JP5158698B2 - Moving transport mechanism - Google Patents

Moving transport mechanism Download PDF

Info

Publication number
JP5158698B2
JP5158698B2 JP2008018089A JP2008018089A JP5158698B2 JP 5158698 B2 JP5158698 B2 JP 5158698B2 JP 2008018089 A JP2008018089 A JP 2008018089A JP 2008018089 A JP2008018089 A JP 2008018089A JP 5158698 B2 JP5158698 B2 JP 5158698B2
Authority
JP
Japan
Prior art keywords
wheel
center axis
rotation center
differential mechanism
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008018089A
Other languages
Japanese (ja)
Other versions
JP2009179110A (en
Inventor
雅晴 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University NUC
Original Assignee
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University NUC filed Critical Kyoto University NUC
Priority to JP2008018089A priority Critical patent/JP5158698B2/en
Publication of JP2009179110A publication Critical patent/JP2009179110A/en
Application granted granted Critical
Publication of JP5158698B2 publication Critical patent/JP5158698B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)

Description

本発明は移動搬送機構に関し、詳しくは、全方向移動可能な車輪を備えた移動搬送機構及びそれを用いた移動搬送装置に関する。   The present invention relates to a moving transfer mechanism, and more particularly, to a moving transfer mechanism including wheels that can move in all directions, and a moving transfer apparatus using the same.

平面上を全方向に移動可能なロボットや、工場内の搬送設備等において、オムニホイールと呼ばれる車輪が用いられている。このオムニホイールは、主車輪の外周に副車輪を並べたものであり、副車輪の回転中心軸は主車輪の円周方向と略一致する方向に延在し、副車輪は回転自在である。オムニホイールを駆動する場合は、主車輪のみを回転駆動する。   Wheels called omni wheels are used in robots that can move in all directions on a plane, transport equipment in factories, and the like. In this omni wheel, auxiliary wheels are arranged on the outer periphery of the main wheel, the rotation center axis of the auxiliary wheel extends in a direction substantially coincident with the circumferential direction of the main wheel, and the auxiliary wheel is freely rotatable. When driving an omni wheel, only the main wheel is driven to rotate.

2つのオムニホイールを組み合わせ、例えば直角に配置すると、前後移動と、左右移動の2自由度の移動搬送装置を実現できる。3つ以上のオムニホイールを組み合わせて用いると、前後、左右の移動に加え、旋回も可能となり、3自由度の移動搬送装置を実現できる。   When two omni wheels are combined and arranged at a right angle, for example, it is possible to realize a mobile conveyance device having two degrees of freedom of front and rear movement and left and right movement. When three or more omni wheels are used in combination, in addition to forward / backward and left / right movements, turning is also possible, and a three-degree-of-freedom mobile conveyance device can be realized.

また、副車輪を回転駆動するように構成した全方向移動車輪が提案されている。例えば図28の斜視図、図29の要部拡大図に示すように、移動搬送装置の車軸に取り付けられるホイール部材102の外周面に複数の支持部材103を突設して、副車輪となる複数の樽型分割ローラ104を回転自在に支持する。隣接する樽型分割ローラ104間を動力伝達手段106で連結し、ホイール部材102内に配置したモータ151の回転を、チェーン153を介して一つの樽型分割ローラ104に伝達することにより、全ての樽型分割ローラ104を回転駆動する(例えば、特許文献1参照)。
特開2005−67334号公報 特開2006−168659号公報 特開2007−106254号公報 特開平8−67268号公報
An omnidirectional moving wheel configured to rotationally drive the auxiliary wheel has been proposed. For example, as shown in a perspective view of FIG. 28 and an enlarged view of a main part of FIG. 29, a plurality of support members 103 project from the outer peripheral surface of the wheel member 102 attached to the axle of the mobile conveyance device, and serve as auxiliary wheels The barrel-shaped dividing roller 104 is rotatably supported. By connecting the adjacent barrel-type split rollers 104 with the power transmission means 106 and transmitting the rotation of the motor 151 disposed in the wheel member 102 to one barrel-type split roller 104 via the chain 153, all The barrel-shaped dividing roller 104 is rotationally driven (see, for example, Patent Document 1).
JP 2005-67334 A JP 2006-168659 A JP 2007-106254 A JP-A-8-67268

この全方向移動車輪は、1つで前後、左右の2自由度の移動搬送動作を実現できる。2つ以上を組み合わせると、前後、左右の移動に加え、旋回も可能となり、3自由度の移動搬送動作を実現できる。したがって、オムニホイールよりも少ない使用個数で、移動搬送装置を構成することができる。   One omnidirectional moving wheel can realize a moving and conveying operation with two degrees of freedom, front and rear, and left and right. When two or more are combined, in addition to forward / backward and left / right movement, turning is also possible, and a moving conveyance operation with three degrees of freedom can be realized. Therefore, the mobile conveyance device can be configured with a smaller number of use than the omni wheel.

しかし、副車輪駆動用のモータを車輪内部に持つため、副車輪駆動用には小さいモータしか使えず、副車輪のトルクが小さい。そのため、主車輪駆動時の駆動力と副車輪駆動時の駆動力との差が大きい。また、回転する主車輪の内部にモータがあるので、主車輪の内部のモータに電気などのエネルギーを供給するための配線が面倒になり、構成が複雑になる。   However, since a motor for driving the auxiliary wheel is provided inside the wheel, only a small motor can be used for driving the auxiliary wheel, and the torque of the auxiliary wheel is small. Therefore, the difference between the driving force when driving the main wheel and the driving force when driving the auxiliary wheel is large. In addition, since the motor is inside the rotating main wheel, wiring for supplying energy such as electricity to the motor inside the main wheel becomes troublesome and the configuration becomes complicated.

本発明は、かかる実情に鑑み、簡単な構成で、主車輪の回転駆動と副車輪の回転駆動とを行うことができ、また、幅広い種類やサイズの駆動源を使用することが可能な移動搬送機構及びそれを用いた移動搬送装置を提供しようとするものである。   In view of such circumstances, the present invention can perform rotation driving of the main wheel and rotation driving of the auxiliary wheel with a simple configuration, and can carry a wide variety of types and sizes of driving sources. It is an object of the present invention to provide a mechanism and a mobile conveyance device using the mechanism.

本発明は、上記課題を解決するために、以下のように構成した移動搬送機構を提供する。   In order to solve the above-mentioned problems, the present invention provides a moving conveyance mechanism configured as follows.

移動搬送機構は、(a)ホイール回転中心軸を中心に回転自在に支持される少なくとも1つのホイール部材と、(b)前記ホイール回転中心軸を中心とする円周に沿ってそれぞれの副車輪回転中心軸が延在し、前記ホイール部材にそれぞれ回転自在に支持された、少なくとも1つの副車輪と、(c)前記ホイール回転中心軸と同軸に回転自在に配置された第1及び第2の入力部材と、前記第1及び第2の入力部材の両方に接触し、自転中心軸を中心に自転可能、かつ、前記ホイール回転中心軸のまわりを公転可能である出力部材とを含む差動機構と、(d)前記ホイール部材に固定され、前記差動機構の前記出力部材を、前記自転中心軸を中心に回転自在に支持する、回転支持部材と、(e)前記差動機構の前記出力部材と少なくとも一つの前記副車輪との間を結合し、前記出力部材の前記自転中心軸を中心とする自転による回転を前記副車輪に伝達して前記副車輪を回転させる、回転伝達部材とを備える。前記ホイール部材は、前記差動機構の前記出力部材の前記ホイール回転中心軸のまわりの公転に伴って、前記ホイール回転中心軸を中心に回転する。   The moving conveyance mechanism includes: (a) at least one wheel member rotatably supported around a wheel rotation center axis; and (b) rotation of each sub-wheel along a circumference centered on the wheel rotation center axis. At least one auxiliary wheel having a central axis extending and rotatably supported by the wheel member; and (c) first and second inputs rotatably disposed coaxially with the central axis of wheel rotation. A differential mechanism including a member and an output member that contacts both the first and second input members, is capable of rotating about a rotation center axis, and is capable of revolving around the wheel rotation center axis; (D) a rotation support member fixed to the wheel member and rotatably supporting the output member of the differential mechanism about the rotation center axis; and (e) the output member of the differential mechanism. And at least one Serial coupled between the sub-wheel, rotation by rotation around the rotation center axis of the output member is transmitted to the auxiliary wheel to rotate the auxiliary wheel, and a rotation transmitting member. The wheel member rotates about the wheel rotation center axis as the output member of the differential mechanism revolves around the wheel rotation center axis.

上記構成において、複数個の副車輪を用いる場合は、回転伝達部材を介して全ての副車輪が直接回転されるようにしてもよい。あるいは、回転伝達部材を介して直接は回転されない副車輪が、回転伝達部材を介して直接回転される副車輪と回転が伝わるように連結され、両方の副車輪が同時に回転されるようにしてもよい。   In the above configuration, when a plurality of auxiliary wheels are used, all the auxiliary wheels may be directly rotated via the rotation transmission member. Alternatively, the auxiliary wheel that is not directly rotated via the rotation transmission member is connected to the auxiliary wheel that is directly rotated via the rotation transmission member so that the rotation is transmitted, and both the auxiliary wheels are rotated simultaneously. Good.

差動機構は、かさ歯車、フェースギヤ、ハイポイドギヤなどの歯車や、通常の円筒歯車を用いる遊星歯車装置など、歯が噛み合う部材で構成しても、フリクションドライブのような摩擦により回転を伝達するものや、トラクションドライブのようにトラクションオイルを利用するもので構成してもよい。ベルトやワイヤ等を介して回転を伝達する差動機構を用いてもよい。   The differential mechanism can transmit rotation by friction like friction drive even if it is composed of gears such as bevel gears, face gears, hypoid gears, and planetary gears using ordinary cylindrical gears. Or you may comprise by what uses traction oil like a traction drive. A differential mechanism that transmits rotation through a belt, a wire, or the like may be used.

上記構成によれば、主車輪は、ホイール部材と副車輪とにより構成される。差動機構は、第1及び第2の入力部材が所定の角速度比で回転したとき(例えば、同方向(空間上に設定した一つの座標系から見て同方向)に同じ角速度で回転したとき)、出力部材がホイール回転中心軸のまわりを公転する。出力部材を回転自在に支持する回転支持部材が固定されたホイール部材は、出力部材の公転に伴い、出力部材と一体となって、ホイール回転中心軸を中心に回転する。つまり、主車輪が回転する。このとき、副車輪が接触する面には、ホイール回転中心軸に直角かつ副車輪が接触する面に平行な方向(ホイール回転中心軸に垂直な平面と副車輪が接触する面との交線方向)の力が作用し、ホイール回転中心軸に直角かつ副車輪が接触する面に平行な方向の移動搬送が可能となる。   According to the said structure, a main wheel is comprised by a wheel member and a subwheel. When the first and second input members rotate at a predetermined angular velocity ratio (for example, when the first and second input members rotate at the same angular velocity in the same direction (the same direction as viewed from one coordinate system set in space)) ), The output member revolves around the wheel rotation center axis. The wheel member to which the rotation support member that rotatably supports the output member is fixed rotates together with the output member around the wheel rotation center axis as the output member revolves. That is, the main wheel rotates. At this time, the surface in contact with the auxiliary wheel has a direction perpendicular to the wheel rotation central axis and parallel to the surface in contact with the auxiliary wheel (the direction of intersection between the plane perpendicular to the wheel rotation central axis and the surface in contact with the auxiliary wheel) ) Acts, and it is possible to move and convey in a direction perpendicular to the wheel rotation center axis and parallel to the surface with which the auxiliary wheel contacts.

一方、第1及び第2の入力部材が前述とは異なる所定の角速度比で回転したとき(例えば、互いに逆方向(空間上に設定した一つの座標系から見て逆方向)に絶対値が同じ角速度で回転したとき)、出力部材が自転する。出力部材の自転により、回転伝達部材を介して副車輪が回転する。このとき、副車輪が接触する面には、ホイール回転中心軸と平行な方向の力が作用し、ホイール回転中心軸と平行な方向の移動搬送が可能となる。   On the other hand, when the first and second input members are rotated at a predetermined angular velocity ratio different from that described above (for example, the absolute values are the same in opposite directions (reverse directions when viewed from one coordinate system set in space)) When rotating at the angular velocity), the output member rotates. By rotation of the output member, the auxiliary wheel rotates through the rotation transmission member. At this time, a force in a direction parallel to the wheel rotation center axis acts on the surface with which the auxiliary wheel comes into contact, and movement and conveyance in a direction parallel to the wheel rotation center axis becomes possible.

第1及び第2の入力部材が、上記以外の態様で回転したときには、出力部材は公転し、かつ自転する。出力部材の公転により主車輪が回転し、出力部材の自転により副車輪が回転する。このとき、副車輪が接触する面には、主車輪の回転によるホイール回転中心軸に直角かつ副車輪が接触する面に平行な方向の力と、副車輪の回転によるホイール回転中心軸と平行な方向の力とが作用する。つまり、副車輪が接触する面に平行でかつホイール回転中心軸に対して斜め方向の力が作用する。これによって、副車輪が接触する面に平行でかつホイール回転中心軸に対して斜め方向の移動搬送が可能となる。   When the first and second input members rotate in a manner other than the above, the output member revolves and rotates. The main wheel rotates by the revolution of the output member, and the auxiliary wheel rotates by the rotation of the output member. At this time, the surface in contact with the auxiliary wheel is parallel to the wheel rotation central axis due to rotation of the auxiliary wheel and the force in the direction perpendicular to the wheel rotation central axis due to rotation of the main wheel and parallel to the surface where the auxiliary wheel contacts. Directional force acts. That is, a force in an oblique direction acts on the wheel rotation center axis parallel to the surface with which the auxiliary wheel contacts. Thereby, it is possible to move and convey in an oblique direction with respect to the wheel rotation center axis parallel to the surface with which the auxiliary wheel contacts.

上記構成にすれば、外部から差動機構の第1及び第2の入力部材を回転駆動することができ、ホイール部材の内部に駆動源を配置する必要がないため、構成を簡単にすることができる。また、ホイール部材の内部に駆動源を配置する必要がないため、使用できる駆動源に関する制約は少なく、幅広い種類やサイズの駆動源を使用することが可能である。例えば大トルクのモータを利用すれば、駆動力を大きくすることができる。さらに、ホイール回転中心軸と平行な方向の移動搬送時にも、ホイール回転中心軸に直角かつ副車輪が接触する面に平行な方向の移動搬送時と同じ駆動源を使用することができるので、ホイール回転中心軸と平行な方向の移動搬送時の駆動力と、ホイール回転中心軸に直角かつ副車輪が接触する面に平行な方向の移動搬送時の駆動力との差を小さくすることもできる。   With the above configuration, the first and second input members of the differential mechanism can be rotationally driven from the outside, and there is no need to arrange a drive source inside the wheel member, so that the configuration can be simplified. it can. Further, since there is no need to arrange a drive source inside the wheel member, there are few restrictions on the drive sources that can be used, and it is possible to use a wide variety of types and sizes of drive sources. For example, if a motor with a large torque is used, the driving force can be increased. Furthermore, even when moving and transporting in a direction parallel to the wheel rotation center axis, the same drive source can be used as when moving and transporting in a direction perpendicular to the wheel rotation center axis and parallel to the surface in contact with the auxiliary wheel. It is also possible to reduce the difference between the driving force during movement and conveyance in the direction parallel to the rotation center axis and the driving force during movement and conveyance in the direction perpendicular to the wheel rotation center axis and parallel to the surface in contact with the sub wheels.

好ましくは、前記差動機構の前記第1の入力部材は、前記出力部材と係合する第1の係合部を有する。前記差動機構の前記第2の入力部材は、前記出力部材と係合する第2の係合部を有する。前記第1の係合部と前記第2の係合部とは互いに対向する。前記差動機構の前記出力部材のうち少なくとも一つは、前記ホイール回転中心軸に垂直なある方向から透視したときに、前記ホイール回転中心軸に関して片側にのみ配置されている。   Preferably, the first input member of the differential mechanism has a first engagement portion that engages with the output member. The second input member of the differential mechanism has a second engagement portion that engages with the output member. The first engaging portion and the second engaging portion are opposed to each other. At least one of the output members of the differential mechanism is disposed only on one side with respect to the wheel rotation center axis when seen through from a certain direction perpendicular to the wheel rotation center axis.

この場合、差動機構の出力部材は、第1の入力部材の第1の係合部と第2の入力部材の第2の係合部とに直接接触することにより係合しても、ベルトやワイヤ等を介して間接的に係合してもよい。差動機構の出力部材は、ホイール回転中心軸に垂直なある方向から透視したときに、ホイール回転中心軸に関して片側にのみ配置され、ホイール回転中心軸を跨がない。そのため、ホイール回転中心軸のまわりに複数の出力部材を配置しやすく、各副車輪を均等に回転駆動することが容易になる。   In this case, even if the output member of the differential mechanism is engaged by directly contacting the first engaging portion of the first input member and the second engaging portion of the second input member, Or may be indirectly engaged through a wire or the like. The output member of the differential mechanism is disposed only on one side with respect to the wheel rotation center axis when seen through from a direction perpendicular to the wheel rotation center axis, and does not straddle the wheel rotation center axis. Therefore, it is easy to arrange a plurality of output members around the wheel rotation center axis, and it becomes easy to rotationally drive each auxiliary wheel evenly.

好ましくは、前記差動機構の前記出力部材の前記自転中心軸は、前記ホイール回転中心軸に対して非平行に配置されている。前記差動機構の前記出力部材は、前記差動機構の前記第1の入力部材の前記第1の係合部と前記差動機構の前記第2の入力部材の前記第2の係合部との両方に係合する第3の係合部を有する。   Preferably, the rotation center axis of the output member of the differential mechanism is arranged non-parallel to the wheel rotation center axis. The output member of the differential mechanism includes the first engagement portion of the first input member of the differential mechanism and the second engagement portion of the second input member of the differential mechanism. And a third engaging portion that engages both of the first and second engaging portions.

この場合、第1及び第2の係合部を対称な構成にしやすく、構成を簡単にすることができる。   In this case, the first and second engaging portions can be easily symmetric, and the configuration can be simplified.

好ましくは、前記第1及び第2の係合部、又は前記第1乃至第3の係合部が、かさ歯車の歯面である。   Preferably, the first and second engaging portions or the first to third engaging portions are tooth surfaces of a bevel gear.

この場合、歯の噛み合いによって差動機構での回転伝達の損失を少なくすることができる。かさ歯車を用いると、差動機構の構成が簡単になる。   In this case, loss of rotation transmission in the differential mechanism can be reduced by meshing of teeth. Use of a bevel gear simplifies the configuration of the differential mechanism.

好ましくは、前記副車輪は、前記副車輪回転中心軸の少なくとも一部を円弧状に保ったまま前記副車輪回転中心軸のまわりを変形しながら回転する。   Preferably, the auxiliary wheel rotates while deforming around the auxiliary wheel rotation central axis while maintaining at least a part of the auxiliary wheel rotation central axis in an arc shape.

この場合、副車輪の個数を減らし、隣接する副車輪間の隙間発生箇所を減らして、主車輪が回転し、副車輪が順に床面に接していくときに、隣接する副車輪間の隙間によって生じるがたつきの発生回数を減らすことができる。特に、副車輪の個数を最小(1個)まで減らして副車輪回転中心軸をリング状に保つことにより、副車輪間の隙間そのものがなくなり、主車輪が回転したときに副車輪間の隙間によって生じるがたつきを無くすことができる。   In this case, when the number of sub wheels is reduced, the occurrence of gaps between adjacent sub wheels is reduced, the main wheel rotates, and the sub wheels sequentially contact the floor, the gap between adjacent sub wheels The number of occurrences of rattling can be reduced. In particular, by reducing the number of secondary wheels to the minimum (1) and keeping the secondary wheel rotation center axis in a ring shape, the clearance between the secondary wheels disappears, and when the main wheel rotates, the clearance between the secondary wheels The generated rattling can be eliminated.

好ましくは、前記回転伝達部材は、無端循環部材を含む。前記無端循環部材は、前記副車輪に係合する。前記無端循環部材は、前記副車輪の外周面のうち接地面に沿って延在する表面を有する。   Preferably, the rotation transmission member includes an endless circulation member. The endless circulation member is engaged with the auxiliary wheel. The endless circulation member has a surface extending along the ground contact surface of the outer peripheral surface of the auxiliary wheel.

具体的な一態様としては、前記回転伝達部材は、前記副車輪の前記ホイール回転中心軸方向両側にそれぞれ接する前記ホイール回転中心軸に垂直な一対の仮想的な平面の間の領域内に配置される。この場合、回転伝達部材が副車輪よりもホイール回転中心軸方向外側にはみ出さないように構成し、主車輪の幅(ホイール回転中心軸方向の寸法)を短くすることができる。   As a specific aspect, the rotation transmission member is disposed in a region between a pair of virtual planes perpendicular to the wheel rotation center axis that are in contact with both sides of the auxiliary wheel in the wheel rotation center axis direction. The In this case, the rotation transmitting member is configured not to protrude outward in the wheel rotation center axis direction from the auxiliary wheel, and the width of the main wheel (dimension in the wheel rotation center axis direction) can be shortened.

具体的な他の態様としては、前記回転伝達部材の少なくとも一部が、前記副車輪の前記ホイール回転中心軸方向両側にそれぞれ接する前記ホイール回転中心軸に垂直な一対の仮想的な平面の間の領域の外側に配置される。この場合、回転伝達部材の前記副車輪側の端部は、隣接する副車輪間の最も狭い隙間(ホイール回転中心軸に近い方の隙間)を避けて配置することができるので、隣接する副車輪の間隔を小さくし、主車輪が回転したときのがたつきを軽減することができる。   As another specific aspect, at least a part of the rotation transmission member is between a pair of virtual planes perpendicular to the wheel rotation center axis that are in contact with both sides of the auxiliary wheel in the wheel rotation center axis direction. Arranged outside the area. In this case, the end on the auxiliary wheel side of the rotation transmitting member can be arranged so as to avoid the narrowest gap between the adjacent auxiliary wheels (the gap closer to the wheel rotation center axis). , And the rattling when the main wheel rotates can be reduced.

前記回転伝達部材には歯車、ベルト、歯付きベルト、チェーン、ワイヤ、回転軸、軸継手などを用いることができるが、好ましい一態様としては、前記回転伝達部材は、丸ベルトを含む。   As the rotation transmission member, a gear, a belt, a toothed belt, a chain, a wire, a rotation shaft, a shaft coupling, or the like can be used. As a preferable aspect, the rotation transmission member includes a round belt.

この場合、丸ベルトを折り曲げることにより、小さいスペースで回転を伝達することができる。また、構成を簡単にすることができる。丸ベルトは、通常は、断面が円形の無端ベルト部材であるが、断面が一定の大きさでなくてもよく、例えば、中心軸方向に断面の大きさが周期的に変化して表面に歯のような凹凸形状が形成されるものであってもよい。表面に凹凸形状が形成された丸ベルトは、プーリとの間のすべりを抑えることができる。   In this case, the rotation can be transmitted in a small space by bending the round belt. Further, the configuration can be simplified. The round belt is usually an endless belt member having a circular cross section, but the cross section does not have to be a constant size. For example, the size of the cross section changes periodically in the direction of the central axis, and the surface has teeth. Such an uneven shape may be formed. The round belt having a concavo-convex shape on the surface can suppress slipping between the belt and the pulley.

また、本発明は、以下のように構成した移動搬送装置を提供する。   In addition, the present invention provides a mobile conveyance device configured as follows.

移動搬送装置は、(a)上記各構成のいずれか一つに記載の少なくとも1つの移動搬送機構と、(b)前記移動搬送機構の前記ホイール部材を、前記ホイール回転中心軸を中心に回転自在に支持する本体と、(c)前記本体に固定され、前記移動搬送機構の前記差動機構の前記第1及び第2の入力部材にそれぞれ結合され、前記第1及び第2の入力部材をそれぞれ回転駆動する第1及び第2の駆動源とを備える。   The mobile transport device is capable of (a) rotating at least one mobile transport mechanism according to any one of the above-described configurations; and (b) rotating the wheel member of the mobile transport mechanism about the wheel rotation center axis. (C) fixed to the main body, and coupled to the first and second input members of the differential mechanism of the movable transport mechanism, respectively, and the first and second input members are respectively First and second drive sources for rotational driving.

上記構成によれば、移動搬送機構の副車輪が面に接する状態で第1及び第2の入力部材の少なくとも一方が駆動源により回転駆動されると、移動搬送機構の副車輪が接する面に対して、本体が相対的に移動する。したがって、移動搬送装置は、2自由度(前後、左右)あるいは3自由度(前後、左右、旋回)の移動搬送動作を実現することができる。   According to the above configuration, when at least one of the first and second input members is rotationally driven by the drive source in a state where the sub wheels of the moving transport mechanism are in contact with the surface, the surface of the mobile transport mechanism contacting the sub wheels is in contact with the surface. The main body moves relatively. Therefore, the mobile transfer device can realize a mobile transfer operation with two degrees of freedom (front and rear, left and right) or three degrees of freedom (front and rear, left and right, and turn).

また、本発明は、以下のように構成した移動搬送機構の駆動方法を提供する。   The present invention also provides a driving method for a moving transport mechanism configured as follows.

移動搬送機構の駆動方法は、移動搬送機構を準備する工程と、移動搬送機構を駆動する工程とを備える。移動搬送機構は、(a)主車輪と、(b)前記主車輪の外周に沿って配置された副車輪と、(c)第1及び第2の入力部材と、前記第1及び第2の入力部材に係合する出力部材とを有し、前記主車輪において前記副車輪よりも前記主車輪の径方向内側に配置された差動機構とを備える。移動搬送機構は、前記差動機構の前記出力部材の公転により前記主車輪が回転し、前記差動機構の前記出力部材の自転により前記副車輪が回転するように構成される。移動搬送機構を駆動する工程において、(i)前記主車輪のみを回転させるときには、前記差動機構の前記出力部材が公転しかつ自転しない第1の角速度比で、前記差動機構の前記第1及び第2の入力部材を回転駆動し、(ii)前記副車輪のみを回転させるときには、前記差動機構の前記出力部材が自転しかつ公転しない第2の角速度比で、前記差動機構の前記第1及び第2の入力部材を回転駆動し、(iii)前記主車輪と前記副車輪の両方を回転させるときには、前記第1の角速度比と異なりかつ前記第2の角速度比と異なる角速度比で、前記差動機構の前記第1及び第2の入力部材を回転駆動する。   The driving method of the moving conveyance mechanism includes a step of preparing the moving conveyance mechanism and a step of driving the moving conveyance mechanism. The moving conveyance mechanism includes: (a) a main wheel; (b) a sub wheel disposed along an outer periphery of the main wheel; (c) first and second input members; and the first and second An output member that engages with the input member, and a differential mechanism that is disposed on the inner side in the radial direction of the main wheel with respect to the auxiliary wheel. The moving conveyance mechanism is configured such that the main wheel rotates by revolution of the output member of the differential mechanism, and the auxiliary wheel rotates by rotation of the output member of the differential mechanism. In the step of driving the moving conveyance mechanism, (i) when only the main wheel is rotated, the output member of the differential mechanism revolves and the first angular speed ratio of the differential mechanism does not rotate. And (ii) when rotating only the auxiliary wheel, the output member of the differential mechanism rotates and does not revolve at a second angular velocity ratio, and the differential mechanism of the differential mechanism is rotated. When the first and second input members are driven to rotate, and (iii) both the main wheel and the auxiliary wheel are rotated, the angular velocity ratio is different from the first angular velocity ratio and different from the second angular velocity ratio. The first and second input members of the differential mechanism are rotationally driven.

本発明によれば、移動搬送機構は、簡単な構成で、主車輪の回転駆動と副車輪の回転駆動とを行うことができ、また、様々な種類・サイズの駆動源を使用することができる。   According to the present invention, the mobile conveyance mechanism can perform the rotation driving of the main wheel and the rotation driving of the auxiliary wheel with a simple configuration, and can use various types and sizes of driving sources. .

以下、本発明の実施の形態について、図1〜図27を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

<実施例1> まず、移動搬送機構10の構成について、図1及び図2を参照しながら説明する。図1は、移動搬送機構10の断面を説明に必要な部分を中心に模式的に示す断面図である。図2は、図1の線A−Aに沿って切断し、入力かさ歯車18bを取り除いた状態を示す断面図である。図1では、移動搬送機構10以外のモータ14a,14bやケーシング12も図示している。   <Example 1> First, the structure of the moving conveyance mechanism 10 is demonstrated, referring FIG.1 and FIG.2. FIG. 1 is a cross-sectional view schematically showing a cross section of the moving transport mechanism 10 with a portion necessary for explanation. 2 is a cross-sectional view taken along line AA in FIG. 1 and showing a state where the input bevel gear 18b is removed. In FIG. 1, motors 14 a and 14 b and a casing 12 other than the moving conveyance mechanism 10 are also illustrated.

移動搬送機構10は、1対のホイール部材20が、第1及び第2の回転軸16a,16bを介して、ケーシング12に回転自在に支持されている。1対のホイール部材20は略円形であり、第1乃至第3の結合部材22,24,26により、間隔を設けて互いに平行に結合されている。   In the moving conveyance mechanism 10, a pair of wheel members 20 is rotatably supported by the casing 12 via first and second rotating shafts 16a and 16b. The pair of wheel members 20 are substantially circular, and are coupled to each other in parallel by the first to third coupling members 22, 24, and 26 with a space therebetween.

最も外側の第1の結合部材22には、副車輪30が回転自在に支持されている。副車輪30の回転軸31は、ホイール部材20の外周20aに沿って略平行に配置され、かつ、ホイール部材20のホイール回転中心軸20sに対して直角方向に延在している。副車輪30は、ホイール部材20の外周20aよりもホイール部材20の径方向外側に突出し、床面2に接するようになっている。   The auxiliary wheel 30 is rotatably supported by the outermost first coupling member 22. The rotation shaft 31 of the auxiliary wheel 30 is disposed substantially parallel to the outer periphery 20a of the wheel member 20 and extends in a direction perpendicular to the wheel rotation center axis 20s of the wheel member 20. The auxiliary wheel 30 protrudes outward in the radial direction of the wheel member 20 from the outer periphery 20 a of the wheel member 20, and comes into contact with the floor surface 2.

副車輪30のうち一部には、プーリ32が固定されており、伝動ベルト49を介して回転駆動される。隣接する副車輪30同士は、不図示の結合部材(例えば、両端に爪部が形成されたカップリング、軸状の弾性部材など)を介して互いに結合されており、副車輪30は、全部が一体的に、それぞれの副車輪30の副車輪回転中心軸31xのまわりを自転するようになっている。   A pulley 32 is fixed to a part of the auxiliary wheel 30 and is rotationally driven via a transmission belt 49. The adjacent auxiliary wheels 30 are connected to each other via a connecting member (not shown) (for example, a coupling having claw portions formed at both ends, an axial elastic member, etc.). Integrally, each auxiliary wheel 30 rotates about the auxiliary wheel rotation center axis 31x.

1対のホイール部材20の中心には、ホイール部材20のホイール回転中心軸20sと同軸に配置され互いに対向する1対の入力かさ歯車18a,18bの間に、4つの出力かさ歯車42(図1では1つのみを示す。)が噛み合う差動機構が設けられている。1対の入力かさ歯車18a,18bは、同じ諸元の歯車とする。1対の入力かさ歯車18a,18bは、それぞれ、第1及び第2の回転軸16a,16bの端部に固定されている。第1及び第2の回転軸16a,16bは、それぞれモータ14a,14bによって別々に回転駆動されるようになっている。   In the center of the pair of wheel members 20, four output bevel gears 42 (see FIG. 1) are disposed between a pair of input bevel gears 18a and 18b that are arranged coaxially with the wheel rotation center axis 20s of the wheel member 20 and face each other. , Only one of them is shown). The pair of input bevel gears 18a and 18b are gears having the same specifications. The pair of input bevel gears 18a and 18b are fixed to the ends of the first and second rotating shafts 16a and 16b, respectively. The first and second rotating shafts 16a and 16b are separately driven to rotate by motors 14a and 14b, respectively.

差動機構には、かさ歯車の代わりに、フェースギヤ、ハイポイドギヤなどの歯車や、円筒歯車を用いた遊星歯車装置等、歯が噛み合う構成を用いることができる。また、フリクションドライブ(摩擦伝動を利用するもの)、トラクションドライブ(トラクションオイルを利用するもの)等のように、噛み合う歯がない構成を用いてもよい。ベルトやワイヤを用いてもよい。   For the differential mechanism, instead of the bevel gear, a configuration in which teeth mesh, such as a gear such as a face gear or a hypoid gear, or a planetary gear device using a cylindrical gear, can be used. Moreover, you may use the structure without the teeth | gears to mesh | engage like a friction drive (thing using friction transmission), a traction drive (thing using traction oil), etc. A belt or a wire may be used.

出力かさ歯車42は、結合部材26により回転自在に支持された出力かさ歯車回転軸43の一端に固定されている。この出力かさ歯車回転軸43の他端には、第1の中間歯車44が固定されている。第1の中間歯車44は、第2の結合部材24により回転自在に支持された中間回転軸47の一端に固定された第2の中間歯車46と噛み合っている。中間回転軸47にはプーリ48が固定されている。このプーリ48と、副車輪30に固定されたプーリ32との間は、伝動ベルト49を介して結合され、回転が伝達されるようになっている。   The output bevel gear 42 is fixed to one end of an output bevel gear rotation shaft 43 that is rotatably supported by the coupling member 26. A first intermediate gear 44 is fixed to the other end of the output bevel gear rotation shaft 43. The first intermediate gear 44 meshes with a second intermediate gear 46 fixed to one end of an intermediate rotation shaft 47 that is rotatably supported by the second coupling member 24. A pulley 48 is fixed to the intermediate rotating shaft 47. The pulley 48 and the pulley 32 fixed to the auxiliary wheel 30 are coupled via a transmission belt 49 so that rotation is transmitted.

出力かさ歯車42と副車輪30との間を結合する回転伝達部材である出力かさ歯車回転軸43、第1の中間歯車44、第2の中間歯車46、中間回転軸47、プーリ48及び伝動ベルト49が、副車輪30のホイール回転中心軸20s方向両側にそれぞれ接するホイール回転中心軸20sに垂直な一対の仮想的な平面の間の領域内に配置されることは好ましい一態様である。この場合、回転伝達部材43,44,46,47,48,49が副車輪30よりもホイール回転中心軸20s方向外側にはみ出さないように構成し、主車輪80の幅(ホイール回転中心軸20s方向の寸法)を短くすることができる。   An output bevel gear rotating shaft 43, a first intermediate gear 44, a second intermediate gear 46, an intermediate rotating shaft 47, a pulley 48, and a transmission belt, which are rotation transmission members for coupling between the output bevel gear 42 and the auxiliary wheel 30. It is a preferable aspect that 49 is arrange | positioned in the area | region between a pair of virtual planes perpendicular | vertical to the wheel rotation center axis | shaft 20s which contact | connects the wheel rotation center axis | shaft 20s direction both sides of the subwheel 30, respectively. In this case, the rotation transmission members 43, 44, 46, 47, 48, 49 are configured not to protrude outward in the wheel rotation center axis 20 s direction from the auxiliary wheel 30, and the width of the main wheel 80 (the wheel rotation center axis 20 s Direction dimension) can be shortened.

図示していないが、ホイール部材20も、副車輪30のホイール回転中心軸20s方向両側にそれぞれ接するホイール回転中心軸20sに垂直な一対の仮想的な平面の間の領域内に配置するように構成すれば、主車輪80の幅を副車輪30の幅まで短くすることができる。   Although not shown, the wheel member 20 is also configured to be disposed in a region between a pair of virtual planes perpendicular to the wheel rotation center axis 20s that are in contact with both sides of the auxiliary wheel 30 in the wheel rotation center axis 20s direction. If so, the width of the main wheel 80 can be reduced to the width of the auxiliary wheel 30.

次に、移動搬送機構10の動作について、図3の模式図を参照しながら説明する。図3は、床面2から移動搬送機構10とケーシング12を見た様子を示す。図3では、ホイール部材20に副車輪30が配置された主車輪80について、1つの副車輪30のみが図示されている。   Next, the operation of the moving conveyance mechanism 10 will be described with reference to the schematic diagram of FIG. FIG. 3 shows a state in which the moving conveyance mechanism 10 and the casing 12 are viewed from the floor surface 2. In FIG. 3, only one auxiliary wheel 30 is illustrated for the main wheel 80 in which the auxiliary wheel 30 is disposed on the wheel member 20.

差動機構の1対の入力かさ歯車18a,18bの両方を同じ方向に同じ角速度で回転駆動すると、出力かさ歯車42は、自転することなく、ホイール回転中心軸20sのまわりを公転する。これによって、図3(a)に示すように、副車輪30は停止した状態で、すなわち、副車輪30が自転しない状態で、ホイール部材20が回転し、主車輪80が矢印83に示すように回転する。その結果、矢印86で示すように、ケーシング12は床面2に対して、前後方向(図3(a)において上下方向)に相対的に移動する。   When both of the pair of input bevel gears 18a and 18b of the differential mechanism are rotationally driven in the same direction at the same angular velocity, the output bevel gear 42 revolves around the wheel rotation center shaft 20s without rotating. As a result, as shown in FIG. 3A, the wheel member 20 is rotated while the auxiliary wheel 30 is stopped, that is, the auxiliary wheel 30 is not rotating, and the main wheel 80 is indicated by an arrow 83. Rotate. As a result, as indicated by an arrow 86, the casing 12 moves relative to the floor surface 2 in the front-rear direction (vertical direction in FIG. 3A).

差動機構の1対の入力かさ歯車18a,18bを互いに逆方向に絶対値が同じ角速度で回転駆動すると、出力かさ歯車42は、公転することなく、自転する。これによって、図3(b)に示すように、ホイール部材20が停止した状態で、矢印85で示すように副車輪30が副車輪回転中心軸30sのまわりを回転(自転)する。その結果、矢印88で示すように、ケーシング12は床面2に対して、左右方向(図3(b)において左右方向)に相対的に移動する。   When the pair of input bevel gears 18a and 18b of the differential mechanism are rotationally driven in opposite directions at the same angular velocity, the output bevel gear 42 rotates without revolving. As a result, as shown in FIG. 3B, with the wheel member 20 stopped, the auxiliary wheel 30 rotates (spins) around the auxiliary wheel rotation center axis 30s as indicated by an arrow 85. As a result, as indicated by an arrow 88, the casing 12 moves relative to the floor surface 2 in the left-right direction (left-right direction in FIG. 3B).

差動機構の1対の入力かさ歯車18a,18bを互いに絶対値が異なる角速度で回転駆動すると、出力かさ歯車42は、自転し、かつ公転する。これによって、図3(c)において矢印83で示すように主車輪80が回転し、矢印85で示すように副車輪30が回転(自転)する。その結果、例えば矢印87で示すように、ケーシング12は床面2に対して図3(c)に示すように斜め方向に相対的に移動する。   When the pair of input bevel gears 18a and 18b of the differential mechanism is rotationally driven at angular velocities having different absolute values, the output bevel gear 42 rotates and revolves. As a result, the main wheel 80 rotates as indicated by an arrow 83 in FIG. 3C, and the auxiliary wheel 30 rotates (spins) as indicated by an arrow 85. As a result, as shown by an arrow 87, for example, the casing 12 moves relative to the floor surface 2 in an oblique direction as shown in FIG.

移動搬送機構10は、左右のモータ14a,14bの回転を制御することで、平面内の全方向の移動が可能である。   The moving conveyance mechanism 10 can move in all directions within a plane by controlling the rotation of the left and right motors 14a and 14b.

すなわち、ケーシング12を床面2に対して前後方向(図3(a)において矢印86で示す方向)に移動させたい場合には、副車輪30が回転しない状態でホイール部材20を回転させればよいので、出力かさ歯車42が公転しかつ自転しないように、入力かさ歯車18a,18bの両方を同じ方向に同じ角速度(第1の角速度比)で回転駆動するように、モータ14a,14bの回転を制御する。   That is, when the casing 12 is to be moved in the front-rear direction (the direction indicated by the arrow 86 in FIG. 3A) with respect to the floor surface 2, if the wheel member 20 is rotated without the auxiliary wheel 30 rotating. Therefore, the rotation of the motors 14a and 14b is performed so that both the input bevel gears 18a and 18b are rotationally driven in the same direction at the same angular velocity (first angular velocity ratio) so that the output bevel gear 42 revolves and does not rotate. To control.

ケーシング12を床面2に対して左右方向(図3(b)において矢印88で示す方向)に移動させたい場合には、副車輪30が自転し、ホイール部材20が回転しないようにすればよいので、出力かさ歯車42が自転しかつ公転しないように、入力かさ歯車18a,18bを互いに逆方向に絶対値が同じ角速度(第2の角速度比)で回転駆動するように、モータ14a,14bの回転を制御する。   When it is desired to move the casing 12 in the left-right direction with respect to the floor surface 2 (the direction indicated by the arrow 88 in FIG. 3B), the auxiliary wheel 30 rotates and the wheel member 20 does not rotate. Therefore, in order to prevent the output bevel gear 42 from rotating and revolving, the input bevel gears 18a and 18b are rotated in the opposite directions to each other at the same angular velocity (second angular velocity ratio). Control the rotation.

ケーシング12を床面2に対して前後方向でも左右方向でもない斜め方向(図3(c)において、例えば矢印87で示す方向)に移動させたい場合には、副車輪30が自転し、かつホイール部材20が回転すればよいので、出力かさ歯車42が自転しかつ公転するように、入力かさ歯車18a,18bを第1の角速度比と異なりかつ第2の角速度比と異なる角速度比で回転駆動するように、モータ14a,14bの回転を制御する。   When it is desired to move the casing 12 in an oblique direction that is neither the front-rear direction nor the left-right direction with respect to the floor surface 2 (the direction indicated by the arrow 87 in FIG. 3C), the auxiliary wheel 30 rotates and the wheel Since the member 20 only needs to rotate, the input bevel gears 18a and 18b are rotationally driven at an angular velocity ratio different from the first angular velocity ratio and different from the second angular velocity ratio so that the output bevel gear 42 rotates and revolves. Thus, the rotation of the motors 14a and 14b is controlled.

移動搬送機構10は、駆動用の全てのモータ14a,14bをケーシング12上に配置することができるので、モータを主車輪に内蔵する場合よりも、大トルクのモータを用いることができる。したがって、副車輪のトルクを大きくすることができ、主車輪と副車輪の駆動力の差を小さくし、あるいは差を無くすことができる。   Since all the driving motors 14a and 14b can be arranged on the casing 12, the moving and transport mechanism 10 can use a motor with a larger torque than when the motor is built in the main wheel. Therefore, the torque of the auxiliary wheel can be increased, and the difference in driving force between the main wheel and the auxiliary wheel can be reduced or eliminated.

また、移動搬送機構10は、モータを主車輪に内蔵しないので、モータへの電気供給等の配線が容易である。   Moreover, since the moving conveyance mechanism 10 does not incorporate a motor in the main wheel, wiring such as electric supply to the motor is easy.

移動搬送機構10は、種々の移動搬送装置に用いることができる。   The moving conveyance mechanism 10 can be used for various moving conveyance apparatuses.

例えば、1組の移動搬送機構10をロボット等の移動搬送装置に用いる場合には、ボール車輪やオムニホイールを用いて移動搬送装置が倒れないようにすればよい。あるいは、倒立振子の技術によりバランスを保つようにすればよい。この場合、前後、左右の2自由度の移動動作を実現できる。   For example, when a set of the mobile transport mechanism 10 is used for a mobile transport device such as a robot, the mobile transport device may be prevented from falling down using a ball wheel or an omni wheel. Alternatively, the balance may be maintained by an inverted pendulum technique. In this case, a moving operation with two degrees of freedom can be realized.

2つ以上の移動搬送機構を用いると、前後、左右の移動と旋回の3自由度の移動搬送装置を実現することができる。   When two or more moving and conveying mechanisms are used, a moving and conveying device having three degrees of freedom of front and rear, left and right movement, and turning can be realized.

例えば図4(a)の断面図、図4(b)の底面図に模式的に示す移動搬送装置60は、2つの本発明の移動搬送機構10を用いている。本体62の底面64から、2つの移動搬送機構10の主車輪80と、2つのボール車輪68とが突出するように構成されている。移動搬送機構10は、それぞれ、モータ14a,14bで回転駆動される。移動搬送装置60は、合計4台のモータで3自由度を実現することができる。   For example, the mobile transport device 60 schematically shown in the sectional view of FIG. 4A and the bottom view of FIG. 4B uses two mobile transport mechanisms 10 of the present invention. The main wheel 80 and the two ball wheels 68 of the two transporting mechanisms 10 are configured to protrude from the bottom surface 64 of the main body 62. The moving conveyance mechanism 10 is rotationally driven by motors 14a and 14b, respectively. The mobile conveyance device 60 can realize three degrees of freedom with a total of four motors.

移動搬送装置60は、例えば、2つの移動搬送機構10の主車輪が互いに平行に配置され、ホイール回転中心軸が一致し、移動搬送装置60の重心が、移動搬送機構10の間に、かつ2つのボール車輪68の間に配置されるようにすると、移動搬送時に安定するので好ましい。   In the mobile conveyance device 60, for example, the main wheels of the two mobile conveyance mechanisms 10 are arranged in parallel to each other, the wheel rotation central axes coincide with each other, and the center of gravity of the mobile conveyance device 60 is between the movement conveyance mechanism 10 and 2 The arrangement between the two ball wheels 68 is preferable because it is stable during movement and transportation.

次に、本発明の移動搬送機構に用いる差動機構について、図5〜図7の模式図を参照しながら、さらに説明する。図5〜図7は、一つの出力部材の自転中心軸に垂直でありかつホイール回転中心軸に垂直である方向から透視した差動機構を模式的に示している。   Next, the differential mechanism used in the mobile conveyance mechanism of the present invention will be further described with reference to the schematic diagrams of FIGS. 5 to 7 schematically show the differential mechanism as seen through from the direction perpendicular to the rotation center axis of one output member and perpendicular to the wheel rotation center axis.

図5(1)〜(6)の模式図は、同軸に配置された1対の入力部材と、出力部材とが係合する2箇所が、図において入力部材の回転中心軸(ホイール回転中心軸)の片側(図では入力部材の回転中心軸の下側)、かつ、出力部材の自転中心軸の両側に配置されている場合を示している。   5 (1) to 5 (6) show that the two positions where the pair of input members arranged coaxially and the output member are engaged are the rotation center axis (wheel rotation center axis of the input member) in the figure. ) On one side (the lower side of the rotation center axis of the input member in the figure) and on both sides of the rotation center axis of the output member.

図5(1)は、上述した移動搬送機構10の入力かさ歯車18a,18b及び出力かさ歯車42に対応する構成であり、1対の入力部材50,52の回転中心軸と出力部材54の自転中心軸とが直角となっている。出力部材54の係合部55が、1対の入力部材50,52の係合部51,53の両方に、係合している。例えば、係合部に設けた歯が噛み合うことにより係合する。あるいは、係合部の面同士が接触して摩擦により係合する。この場合、一方の入力部材50と出力部材54との間と他方の入力部材52と出力部材54との間とで減速比を対称としやすく、機械的強度や剛性も対称としやすい。   FIG. 5A shows a configuration corresponding to the input bevel gears 18 a and 18 b and the output bevel gear 42 of the moving conveyance mechanism 10 described above, and the rotation center shaft of the pair of input members 50 and 52 and the rotation of the output member 54. The central axis is at a right angle. The engaging portion 55 of the output member 54 is engaged with both the engaging portions 51 and 53 of the pair of input members 50 and 52. For example, the teeth provided at the engaging portion are engaged with each other to engage with each other. Alternatively, the surfaces of the engaging portions come into contact with each other and are engaged by friction. In this case, the reduction ratio is easily symmetric between the one input member 50 and the output member 54 and between the other input member 52 and the output member 54, and the mechanical strength and rigidity are also easily symmetric.

図5(2)は、入力部材50a,52aの回転中心軸に対して、出力部材54aの自転中心軸が傾き、非直角となっている場合を示す。出力部材54aの係合部55aは、1対の入力部材50a,52aの係合部51a,53aの両方に、係合している。一方の入力部材50aと出力部材54aとの間と他方の入力部材52aと出力部材54aとの間とで減速比は非対称となりやすく、機械的強度や剛性も非対称となりやすい。   FIG. 5 (2) shows a case where the rotation center axis of the output member 54a is inclined and non-perpendicular with respect to the rotation center axes of the input members 50a and 52a. The engaging portion 55a of the output member 54a is engaged with both the engaging portions 51a and 53a of the pair of input members 50a and 52a. The reduction ratio tends to be asymmetric between the one input member 50a and the output member 54a and between the other input member 52a and the output member 54a, and the mechanical strength and rigidity tend to be asymmetric.

図5(3)は、出力部材54bに2つの係合部55b,56bを設け、それぞれ、一方の入力部材50bの係合部51bと、他方の入力部材52bの係合部53bに係合している場合を示す。1対の入力部材50b,52bの回転中心軸と出力部材54bの自転中心軸とは直角となっている。この場合、一方の入力部材50bと出力部材54bとの間と他方の入力部材52bと出力部材54bとの間とで減速比を同じにすることは可能であるが、機械的強度や剛性は非対称となりやすい。   In FIG. 5 (3), the output member 54b is provided with two engaging portions 55b and 56b, which are engaged with the engaging portion 51b of one input member 50b and the engaging portion 53b of the other input member 52b, respectively. Indicates the case. The rotation center axis of the pair of input members 50b and 52b and the rotation center axis of the output member 54b are perpendicular to each other. In this case, the reduction ratio can be the same between one input member 50b and the output member 54b and between the other input member 52b and the output member 54b, but the mechanical strength and rigidity are asymmetric. It is easy to become.

図5(4)〜(6)は、図5(1)〜(3)の一方の入力部材50,50a,50bを、他方の入力部材52,52a,52bと同じ側から回転駆動する場合を示している。このように片側から回転駆動する構成とすると、モータなどの駆動系を片側のみに設けることができる。   FIGS. 5 (4) to (6) show a case where one input member 50, 50a, 50b of FIGS. 5 (1) to 5 (3) is rotationally driven from the same side as the other input member 52, 52a, 52b. Show. Thus, when it is set as the structure driven rotationally from one side, drive systems, such as a motor, can be provided only in one side.

図5(4)では、図5(1)と同様に、1対の入力部材50c,52cの回転中心軸と出力部材54cの自転中心軸とが直角となっている。出力部材54cの係合部55cが、1対の入力部材50c,52cの係合部51c,53cの両方に係合している。この場合、一方の入力部材50cと出力部材54cとの間と他方の入力部材52cと出力部材54cとの間とで減速比を対称としやすく、機械的強度や剛性も、ある程度、対称としやすい。   In FIG. 5 (4), as in FIG. 5 (1), the rotation center axis of the pair of input members 50c and 52c and the rotation center axis of the output member 54c are perpendicular to each other. The engaging portion 55c of the output member 54c is engaged with both the engaging portions 51c and 53c of the pair of input members 50c and 52c. In this case, the reduction ratio is easily symmetric between the one input member 50c and the output member 54c and between the other input member 52c and the output member 54c, and the mechanical strength and rigidity are also easily symmetric to some extent.

図5(5)では、図5(2)同様に、1対の入力部材50d,52dの回転中心軸に対して出力部材54dの自転中心軸が傾き、非直角となっている。出力部材54dの係合部55dは、1対の入力部材50d,52dの係合部51d,53dの両方に係合している。この場合、一方の入力部材50dと出力部材54dとの間と他方の入力部材52dと出力部材54dとの間とで減速比は非対称となりやすく、機械的強度や剛性も非対称となりやすい。   In FIG. 5 (5), as in FIG. 5 (2), the rotation center axis of the output member 54d is inclined with respect to the rotation center axis of the pair of input members 50d and 52d, and is not perpendicular. The engaging portion 55d of the output member 54d is engaged with both the engaging portions 51d and 53d of the pair of input members 50d and 52d. In this case, the reduction ratio tends to be asymmetric between the one input member 50d and the output member 54d and between the other input member 52d and the output member 54d, and the mechanical strength and rigidity tend to be asymmetric.

図5(6)では、図5(3)同様に、1対の入力部材50e,52eの回転中心軸と出力部材54eの自転中心軸とは直角となり、出力部材54eの2つの係合部55e,56eは、それぞれ、一方の入力部材50eの係合部51eと他方の入力部材52eの係合部53eとに係合している。この場合、一方の入力部材50eと出力部材54eとの間と他方の入力部材52eと出力部材54eとの間とで減速比を同じにすることは可能であるが、機械的強度や剛性は非対称となりやすい。   In FIG. 5 (6), as in FIG. 5 (3), the rotation center axis of the pair of input members 50e and 52e and the rotation center axis of the output member 54e are at right angles, and the two engaging portions 55e of the output member 54e. , 56e are engaged with the engaging portion 51e of one input member 50e and the engaging portion 53e of the other input member 52e, respectively. In this case, the reduction ratio can be the same between one input member 50e and the output member 54e and between the other input member 52e and the output member 54e, but the mechanical strength and rigidity are asymmetric. It is easy to become.

図5(7a)及び(7b)は、差動機構に用いる、円筒歯車を使った遊星歯車装置を示している。図5(7a)は軸直角断面を模式的に示す構成図、図5(7b)は軸を含む断面を模式的に示す構成図である。遊星歯車92は、図示を簡略化するため、1つのみを図示している。差動機構には、外歯太陽歯車90と内歯車94とを入力部材として用い、遊星歯車92を出力部材として用いる。適宜な回転伝達系を設けて、キャリヤ93の回転(遊星歯車92の公転)を主車輪の回転に利用し、遊星歯車92の自転を副車輪の回転に利用する。   5 (7a) and (7b) show a planetary gear device using a cylindrical gear used for a differential mechanism. FIG. 5 (7a) is a configuration diagram schematically showing a cross section perpendicular to the axis, and FIG. 5 (7b) is a configuration diagram schematically showing a cross section including the axis. Only one planetary gear 92 is shown for simplicity of illustration. The differential mechanism uses an external sun gear 90 and an internal gear 94 as input members, and a planetary gear 92 as an output member. An appropriate rotation transmission system is provided, and the rotation of the carrier 93 (revolution of the planetary gear 92) is used for the rotation of the main wheel, and the rotation of the planetary gear 92 is used for the rotation of the auxiliary wheel.

図6の模式図は、同軸に配置された1対の入力部材50s,52sと出力部材54sとが係合する2箇所が、1対の入力部材50s,52sの回転中心軸の両側、かつ、出力部材54sの自転中心軸の片側に配置されている場合を示している。出力部材54sには2つの係合部55s,56sが設けられ、それぞれ、入力部材50s,52sの係合部51s,53sに係合している。この場合も、出力部材54sは、自転と公転が可能ではある。しかし、図において1対の入力部材50s,52sの回転中心軸の両側(図では、入力部材の回転中心軸の上側と下側)で入力部材50s,52sと出力部材54sとが係合するため、複数の出力部材54sを配置しようとすると、構成が複雑になってしまう。   The schematic diagram of FIG. 6 shows that two locations where the pair of input members 50 s and 52 s and the output member 54 s that are coaxially engaged with each other are on both sides of the rotation center axis of the pair of input members 50 s and 52 s, and The case where it arrange | positions to the one side of the autorotation center axis | shaft of the output member 54s is shown. The output member 54s is provided with two engaging portions 55s and 56s, which are engaged with the engaging portions 51s and 53s of the input members 50s and 52s, respectively. Also in this case, the output member 54s can rotate and revolve. However, since the input members 50s and 52s and the output member 54s are engaged on both sides of the rotation center axis of the pair of input members 50s and 52s in the drawing (upper and lower sides of the rotation center axis of the input member in the drawing). If a plurality of output members 54s are arranged, the configuration becomes complicated.

図7の模式図は、本発明の移動搬送機構に適用可能な他の差動機構を示している。   The schematic diagram of FIG. 7 shows another differential mechanism applicable to the moving conveyance mechanism of the present invention.

図7(a)では、同軸に配置された1対の入力部材50x,52xの係合部51x,53xと出力部材54xの係合部55x,56xとが係合する2箇所が、1対の入力部材50x,52xの回転中心軸の片側、かつ、出力部材54xの自転中心軸の片側に配置されている。   In FIG. 7A, two places where the engaging portions 51x and 53x of the pair of input members 50x and 52x arranged coaxially and the engaging portions 55x and 56x of the output member 54x are engaged are a pair. The input members 50x and 52x are disposed on one side of the rotation center axis and on the one side of the rotation center axis of the output member 54x.

この構成において、一方の入力部材50xと出力部材54xとの間の減速比と、他方の入力部材52xと出力部材54xとの間の減速比とが同じであると、出力部材54xは1対の入力部材50x,52xが停止していても回転(公転と自転)可能であり、不都合が生じる。   In this configuration, if the reduction ratio between one input member 50x and the output member 54x is the same as the reduction ratio between the other input member 52x and the output member 54x, the output member 54x is a pair of Even if the input members 50x and 52x are stopped, they can rotate (revolve and rotate), which causes inconvenience.

したがって、本発明の移動搬送機構に利用できるためには、1対の入力部材50x,52xが停止していると出力部材54xが回転(公転と自転)できないように、一方の入力部材50xと出力部材54xとの間の減速比と、他方の入力部材52xと出力部材54xとの間の減速比とが異なるようにする必要がある。   Therefore, in order to be able to be used for the moving conveyance mechanism of the present invention, the output member 54x and the output of the one input member 50x are prevented so that the output member 54x cannot rotate (revolve and rotate) when the pair of input members 50x and 52x are stopped. The speed reduction ratio between the member 54x and the speed reduction ratio between the other input member 52x and the output member 54x need to be different.

図7(b)では、同軸に配置された1対の入力部材50y,52yの係合部51y,53yと出力部材54yの係合部55y,56yとが係合する2箇所が、1対の入力部材50y,52yの回転中心軸の片側、かつ、出力部材54yの自転中心軸の片側に配置されている。   In FIG. 7B, two locations where the engaging portions 51y, 53y of the pair of input members 50y, 52y and the engaging portions 55y, 56y of the output member 54y are coaxially arranged are a pair. The input members 50y and 52y are arranged on one side of the rotation center axis and on the one side of the rotation center axis of the output member 54y.

この場合、1対の入力部材50y,52yが停止していると出力部材54yが回転(公転と自転)できないように、一方の入力部材50yと出力部材54yとの間の減速比と、他方の入力部材52yと出力部材54yとの間の減速比とが異なるようにすれば、本発明の移動搬送機構に適用可能である。   In this case, the reduction ratio between one input member 50y and the output member 54y and the other so that the output member 54y cannot rotate (revolution and rotation) when the pair of input members 50y and 52y are stopped. If the reduction ratio between the input member 52y and the output member 54y is different, the present invention can be applied to the moving conveyance mechanism of the present invention.

図7(c)では、同軸に配置された1対の入力部材50z,52zと出力部材54zとが非直角に傾けて配置されている。入力部材50z,52zの係合部51z,53zと出力部材54zの係合部55z,56zとが係合する2箇所が、1対の入力部材50z,52zの回転中心軸の両側、かつ、出力部材54zの自転中心軸の両側に配置されている。   In FIG. 7C, the pair of input members 50z and 52z and the output member 54z arranged coaxially are arranged so as to be inclined at a non-right angle. Two places where the engaging portions 51z and 53z of the input members 50z and 52z engage with the engaging portions 55z and 56z of the output member 54z are both sides of the rotation center axis of the pair of input members 50z and 52z, and the output. It arrange | positions at the both sides of the autorotation center axis | shaft of the member 54z.

この場合、一方の入力部材50zと出力部材54zとの間の減速比と、他方の入力部材52zと出力部材54zとの間の減速比とが異なるようにすれば、本発明の移動搬送機構に適用可能である。   In this case, if the reduction ratio between the one input member 50z and the output member 54z is different from the reduction ratio between the other input member 52z and the output member 54z, the mobile conveyance mechanism of the present invention can be used. Applicable.

次に、本発明の移動搬送機構に用いる回転伝達部材について、図8〜図10の模式図を参照しながら、さらに説明する。   Next, the rotation transmission member used in the moving conveyance mechanism of the present invention will be further described with reference to the schematic diagrams of FIGS.

回転伝達部材には、断面円形の無端ベルト部材である丸ベルトを用いてもよい。丸ベルトは、断面が一定の大きさでなくてもよく、例えば、中心軸方向に断面の大きさが周期的に変化して表面に歯のような凹凸形状が形成されるものであってもよく、そのような丸ベルトを用いると、プーリとの間のすべりを抑えることができる。   A round belt which is an endless belt member having a circular cross section may be used as the rotation transmitting member. The round belt may not have a constant cross section. For example, the round belt may have a tooth-like irregular shape formed on the surface by periodically changing the cross section size in the central axis direction. Well, when such a round belt is used, slip between the pulleys can be suppressed.

例えば図8に模式的に示すように、丸ベルト78は、差動機構71の入力かさ歯車71aと係合する出力かさ歯車71bの自転による回転を、副車輪72に伝達する。この場合、丸ベルト78の循環経路を折り曲げることにより、差動機構と副車輪72との間の伝達経路が簡単になり、径方向の距離を短くし、主車輪70の外径を小さくすることが可能である。   For example, as schematically shown in FIG. 8, the round belt 78 transmits the rotation due to the rotation of the output bevel gear 71 b engaged with the input bevel gear 71 a of the differential mechanism 71 to the auxiliary wheel 72. In this case, the transmission path between the differential mechanism and the auxiliary wheel 72 is simplified by bending the circulation path of the round belt 78, the radial distance is shortened, and the outer diameter of the main wheel 70 is reduced. Is possible.

丸ベルト78の循環経路は、図9の構成図に示すように、隣接する副車輪72,74間の中央の隙間73bを紙面に略垂直方向に通って副車輪72に固定されたプーリ73を回転駆動するように構成してもよい。この場合、丸ベルト78が、隣接する副車輪72,74間の内側(主車輪70のホイール回転中心軸側)の隙間73aを、例えば図8に模式的に示すように、主車輪70の径方向に、すなわち紙面に平行に通って副車輪72に固定されたプーリ73に達する場合よりも、隣接する副車輪72,74間の内側の隙間73aを小さくすることができる。これにより、隣接する副車輪72,74間の外側(主車輪70の径方向外側)の隙間73cも小さくなるので、主車輪70が回転し、副車輪が順に床面に接していくときのがたつきを小さくすることができる。   As shown in the block diagram of FIG. 9, the circulation path of the round belt 78 includes a pulley 73 fixed to the auxiliary wheel 72 through a central gap 73b between adjacent auxiliary wheels 72, 74 in a direction substantially perpendicular to the paper surface. You may comprise so that it may rotate. In this case, the round belt 78 has a gap 73a on the inner side (the wheel rotation center axis side of the main wheel 70) between the adjacent auxiliary wheels 72 and 74, for example, as schematically shown in FIG. The inner gap 73a between the adjacent auxiliary wheels 72 and 74 can be made smaller than when reaching the pulley 73 fixed to the auxiliary wheel 72 in the direction, that is, parallel to the paper surface. As a result, the gap 73c on the outside (the radial outside of the main wheel 70) between the adjacent sub wheels 72 and 74 is also reduced, so that the main wheel 70 is rotated and the sub wheels are in contact with the floor in turn. Tack can be reduced.

図10(a)の要部構成図に示すように、副車輪75に結合されたプーリ76と、駆動用のプーリ77とを配置し、丸ベルト78の経路を例えば90度ひねるようにする。この場合、駆動用のプーリ77と、差動機構の出力かさ歯車とを回転軸で直結し、副車輪を回転駆動することができる。   10A, a pulley 76 coupled to the auxiliary wheel 75 and a driving pulley 77 are arranged so that the path of the round belt 78 is twisted by 90 degrees, for example. In this case, the driving pulley 77 and the output bevel gear of the differential mechanism are directly connected by the rotation shaft, and the auxiliary wheel can be rotationally driven.

あるいは、図10(b)の要部構成図と、図10(b)の線C−Cに沿って切断した要部拡大図である図10(c)とに示すように、副車輪75の両側に固定されたプーリ76a,76bの上下に丸ベルト79の中間部分79a,79bを掛け、丸ベルト79の両端に掛けるプーリ77a,77bのうち、一方を不図示の差動機構の出力かさ歯車側に回転軸を介して結合し、他方は張力調整用のテンショナーとして遊転させてもよい。この場合、図10(a)のようにベルト経路が扇状に広がらないので、副車輪75に隣接する不図示の副車輪との間の隙間を狭くすることができる。   Alternatively, as shown in FIG. 10 (b), a main part configuration diagram, and FIG. 10 (c), which is an enlarged view of the main part taken along line CC in FIG. 10 (b). The intermediate portions 79a and 79b of the round belt 79 are hung on the upper and lower sides of the pulleys 76a and 76b fixed on both sides, and one of the pulleys 77a and 77b hung on both ends of the round belt 79 is an output bevel gear of a differential mechanism (not shown). The other side may be coupled via a rotating shaft, and the other side may be idled as a tension adjustment tensioner. In this case, since the belt path does not expand like a fan as shown in FIG. 10A, the gap between the auxiliary wheel (not shown) adjacent to the auxiliary wheel 75 can be reduced.

<変形例1> 隣接する副車輪の間に隙間があると、主車輪が回転したときに副車輪と床面の接触によりがたつきを生じる。以下のように構成すると、このようながたつきの発生を低減することができる。   <Modification 1> If there is a gap between adjacent auxiliary wheels, rattling occurs due to contact between the auxiliary wheels and the floor when the main wheel rotates. When configured as follows, the occurrence of such rattling can be reduced.

<変形例1−1> 例えば図11の構成図に示す移動搬送機構10aのように、円弧形状を保つように変形しながら回転する副車輪30aを用いる。この副車輪30aは、例えば、弾性部材を用いたり、円筒形状の部品を蛇腹状に重ね合わせたりすることによって、その副車輪回転中心軸を円弧状に保ったままその副車輪回転中心軸のまわりを変形しながら回転するように構成することができる。このような円弧形状の副車輪30aを用いると、副車輪30aの個数を減らし、隣接する副車輪30a間の隙間発生箇所を減らし、主車輪が回転したときに隣接する副車輪間の隙間によってがたつきが発生する回数を減らすことができる。   <Modification 1-1> For example, like the moving conveyance mechanism 10a shown in the block diagram of FIG. For example, by using an elastic member or overlapping cylindrical parts in a bellows shape, the auxiliary wheel 30a is rotated around the auxiliary wheel rotation central axis while keeping the auxiliary wheel rotation central axis in an arc shape. It can be configured to rotate while deforming. When such arc-shaped auxiliary wheels 30a are used, the number of auxiliary wheels 30a is reduced, the occurrence of gaps between adjacent auxiliary wheels 30a is reduced, and the gap between adjacent auxiliary wheels is reduced when the main wheel rotates. The number of times that rattling occurs can be reduced.

複数個の円弧状に分割した副車輪30aを用いる代わりに、リング形状を保ちながら、リング形状の副車輪回転中心軸のまわりを回転するように構成した1つの副車輪のみを用いる構成としてもよい。この場合、そもそも、隣接する副車輪間の隙間がないので、主車輪が回転したときに隣接する副車輪間の隙間によるがたつきを抑えることができる。   Instead of using a plurality of sub-wheels 30a divided into arcs, it is possible to use only one sub-wheel configured to rotate around the ring-shaped sub-wheel rotation center axis while maintaining the ring shape. . In this case, since there is no gap between adjacent auxiliary wheels in the first place, rattling caused by the gap between adjacent auxiliary wheels when the main wheel rotates can be suppressed.

<変形例1−2> 例えば図12(a)の要部構成図と、図12(a)の線A−Aに沿って切断した要部断面図である図12(b)とに示すように、副車輪36の外周面を、ホイール部材側に固定された支持部材22bにより回転自在に支持されているローラ37によって、回転自在に支持するように構成してもよい。主車輪が回転したときに副車輪36の外周面に隙間があるとがたつきを生じるが、副車輪36の外周面をローラ37で支持すると副車輪36を支持する部分に隙間ができないので、副車輪36自体により生じるがたつきを無くすことができる。   <Modification 1-2> For example, as shown in FIG. 12A, a main part configuration diagram, and FIG. 12B, which is a main part sectional view taken along line AA in FIG. 12A. In addition, the outer peripheral surface of the auxiliary wheel 36 may be rotatably supported by a roller 37 that is rotatably supported by a support member 22b fixed to the wheel member side. If there is a gap on the outer peripheral surface of the sub wheel 36 when the main wheel rotates, rattling will occur, but if the outer peripheral surface of the sub wheel 36 is supported by the roller 37, there will be no gap in the part that supports the sub wheel 36. Shaking caused by the auxiliary wheel 36 itself can be eliminated.

<変形例1−3> 副車輪の表面を直接駆動してもよい。例えば図13の構成図に示すように、副車輪36に接するローラ38を差動機構(図示せず)からの回転伝達により回転駆動し、副車輪36とローラ38の係合を利用して副車輪を駆動してもよい。ローラが副車輪に単純に接するだけの摩擦係合でもよい。   <Modification 1-3> The surface of the auxiliary wheel may be directly driven. For example, as shown in the configuration diagram of FIG. 13, a roller 38 in contact with the auxiliary wheel 36 is rotationally driven by rotation transmission from a differential mechanism (not shown), and the auxiliary wheel 36 and the roller 38 are engaged using the auxiliary wheel 36. The wheels may be driven. The frictional engagement may be such that the roller simply contacts the secondary wheel.

図13の線A−Aに沿って切断した要部断面図である図14と、図15の要部斜視図とに示すように、副車輪36とローラ38とが接触する面に、凸部36a,38a及び凹部36b,38bを形成して噛み合わせるようにすれば、ローラ38と副車輪36との間の接触面ですべりが生じるのを防ぎ、副車輪が確実に回転駆動されるようにすることができる。また、図15に模式的に示すように、副車輪36の凹部36bと凸部36aの位置を断面位置ごとに変えてもよい。   As shown in FIG. 14 which is a cross-sectional view of the main part cut along the line AA in FIG. 13 and a perspective view of the main part in FIG. 15, a convex portion is formed on the surface where the auxiliary wheel 36 and the roller 38 come into contact. 36a, 38a and recesses 36b, 38b are formed so as to mesh with each other so that slippage is prevented from occurring on the contact surface between the roller 38 and the auxiliary wheel 36, and the auxiliary wheel is reliably rotated. can do. Further, as schematically shown in FIG. 15, the positions of the concave portion 36 b and the convex portion 36 a of the auxiliary wheel 36 may be changed for each cross-sectional position.

<変形例1−4> 上記の構成を組み合わせることにより、隣接する副車輪間の隙間を無くすことができる。例えば、リング形状の弾性部材で副車輪を形成し、ローラを用いて副車輪の外周面を支持するとともに、副車輪の表面をローラで駆動する構成とすることで、主車輪が回転したときのがたつきを防ぐことができる。   <Modification 1-4> By combining the above configurations, a gap between adjacent auxiliary wheels can be eliminated. For example, when the main wheel is rotated by forming a secondary wheel with a ring-shaped elastic member and supporting the outer peripheral surface of the secondary wheel using a roller and driving the surface of the secondary wheel with the roller, It can prevent rattling.

<変形例2> 副車輪をベルトなどの無端循環部材で駆動すると、隣接する副車輪の間の隙間ができるだけ形成されないようにして、主車輪が回転したときのがたつきを防ぐことができる。   <Modification 2> When the auxiliary wheel is driven by an endless circulation member such as a belt, a gap between adjacent auxiliary wheels is not formed as much as possible, and rattling when the main wheel rotates can be prevented.

<変形例2−1> 図16の要部構成図に示すように、隣接する副車輪34aの端部同士を回転自在に支持し、副車輪34aの端部に形成した略円筒形状の小径部35aにベルト49aを掛け、ベルト49aを不図示の差動機構からの回転伝達により回転駆動する。   <Modification 2-1> As shown in the main configuration diagram of FIG. 16, the end portions of the adjacent auxiliary wheels 34a are rotatably supported, and the substantially cylindrical small-diameter portion formed at the end portion of the auxiliary wheel 34a. A belt 49a is hung on 35a, and the belt 49a is rotationally driven by transmission of rotation from a differential mechanism (not shown).

図示していないが、ベルト49aに歯付きベルトを用い、小径部35aに歯を形成してもよい。ベルト49aの代わりに、輪状の形状を保ったまま駆動力を伝達することができる、より剛性の高い部材を用いてもよい。   Although not shown, a toothed belt may be used for the belt 49a and teeth may be formed on the small diameter portion 35a. Instead of the belt 49a, a member having higher rigidity capable of transmitting a driving force while maintaining a ring shape may be used.

図16では、隣接する副車輪34aの端部35aの中心軸35zは一致しているが、図17の要部構成図に示すように、回転自在に支持される隣接する副車輪34s,34tの端部35s,35tの中心軸34x,34yが一致していない構成としてもよい。   In FIG. 16, although the center axis 35z of the edge part 35a of the adjacent sub wheel 34a is in agreement, as shown in the principal part block diagram of FIG. 17, of the adjacent sub wheels 34s and 34t supported rotatably. The center axes 34x and 34y of the end portions 35s and 35t may not coincide with each other.

図16において、ベルト49aの外周面49xの断面は直線状であり、断面が円弧状の副車輪34aの外周面とは曲率半径が異なっているが、図17に示すようにベルト49bの外周面49yを副車輪34s,34tの外周面の曲率に合わせて形成し、副車輪34s,34tの外周面とベルト49bの外周面とが円弧形状に滑らかに連続するようにすれば、主車輪が回転したときのがたつきがより生じないようにすることができる。   In FIG. 16, the cross section of the outer peripheral surface 49x of the belt 49a is linear, and the radius of curvature is different from that of the outer peripheral surface of the sub-wheel 34a having a circular cross section, but the outer peripheral surface of the belt 49b as shown in FIG. If the 49y is formed in accordance with the curvature of the outer peripheral surface of the auxiliary wheels 34s and 34t, and the outer peripheral surface of the auxiliary wheels 34s and 34t and the outer peripheral surface of the belt 49b are smoothly connected in an arc shape, the main wheel rotates. It is possible to prevent the rattling from occurring.

<変形例2−2> 図18(a)の要部断面図に示すように、副車輪34cは、副車輪回転中心軸34kを円弧状に保ったまま、副車輪回転中心軸34kのまわりを弾性変形しながら回転する。副車輪34cの外周面34pに溝35を設け、この溝35に、差動機構で回転駆動されるベルト(不図示)を掛ける。ベルトに歯付きベルトを用いる場合には、溝35の底面に歯を形成しておく。   <Modification 2-2> As shown in the cross-sectional view of the main part in FIG. 18A, the auxiliary wheel 34c moves around the auxiliary wheel rotation center axis 34k while keeping the auxiliary wheel rotation center axis 34k in an arc shape. Rotates while elastically deforming. A groove 35 is provided on the outer peripheral surface 34p of the auxiliary wheel 34c, and a belt (not shown) that is rotationally driven by a differential mechanism is hung on the groove 35. When a toothed belt is used as the belt, teeth are formed on the bottom surface of the groove 35.

副車輪が弾性変形しながら回転するとき、副車輪34cの溝35は、外側(35m側)で広くなり、内側(35n側)に近くなると狭くなるため、そのままでは、円滑にベルトで駆動ができない場合がある。そのような場合には、次のように構成することが好ましい。   When the auxiliary wheel rotates while being elastically deformed, the groove 35 of the auxiliary wheel 34c becomes wider on the outer side (35m side) and becomes narrower closer to the inner side (35n side). There is a case. In such a case, the following configuration is preferable.

例えば図18(b)の要部断面図に示すようにベルト49cの溝底面側にテーパ49mを形成し、図18(a)に示すように、ベルト49cのテーパ49mと接する副車輪34cの溝35の側面にもテーパを形成し、ベルト49cが溝35に嵌りやすく、抜け出やすくなるようにする。   For example, a taper 49m is formed on the groove bottom surface side of the belt 49c as shown in the cross-sectional view of the main part of FIG. 18B, and a groove of the auxiliary wheel 34c in contact with the taper 49m of the belt 49c as shown in FIG. A taper is also formed on the side surface of the belt 35 so that the belt 49c can easily fit into the groove 35 and come out easily.

あるいは、図19の要部斜視図及び図20(a)の断面図に示すように、ベルト49dの中央部49kの厚みを薄くし、副車輪34cの溝35の幅が狭い部分では、図20(b)の断面図に示すように、ベルト49dの側面49mが押圧され、ベルト49dの中央部49kが弾性変形してベルト49dの幅が狭くなるようにする。   Alternatively, as shown in the perspective view of the main part of FIG. 19 and the cross-sectional view of FIG. 20A, the thickness of the central part 49k of the belt 49d is reduced and the width of the groove 35 of the auxiliary wheel 34c is narrow. As shown in the sectional view of (b), the side surface 49m of the belt 49d is pressed, and the central portion 49k of the belt 49d is elastically deformed so that the width of the belt 49d becomes narrow.

あるいは、図21の構成図に模式的に示すように、不図示の差動機構からの回転伝達により駆動されるプーリ48sに加え、副車輪34に隣接して中間プーリ39a,39bを設けて、副車輪34にベルト49eを掛ける角度を小さくして、溝が狭くなる範囲にはベルト49eを掛けないようにする。   Alternatively, as schematically shown in the configuration diagram of FIG. 21, in addition to the pulley 48s driven by rotation transmission from a differential mechanism (not shown), intermediate pulleys 39a and 39b are provided adjacent to the auxiliary wheel 34, The angle at which the belt 49e is hung on the auxiliary wheel 34 is reduced so that the belt 49e is not hung in a range where the groove is narrowed.

ベルトの側面と副車輪の溝の側面にテーパを形成する方法(図18)、図19のようなベルトを用いる方法、図21のような中間プーリを用いる方法は、図17のような1つのベルトで2つの副車輪を駆動する場合にも用いることができる。   The method of forming a taper on the side surface of the belt and the side surface of the groove of the auxiliary wheel (FIG. 18), the method using the belt as shown in FIG. 19, and the method using the intermediate pulley as shown in FIG. It can also be used when two auxiliary wheels are driven by a belt.

<変形例2−3> 図22の構成図に示す移動搬送機構10bのように、たる型の副車輪30k,30tの外面をベルト49s,49tで駆動してもよい。たる型の副車輪30k,30tは外周面の場所によって副車輪回転中心軸からの半径が異なるため、副車輪の角速度が一定でも場所によって外周面上の速度が異なるが、問題なく用いることができる用途もある。   <Modification 2-3> The outer surfaces of the barrel-shaped auxiliary wheels 30k and 30t may be driven by belts 49s and 49t, as in the moving conveyance mechanism 10b shown in the configuration diagram of FIG. Since the radius of the auxiliary wheel 30k, 30t of the barrel type differs from the rotation center axis of the auxiliary wheel depending on the location of the outer peripheral surface, the speed on the outer peripheral surface differs depending on the location even if the angular velocity of the auxiliary wheel is constant, but can be used without any problem. There are also uses.

たる型の副車輪30k,30tを用いると、副車輪30k,30tの個数を減らし、副車輪30k,30t間の隙間発生箇所を減らして、主車輪が回転したときのがたつきの発生を減らすことができる。   Using barrel-shaped auxiliary wheels 30k, 30t reduces the number of auxiliary wheels 30k, 30t, reduces the occurrence of gaps between auxiliary wheels 30k, 30t, and reduces the occurrence of rattling when the main wheel rotates. Can do.

<変形例3> 差動歯車から副車輪に駆動力を伝達する回転伝達部材には、回転軸や円筒歯車など、ベルト以外を用いてもよい。   <Modification 3> Other than the belt, such as a rotating shaft or a cylindrical gear, may be used as the rotation transmission member that transmits the driving force from the differential gear to the auxiliary wheel.

<変形例3−1> 差動機構と副車輪との間を回転軸で結合するようにしてもよい。例えば図23の構成図に示すように、回転軸43xの一端を差動機構の出力かさ歯車42に結合し、回転軸43xの他端にかさ歯車44xを設け、このかさ歯車44xに噛み合うかさ歯車32xを副車輪30xに設ける。この場合、構成が簡単になる。また、主車輪の外径を小さくしたり、主車輪の幅を小さくしたりすることが容易であり、小型化が容易である。   <Modification 3-1> You may make it couple | bond between a differential mechanism and a subwheel with a rotating shaft. For example, as shown in the block diagram of FIG. 23, one end of the rotating shaft 43x is coupled to the output bevel gear 42 of the differential mechanism, and a bevel gear 44x is provided at the other end of the rotating shaft 43x, and the bevel gear meshes with the bevel gear 44x. 32x is provided on the auxiliary wheel 30x. In this case, the configuration is simplified. Further, it is easy to reduce the outer diameter of the main wheel or the width of the main wheel, and it is easy to reduce the size.

<変形例3−2> 円筒歯車を用いてもよい。例えば図24の構成図に示すように、回転軸43yの一端を差動機構の出力かさ歯車42に結合して、回転軸43yの他端にかさ歯車44yを設ける。かさ歯車44yに噛み合うかさ歯車46yを回転軸47yの一端に固定し、回転軸47yの他端に円筒歯車48yを設ける。円筒歯車48yに噛み合う円筒歯車32yを副車輪30yに設ける。   <Modification 3-2> A cylindrical gear may be used. For example, as shown in the block diagram of FIG. 24, one end of the rotating shaft 43y is coupled to the output bevel gear 42 of the differential mechanism, and a bevel gear 44y is provided at the other end of the rotating shaft 43y. A bevel gear 46y meshing with the bevel gear 44y is fixed to one end of the rotation shaft 47y, and a cylindrical gear 48y is provided at the other end of the rotation shaft 47y. A cylindrical gear 32y that meshes with the cylindrical gear 48y is provided on the auxiliary wheel 30y.

<変形例3−3> 歯車列を用いてもよい。例えば図25の要部構成図に示すように、差動機構からの回転を円筒歯車の歯車列46z,47z,48zを用いて、副車輪30zに結合された円筒歯車32zに伝達する。   <Modification 3-3> A gear train may be used. For example, as shown in the main configuration diagram of FIG. 25, the rotation from the differential mechanism is transmitted to the cylindrical gear 32z coupled to the auxiliary wheel 30z using the gear trains 46z, 47z, and 48z of the cylindrical gear.

あるいは、回転伝達部材に、チェーンやワイヤを用いてもよい。   Alternatively, a chain or a wire may be used for the rotation transmission member.

<実施例2> 1つの本発明の移動搬送機構10と、1方向にのみ駆動でき、その直角方向には、受動的に移動可能な従来例のオムニホイールとを組み合わせても、3自由度の移動搬送装置を実現することができる。   <Embodiment 2> Even if combining one movable conveyance mechanism 10 of the present invention and an omni wheel of a conventional example that can be driven only in one direction and can be moved passively, it has three degrees of freedom. A mobile conveyance device can be realized.

<実施例2−1> 例えば図26の構成図に模式的に示す移動搬送装置60aのように、1つの実施例1の移動搬送機構(主車輪80のみを図示)及び駆動用のモータ2台(図示せず)と、1つの1方向にのみ駆動できる従来例のオムニホイール190と駆動用のモータ1台(図示せず)とをケーシング12に搭載した場合、合計3台のモータで3自由度の移動搬送装置を実現することができる。図中の一点鎖線80aはホイール回転中心軸を示し、一点鎖線190aはオムニホイール回転中心軸を示す。オムニホイール190は、オムニホイール回転中心軸190aと直角かつオムニホイール190が接触する面に平行な方向には駆動力を発生することができ、オムニホイール回転中心軸190aと平行方向には受動的に移動可能である。   <Embodiment 2-1> For example, like the moving transfer device 60a schematically shown in the configuration diagram of FIG. 26, one moving transfer mechanism (only the main wheel 80 is shown) of the first embodiment and two drive motors. (Not shown), a conventional omni-wheel 190 that can be driven only in one direction, and one drive motor (not shown) are mounted on the casing 12, 3 freedom with a total of 3 motors Can be realized. A one-dot chain line 80a in the figure indicates the wheel rotation center axis, and a one-dot chain line 190a indicates the omni wheel rotation center axis. The omni wheel 190 can generate a driving force in a direction perpendicular to the omni wheel rotation center axis 190a and parallel to the surface in contact with the omni wheel 190, and passively in a direction parallel to the omni wheel rotation center axis 190a. It is movable.

<実施例2−2> 例えば図27の構成図に模式的に示す移動搬送装置60bのように、1つの実施例1の移動搬送機構(主車輪80のみを図示)及び駆動用のモータ2台(図示せず)と、2つの1方向にのみ駆動できる従来例のオムニホイール190及び駆動用のモータ各1台(図示せず)とを組み合わせた場合、合計4台のモータで3自由度の移動搬送装置を実現することができる。図中の一点鎖線80aはホイール回転中心軸を示し、一点鎖線190aはオムニホイール回転中心軸を示す。   <Embodiment 2-2> For example, like the moving transfer device 60b schematically shown in the block diagram of FIG. 27, one moving transfer mechanism (only the main wheel 80 is shown) of the first embodiment and two drive motors (Not shown) and the conventional omni-wheel 190 that can be driven only in one direction and one motor (not shown) for driving (not shown) can be combined with a total of four motors for 3 degrees of freedom. A mobile conveyance device can be realized. A one-dot chain line 80a in the figure indicates the wheel rotation center axis, and a one-dot chain line 190a indicates the omni wheel rotation center axis.

<まとめ> 以上のように、本発明の移動搬送機構は、差動機構を用いることにより、共通の駆動源を用いて、主車輪と副車輪の両方を独立に駆動することができる。また、簡単な構成で、主車輪の回転駆動と副車輪の回転駆動とを行うことができる。また、使用できる駆動源に関する制約は少なく、幅広い種類やサイズの駆動源を利用することが可能である。   <Summary> As described above, the mobile conveyance mechanism of the present invention can drive both the main wheel and the sub wheel independently using a common drive source by using the differential mechanism. In addition, with a simple configuration, it is possible to perform rotation driving of the main wheel and rotation driving of the auxiliary wheel. Moreover, there are few restrictions regarding the drive source which can be used, and it is possible to use drive sources of a wide variety and size.

なお、本発明は、上記した実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。   The present invention is not limited to the above-described embodiment, and can be implemented with various modifications.

本発明の移動搬送機構は、副車輪が下方に突出して床面等に接する移動搬送装置に限らず、上下を反転した構成で用いることもできる。例えば、上方に突出した副車輪で被搬送物を下から支え、主車輪及び副車輪の回転の組み合わせによって、被搬送物を所望の方向に移動させたり旋回させたりする移動搬送装置にも用いることができる。   The mobile transport mechanism of the present invention is not limited to the mobile transport device in which the auxiliary wheel protrudes downward and comes into contact with the floor surface or the like, but can also be used in a configuration in which the top and bottom are reversed. For example, it is also used for a mobile conveyance device that supports a conveyed object from below with auxiliary wheels protruding upward, and moves or turns the conveyed object in a desired direction by a combination of rotation of the main wheel and the auxiliary wheel. Can do.

移動搬送機構の断面図である。(実施例1)It is sectional drawing of a moving conveyance mechanism. Example 1 図1の線A−Aに沿って切断した断面図である。(実施例1)It is sectional drawing cut | disconnected along line AA of FIG. Example 1 移動搬送機構の動作を説明するための模式図である。(実施例1)It is a schematic diagram for demonstrating operation | movement of a moving conveyance mechanism. Example 1 移動搬送機構を用いた移動搬送装置の(a)断面図、(b)底面図である。(実施例1)It is (a) sectional drawing and (b) bottom view of the movement conveyance apparatus using a movement conveyance mechanism. Example 1 差動機構の構成を示す模式図である。(実施例1)It is a schematic diagram which shows the structure of a differential mechanism. Example 1 差動機構の構成を示す模式図である。(実施例1)It is a schematic diagram which shows the structure of a differential mechanism. Example 1 差動機構の構成を示す模式図である。(実施例1)It is a schematic diagram which shows the structure of a differential mechanism. Example 1 回転伝達系の構成を示す模式図である。(実施例1)It is a schematic diagram which shows the structure of a rotation transmission system. Example 1 副車輪の配置を模式的に示す構成図である。(実施例1)It is a block diagram which shows typically arrangement | positioning of a subwheel. Example 1 回転伝達系を模式的に示す要部構成図である。(実施例1)It is a principal part block diagram which shows a rotation transmission system typically. Example 1 移動搬送機構の構成図である。(変形例1−1)It is a block diagram of a moving conveyance mechanism. (Modification 1-1) 移動搬送機構の(a)要部構成図、(b)要部断面図である。(変形例1−2)It is (a) principal part block diagram of a moving conveyance mechanism, (b) principal part sectional drawing. (Modification 1-2) 移動搬送機構の構成図である。(変形例1−3)It is a block diagram of a moving conveyance mechanism. (Modification 1-3) 移動搬送機構の要部断面図である。(変形例1−3)It is principal part sectional drawing of a moving conveyance mechanism. (Modification 1-3) 移動搬送機構の要部斜視図である。(変形例1−3)It is a principal part perspective view of a moving conveyance mechanism. (Modification 1-3) 移動搬送機構の要部構成図である。(変形例2−1)It is a principal part block diagram of a moving conveyance mechanism. (Modification 2-1) 移動搬送機構の要部構成図である。(変形例2−1)It is a principal part block diagram of a moving conveyance mechanism. (Modification 2-1) 移動搬送機構の(a)副車輪の要部断面図、(b)ベルトの要部断面図である。(変形例2−2)It is (a) principal part sectional drawing of a subwheel of a movement conveyance mechanism, (b) principal part sectional drawing of a belt. (Modification 2-2) 移動搬送機構のベルトの要部斜視図である。(変形例2−2)It is a principal part perspective view of the belt of a moving conveyance mechanism. (Modification 2-2) 移動搬送機構のベルトの断面図である。(変形例2−2)It is sectional drawing of the belt of a moving conveyance mechanism. (Modification 2-2) 移動搬送機構の構成図である。(変形例2−2)It is a block diagram of a moving conveyance mechanism. (Modification 2-2) 移動搬送機構の構成図である。(変形例2−3)It is a block diagram of a moving conveyance mechanism. (Modification 2-3) 移動搬送機構の構成図である。(変形例3−1)It is a block diagram of a moving conveyance mechanism. (Modification 3-1) 移動搬送機構の構成図である。(変形例3−2)It is a block diagram of a moving conveyance mechanism. (Modification 3-2) 移動搬送機構の要部構成図である。(変形例3−3)It is a principal part block diagram of a moving conveyance mechanism. (Modification 3-3) 移動搬送装置の構成図である。(実施例2−1)It is a block diagram of a moving conveyance apparatus. (Example 2-1) 移動搬送装置の構成図である。(実施例2−2)It is a block diagram of a moving conveyance apparatus. (Example 2-2) 全方向移動車輪の斜視図である。(従来例)It is a perspective view of an omnidirectional movement wheel. (Conventional example) 全方向移動車輪の要部拡大図である。(従来例)It is a principal part enlarged view of an omnidirectional movement wheel. (Conventional example)

符号の説明Explanation of symbols

10,10a,10b 移動搬送機構
12 ケーシング
14a,14b モータ
16a 第1の回転軸
16b 第2の回転軸
18a,18b 入力かさ歯車(第1及び第2の入力部材)
20 ホイール部材
20a 外周
20s ホイール回転中心軸
22 第1の結合部材
24 第2の結合部材
26 第3の結合部材(回転支持部材)
30,30a,30k,30t,30x,30y 副車輪
31 回転軸
31x 副車輪回転中心軸
32 プーリ(回転伝達部材)
34,34a,34c,34s,34t 副車輪
36 副車輪
38 ローラ(回転伝達部材)
42 出力かさ歯車(出力部材)
43 出力かさ歯車回転軸(回転伝達部材)
44 第1の中間歯車(回転伝達部材)
46 第2の中間歯車(回転伝達部材)
47 中間回転軸(回転伝達部材)
48,48s プーリ(回転伝達部材)
49 伝動ベルト(回転伝達部材)
49a〜49e,49s,49t ベルト(回転伝達部材)
50,50a〜50e,50s,50x〜50z 第1の入力部材
51,51a〜51e,51s,51x〜51z 係合部(第1の係合部)
52,52a〜52e,52s,52x〜52z 第2の入力部材
53,53a〜53e,53s,53x〜53z 係合部(第2の係合部)
54,54a〜54e,54s,54x〜54z 出力部材
55,55a,55c,55d 係合部(第3の係合部)
60,60a,60b 移動搬送装置
62 本体
64 底面
68 ボール車輪
70 主車輪
71 差動機構
71a 入力かさ歯車
71b 出力かさ歯車
72 副車輪
73 プーリ(回転伝達部材)
74 副車輪
75 副車輪
76,76a,76b プーリ(回転伝達部材)
77 プーリ(回転伝達部材)
78,79 丸ベルト(回転伝達部材)
80 主車輪
90 外歯太陽歯車(第1の入力部材)
92 遊星歯車(出力部材)
93 キャリヤ
94 内歯車(第2の入力部材)
DESCRIPTION OF SYMBOLS 10, 10a, 10b Moving conveyance mechanism 12 Casing 14a, 14b Motor 16a 1st rotating shaft 16b 2nd rotating shaft 18a, 18b Input bevel gear (1st and 2nd input member)
20 wheel member 20a outer periphery 20s wheel rotation center axis 22 first coupling member 24 second coupling member 26 third coupling member (rotation support member)
30, 30a, 30k, 30t, 30x, 30y Subwheel 31 Rotating shaft 31x Subwheel rotating central shaft 32 Pulley (Rotation transmission member)
34, 34a, 34c, 34s, 34t Secondary wheel 36 Secondary wheel 38 Roller (rotation transmission member)
42 Output bevel gear (output member)
43 Output bevel gear rotation shaft (rotation transmission member)
44 1st intermediate gear (rotation transmission member)
46 Second intermediate gear (rotation transmission member)
47 Intermediate rotation shaft (rotation transmission member)
48, 48s pulley (rotation transmission member)
49 Transmission belt (rotation transmission member)
49a to 49e, 49s, 49t belt (rotation transmission member)
50, 50a-50e, 50s, 50x-50z 1st input member 51, 51a-51e, 51s, 51x-51z Engagement part (1st engagement part)
52, 52a to 52e, 52s, 52x to 52z Second input member 53, 53a to 53e, 53s, 53x to 53z Engaging portion (second engaging portion)
54, 54a to 54e, 54s, 54x to 54z Output member 55, 55a, 55c, 55d Engaging portion (third engaging portion)
60, 60a, 60b Moving and conveying device 62 Main body 64 Bottom surface 68 Ball wheel 70 Main wheel 71 Differential mechanism 71a Input bevel gear 71b Output bevel gear 72 Secondary wheel 73 Pulley (rotation transmission member)
74 secondary wheel 75 secondary wheel 76, 76a, 76b pulley (rotation transmission member)
77 Pulley (Rotation transmission member)
78, 79 Round belt (rotation transmission member)
80 main wheels 90 external gear sun gear (first input member)
92 Planetary gear (output member)
93 Carrier 94 Internal gear (second input member)

Claims (11)

ホイール回転中心軸を中心に回転自在に支持される少なくとも1つのホイール部材と、
前記ホイール回転中心軸を中心とする円周に沿ってそれぞれの副車輪回転中心軸が延在し、前記ホイール部材にそれぞれ回転自在に支持された、少なくとも1つの副車輪と、
前記ホイール回転中心軸と同軸に回転自在に配置された第1及び第2の入力部材と、前記第1及び第2の入力部材の両方に接触し、自転中心軸を中心に自転可能、かつ、前記ホイール回転中心軸のまわりを公転可能である出力部材とを含む差動機構と、
前記ホイール部材に固定され、前記差動機構の前記出力部材を、前記自転中心軸を中心に回転自在に支持する、回転支持部材と、
前記差動機構の前記出力部材と少なくとも一つの前記副車輪との間を結合し、前記出力部材の前記自転中心軸を中心とする自転による回転を前記副車輪に伝達して前記副車輪を回転させる、回転伝達部材と、
を備え、
前記ホイール部材は、前記差動機構の前記出力部材の前記ホイール回転中心軸のまわりの公転に伴って、前記ホイール回転中心軸を中心に回転することを特徴とする、移動搬送機構。
At least one wheel member supported rotatably about a wheel rotation center axis;
At least one auxiliary wheel, each auxiliary wheel rotation central axis extending along a circumference centered on the wheel rotation central axis, and rotatably supported by the wheel member;
The first and second input members disposed so as to be rotatable coaxially with the wheel rotation center axis, and both the first and second input members, and capable of rotating about the rotation center axis; and A differential mechanism including an output member capable of revolving around the wheel rotation center axis;
A rotation support member fixed to the wheel member, and rotatably supporting the output member of the differential mechanism about the rotation center axis;
The output member of the differential mechanism and at least one auxiliary wheel are coupled to each other, and the rotation of the output member caused by rotation about the rotation center axis is transmitted to the auxiliary wheel to rotate the auxiliary wheel. A rotation transmission member,
With
The moving conveyance mechanism according to claim 1, wherein the wheel member rotates about the wheel rotation center axis as the output member of the differential mechanism revolves around the wheel rotation center axis.
前記差動機構の前記第1の入力部材は、前記出力部材と係合する第1の係合部を有し、
前記差動機構の前記第2の入力部材は、前記出力部材と係合する第2の係合部を有し、
前記第1の係合部と前記第2の係合部とは互いに対向し、
前記差動機構の前記出力部材のうち少なくとも一つは、前記ホイール回転中心軸に垂直なある方向から透視したときに、前記ホイール回転中心軸に関して片側にのみ配置されていることを特徴とする、請求項1に記載の移動搬送機構。
The first input member of the differential mechanism has a first engagement portion that engages with the output member;
The second input member of the differential mechanism has a second engagement portion that engages with the output member,
The first engaging portion and the second engaging portion are opposed to each other,
At least one of the output members of the differential mechanism is disposed only on one side with respect to the wheel rotation center axis when seen through from a direction perpendicular to the wheel rotation center axis. The moving conveyance mechanism according to claim 1.
前記差動機構の前記出力部材の前記自転中心軸は、前記ホイール回転中心軸に対して非平行に配置され、
前記差動機構の前記出力部材は、前記差動機構の前記第1の入力部材の前記第1の係合部と前記差動機構の前記第2の入力部材の前記第2の係合部との両方に係合する第3の係合部を有することを特徴とする、請求項2に記載の移動搬送機構。
The rotation center axis of the output member of the differential mechanism is arranged non-parallel to the wheel rotation center axis,
The output member of the differential mechanism includes the first engagement portion of the first input member of the differential mechanism and the second engagement portion of the second input member of the differential mechanism. The movable transport mechanism according to claim 2, further comprising a third engaging portion that engages both of the first and second engaging portions.
前記第1及び第2の係合部、又は前記第1乃至第3の係合部が、かさ歯車の歯面であることを特徴とする、請求項2又は3に記載の移動搬送機構。   4. The moving conveyance mechanism according to claim 2, wherein the first and second engaging portions or the first to third engaging portions are tooth surfaces of a bevel gear. 前記副車輪は、前記副車輪回転中心軸の少なくとも一部を円弧状に保ったまま前記副車輪回転中心軸のまわりを変形しながら回転することを特徴とする、請求項1乃至4のいずれか一つに記載の移動搬送機構。   5. The auxiliary wheel according to claim 1, wherein the auxiliary wheel rotates while deforming around the auxiliary wheel rotation central axis while maintaining at least a part of the auxiliary wheel rotation central axis in an arc shape. The moving conveyance mechanism as described in one. 前記回転伝達部材は、前記副車輪に係合し、前記副車輪の外周面のうち接地面に沿って延在する表面を有する無端循環部材を含むことを特徴とする、請求項1乃至5のいずれか一つに記載の移動搬送機構。   6. The rotation transmission member according to claim 1, further comprising an endless circulation member that engages with the auxiliary wheel and has a surface extending along a ground contact surface of an outer peripheral surface of the auxiliary wheel. The moving conveyance mechanism as described in any one. 前記回転伝達部材は、前記副車輪の前記ホイール回転中心軸方向両側にそれぞれ接する前記ホイール回転中心軸に垂直な一対の仮想的な平面の間の領域内に配置されることを特徴とする、請求項1乃至6のいずれか一つに記載の移動搬送機構。   The rotation transmission member is disposed in a region between a pair of virtual planes perpendicular to the wheel rotation center axis that are in contact with both sides of the auxiliary wheel in the wheel rotation center axis direction, respectively. Item 7. The moving conveyance mechanism according to any one of Items 1 to 6. 前記回転伝達部材の少なくとも一部が、前記副車輪の前記ホイール回転中心軸方向両側にそれぞれ接する前記ホイール回転中心軸に垂直な一対の仮想的な平面の間の領域の外側に配置されることを特徴とする、請求項1乃至6のいずれか一つに記載の移動搬送機構。   At least a part of the rotation transmission member is disposed outside a region between a pair of virtual planes perpendicular to the wheel rotation center axis that are in contact with both sides of the auxiliary wheel in the wheel rotation center axis direction. The moving conveyance mechanism according to any one of claims 1 to 6, wherein the movement conveyance mechanism is characterized. 前記回転伝達部材は、丸ベルトを含むことを特徴とする、請求項1乃至8のいずれか一つに記載の移動搬送機構。   The moving conveyance mechanism according to claim 1, wherein the rotation transmission member includes a round belt. 請求項1乃至9のいずれか一つに記載の少なくとも1つの移動搬送機構と、
前記移動搬送機構の前記ホイール部材を、前記ホイール回転中心軸を中心に回転自在に支持する本体と、
前記本体に固定され、前記移動搬送機構の前記差動機構の前記第1及び第2の入力部材にそれぞれ結合され、前記第1及び第2の入力部材をそれぞれ回転駆動する第1及び第2の駆動源と、
を備えたことを特徴とする移動搬送装置。
At least one moving conveyance mechanism according to any one of claims 1 to 9,
A main body that rotatably supports the wheel member of the moving conveyance mechanism about the wheel rotation center axis;
First and second fixed to the main body, coupled to the first and second input members of the differential mechanism of the moving transport mechanism, respectively, and rotationally driving the first and second input members, respectively. A driving source;
A moving and conveying apparatus comprising:
主車輪と、
前記主車輪の外周に沿って配置された副車輪と、
第1及び第2の入力部材と、前記第1及び第2の入力部材に係合する出力部材とを有し、前記主車輪において前記副車輪よりも前記主車輪の径方向内側に配置された差動機構と、
を備え、
前記差動機構の前記出力部材の公転により前記主車輪が回転し、前記差動機構の前記出力部材の自転により前記副車輪が回転するように構成された移動搬送機構を準備する工程と、
前記主車輪のみを回転させるときには、前記差動機構の前記出力部材が公転しかつ自転しない第1の角速度比で、前記差動機構の前記第1及び第2の入力部材を回転駆動し、
前記副車輪のみを回転させるときには、前記差動機構の前記出力部材が自転しかつ公転しない第2の角速度比で、前記差動機構の前記第1及び第2の入力部材を回転駆動し、
前記主車輪と前記副車輪の両方を回転させるときには、前記第1の角速度比と異なりかつ前記第2の角速度比と異なる角速度比で、前記差動機構の前記第1及び第2の入力部材を回転駆動する工程と、
を備えたことを特徴とする、移動搬送機構の駆動方法。
The main wheel,
Sub wheels disposed along the outer periphery of the main wheel;
It has a 1st and 2nd input member, and an output member engaged with the 1st and 2nd input member, and is arranged in the diameter direction inside of the main wheel in the main wheel rather than the sub wheel. A differential mechanism;
With
Preparing a moving conveyance mechanism configured to rotate the main wheel by the revolution of the output member of the differential mechanism, and to rotate the auxiliary wheel by the rotation of the output member of the differential mechanism;
When rotating only the main wheel, the first and second input members of the differential mechanism are driven to rotate at a first angular velocity ratio at which the output member of the differential mechanism revolves and does not rotate.
When rotating only the auxiliary wheel, the first and second input members of the differential mechanism are rotationally driven at a second angular velocity ratio in which the output member of the differential mechanism rotates and does not revolve,
When rotating both the main wheel and the auxiliary wheel, the first and second input members of the differential mechanism are different from each other in the angular velocity ratio that is different from the first angular velocity ratio and different from the second angular velocity ratio. A step of rotationally driving;
A driving method for a moving conveyance mechanism, comprising:
JP2008018089A 2008-01-29 2008-01-29 Moving transport mechanism Expired - Fee Related JP5158698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018089A JP5158698B2 (en) 2008-01-29 2008-01-29 Moving transport mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018089A JP5158698B2 (en) 2008-01-29 2008-01-29 Moving transport mechanism

Publications (2)

Publication Number Publication Date
JP2009179110A JP2009179110A (en) 2009-08-13
JP5158698B2 true JP5158698B2 (en) 2013-03-06

Family

ID=41033431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018089A Expired - Fee Related JP5158698B2 (en) 2008-01-29 2008-01-29 Moving transport mechanism

Country Status (1)

Country Link
JP (1) JP5158698B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484009B2 (en) * 2009-11-16 2014-05-07 本田技研工業株式会社 Friction type driving device and inverted pendulum type moving body using the same
JP4978873B2 (en) * 2010-03-05 2012-07-18 関東自動車工業株式会社 Fully driven wheel with rotating body and inverted control unicycle
JP5083699B2 (en) * 2010-03-05 2012-11-28 トヨタ自動車東日本株式会社 Fully driven wheel with rotating body
JP5282749B2 (en) * 2010-03-10 2013-09-04 トヨタ自動車東日本株式会社 Fully driven wheel with rotating body
JP5083700B2 (en) * 2010-03-10 2012-11-28 トヨタ自動車東日本株式会社 Fully driven wheel with rotating body
US8424621B2 (en) * 2010-07-23 2013-04-23 Toyota Motor Engineering & Manufacturing North America, Inc. Omni traction wheel system and methods of operating the same
WO2015156263A1 (en) * 2014-04-10 2015-10-15 国立大学法人京都大学 Mobile transport mechanism
JP6618170B2 (en) * 2015-06-07 2019-12-11 国立大学法人京都大学 Mobile transfer device
JP6821201B2 (en) 2016-06-07 2021-01-27 国立大学法人東北大学 Omnidirectional rotation drive mechanism and moving body
JP6617301B2 (en) * 2016-09-23 2019-12-11 一志株式会社 Mobile transport mechanism
JP6931848B2 (en) * 2017-11-21 2021-09-08 国立大学法人京都大学 Mobile device
CN113183749B (en) * 2021-04-20 2023-08-25 和杰 Power Fulai wheel
CN115251666B (en) * 2022-08-09 2023-08-29 江苏经贸职业技术学院 Rotatable product display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3093580B2 (en) * 1994-08-30 2000-10-03 理化学研究所 Drive transmission mechanism for omnidirectional vehicles
JPH08133119A (en) * 1994-11-11 1996-05-28 Toyota Motor Corp Drive device of vehicle
JP3421290B2 (en) * 2000-01-11 2003-06-30 理化学研究所 Wheels for omnidirectional vehicles
JP3820239B2 (en) * 2003-08-22 2006-09-13 英希 根本 Wheel for omnidirectional movement and flexible tire used therefor
JP2006001518A (en) * 2004-06-17 2006-01-05 Masabumi Tanaka Omnidirectional movement device using omnidirectional movement wheel
JP3738266B1 (en) * 2004-12-20 2006-01-25 伸一郎 藤 Omni-directional moving wheel and moving device
JP2007106254A (en) * 2005-10-13 2007-04-26 Shinichiro Fuji Omnidirectionally moving wheel and moving device

Also Published As

Publication number Publication date
JP2009179110A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5158698B2 (en) Moving transport mechanism
JP5358432B2 (en) Omnidirectional drive device and omnidirectional vehicle using the same
WO2010052890A1 (en) Friction-type drive device and omnidirectional movable body using same
US10603539B2 (en) Omnidirectional treadmill apparatus
JPWO2008132778A1 (en) Omnidirectional drive device and omnidirectional vehicle using the same
US20110130212A1 (en) Variable Axial-Angle Coupling
CN110733335B (en) Transmission mechanism, traveling system and moon-exploring robot
CN108119610B (en) Transmission mechanism
JP6422482B2 (en) Moving transport mechanism
JP2010030360A (en) Spherical body driving type omnidirectional moving device
KR101626862B1 (en) A ball drive unit and a ball drive vehicle comprising the same
KR101463300B1 (en) apparatus having multi-out differential gear
CN105452145B (en) Polygon for chain driver compensates coupled system and includes the conveyer of the chain driver
JP2013221571A (en) Reduction gear, robot, robot hand, conveying machine, electronic component conveying device and geared motor
WO2022191116A1 (en) Transport unit and transport device
JP6821201B2 (en) Omnidirectional rotation drive mechanism and moving body
JP6617301B2 (en) Mobile transport mechanism
JP6931848B2 (en) Mobile device
JPH089626A (en) Conveyor
JP4596412B2 (en) Drive unit
CN105822744B (en) Power transmission apparatus for vehicle
JP2024140074A (en) Omnidirectional mobile
KR102602102B1 (en) A Eccentric reducer and gear manufacturing method of the eccentric reducer
JP2010196793A (en) Friction transmission device and driving force distribution device using the same
JP2024051493A (en) Wheel Unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

R150 Certificate of patent or registration of utility model

Ref document number: 5158698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees