperature distribution data) after heating.

検査対象物4の表面4aに表面付着物などのノイズ要因と欠陥6とがある場合、第1の表面温度データD14には、欠陥6に起因する欠陥検知信号KD14と、ノイズ要因に起因するノイズ信号ND14とが含まれることになり、第2の表面温度データD15にも、欠陥6に起因する欠陥検知信号KD15と、ノイズ要因に起因するノイズ信号ND15とが含まれることになる。   When there are noise factors such as surface deposits and defects 6 on the surface 4a of the inspection object 4, the first surface temperature data D14 includes a defect detection signal KD14 caused by the defect 6 and noise caused by the noise factor. The signal ND14 is included, and the second surface temperature data D15 also includes the defect detection signal KD15 attributed to the defect 6 and the noise signal ND15 attributed to the noise factor.

そして、信号処理装置3では、第1の表面温度データD14と、第2の表面温度データD15とを乗算することにより、第3の表面温度データD16を得る。ノイズ信号ND14,15に比べて、蓄熱量の大きな欠陥6の縁部7,8に起因する欠陥検知信号KD14,15の方が大きな値となるため、第3の表面温度データD16では、比較的小さなノイズ信号ND14,16同士の乗算結果として得られるノイズ信号ND16比べて、比較的大きな欠陥検知信号KD14,16同士の乗算結果として得られる欠陥検知信号KD16の方が非常に大きな値となる。このため、第3の表面温度データD16では、欠陥検知信号KD16とノイズ信号ND16との区別が明確になる。従って、例えば所定の閾値S2と第3の表面温度データD16とを比較し、第3の表面温度データD16に閾値S2以上の信号が含まれているか否かを判定することによって、確実に第3の表面温度データD16に欠陥6に起因する欠陥検知信号KD16が含まれていると判断することができる。即ち、欠陥6を確実に検出することができる。   The signal processing device 3 multiplies the first surface temperature data D14 and the second surface temperature data D15 to obtain third surface temperature data D16. Since the defect detection signals KD14 and 15 caused by the edges 7 and 8 of the defect 6 having a large heat storage amount have a larger value than the noise signals ND14 and 15, the third surface temperature data D16 is relatively Compared with the noise signal ND16 obtained as a result of multiplication between the small noise signals ND14 and 16, the defect detection signal KD16 obtained as a result of multiplication between the relatively large defect detection signals KD14 and 16 has a much larger value. Therefore, in the third surface temperature data D16, the distinction between the defect detection signal KD16 and the noise signal ND16 becomes clear. Therefore, for example, by comparing the predetermined threshold value S2 with the third surface temperature data D16 and determining whether or not the third surface temperature data D16 includes a signal equal to or greater than the threshold value S2, the third surface temperature data D16 is reliably determined. It can be determined that the surface temperature data D16 includes the defect detection signal KD16 caused by the defect 6. That is, the defect 6 can be reliably detected.

欠陥6が比較的深い場合ついて説明すると、図4(b)に示すように、第1の走査である前進走査Fを行って、前進走査データである第1の表面温度データD24を得た後、第2の走査である後進走査Bを行って、後進走査データである第2の表面温度データD25を得る。即ち、前進走査Fでは、検査対象物4の表面4aをレーザー2で加熱(レーザービーム2aを表面4aに照射)しながら、この加熱された検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱後の第1の表面温度データD24(表面温度分布データ)を得る。後進走査Bでも、同様に、検査対象物4の表面4aをレーザー2で加熱(レーザービーム2aを表面4aに照射)しながら、この加熱された検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱後の第2の表面温度データD25(表面温度分布データ)を得る。   The case where the defect 6 is relatively deep will be described. As shown in FIG. 4B, after the forward scanning F which is the first scanning is performed, the first surface temperature data D24 which is the forward scanning data is obtained. Then, the backward scanning B as the second scanning is performed to obtain the second surface temperature data D25 as the backward scanning data. That is, in the forward scanning F, while the surface 4a of the inspection object 4 is heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), the temperature of the heated surface 4a of the inspection object 4 (from the surface 4a) Radiant heat) is measured by the infrared detecting device (detecting element) 1 to obtain first surface temperature data D24 (surface temperature distribution data) after heating. Similarly, in reverse scanning B, the surface 4a of the inspection object 4 is heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), and the temperature of the heated surface 4a of the inspection object 4 (from the surface 4a). Radiant heat) is measured by the infrared detection device (detection element) 1 to obtain second surface temperature data D25 (surface temperature distribution data) after heating.

検査対象物4の表面4aに表面付着物や汚れなどのノイズ要因と欠陥6とがある場合、第1の表面温度データD24には、欠陥6に起因する欠陥検知信号KD24と、ノイズ要因に起因するノイズ信号ND24とが含まれることになり、第2の表面温度データD25にも、欠陥6に起因する欠陥検知信号KD25と、ノイズ要因に起因するノイズ信号ND25とが含まれることになる。前述のとおり、欠陥6が深い場合、欠陥検知信号KD24は前進走査方向の上流側で大きく増加し下流側で大きく減少するような信号となり、欠陥検知信号KD25は後進走査方向の上流側で大きく増加し下流側で大きく減少するような信号となる。このため、前進走査時の欠陥検知信号KD24と後進走査時の欠陥検知信号KD25は、増加位置と減少位置が逆の関係になる。一方、前進走査時のノイズ信号ND24と後進走査時のノイズ信号ND25は何れも増加しており、発生位置も一致する。   When the surface 4a of the inspection object 4 has noise factors such as surface deposits and dirt and the defect 6, the first surface temperature data D24 includes the defect detection signal KD24 resulting from the defect 6 and the noise factor. Therefore, the second surface temperature data D25 also includes the defect detection signal KD25 caused by the defect 6 and the noise signal ND25 caused by the noise factor. As described above, when the defect 6 is deep, the defect detection signal KD24 greatly increases on the upstream side in the forward scanning direction and decreases greatly on the downstream side, and the defect detection signal KD25 increases significantly on the upstream side in the backward scanning direction. However, the signal decreases greatly on the downstream side. For this reason, the defect detection signal KD24 at the time of forward scanning and the defect detection signal KD25 at the time of backward scanning have an inverse relationship between the increase position and the decrease position. On the other hand, the noise signal ND24 at the time of forward scanning and the noise signal ND25 at the time of backward scanning both increase, and the generation positions thereof also coincide.

そして、信号処理装置3では、第1の表面温度データD24において所定の第1の基準値K3よりも大きなデータを正、第1の基準値K3よりも小さなデータを負とし、且つ、第2の表面温度データD25において所定の第2の基準値K4よりも大きなデータを正、第2の基準値K4よりも小さなデータを負とした後、第1の表面温度データD24と、第2の表面温度データD25とを乗算することにより、第3の表面温度データD26を得る。なお、基準値K3,K4は前進走査時の検査対象物4の表面温度の平均値と、後進走査時の検査対象物4の表面温度の平均値であり、例えば第1の表面温度データD24の平均値と第2の表面温度データD25の平均値とであってもよく、予め実験や解析などを行って推定した前進走査時の検査対象物の表面温度の平均値と、後進走査時の検査対象物の表面温度の平均値であってもよい。   In the signal processing device 3, in the first surface temperature data D24, data larger than the predetermined first reference value K3 is positive, data smaller than the first reference value K3 is negative, and second data In the surface temperature data D25, data larger than the predetermined second reference value K4 is positive, and data smaller than the second reference value K4 is negative. Then, the first surface temperature data D24 and the second surface temperature The third surface temperature data D26 is obtained by multiplying the data D25. The reference values K3 and K4 are the average value of the surface temperature of the inspection object 4 during forward scanning and the average value of the surface temperature of the inspection object 4 during backward scanning, for example, the first surface temperature data D24. The average value and the average value of the second surface temperature data D25 may be used, and the average value of the surface temperature of the inspection object during forward scanning estimated by conducting experiments and analysis in advance and the inspection during backward scanning. It may be an average value of the surface temperature of the object.

第3の表面温度データD13では、ノイズ信号ND26は正のノイズ信号ND24,25同士が乗算された結果として正の値となる一方、欠陥検知信号KD26は欠陥検知信号KD24の正の部分と欠陥検知信号KD25の負の部分が乗算され、且つ、欠陥検知信号KD24の負の部分と欠陥検知信号KD25の正の部分が乗算された結果として負の大きな値となる。このため、第3の表面温度データD26では、欠陥検知信号KD26とノイズ信号ND26との区別が明確になる。従って、例えば所定の閾値S3と第3の表面温度データD26とを比較し、第3の表面温度データD26に閾値S3以下の信号が含まれているか否かを判定することによって、確実に第3の表面温度データD26に欠陥6に起因する欠陥検知信号KD26が含まれていると判断することができる。即ち、欠陥6を確実に検出することができる。   In the third surface temperature data D13, the noise signal ND26 becomes a positive value as a result of multiplication of the positive noise signals ND24 and 25, while the defect detection signal KD26 is a positive part of the defect detection signal KD24 and defect detection. As a result of multiplication of the negative part of the signal KD25 and multiplication of the negative part of the defect detection signal KD24 and the positive part of the defect detection signal KD25, a large negative value is obtained. Therefore, in the third surface temperature data D26, the distinction between the defect detection signal KD26 and the noise signal ND26 becomes clear. Therefore, for example, by comparing the predetermined threshold value S3 with the third surface temperature data D26 and determining whether or not the third surface temperature data D26 includes a signal equal to or lower than the threshold value S3, the third surface temperature is surely determined. It can be determined that the surface temperature data D26 includes the defect detection signal KD26 caused by the defect 6. That is, the defect 6 can be reliably detected.

なお、上記の欠陥6が比較的浅い場合においても、この欠陥6が比較的深い場合と同様に、第1の表面温度データD14において所定の第1の基準値よりも大きなデータを正、第1の基準値よりも小さなデータを負とし、且つ、第2の表面温度データD15において所定の第2の基準値よりも大きなデータを正、第2の基準値よりも小さなデータを負とした後、第1の表面温度データD14と、第2の表面温度データD15とを乗算することにより、第3の表面温度データD16を得るようにすることが望ましい。なお、第1の基準値と第2の基準値は前進走査時の検査対象物4の表面温度の平均値と、後進走査時の検査対象物4の表面温度の平均値であり、第1の表面温度データD14の平均値と第2の表面温度データD15の平均値であってもよく、予め実験や解析などを行って推定した前進走査時の検査対象物の表面温度の平均値と、後進走査時の検査対象物の表面温度の平均値であってもよい。   Even when the defect 6 is relatively shallow, data larger than a predetermined first reference value in the first surface temperature data D14 is positive and first as in the case where the defect 6 is relatively deep. After making the data smaller than the reference value negative, and making the data larger than the predetermined second reference value positive in the second surface temperature data D15, and making the data smaller than the second reference value negative, It is desirable to obtain the third surface temperature data D16 by multiplying the first surface temperature data D14 and the second surface temperature data D15. The first reference value and the second reference value are the average value of the surface temperature of the inspection object 4 during forward scanning and the average value of the surface temperature of the inspection object 4 during backward scanning. The average value of the surface temperature data D14 and the average value of the second surface temperature data D15 may be used. The average value of the surface temperature of the object to be inspected at the time of forward scanning estimated by conducting experiments and analyzes in advance and the reverse It may be an average value of the surface temperature of the inspection object during scanning.

以上のように、本参考例2の検査方法によれば、赤外線検出装置(検出素子)1とレーザー2とを用いて検査対象物4の表面4a上を走査することにより、検査対象物4の表面4a近傍(表面4a近傍に欠陥6(亀裂等)が生じているか否か)を検査する検査方法において、レーザー2で検査対象物4の表面4aを加熱しながら、この検査対象物4の表面温度を赤外線検出装置(検出素子)1で計測して、第1の表面温度データD14を得る第1の走査(前進走査F)と、レーザー2で検査対象物4の表面4aを加熱しながら、この検査対象物4の表面温度を赤外線検出装置(検出素子)1で計測して、第2の表面温度データD15を得る第2の走査(後進走査B)とを行い、第1の表面温度データD1と、第2の表面温度データD15とを乗算することにより、第3の表面温度データD16を得ることを特徴としているため、第1の表面温度データD14及び第2の表面温度データD15に欠陥検知信号KD14,KD15とノイズ信号ND14,ND15が含まれていても、第3の表面温度データD16では、比較的小さなノイズ信号ND14,ND15同士の乗算結果として得られるノイズ信号ND16に比べて、比較的大きな欠陥検知信号KD14,KD15同士の乗算結果として得られる欠陥検知信号KD16の方が非常に大きな値となり、欠陥検知信号KD16とノイズ信号ND16との区別が明確になる。このため、確実に第3の表面温度データに欠陥6に起因する欠陥検知信号KD16が含まれていると判断することができ、欠陥6を確実に検出することができる。 As described above, according to the inspection method of Reference Example 2, the surface 4a of the inspection object 4 is scanned using the infrared detection device (detection element) 1 and the laser 2 to thereby detect the inspection object 4. In the inspection method for inspecting the vicinity of the surface 4a (whether or not there is a defect 6 (crack or the like) in the vicinity of the surface 4a), the surface of the inspection object 4 is heated while the surface 4a of the inspection object 4 is heated by the laser 2 While measuring the temperature with the infrared detection device (detection element) 1 and obtaining the first surface temperature data D14, the surface 4a of the inspection object 4 is heated with the laser 2 and the first scan (forward scan F), The surface temperature of the inspection object 4 is measured by the infrared detection device (detection element) 1 and the second scan (reverse scan B) for obtaining the second surface temperature data D15 is performed to obtain the first surface temperature data. D1 and second surface temperature data D15 Since the third surface temperature data D16 is obtained by calculation, defect detection signals KD14 and KD15 and noise signals ND14 and ND15 are included in the first surface temperature data D14 and the second surface temperature data D15. Even if included, in the third surface temperature data D16, the multiplication result of the relatively large defect detection signals KD14 and KD15 is larger than the noise signal ND16 obtained as the multiplication result of the relatively small noise signals ND14 and ND15. As a result, the defect detection signal KD16 obtained as follows becomes a much larger value, and the distinction between the defect detection signal KD16 and the noise signal ND16 becomes clear. For this reason, it can be determined that the defect detection signal KD16 resulting from the defect 6 is included in the third surface temperature data, and the defect 6 can be reliably detected.

また、本参考例2の他の検査方法によれば、赤外線検出装置(検出素子)1とレーザー2とを用いて検査対象物4の表面4a上を走査することにより、検査対象物4の表面4a近傍(表面4a近傍に欠陥6(亀裂等)が生じているか否かを検査する検査方法において、レーザー2で検査対象物4の表面4aを加熱しながら、この検査対象物4の表面温度を赤外線検出装置(検出素子)1で計測して、第1の表面温度データD24を得る第1の走査(前進走査F)と、レーザー2で検査対象物4の表面4aを加熱しながら、この検査対象物4の表面温度を赤外線検出装置(検出素子)1で計測して、第2の表面温度データD25を得る第2の走査(後進走査B)とを行った後、第1の表面温度データD24において第1の基準値K3よりも大きなデータを正、第1の基準値K3よりも小さなデータを負とし、且つ、第2の表面温度データD25において所定の第2の基準値K4よりも大きなデータを正、第2の基準値K4よりも小さなデータを負とし、その後、第1の表面温度データD24と、第2の表面温度データD25とを乗算することにより、第3の表面温度データD26を得ることを特徴としているため、欠陥6(亀裂)が深い場合、第3の表面温度データD26では、欠陥検知信号KD26とノイズ信号ND26が正負に分かれて、欠陥検知信号KD26とノイズ信号ND26との区別が明確になる。また、この検査方法において欠陥6が浅い場合には、前述のとおり第3の表面温度データD16では、欠陥検知信号とノイズ信号の大きさに顕著な差がついて、欠陥検知信号KD26とノイズ信号ND26との区別が明確になる。従って、欠陥6の深さによらず、確実に第3の表面温度データD16,D24に欠陥6に起因する欠陥検知信号KD16,KD26が含まれていると判断することができ、欠陥6を確実に検出することができる。 Further, according to another inspection method of Reference Example 2, the surface of the inspection object 4 is scanned by scanning the surface 4 a of the inspection object 4 using the infrared detection device (detection element) 1 and the laser 2. In the inspection method for inspecting whether there is a defect 6 (crack or the like) in the vicinity of 4a (in the vicinity of the surface 4a), the surface temperature of the inspection object 4 is adjusted while heating the surface 4a of the inspection object 4 with the laser 2. This inspection is performed while the surface 4a of the inspection object 4 is heated by the laser 2 and the first scanning (forward scanning F) which is measured by the infrared detecting device (detecting element) 1 to obtain the first surface temperature data D24. After the surface temperature of the object 4 is measured by the infrared detection device (detection element) 1 and the second scan (reverse scan B) for obtaining the second surface temperature data D25 is performed, the first surface temperature data is obtained. Greater than first reference value K3 at D24 Data is positive, data smaller than the first reference value K3 is negative, and in the second surface temperature data D25, data larger than a predetermined second reference value K4 is positive and is greater than the second reference value K4. Since the third surface temperature data D26 is obtained by multiplying the first surface temperature data D24 and the second surface temperature data D25 after that, the small surface data is made negative. When the (crack) is deep, in the third surface temperature data D26, the defect detection signal KD26 and the noise signal ND26 are divided into positive and negative, and the distinction between the defect detection signal KD26 and the noise signal ND26 becomes clear. When the defect 6 is shallow in the method, as described above, the third surface temperature data D16 has a significant difference between the magnitudes of the defect detection signal and the noise signal. The distinction between the KD 26 and the noise signal ND 26 becomes clear, so that the third surface temperature data D16, D24 surely includes the defect detection signals KD16, KD26 caused by the defect 6 regardless of the depth of the defect 6. Therefore, it is possible to detect the defect 6 with certainty.

参考例3>
図5は本発明の参考例3に係る検査方法の説明図であって、(a)にはマーカーの設置状態の図を示し、(b)には波形図を示す。
< Reference Example 3>
FIG. 5 is an explanatory diagram of an inspection method according to Reference Example 3 of the present invention. FIG. 5 (a) shows a marker installation state, and FIG. 5 (b) shows a waveform diagram.

なお、本参考例3においても、表面検査装置の構成については上記参考例及び実施の形態例1と同様であるため、図1を参照することとし、ここでの図示及び詳細な説明は省略する。 In this reference example 3 as well, the configuration of the surface inspection apparatus is the same as that of the reference example 1 and the embodiment example 1, so that FIG. 1 will be referred to and illustration and detailed description thereof will be omitted here. To do.

参考例3では、まず、図5(a)に示すように複数(図示例では5つ)のマーカー11を走査前に検査対象物4の表面4aに設ける。マーカー11は検査対象物4と輻射率の異なる材質のもの(図示例では検査対象物4よりも輻射率の大きな材質のもの)であり、例えば長方形状に形成した金属等の部材を検査対象物4の表面4aに貼付し、或いは検査対象物4の表面4aにインク(マジックインキ等)などで描くことなどによって、検査対象物4の表面4aに設けることができる。また、マーカー11は検査対象物4の表面4aの欠陥検査領域(欠陥検査をする範囲)に隣接する領域に、走査方向に沿って等間隔に配列されている。 In Reference Example 3, first, as shown in FIG. 5A, a plurality (five in the illustrated example) of markers 11 are provided on the surface 4a of the inspection object 4 before scanning. The marker 11 is made of a material having a different emissivity from that of the inspection object 4 (in the illustrated example, a material having a higher emissivity than the inspection object 4). For example, a metal member formed in a rectangular shape is used as the inspection object. 4 can be provided on the surface 4a of the inspection object 4 by sticking it on the surface 4a of the inspection object 4 or drawing it on the surface 4a of the inspection object 4 with ink (magic ink or the like). In addition, the markers 11 are arranged at equal intervals along the scanning direction in a region adjacent to the defect inspection region (defect inspection range) on the surface 4 a of the inspection object 4.

次に、図5(b)に示すように、第1の走査である前進走査Fを行って、前進走査データである第1の表面温度データD31を得た後、第2の走査である後進走査Bを行って、後進走査データである第2の表面温度データD32を得る。即ち、前進走査Fでは、検査対象物4の表面4aをレーザー2で加熱(レーザービーム2aを表面4aに照射)しながら、この加熱された検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱後の第1の表面温度データD31(表面温度分布データ)を得る。後進走査Bでも、同様に、検査対象物4の表面4aをレーザー2で加熱(レーザービーム2aを表面4aに照射)しながら、この加熱された検査対象物4の表面4aの温度(表面4aからの輻射熱)を赤外線検出装置(検出素子)1で計測して、加熱後の第2の表面温度データD32(表面温度分布データ)を得る。   Next, as shown in FIG. 5B, the forward scanning F that is the first scanning is performed to obtain the first surface temperature data D31 that is the forward scanning data, and then the backward scanning that is the second scanning. Scan B is performed to obtain second surface temperature data D32 which is reverse scan data. That is, in the forward scanning F, while the surface 4a of the inspection object 4 is heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), the temperature of the heated surface 4a of the inspection object 4 (from the surface 4a) Radiant heat) is measured by the infrared detection device (detection element) 1 to obtain first surface temperature data D31 (surface temperature distribution data) after heating. Similarly, in reverse scanning B, the surface 4a of the inspection object 4 is heated by the laser 2 (irradiating the surface 4a with the laser beam 2a), and the temperature of the heated surface 4a of the inspection object 4 (from the surface 4a). Radiant heat) is measured by the infrared detection device (detection element) 1 to obtain second surface temperature data D32 (surface temperature distribution data) after heating.

検査対象物4の表面4aに欠陥6がある場合、第1の表面温度データD31には、欠陥6に起因する欠陥検知信号KD31と、マーカー11に起因するマーカー検知信号MD31とが含まれることになり、第2の表面温度データD32にも、欠陥6に起因する欠陥検知信号KD32と、マーカー11に起因するマーカー検知信号MD32とが含まれることになる。   When there is a defect 6 on the surface 4a of the inspection object 4, the first surface temperature data D31 includes a defect detection signal KD31 caused by the defect 6 and a marker detection signal MD31 caused by the marker 11. Thus, the second surface temperature data D32 also includes the defect detection signal KD32 caused by the defect 6 and the marker detection signal MD32 caused by the marker 11.

そして、表面検査装置の機械的なずれなどの要因によって、第1の表面温度データD31に含まれているマーカー検知信号MD31の位置と、第2の表面温度データD32に含まれているマーカー検知信号MD32の位置とに走査方向位置の位置ずれIDが生じている場合には、この位置ずれIDに基づいて第2の表面温度データD32の位置を補正(位置ずれID分だけ第1の表面温度データD32を移動)することにより、マーカー検知信号MD32の位置をマーカー検知信号MD31の位置に一致させる。かくして、位置補正後の第2の表面温度データD33を得る。この第2の表面温度データD33において、マーカー検知信号MD33はマーカー検知信号MD32を位置補正した信号、欠陥検知信号KD33は欠陥検知信号KD32を位置補正した信号である。勿論、第2の表面温度データD32にノイズ要因に起因するノイズ信号が含まれている場合には、位置補正後の第2の表面温度データD33では当該ノイズ信号の位置も補正されることになる。   The position of the marker detection signal MD31 included in the first surface temperature data D31 and the marker detection signal included in the second surface temperature data D32 due to factors such as mechanical deviation of the surface inspection apparatus. When a positional deviation ID in the scanning direction position occurs at the position of MD32, the position of the second surface temperature data D32 is corrected based on the positional deviation ID (first surface temperature data by the positional deviation ID). The position of the marker detection signal MD32 is made to coincide with the position of the marker detection signal MD31. Thus, the second surface temperature data D33 after position correction is obtained. In the second surface temperature data D33, the marker detection signal MD33 is a signal obtained by correcting the position of the marker detection signal MD32, and the defect detection signal KD33 is a signal obtained by correcting the position of the defect detection signal KD32. Of course, when the second surface temperature data D32 includes a noise signal due to a noise factor, the position of the noise signal is also corrected in the second surface temperature data D33 after position correction. .

なお、第2の表面温度データD32に限らず、第1の表面温度データD31の位置を、位置ずれIDに基づいて補正してもよい。また、表面検査装置位置のずれ状態などによっては、図示例のようにマーカー検知信号MD31,32が全体的に位置ずれするのではなく、捜査の途中でマーカー検知信号MD31,MD32の一部だけが位置ずれする場合もある。この場合には、当該位置ずれが生じている一部のマーカー検知信号MD31,MD32の位置ずれIDに基づいて、第1の表面温度データ31又は第2の表面温度データD32の位置を補正すればよい。   Note that the position of the first surface temperature data D31 is not limited to the second surface temperature data D32, and the position of the first surface temperature data D31 may be corrected based on the positional deviation ID. Further, depending on the displacement state of the surface inspection apparatus position, the marker detection signals MD31 and 32 are not entirely displaced as in the illustrated example, but only a part of the marker detection signals MD31 and MD32 during the investigation. There may be a positional shift. In this case, if the position of the first surface temperature data 31 or the second surface temperature data D32 is corrected based on the position shift IDs of some of the marker detection signals MD31 and MD32 where the position shift occurs. Good.

そして、詳細な説明は省略するが、このような位置ずれ補正を行った後、上記参考例2の乗算処理(図3(b)及び図4(b)参照)を行う。 And although detailed description is omitted, after performing such misregistration correction, the multiplication processing of the reference example 2 (see FIGS. 3B and 4B) is performed.

以上のように、本参考例3の検査方法によれば、赤外線検出装置(検出素子)1とレーザー2とを用いて検査対象物4の表面4a上を走査することにより、検査対象物4の表面4近傍(表面4a近傍に欠陥6(亀裂等)が生じているか否か)を検査する検査方法において、検査対象物4の表面4aに検査対象物4とは輻射率の異なるマーカー11を設け、レーザー2でマーカー11を設けた領域も含めて検査対象物4の表面4aを加熱しながら、この検査対象物4の表面温度を赤外線検出装置(検出素子)1で計測して、第1の表面温度データD31を得る第1の走査(前進走査F)と、レーザー2でマーカー11を設けた領域も含めた検査対象物4の表面4aを加熱しながら、この検査対象物4の表面温度を赤外線検出装置(検出素子)1で計測して、第2の表面温度データD32を得る第2の走査(後進走査B)とを行い、且つ、第1の表面温度データD31に含まれているマーカー検知信号MD31の位置と、第2の表面温度データD32に含まれているマーカー検知信号MD32の位置とに位置ずれIDが生じている場合には、この位置ずれIDに基づいて第1の表面温度データD31又は第2の表面温度データD32の位置を補正した後、上記参考例2の乗算を行うことを特徴としているため、表面検査装置のずれなどによって第1の表面温度データD31と第2の表面温度データD32とに位置ずれIDが生じても、この位置ずれIDが補正されて、より確実に前記乗算を行うことができる。従って、より確実に第3の表面温度データにおける欠陥検知信号とノイズ信号との区別を明確にすることができるため、より確実に欠陥(亀裂等)を検出することができる。 As described above, according to the inspection method of Reference Example 3, the surface 4 a of the inspection object 4 is scanned using the infrared detection device (detection element) 1 and the laser 2 to thereby detect the inspection object 4. In the inspection method for inspecting the vicinity of the surface 4 (whether or not a defect 6 (crack or the like is generated in the vicinity of the surface 4a)), a marker 11 having a radiation rate different from that of the inspection object 4 is provided on the surface 4a of the inspection object 4 While the surface 4a of the inspection object 4 including the region where the marker 11 is provided by the laser 2 is heated, the surface temperature of the inspection object 4 is measured by the infrared detection device (detection element) 1 to obtain the first While heating the surface 4a of the inspection object 4 including the region where the marker 11 is provided by the first scan (forward scanning F) for obtaining the surface temperature data D31, the surface temperature of the inspection object 4 is set. Infrared detector (detection element) 1 The second scanning (reverse scanning B) for measuring and obtaining the second surface temperature data D32 is performed, and the position of the marker detection signal MD31 included in the first surface temperature data D31, and the second In the case where a positional deviation ID occurs at the position of the marker detection signal MD32 included in the surface temperature data D32, the first surface temperature data D31 or the second surface temperature data based on the positional deviation ID. Since the position of D32 is corrected and then the multiplication of the reference example 2 is performed, the position shift ID is added to the first surface temperature data D31 and the second surface temperature data D32 due to a shift of the surface inspection apparatus or the like. Even if this occurs, the misalignment ID is corrected and the multiplication can be performed more reliably. Therefore, since the distinction between the defect detection signal and the noise signal in the third surface temperature data can be clarified more reliably, defects (cracks and the like) can be detected more reliably.

また、本参考例3の検査方法によれば、マーカー11は走査方向に沿って等間隔に複数設けることを特徴としているため、例えば走査の途中で表面検査装置にずれが生じた場合にも、このずれに起因する位置ずれがマーカー検知信号MD31,MD32の一部に生じるため、この一部のマーカー検知信号MD31,MD32の位置ずれに基づいて、第1表面温度データD31又は第2の表面温度データD32の位置を補正することができる。 Further, according to the inspection method of the present Reference Example 3, since the marker 11 is provided with a plurality at equal intervals along the scanning direction, for example, even when a deviation occurs in the surface inspection apparatus during the scanning, Since a positional shift caused by this shift occurs in a part of the marker detection signals MD31 and MD32, the first surface temperature data D31 or the second surface temperature is based on the positional shift of the partial marker detection signals MD31 and MD32. The position of the data D32 can be corrected.

なお、上記実施の形態例及び参考例1〜3では、第1の走査として前進走査を行った後、第2の走査として後進走査を行う場合について説明したが、必ずしもこれに限定するものではなく、例えば第1の走査として前進走査を行った後、第2の走査として再度前進走査を行うようにしてもよい。 In the above embodiment and reference examples 1 to 3, the case where the forward scanning is performed as the first scanning and then the backward scanning is performed as the second scanning has been described. However, the present invention is not necessarily limited thereto. For example, after the forward scanning is performed as the first scanning, the forward scanning may be performed again as the second scanning.

また、上記実施の形態例及び参考例1〜3では、加熱手段としてレーザーを用いているが、必ずしもこれに限定するものではなく、その他の加熱手段(ランプ等)を用いてもよい。 In the above embodiment and Reference Examples 1 to 3, the laser is used as the heating means, but the present invention is not necessarily limited to this, and other heating means (lamp or the like) may be used.

本発明は赤外線検出手段と加熱手段とを用いて検査対象物の表面近傍に亀裂等の欠陥が生じているか否かを検査する検査方法に関するものであり、機器類などの検査対象物の健全性評価を行う場合に適用して有用なものである。   The present invention relates to an inspection method for inspecting whether a defect such as a crack has occurred near the surface of an inspection object using an infrared detection means and a heating means, and the soundness of the inspection object such as equipment It is useful when applied to evaluation.

本発明の参考例及び実施の形態例に係る検査方法を実施するための検査装置の概要を示す図である。Description of the test apparatus for carrying out the inspection method according to Reference Example 1 and Embodiment of the present invention; FIG. 前記検査方法の説明図であって、(a)は信号処理内容のイメージ図、(b)は信号処理内容を示す波形図である。It is explanatory drawing of the said inspection method, (a) is an image figure of the signal processing content, (b) is a wave form diagram which shows the signal processing content. (a)は従来の検査方法であって欠陥(亀裂等)が比較的浅い場合の説明図、(b)は本発明の参考例2に係る検査方法であって欠陥(亀裂等)が比較的浅い場合の説明図である。(A) is explanatory drawing in case a defect (crack etc.) is a comparatively shallow inspection method, (b) is an inspection method concerning the reference example 2 of this invention, and a defect (crack etc.) is comparatively comparative. It is explanatory drawing in the case of shallow. (a)は従来の検査方法であって欠陥(亀裂等)が比較的深い場合の説明図、(b)は本発明の参考例2に係る検査方法であって欠陥(亀裂等)が比較的深い場合の説明図である。(A) the defect a conventional inspection method explanatory diagram of the case (cracks) is relatively deep, (b) is a test method according to Reference Example 2 of the present invention defects (cracks, etc.) is relatively It is explanatory drawing in the case of deep. 本発明の参考例3に係る検査方法の説明図であって、(a)はマーカーの設置状態の図、(b)は波形図である。It is explanatory drawing of the inspection method which concerns on the reference example 3 of this invention, Comprising : (a) is a figure of the installation state of a marker, (b) is a wave form diagram.

1 赤外線検出装置(検出素子)
2 レーザー
2a レーザービーム
3 信号処理装置
4 検査対象物
4a 表面
5a,5b 反射ミラー
6 欠陥(亀裂等)
7,8 欠陥(亀裂等)の縁部
1 Infrared detector (detection element)
2 Laser 2a Laser beam 3 Signal processing device 4 Inspection object 4a Surface 5a, 5b Reflective mirror 6 Defect (crack, etc.)
7,8 Edges of defects (cracks, etc.)

Claims (1)

赤外線検出手段と加熱手段とを用いて検査対象物の表面上を走査することにより、前記検査対象物の表面近傍を検査する検査方法において、
前記加熱手段で前記検査対象物の表面を加熱せずに、前記赤外線検出手段で前記検査対象物の表面温度を計測して、加熱前の第1の表面温度データを得る第1の走査を行い、
この第1の表面温度データに応じて、温度の高い走査位置では前記加熱手段の出力を下げ、温度の低い走査位置では前記加熱手段の出力を上げるように前記加熱手段の出力を変化させつつ、前記加熱手段で前記検査対象物の表面を加熱しながら、この検査対象物の表面温度を前記赤外線検出手段で計測して、加熱後の第2の表面温度データを得る第2の走査を行うことを特徴とする検査方法。
In the inspection method for inspecting the vicinity of the surface of the inspection object by scanning the surface of the inspection object using the infrared detection means and the heating means,
Without heating the surface of the object to be inspected by the heating means, the surface temperature of the object to be inspected is measured by the infrared detecting means, and a first scan is performed to obtain first surface temperature data before heating. ,
In accordance with the first surface temperature data, while changing the output of the heating unit to lower the output of the heating unit at a scanning position with a high temperature and increase the output of the heating unit at a scanning position with a low temperature, While the surface of the inspection object is heated by the heating means, the surface temperature of the inspection object is measured by the infrared detection means, and second scanning is performed to obtain second surface temperature data after heating. Inspection method characterized by
JP2008089530A 2008-03-31 2008-03-31 Inspection method Expired - Fee Related JP5161630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089530A JP5161630B2 (en) 2008-03-31 2008-03-31 Inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089530A JP5161630B2 (en) 2008-03-31 2008-03-31 Inspection method

Publications (2)

Publication Number Publication Date
JP2009244021A JP2009244021A (en) 2009-10-22
JP5161630B2 true JP5161630B2 (en) 2013-03-13

Family

ID=41306090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089530A Expired - Fee Related JP5161630B2 (en) 2008-03-31 2008-03-31 Inspection method

Country Status (1)

Country Link
JP (1) JP5161630B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106198731A (en) * 2016-07-19 2016-12-07 中国人民解放军装甲兵工程学院 Matrix fatigue crack recognition methods under sprayed coating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064311A (en) * 2013-09-26 2015-04-09 株式会社日立ハイテクノロジーズ Infrared inspection device and infrared inspection method
FR3020678B1 (en) * 2014-04-30 2021-06-25 Areva Np PHOTOTHERMAL EXAMINATION PROCESS AND CORRESPONDING EXAMINATION SET
JP6304880B2 (en) 2014-06-17 2018-04-04 株式会社Ihi Nondestructive inspection equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255650A (en) * 1987-04-13 1988-10-21 Mitsubishi Heavy Ind Ltd Apparatus for detecting abnormality of inner wall part of high temperature container
JP2944248B2 (en) * 1991-05-07 1999-08-30 株式会社東芝 Surface defect detection device
JPH0510902A (en) * 1991-06-28 1993-01-19 Nippon Steel Corp Surface-defect detecting method
JP2653288B2 (en) * 1991-10-15 1997-09-17 三菱電機株式会社 Infrared flaw detector
JPH05142171A (en) * 1991-11-25 1993-06-08 Mitsubishi Electric Corp Induction heating flaw detector
JPH05288699A (en) * 1992-04-14 1993-11-02 Mitsubishi Electric Corp Infrared ray flaw detector
JP2002296014A (en) * 2001-03-30 2002-10-09 Anritsu Corp Printed circuit board inspection device
JP2003075381A (en) * 2001-09-04 2003-03-12 Nippon Steel Corp Defect detector and method for detecting defect of metal band, computer program therefor, and computer- readable storage medium
JP4024050B2 (en) * 2002-02-05 2007-12-19 日産自動車株式会社 Defect inspection paint by infrared thermography
JP2006337230A (en) * 2005-06-03 2006-12-14 Penta Ocean Constr Co Ltd Non-destructive inspection method of concrete structure
JP4613141B2 (en) * 2006-03-29 2011-01-12 日本無線株式会社 Underground exploration equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106198731A (en) * 2016-07-19 2016-12-07 中国人民解放军装甲兵工程学院 Matrix fatigue crack recognition methods under sprayed coating

Also Published As

Publication number Publication date
JP2009244021A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5028494B2 (en) Automatic testing method for material joints
JP6301951B2 (en) Sample inspection method and system using thermography
RU2549913C2 (en) Thermographic method of control and monitoring device for implementing method
US8306308B2 (en) Method for optically detecting surface defect of round wire rod
RU2650449C1 (en) Device and a method of ultrasound defectoscopy
JP5161630B2 (en) Inspection method
KR20100054783A (en) Method for the automatic inspection of a welding seam using heat flow thermography
JP2007024674A (en) Surface/surface layer inspection device and surface/surface layer inspection method
US20230135790A1 (en) Defect detection method, defect detection device, and additive manufacturing device
JP2013213733A (en) Apparatus and method for inspecting object to be inspected
Broberg et al. Comparison of NDT–methods for automatic inspection of weld defects
JP2010054502A (en) Method and device for tube spot check of heat exchanger
JP2007203322A (en) Method and apparatus for detecting whether butt welded part is good or bad
JP4707506B2 (en) Method for detecting cracks in structural members
JP2000230926A (en) Method and apparatus for inspecting defect
JP3822587B2 (en) Shape echo discrimination method and shape echo discrimination device using optical measuring instrument in ultrasonic inspection
JP2008196866A (en) Weld crack detection method and device
JP4793161B2 (en) Quality inspection method and apparatus for butt welds
JP3557553B2 (en) Ultrasonic testing method for welded joints
JP2008279497A (en) Weld crack detecting method
JP5133651B2 (en) Laser welding evaluation method
JP6244290B2 (en) Crack evaluation method
WO2010150709A1 (en) Surface inspection device for cylindrical body
JP2008058150A (en) Marking inspection apparatus
JPH1177363A (en) Method for inspecting fillet weld part, and device used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees