JP5158088B2 - Microcapsule type latent curing agent for epoxy resin and method for producing the same, and one-part epoxy resin composition and cured product thereof - Google Patents

Microcapsule type latent curing agent for epoxy resin and method for producing the same, and one-part epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP5158088B2
JP5158088B2 JP2009533162A JP2009533162A JP5158088B2 JP 5158088 B2 JP5158088 B2 JP 5158088B2 JP 2009533162 A JP2009533162 A JP 2009533162A JP 2009533162 A JP2009533162 A JP 2009533162A JP 5158088 B2 JP5158088 B2 JP 5158088B2
Authority
JP
Japan
Prior art keywords
epoxy resin
curing agent
microcapsule
latent curing
type latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009533162A
Other languages
Japanese (ja)
Other versions
JPWO2009038097A1 (en
Inventor
重昭 舟生
穣 岡田
芳伊 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009533162A priority Critical patent/JP5158088B2/en
Publication of JPWO2009038097A1 publication Critical patent/JPWO2009038097A1/en
Application granted granted Critical
Publication of JP5158088B2 publication Critical patent/JP5158088B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、並びに一液性エポキシ樹脂組成物及びエポキシ樹脂硬化物に関する。   The present invention relates to a microcapsule-type latent curing agent for epoxy resin, a method for producing the same, and a one-pack epoxy resin composition and a cured epoxy resin.

エポキシ樹脂は、その硬化物が、機械的特性、電気的特性、熱的特性、耐薬品性、接着性等の点で優れた性能を有することから、塗料、電気電子用絶縁材料、接着剤等の幅広い用途に利用されている。現在一般に使用されているエポキシ樹脂組成物の多くは、使用時にエポキシ樹脂と硬化剤の二液を混合する、いわゆる二液性のものである。   Epoxy resin has excellent performance in terms of mechanical properties, electrical properties, thermal properties, chemical resistance, adhesiveness, etc., and it can be used for paints, insulating materials for electrical and electronic materials, adhesives, etc. It is used for a wide range of applications. Many of the epoxy resin compositions generally used at present are so-called two-component compositions in which two components of an epoxy resin and a curing agent are mixed at the time of use.

二液性エポキシ樹脂組成物は室温で硬化しうる反面、エポキシ樹脂と硬化剤を別々に保管し、必要に応じて両者を計量、混合した後、使用する必要があるため、保管や取り扱いが煩雑である。その上、可使時間が限られているため、予め大量に混合しておくことができず、配合頻度が多くなり、能率の低下を免れない。   The two-part epoxy resin composition can be cured at room temperature, but it is necessary to store the epoxy resin and the curing agent separately and weigh and mix them as necessary. It is. In addition, since the pot life is limited, it cannot be mixed in a large amount in advance, the blending frequency increases, and the efficiency is unavoidable.

こうした二液性エポキシ樹脂組成物の問題を解決する目的で、これまでいくつかの一液性エポキシ樹脂組成物が提案されている。例えば、ジシアンジアミド、BF−アミン錯体、アミン塩及び変性イミダゾール化合物のような潜在性硬化剤をエポキシ樹脂に配合したものがある。In order to solve the problem of such a two-part epoxy resin composition, several one-part epoxy resin compositions have been proposed so far. For example, there is an epoxy resin blended with a latent curing agent such as dicyandiamide, BF 3 -amine complex, amine salt and modified imidazole compound.

また、粉末状アミン化合物の表面をイソシアネートと反応させ、アミン化合物の表面を不活性化して硬化剤に潜在性を付与する検討が行われている(特許文献1〜5)。さらに、粉末状アミン化合物をエポキシ樹脂中でイソシアネートと反応させることによりカプセル化したマイクロカプセル型硬化剤も提案されている(特許文献6〜8)。例えば特許文献6では、コアとしてのアミン系硬化剤をエポキシ樹脂中に分散し、そこにイソシアネート及び水を添加してシェルを形成する方法によって得られるマスターバッチ型硬化剤が開示されている。その他の方法としては、エポキシ樹脂とアミン系硬化剤を混合し、ただちに冷凍して反応の進行を停止させる方法、アミン系硬化剤をマイクロカプセル化する方法、モレキュラーシーブに硬化剤を吸着させる方法がある。
特公昭58−55970号公報 特開昭59−27914号公報 特開昭59−59720号公報 欧州特許出願公開第193068号明細書 特開昭61−190521号公報 特開平1−70523号公報 特開2004−269721号公報 特開2005−344046号公報
In addition, studies have been made to impart latency to the curing agent by reacting the surface of the powdery amine compound with isocyanate to inactivate the surface of the amine compound (Patent Documents 1 to 5). Furthermore, a microcapsule type curing agent encapsulated by reacting a powdered amine compound with isocyanate in an epoxy resin has also been proposed (Patent Documents 6 to 8). For example, Patent Document 6 discloses a master batch type curing agent obtained by a method in which an amine curing agent as a core is dispersed in an epoxy resin, and an isocyanate and water are added thereto to form a shell. Other methods include mixing an epoxy resin and an amine curing agent and immediately freezing to stop the progress of the reaction, microencapsulating the amine curing agent, and adsorbing the curing agent on the molecular sieve. is there.
Japanese Patent Publication No.58-55970 JP 59-27914 A JP 59-59720 A European Patent Application No. 193068 JP-A-61-190521 JP-A-1-70523 JP 2004-269721 A JP 2005-344046 A

しかし、従来の潜在性硬化剤の場合、貯蔵安定性に優れているものは硬化性が低く、硬化に高温または長時間が必要である。一方、硬化性が高いものは貯蔵安定性が低く、例えば−20℃のような低温で貯蔵する必要がある。例えば、ジシアンジアミドを配合した一液性エポキシ樹脂組成物は、常温保存の場合に6ヵ月以上の貯蔵安定性を有するものの、170℃以上の硬化温度を必要とする。この硬化温度を低下させるために硬化促進剤を併用すると、例えば130℃〜150℃での硬化が可能である。ところが、その場合は室温での貯蔵安定性が不十分であるため、低温での貯蔵を余儀なくされるとともに、可使時間(ポットライフ)が短くなる。その結果、ジシアンジアミドの潜在性が十分に生かされなくなる。フィルム状成形品や、基材にエポキシ樹脂組成物を含浸した製品を製造する際に用いられるエポキシ樹脂組成物は、溶剤や反応性希釈剤等を含む配合品が用いられる場合が多いが、係る配合品において従来の潜在性硬化剤を用いると貯蔵安定性が極端に低下する。そのため、配合品を実質的に二液性とする必要があり、その改善が求められていた。   However, in the case of conventional latent curing agents, those having excellent storage stability have low curability and require high temperature or a long time for curing. On the other hand, those having high curability have low storage stability and need to be stored at a low temperature such as -20 ° C. For example, a one-part epoxy resin composition containing dicyandiamide has a storage stability of 6 months or more when stored at room temperature, but requires a curing temperature of 170 ° C. or more. When a curing accelerator is used in combination to lower the curing temperature, curing at, for example, 130 ° C. to 150 ° C. is possible. However, in that case, since the storage stability at room temperature is insufficient, storage at a low temperature is unavoidable, and the pot life is shortened. As a result, the potential of dicyandiamide is not fully utilized. The epoxy resin composition used when manufacturing a film-shaped molded article or a product in which the base material is impregnated with the epoxy resin composition is often used in combination with a solvent or a reactive diluent. When a conventional latent curing agent is used in a compounded product, the storage stability is extremely lowered. For this reason, it is necessary to make the blended product substantially two-component, and improvement has been demanded.

特許文献3のように、アミン化合物の表面官能基の封鎖による方法では、一液性エポキシ樹脂組成物として必要とされる特性、特に貯蔵安定性の点で必ずしも十分でない。また、一液性エポキシ樹脂組成物を実際に使用するのに際しては、その均一性も重要である。そのために、一般には、ロールその他の装置で粉末状の硬化剤をエポキシ樹脂中に均一に分散させる必要がある。ところが、特許文献1〜4に開示されているいずれの方法を用いても、このような室温での分散操作にともなう機械的剪断力によって一旦生成した不活性な表面層が破壊され、結果として実用に耐えるために十分な貯蔵安定性が得られないという問題もある。   As in Patent Document 3, the method by blocking the surface functional group of an amine compound is not necessarily sufficient in terms of the properties required as a one-part epoxy resin composition, particularly in terms of storage stability. Further, when the one-component epoxy resin composition is actually used, its uniformity is also important. Therefore, generally, it is necessary to uniformly disperse the powdery curing agent in the epoxy resin with a roll or other equipment. However, even if any of the methods disclosed in Patent Documents 1 to 4 is used, the inactive surface layer once generated by the mechanical shearing force accompanying the dispersion operation at room temperature is destroyed, and as a result, it is practically used. There is also a problem that sufficient storage stability cannot be obtained in order to withstand.

一方、上述の冷凍、マイクロカプセル化、またはモレキュラーシーブの方法によれば、比較的良好な貯蔵安定性が得られるものの、性能面、特に硬化物特性が十分でなく、実用化は殆どなされていないのが現状である。   On the other hand, according to the method of freezing, microencapsulation, or molecular sieve described above, relatively good storage stability can be obtained, but performance, particularly cured product characteristics are not sufficient, and practical application has hardly been made. is the current situation.

以上のように、高い硬化性と優れた貯蔵安定性を両立し得る一液性エポキシ樹脂組成物が強く求められていた。特に近年、電子材料用途での生産性向上のために、一液性樹脂組成物に対して、硬化特性及び貯蔵安定性のさらなる向上が求められている。   As described above, a one-component epoxy resin composition that can achieve both high curability and excellent storage stability has been strongly demanded. Particularly in recent years, in order to improve productivity in electronic material applications, further improvements in curing characteristics and storage stability have been demanded for one-part resin compositions.

そこで、本発明は、一液性エポキシ樹脂組成物の低温硬化性と優れた貯蔵安定性の両立を可能にする硬化剤とその製造方法を提供することを目的とする。また、本発明は係る硬化剤を用いた一液性エポキシ樹脂組成物及びその硬化物を提供することを目的とする。   Then, an object of this invention is to provide the hardening | curing agent which enables coexistence of the low-temperature curability of the one-component epoxy resin composition, and the outstanding storage stability, and its manufacturing method. Another object of the present invention is to provide a one-part epoxy resin composition using the curing agent and a cured product thereof.

一つの側面において、本発明は、コア及びこれを被覆するカプセルを有するマイクロカプセル型潜在性硬化剤に関する。本発明に係るマイクロカプセル型硬化剤において、コアはアミンアダクトを含み、カプセルはイソシアネートと活性水素基を有する化合物及び/又は水との反応生成物を含む。反応生成物のうち少なくとも一部はアミンアダクトとの反応によりコアに結合している。本発明に係るマイクロカプセル型硬化剤は、エポキシ樹脂を硬化するために用いられる。本発明に係るマイクロカプセル型潜在性硬化剤は、粉末状であってもよい。   In one aspect, the present invention relates to a microcapsule type latent curing agent having a core and a capsule covering the core. In the microcapsule type curing agent according to the present invention, the core includes an amine adduct, and the capsule includes a reaction product of an isocyanate and a compound having an active hydrogen group and / or water. At least a portion of the reaction product is bound to the core by reaction with the amine adduct. The microcapsule type curing agent according to the present invention is used to cure an epoxy resin. The microcapsule-type latent curing agent according to the present invention may be in a powder form.

上記本発明に係るマイクロカプセル型硬化剤によれば、一液性エポキシ樹脂組成物の低温硬化性と優れた貯蔵安定性の両立が可能である。   According to the microcapsule-type curing agent according to the present invention, it is possible to achieve both low temperature curability and excellent storage stability of the one-part epoxy resin composition.

本発明による効果をより一層顕著なものとするために、上記コアは質量比で50〜100%のアミンアダクトを含むことが好ましい。   In order to make the effect of the present invention more remarkable, the core preferably contains 50 to 100% amine adduct in mass ratio.

カプセルの割合は、当該マイクロカプセル型潜在性硬化剤の全質量を基準として5〜80質量%であることが好ましい。これにより低温硬化性及び貯蔵安定性をより高いレベルで両立することが可能になる。   The ratio of the capsule is preferably 5 to 80% by mass based on the total mass of the microcapsule-type latent curing agent. This makes it possible to achieve both low-temperature curability and storage stability at a higher level.

カプセルの割合は、40〜80質量%であってもよい。これにより、潜在性硬化剤が非常に良好な貯蔵安定性と耐溶剤性を有することができる。また、さらに優れた低温硬化性も達成される。したがって、例えば潜在性硬化剤を溶剤と混合し、長時間放置したときでも、溶剤によりマイクロカプセル型潜在性硬化剤のコア成分が溶出するようなことなく、その低温硬化性を維持することができる。   40-80 mass% may be sufficient as the ratio of a capsule. Thereby, the latent curing agent can have very good storage stability and solvent resistance. Further, excellent low temperature curability is also achieved. Therefore, for example, even when the latent curing agent is mixed with a solvent and left for a long time, the low temperature curability can be maintained without the core component of the microcapsule type latent curing agent being eluted by the solvent. .

カプセルの割合は、15〜40質量%であってもよい。これにより、潜在性硬化剤が、より良好な貯蔵安定性と耐溶剤性を有し、より良好な低温硬化性も有することができ、非常に高いレベルでこれらの特性を併せ持つことができる。そのため、例えば潜在性硬化剤をエポキシ樹脂と混合し、40℃程度のような加熱状態に1週間放置したときであっても、エポキシ樹脂との反応が進行して粘度上昇し、その低温硬化特性が失われてしまうようなことがなく、良好な貯蔵安定性と良好な低温硬化性を発現させることができる。   The ratio of the capsule may be 15 to 40% by mass. Thereby, the latent curing agent can have better storage stability and solvent resistance, can also have better low-temperature curability, and can have these characteristics at a very high level. Therefore, for example, even when a latent curing agent is mixed with an epoxy resin and left in a heated state such as about 40 ° C. for one week, the reaction with the epoxy resin proceeds to increase the viscosity, and its low temperature curing characteristics Is not lost, and good storage stability and good low-temperature curability can be exhibited.

カプセルの割合は、5〜15質量%であってもよい。これにより、潜在性硬化剤が非常に良好な低温硬化性を有しながら、より良好な貯蔵安定性と耐溶剤性を有することができる。   The ratio of the capsule may be 5 to 15% by mass. Thereby, the latent curing agent can have better storage stability and solvent resistance while having very good low-temperature curability.

別の側面において、本発明はエポキシ樹脂用マイクロカプセル型潜在性硬化剤の製造方法に関する。本発明に係る製造方法は、コアに含まれるアミンアダクトとイソシアネートと活性水素基を有する化合物及び/又は水とを分散媒中で反応させることにより、コアを被覆するカプセルを形成させる工程を備える。本発明に係る製造方法は、反応後の混合物から、コア及びカプセルを有する粉末状のマイクロカプセル型潜在性硬化剤を取り出す工程を更に備えていてもよい。   In another aspect, the present invention relates to a method for producing a microcapsule latent curing agent for epoxy resin. The production method according to the present invention includes a step of forming a capsule covering the core by reacting an amine adduct contained in the core, an isocyanate, a compound having an active hydrogen group and / or water in a dispersion medium. The production method according to the present invention may further include a step of taking out a powdery microcapsule-type latent curing agent having a core and a capsule from the mixture after the reaction.

上記本発明に係る製造方法によれば、一液性エポキシ樹脂組成物の低温硬化性と優れた貯蔵安定性の両立を可能にするマイクロカプセル型硬化剤を特性のばらつきを抑制しながら得ることができる。本発明に係るマイクロカプセル型潜在性硬化剤は、上記本発明に係る製造方法により得ることができるものであってもよい。   According to the production method of the present invention, it is possible to obtain a microcapsule-type curing agent capable of achieving both low temperature curability and excellent storage stability of a one-part epoxy resin composition while suppressing variation in characteristics. it can. The microcapsule-type latent curing agent according to the present invention may be obtained by the production method according to the present invention.

更に別の側面において、本発明は一液性エポキシ樹脂組成物に関する。本発明に係る一液性エポキシ樹脂組成物は、上記本発明に係るエポキシ樹脂用マイクロカプセル型潜在性硬化剤と、エポキシ樹脂とを含有する。   In still another aspect, the present invention relates to a one-part epoxy resin composition. The one-component epoxy resin composition according to the present invention contains the above-described microcapsule type latent curing agent for epoxy resin according to the present invention and an epoxy resin.

本発明に係る一液性エポキシ樹脂組成物は、低温硬化性と優れた貯蔵安定性を有する。   The one-part epoxy resin composition according to the present invention has low temperature curability and excellent storage stability.

エポキシ樹脂用マイクロカプセル型潜在性硬化剤は、エポキシ樹脂中で加熱処理されたものであってもよい。本発明に係る一液性エポキシ樹脂組成物は、エポキシ樹脂及びマイクカプセル型潜在性硬化剤の合計量100質量部に対してマイクカプセル型潜在性硬化剤5〜70質量部を含有することが好ましい。   The microcapsule-type latent curing agent for epoxy resin may be heat-treated in epoxy resin. The one-part epoxy resin composition according to the present invention preferably contains 5 to 70 parts by mass of a microphone capsule type latent curing agent with respect to 100 parts by mass of the total amount of the epoxy resin and the microphone capsule type latent curing agent. .

更に別の側面において、本発明はエポキシ樹脂組成物の硬化物に関する。本発明に係る硬化物は、上記本発明に係る一液性エポキシ樹脂組成物を加熱により硬化して形成される。本発明に係る硬化物は、電気的特性(絶縁性)の点で特に優れている。   In yet another aspect, the present invention relates to a cured product of an epoxy resin composition. The cured product according to the present invention is formed by curing the one-component epoxy resin composition according to the present invention by heating. The cured product according to the present invention is particularly excellent in terms of electrical characteristics (insulating properties).

本発明に係るマイクロカプセル型硬化剤によれば、一液性エポキシ樹脂組成物の低温硬化性と優れた貯蔵安定性の両立が可能である。このため、本発明に係るマイクロカプセル型硬化剤は電子材料用途などにおいて生産性を向上させるために好ましく用いられる。   According to the microcapsule type curing agent according to the present invention, it is possible to achieve both low temperature curability and excellent storage stability of a one-part epoxy resin composition. For this reason, the microcapsule type curing agent according to the present invention is preferably used in order to improve productivity in applications such as electronic materials.

本発明に係る粉末状のマイクロカプセル型潜在性硬化剤は、以下の点でも優れた作用効果を有する。
(1)粉末状であることから、硬化特性や硬化物の物性等を考慮して、目的にあわせたエポキシ樹脂に容易に均一に分散させることができる。また、エポキシ樹脂組成物における硬化剤の配合比の自由度も高い。
(2)カプセル部分を容易に制御できるため、目的に合わせて、良好な硬化特性を有する潜在性硬化剤や良好な貯蔵安定性を容易に達成することができる。
(3)一液性エポキシ樹脂組成物を容易に製造できるので、使用時の作業性が改良され、また製品の高い信頼性が得られる。
The powdery microcapsule-type latent curing agent according to the present invention has an excellent effect in the following points.
(1) Since it is in a powder form, it can be easily and uniformly dispersed in an epoxy resin in accordance with the purpose in consideration of curing characteristics and physical properties of the cured product. Moreover, the freedom degree of the compounding ratio of the hardening | curing agent in an epoxy resin composition is also high.
(2) Since the capsule portion can be easily controlled, a latent curing agent having good curing characteristics and good storage stability can be easily achieved according to the purpose.
(3) Since a one-component epoxy resin composition can be easily produced, workability at the time of use is improved and high reliability of the product can be obtained.

本発明に係るマイクロカプセル型潜在性硬化剤は、一液型エポキシ樹脂組成物を調製する際に加わる機械的な剪断力によっても性能の変化が少ないという作用効果をも有する。   The microcapsule-type latent curing agent according to the present invention also has an effect that there is little change in performance even by a mechanical shear force applied when preparing a one-pack type epoxy resin composition.

本発明に係る製造方法によれば、一液性エポキシ樹脂組成物の低温硬化性と優れた貯蔵安定性の両立を可能にするマイクロカプセル型硬化剤を特性のばらつきを抑制しながら得ることができる。粉末状アミン化合物をエポキシ樹脂中でイソシアネートと反応させる従来の製造方法の場合、例えば低温硬化性向上を目的としてマイクロカプセル型潜在性硬化剤の量を増やすためには、エポキシ樹脂中に多量の粉末状アミン化合物を添加する必要がある。粉末状アミン化合物の量が多くなると、粘度が高くなるため均一なカプセル化反応を行うことが困難となる。その結果、ロット間の特性のばらつきが大きくなって、製品の不良率が高くなったり、カプセル形成の程度が不足して十分な貯蔵安定性が得られなくなる。また、硬化特性を高めるために、エポキシ樹脂との反応性が高い成分をコアの材料として用いるとエポキシ樹脂中で硬化反応が進行して、充分な特性を有する潜在性硬化剤が合成できないという問題もある。本発明に係る製造方法によれば、粘度上昇の原因となるコアとエポキシ樹脂との反応、及びイソシネートと水とエポキシ樹脂との反応を抑制できることから、流動性の高い一液性エポキシ樹脂を得ることができる。これらの点で本発明に係る製造方法は従来の方法と比較して有利な効果を有する。   According to the production method of the present invention, it is possible to obtain a microcapsule-type curing agent that can achieve both low-temperature curability and excellent storage stability of a one-part epoxy resin composition while suppressing variation in characteristics. . In the case of a conventional production method in which a powdered amine compound is reacted with an isocyanate in an epoxy resin, for example, in order to increase the amount of a microcapsule type latent curing agent for the purpose of improving low-temperature curability, a large amount of powder is contained in the epoxy resin. It is necessary to add an amine compound. When the amount of the powdery amine compound is increased, the viscosity becomes high, so that it is difficult to perform a uniform encapsulation reaction. As a result, the variation in characteristics between lots becomes large, the defect rate of the product becomes high, and the degree of capsule formation is insufficient, so that sufficient storage stability cannot be obtained. In addition, if a component having high reactivity with an epoxy resin is used as a core material in order to enhance the curing characteristics, the curing reaction proceeds in the epoxy resin, and a latent curing agent having sufficient characteristics cannot be synthesized. There is also. According to the production method of the present invention, since the reaction between the core and the epoxy resin that causes an increase in viscosity and the reaction between the isocyanate, water, and the epoxy resin can be suppressed, a highly fluid one-component epoxy resin is obtained. be able to. In these respects, the production method according to the present invention has an advantageous effect as compared with the conventional method.

本発明に係るマイクロカプセル型潜在性硬化剤の製造方法によれば、エポキシ樹脂中に硬化剤である粉末状アミン化合物を配合した後にシェルを形成する方法と比較して、硬化反応や粘度上昇が少ないことから、より容易に均一に反応を進行させることができる。その結果、ロット間の特性バラツキが小さくなる。また、副生成物の除去も容易である。さらには、組合わせるエポキシ樹脂の種類ごとに硬化剤を作り分ける必要もないことから、作業能率が良好であるし、エポキシ樹脂の選択の幅も広い。   According to the method for producing a microcapsule-type latent curing agent according to the present invention, compared with a method of forming a shell after blending a powdery amine compound as a curing agent in an epoxy resin, there is a curing reaction and an increase in viscosity. Since the amount is small, the reaction can proceed more easily and uniformly. As a result, characteristic variation between lots is reduced. Also, removal of by-products is easy. Furthermore, since it is not necessary to prepare a curing agent for each type of epoxy resin to be combined, the work efficiency is good and the range of selection of the epoxy resin is wide.

従来のマスターバッチ型硬化剤の粘度は高く、エポキシ樹脂組成物の十分な流動性を達成することが困難であったが、本発明によれば、十分に高い流動性を有する一液性エポキシ樹脂組成物を得ることが可能である。近年、特に電子機器分野において、回路の高密度化や接続信頼性の向上に対応するため、接続材料の一つとして用いられる一液性エポキシ樹脂組成物は、狭い隙間への充填を行うことから、高い流動性を有することがより重要になっている。   Although the viscosity of the conventional masterbatch type curing agent is high and it is difficult to achieve sufficient fluidity of the epoxy resin composition, according to the present invention, a one-part epoxy resin having sufficiently high fluidity It is possible to obtain a composition. In recent years, especially in the field of electronic equipment, in order to cope with higher circuit density and improved connection reliability, one-part epoxy resin compositions used as one of connection materials are used to fill narrow gaps. It has become more important to have high fluidity.

エポキシ樹脂中でイソシアネート及び水を添加して粉末状アミン系硬化剤の表面にシェルを形成する方法の場合、副反応としてイソシアネートと水との反応により生成した1級アミンがエポキシ樹脂と反応する副反応が生じやすいため、生成物の再現性が得られにくい。また、硬化剤は特定のエポキシ樹脂との配合物(マスターバッチ)の状態で得られることから、配合の自由度が制限されるという問題もあった。本発明はこれらの問題を解決する上でも有利である。   In the case of a method of forming a shell on the surface of a powdered amine curing agent by adding isocyanate and water in an epoxy resin, as a side reaction, a primary amine generated by the reaction of isocyanate and water reacts with the epoxy resin. Since the reaction is likely to occur, the reproducibility of the product is difficult to obtain. Moreover, since a hardening | curing agent was obtained in the state of a compound (master batch) with a specific epoxy resin, there also existed a problem that the freedom degree of a compounding was restrict | limited. The present invention is also advantageous in solving these problems.

以上のような効果を生かして、本発明に係るマイクロカプセル型潜在性硬化剤及び一液性エポキシ樹脂組成物は、広い用途分野に利用できる。例えば接着剤として、自動車分野ではヘッドライト、ガソリンタンクの接着、ボンネット等のヘミングランジ部の接着、ボデーおよびルーフ部の鋼板の継合わせ、電気分野ではスピーカーマグネットの接着、モーターコイルの含浸及び接着、テープヘッド、バッテリーケースの接着、蛍光灯安定器の接着、電子分野ではダイボンデイング用接着剤、ICチップ封止剤、チップコート材、チップマウント材、プリント基材の接着剤、フィルム接着剤、異方導電性フィルム、異方導電性ペースト等の用途に本発明に係る一液性エポキシ樹脂組成物を用いることができる。他の用途としては、塗料分野において、粉体塗料、ソルダーレジストインキ、導電性塗料等が挙げられる。また、電気絶縁材料、積層構造体等にも本発明を利用できる。特に近年、電子材料用途での生産性向上のために、一液性樹脂組成物に対して、硬化特性及び貯蔵安定性のさらなる向上が求められている。   Taking advantage of the above effects, the microcapsule-type latent curing agent and one-component epoxy resin composition according to the present invention can be used in a wide range of applications. For example, as an adhesive, in the automotive field, headlights, gasoline tanks, hemin grunge parts such as bonnets, body and roof steel plates joined, in the electrical field, speaker magnets, impregnation and adhesion of motor coils, Adhesion of tape heads, battery cases, fluorescent lamp ballasts, die bonding adhesives, IC chip sealing agents, chip coating materials, chip mounting materials, printing substrate adhesives, film adhesives, The one-component epoxy resin composition according to the present invention can be used for applications such as a anisotropic conductive film and an anisotropic conductive paste. Other applications include powder paints, solder resist inks, conductive paints and the like in the paint field. The present invention can also be used for an electrical insulating material, a laminated structure, and the like. Particularly in recent years, in order to improve productivity in electronic material applications, further improvements in curing characteristics and storage stability have been demanded for one-part resin compositions.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

本実施形態に係るマイクロカプセル型潜在性硬化剤は、粒子状のコア及びこれを被覆するカプセルを有する。カプセルはコア表面の少なくとも一部を被覆する膜である。   The microcapsule-type latent curing agent according to this embodiment has a particulate core and a capsule covering the core. The capsule is a film covering at least a part of the core surface.

コアは、アミンアダクトを主成分として含む。より具体的には、コアは通常質量比で50〜100%、好ましくは60〜100%のアミンアダクトを含む。アミンアダクトの質量比が50%未満では、硬化特性と貯蔵安定を両立させることが比較的困難になる傾向がある。   The core includes an amine adduct as a main component. More specifically, the core usually contains 50 to 100%, preferably 60 to 100%, of amine adducts by weight. If the mass ratio of the amine adduct is less than 50%, it tends to be relatively difficult to achieve both curing characteristics and storage stability.

アミンアダクトは、エポキシ樹脂とアミン化合物との反応により得られる、アミノ基を有する化合物である。   An amine adduct is a compound having an amino group obtained by a reaction between an epoxy resin and an amine compound.

アミンアダクトを得るために用いられるエポキシ樹脂として、モノエポキシ化合物及び多価エポキシ化合物のいずれか又はそれらの混合物を用いることができる。モノエポキシ化合物としては、例えば、ブチルグリシジルエーテル、ヘキシルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル、パラ−tert−ブチルフェニルグリシジルエーテル、エチレンオキシド、プロピレンオキシド、パラキシリルグリシジルエーテル、グリシジルアセテート、グリシジルブチレート、グリシジルヘキソエート及びグリシジルベンゾエートが挙られる。多価エポキシ化合物としては、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA及びテトラクロロビスフェノールA、テトラフルオロビスフェノールA等のビスフェノール類をグリシジル化して得られるビスフェノール型エポキシ樹脂;ビフェノール、ジヒドロキシナフタレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン等のその他の2価フェノール類をグリシジル化して得られるエポキシ樹脂;1,1,1−トリス(4−ヒドロキシフェニル)メタン、4,4−(1−(4−(1−(4−ヒドロキシフェニル)−1−メチルエチル)フェニル)エチリデン)ビスフェノール等のトリスフェノール類をグリシジル化して得られるエポキシ樹脂;1,1,2,2,−テトラキス(4−ヒドロキシフェニル)エタン等のテトラキスフェノール類をグリシジル化して得られるエポキシ樹脂;フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化フェノールノボラック、臭素化ビスフェノールAノボラック等のノボラック類をグリシジル化して得られるノボラック型エポキシ樹脂;多価フェノール類をグリシジル化して得られるエポキシ樹脂、グリセリンやポリエチレングリコール等の多価アルコールをグリシジル化して得られる脂肪族エーテル型エポキシ樹脂;p−オキシ安息香酸、β−オキシナフトエ酸等のヒドロキシカルボン酸をグリシジル化して得られるエーテルエステル型エポキシ樹脂;フタル酸、テレフタル酸のようなポリカルボン酸をグリシジル化して得られるエステル型エポキシ樹脂;4,4−ジアミノジフェニルメタンやm−アミノフェノール等のアミン化合物のグリシジル化物やトリグリシジルイソシアヌレート等のアミン型エポキシ樹脂等のグリシジル型エポキシ樹脂と、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート等の脂環族エポキサイドが例示される。   As an epoxy resin used for obtaining an amine adduct, either a monoepoxy compound or a polyvalent epoxy compound or a mixture thereof can be used. Examples of the monoepoxy compound include butyl glycidyl ether, hexyl glycidyl ether, phenyl glycidyl ether, allyl glycidyl ether, para-tert-butylphenyl glycidyl ether, ethylene oxide, propylene oxide, paraxyl glycidyl ether, glycidyl acetate, glycidyl butyrate. Glycidyl hexoate and glycidyl benzoate. Examples of the polyvalent epoxy compound include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A and tetrachlorobisphenol A, tetra Bisphenol-type epoxy resin obtained by glycidylation of bisphenols such as fluorobisphenol A; Epoxy obtained by glycidylation of other dihydric phenols such as biphenol, dihydroxynaphthalene and 9,9-bis (4-hydroxyphenyl) fluorene Resin; 1,1,1-tris (4-hydroxyphenyl) methane, 4,4- (1- (4- (1- (4-hydroxyphenyl) -1-methylethyl) Epoxy resin obtained by glycidylation of trisphenols such as) phenyl) ethylidene) bisphenol; epoxy resin obtained by glycidylation of tetrakisphenols such as 1,1,2,2, -tetrakis (4-hydroxyphenyl) ethane A novolac type epoxy resin obtained by glycidylation of novolaks such as phenol novolak, cresol novolak, bisphenol A novolak, brominated phenol novolak, brominated bisphenol A novolak; epoxy resin obtained by glycidylation of polyhydric phenols, glycerin Aliphatic ether type epoxy resins obtained by glycidylation of polyhydric alcohols such as polyethylene glycol and polyethylene glycol; hydroxycarboxylic acids such as p-oxybenzoic acid and β-oxynaphthoic acid are glycidyl Ether ester type epoxy resin obtained by crystallization; ester type epoxy resin obtained by glycidylation of polycarboxylic acid such as phthalic acid and terephthalic acid; glycidylation of amine compounds such as 4,4-diaminodiphenylmethane and m-aminophenol And glycidyl type epoxy resins such as amine type epoxy resins such as triglycidyl isocyanurate and alicyclic epoxides such as 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate.

エポキシ樹脂としては、エポキシ樹脂組成物の貯蔵安定性を高めることができるので、多価エポキシ化合物が好ましい。多価エポキシ化合物は、アミン化合物の生産性が圧倒的に高いので、グリシジル型エポキシ樹脂であることが好ましい。硬化物の接着性や耐熱性が優れることから、多価エポキシ化合物は多価フェノール類のグリシジル化物であることがより好ましく、ビスフェノール型エポキシ樹脂が更に好ましい。特に、ビスフェノールAをグリシジル化したエポキシ樹脂であるビスフェノールA型エポキシ樹脂及びビスフェノールFをグリシジル化したエポキシ樹脂であるビスフェノールF型エポキシ樹脂が好ましく、これらのうちビスフェノールA型エポキシ樹脂が最も好ましい。これらエポキシ樹脂は単独で使用しても併用してもよい。   As an epoxy resin, since the storage stability of an epoxy resin composition can be improved, a polyvalent epoxy compound is preferable. The polyvalent epoxy compound is preferably a glycidyl type epoxy resin because the productivity of the amine compound is overwhelmingly high. In view of excellent adhesion and heat resistance of the cured product, the polyvalent epoxy compound is more preferably a glycidylated product of a polyhydric phenol, and a bisphenol type epoxy resin is more preferable. In particular, a bisphenol A type epoxy resin which is an epoxy resin obtained by glycidylation of bisphenol A and a bisphenol F type epoxy resin which is an epoxy resin obtained by glycidylation of bisphenol F are preferred, and among these, a bisphenol A type epoxy resin is most preferred. These epoxy resins may be used alone or in combination.

アミンアダクトを得るために用いられるアミン化合物は、好ましくは、一級アミノ基及び/又は二級アミノ基を有し三級アミノ基を有さない化合物と、三級アミノ基及び活性水素基を有する化合物とから選ばれる。一級アミノ基及び/又は二級アミノ基を有し三級アミノ基を有しない化合物としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、エタノールアミン、プロパノールアミン、シクロヘキシルアミン、イソホロンジアミン、アニリン、トルイジン、ジアミノジフェニルメタン及びジアミノジフェニルスルホンのような第一アミン類、並びに、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジメタノールアミン、ジエタノールアミン、ジプロパノールアミン、ジシクロヘキシルアミン、ピペリジン、ピペリドン、ジフェニルアミン、フェニルメチルアミン及びフェニルエチルアミンのような第二アミン類が挙げられる。   The amine compound used to obtain the amine adduct is preferably a compound having a primary amino group and / or a secondary amino group and no tertiary amino group, and a compound having a tertiary amino group and an active hydrogen group And chosen from. Examples of the compound having a primary amino group and / or a secondary amino group and not having a tertiary amino group include methylamine, ethylamine, propylamine, butylamine, ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine. Primary amines such as ethanolamine, propanolamine, cyclohexylamine, isophoronediamine, aniline, toluidine, diaminodiphenylmethane and diaminodiphenylsulfone, and dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine , Dimethanolamine, diethanolamine, dipropanolamine, dicyclohexylamine, piperidine, piperidone, diphenylamine Secondary amines such as phenylmethyl amine, and phenylethylamine and the like.

三級アミノ基及び活性水素基を有する化合物において、活性水素基としては一級アミノ基、二級アミノ基、水酸基、チオール基、カルボン酸及びヒドラジド基が例示される。三級アミノ基及び活性水素基を有する化合物としては、例えば、2−ジメチルアミノエタノール、1−メチル−2−ジメチルアミノエタノール、1−フェノキシメチル−2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、1−ブトキシメチル−2−ジメチルアミノエタノール、メチルジエタノールアミン、トリエタノールアミン及びN−β−ヒドロキシエチルモルホリンのようなアミノアルコール類;2−(ジメチルアミノメチル)フェノール及び2,4,6−トリス(ジメチルアミノメチル)フェノールのようなアミノフェノール類;2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−アミノエチル−2−メチルイミダゾール、1−(2−ヒドロキシ−3−フェノキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシ−3−フェノキシプロピル)−2−エチル−4−メチルイミダゾール、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−メチルイミダゾール及び1−(2−ヒドロキシ−3−ブトキシプロピル)−2−エチル−4−メチルイミダゾールのようなイミダゾール類;1−(2−ヒドロキシ−3−フェノキシプロピル)−2−フェニルイミダゾリン、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−メチルイミダゾリン、2−メチルイミダゾリン、2,4−ジメチルイミダゾリン、2−エチルイミダゾリン、2−エチル−4−メチルイミダゾリン、2−ベンジルイミダゾリン、2−フェニルイミダゾリン、2−(o−トリル)−イミダゾリン、テトラメチレン−ビス−イミダゾリン、1,1,3−トリメチル−1,4−テトラメチレン−ビス−イミダゾリン、1,3,3−トリメチル−1,4−テトラメチレン−ビス−イミダゾリン、1,1,3−トリメチル−1,4−テラメチレン−ビス−4−メチルイミダゾリン、1,2−フェニレン−ビス−イミダゾリン、1,3−フェニレン−ビス−イミダゾリン、1,4−フェニレン−ビス−イミダゾリン、1,4−フェニレン−ビス−4−メチルイミダゾリンのようなイミダゾリン類;ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジプロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジプロピルアミノエチルアミン、ジブチルアミノエチルアミン、N−メチルピペラジン、N−アミノエチルピペラジン及びジエチルアミノエチルピペラジンのような三級アミノアミン類;2−ジメチルアミノエタンチオール、2−メルカプトベンゾイミダゾール、2−メルカプトベンゾチアゾール、2−メルカプトピリジン及び4−メルカプトピリジンのようなアミノメルカプタン類;N,N−ジメチルアミノ安息香酸、N,N−ジメチルグリシン、ニコチン酸、イソニコチン酸及びピコリン酸のようなアミノカルボン酸類;N,N−ジメチルグリシンヒドラジド、ニコチン酸ヒドラジド及びイソニコチン酸ヒドラジドのようなアミノヒドラジド類を挙げることができる。   In the compound having a tertiary amino group and an active hydrogen group, examples of the active hydrogen group include a primary amino group, a secondary amino group, a hydroxyl group, a thiol group, a carboxylic acid, and a hydrazide group. Examples of the compound having a tertiary amino group and an active hydrogen group include 2-dimethylaminoethanol, 1-methyl-2-dimethylaminoethanol, 1-phenoxymethyl-2-dimethylaminoethanol, 2-diethylaminoethanol, 1- Amino alcohols such as butoxymethyl-2-dimethylaminoethanol, methyldiethanolamine, triethanolamine and N-β-hydroxyethylmorpholine; 2- (dimethylaminomethyl) phenol and 2,4,6-tris (dimethylaminomethyl) ) Aminophenols such as phenol; 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-aminoethyl-2-methyl Imidazole, 1- (2-hydroxy-3-phenoxypropyl) -2-methylimidazole, 1- (2-hydroxy-3-phenoxypropyl) -2-ethyl-4-methylimidazole, 1- (2-hydroxy-3 -Imidazoles such as butoxypropyl) -2-methylimidazole and 1- (2-hydroxy-3-butoxypropyl) -2-ethyl-4-methylimidazole; 1- (2-hydroxy-3-phenoxypropyl)- 2-phenylimidazoline, 1- (2-hydroxy-3-butoxypropyl) -2-methylimidazoline, 2-methylimidazoline, 2,4-dimethylimidazoline, 2-ethylimidazoline, 2-ethyl-4-methylimidazoline, 2 -Benzylimidazoline, 2-phenylimidazoline, 2- (o- Tolyl) -imidazoline, tetramethylene-bis-imidazoline, 1,1,3-trimethyl-1,4-tetramethylene-bis-imidazoline, 1,3,3-trimethyl-1,4-tetramethylene-bis-imidazoline, 1,1,3-trimethyl-1,4-teramethylene-bis-4-methylimidazoline, 1,2-phenylene-bis-imidazoline, 1,3-phenylene-bis-imidazoline, 1,4-phenylene-bis-imidazoline Imidazolines such as 1,4-phenylene-bis-4-methylimidazoline; dimethylaminopropylamine, diethylaminopropylamine, dipropylaminopropylamine, dibutylaminopropylamine, dimethylaminoethylamine, diethylaminoethylamine, dipropylaminoethyl A , Tertiary aminoamines such as dibutylaminoethylamine, N-methylpiperazine, N-aminoethylpiperazine and diethylaminoethylpiperazine; 2-dimethylaminoethanethiol, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2- Amino mercaptans such as mercaptopyridine and 4-mercaptopyridine; aminocarboxylic acids such as N, N-dimethylaminobenzoic acid, N, N-dimethylglycine, nicotinic acid, isonicotinic acid and picolinic acid; N, N- Mention may be made of aminohydrazides such as dimethylglycine hydrazide, nicotinic acid hydrazide and isonicotinic acid hydrazide.

アミン化合物としては、貯蔵安定性と硬化性のバランスが優れているので、三級アミノ基及び活性水素基を有する化合物が好ましい。その中でも、イミダゾール類が更に好ましく、2−メチルイミダゾール及び2−エチル−4−メチルイミダゾールが一層好ましい。   As the amine compound, a compound having a tertiary amino group and an active hydrogen group is preferable because the balance between storage stability and curability is excellent. Among these, imidazoles are more preferable, and 2-methylimidazole and 2-ethyl-4-methylimidazole are more preferable.

コアは、アミンアダクトに加えて1種又は2種以上のその他の成分を含んでいてもよい。その他の成分を加えることにより、所望の特性を付与することができる。例えば、更に低温で又は短時間での硬化を可能にするために、アミンアダクトよりもエポキシ樹脂との反応性の高い化合物や硬化促進剤をコアが含むことができる。硬化物において必要な添加剤を予めコア中に添加してもよい。   The core may include one or more other components in addition to the amine adduct. Desired characteristics can be imparted by adding other components. For example, in order to enable curing at a lower temperature or in a shorter time, the core may contain a compound or a curing accelerator that is more reactive with an epoxy resin than an amine adduct. Additives necessary for the cured product may be added to the core in advance.

その他の成分は、常温(25℃)で固体状であることが望ましい。好ましくは40℃で固体状であり、より好ましくは60℃で固体状である。常温で液体の成分を用いるとカプセル化が困難になったり、一液性エポキシ樹脂組成物の貯蔵安定性が低下したりする傾向がある。   The other components are preferably solid at room temperature (25 ° C.). Preferably it is solid at 40 ° C., more preferably it is solid at 60 ° C. When a liquid component is used at room temperature, encapsulation tends to be difficult, or the storage stability of the one-part epoxy resin composition tends to decrease.

アミンアダクトとその他成分は、コア中で均一に混合されていることが好ましい。均一な混合を実現する方法として、アミンアダクトとその他の成分を共に加熱融解し、十分混合した後、常温まで冷却し粉砕する方法や、どちらか一方を加熱融解し、それに他方を分散させ、均一分散物を形成させ、常温まで冷却し粉砕する方法がある。   The amine adduct and other components are preferably mixed uniformly in the core. As a method to achieve uniform mixing, the amine adduct and other components are heated and melted together, mixed well, then cooled to room temperature and pulverized, or either one is heated and melted, and the other is dispersed and homogeneous. There is a method in which a dispersion is formed, cooled to room temperature, and pulverized.

コアは、0.1〜50μmの平均粒径を有する粒子状であることが好ましい。コアの平均粒径はより好ましくは0.5〜10μmであり、さらに好ましくは0.5〜5μmである。コアの平均粒径が0.1μm未満では、硬化性と貯蔵安定性の両立が比較的困難となる傾向がある。また、コアの平均粒径が50μm以下であると、均質な硬化物を得やすくなる。上記平均粒径は、メディアン径を指す。コアの平均粒径は、レーザー回折式粒度分布測定装置により測定することができる。   The core is preferably in the form of particles having an average particle size of 0.1 to 50 μm. The average particle diameter of the core is more preferably 0.5 to 10 μm, and further preferably 0.5 to 5 μm. If the average particle size of the core is less than 0.1 μm, it tends to be relatively difficult to achieve both curability and storage stability. Further, when the average particle diameter of the core is 50 μm or less, it becomes easy to obtain a uniform cured product. The average particle diameter refers to the median diameter. The average particle diameter of the core can be measured by a laser diffraction type particle size distribution measuring apparatus.

コアの形状は特に制限は無く、球状、不定形いずれでもよいが、一液性エポキシ樹脂組成物の低粘度化のためには、球状が好ましい。ここで球状とは、真球の他に、不定形の角が丸みを帯びた形状をも包含する。   The shape of the core is not particularly limited and may be either spherical or indeterminate, but spherical is preferable for reducing the viscosity of the one-component epoxy resin composition. Here, the term “spherical” includes not only a true sphere but also a shape having rounded irregular corners.

マイクロカプセル型潜在性硬化剤は、例えば、コアに含まれるアミンアダクトとイソシアネートと活性水素基を有する化合物及び/又は水とを分散媒中で反応させることにより、コアを被覆するカプセルを形成させる工程と、反応後の混合物からコア及びカプセルを有するマイクロカプセル型硬化剤を取り出す工程とを備える製造方法により得ることができる。   The microcapsule type latent curing agent is a step of forming a capsule covering the core by reacting, for example, an amine adduct contained in the core, an isocyanate, a compound having an active hydrogen group and / or water in a dispersion medium. And a step of taking out the microcapsule type curing agent having the core and the capsule from the mixture after the reaction.

イソシアネートは、1個以上のイソシアネート基、好ましくは2個以上のイソシアネート基を有する化合物である。好ましいイソシアネートとしては、脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート、低分子トリイソシアネート及びポリイソシアネートが挙げられる。脂肪族ジイソシアネートの例としては、エチレンジイソシアネート、プロピレンジイソシアネート、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート及びトリメチルヘキサメチレンジイソシアネートを挙げることができる。脂環式ジイソシアネートの例としては、イソホロンジイソシアネート、4−4’−ジシクロヘキシルメタンジイソシアネート、ノルボルナンジイソシアネート、1,4−イソシアナトシクロヘキサン、1,3−ビス(イソシアナトメチル)−シクロヘキサン及び1,3−ビス(2−イソシアナトプロピル−2イル)−シクロヘキサンを挙げることができる。芳香族ジイソシアネートの例としては、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、キシレンジイソシアネート及び1,5−ナフタレンジイソシアネートを挙げることができる。低分子トリイソシアネートの例としては、1,6,11−ウンデカントリイソシアネート、1,8−ジイソシアネート−4−イソシアネートメチルオクタン、1,3,6−ヘキサメチレントリイソシアネート、2,6−ジイソシアナトヘキサン酸−2−イソシアナトエチル、2,6−ジイソシアナトヘキサン酸−1−メチル−2−イソシアネートエチルの脂肪族トリイソシアネート化合物、トリシクロヘキシルメタントリイソシアネート及びビシクロヘプタントリイソシアネート等の脂環式トリイソシアネート化合物、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート等の芳香族トリイソシアネート化合物を挙げることができる。ポリイソシアネートとしては、ポリメチレンポリフェニルポリイソシアネートや上記ジイソシアネート、低分子トリイソシアネートより誘導されるポリイソシアネートが例示される。上記ジイソシアネート、トリイソシアネートより誘導されるポリイソシアネートとしては、イソシアヌレート型ポリイソシアネート、ビュレット型ポリイソシアネート、ウレタン型ポリイソシアネート、アロハネート型ポリイソシアネート及びカルボジイミド型ポリイソシアネート等がある。これらイソシアネートは単独又は2種以上を用いることができる。   Isocyanates are compounds having one or more isocyanate groups, preferably two or more isocyanate groups. Preferred isocyanates include aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, low molecular triisocyanates and polyisocyanates. Examples of aliphatic diisocyanates include ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate and trimethylhexamethylene diisocyanate. Examples of alicyclic diisocyanates include isophorone diisocyanate, 4-4′-dicyclohexylmethane diisocyanate, norbornane diisocyanate, 1,4-isocyanatocyclohexane, 1,3-bis (isocyanatomethyl) -cyclohexane and 1,3-bis. Mention may be made of (2-isocyanatopropyl-2-yl) -cyclohexane. Examples of aromatic diisocyanates include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylene diisocyanate and 1,5-naphthalene diisocyanate. Examples of low molecular weight triisocyanates include 1,6,11-undecane triisocyanate, 1,8-diisocyanate-4-isocyanate methyloctane, 1,3,6-hexamethylene triisocyanate, 2,6-diisocyanatohexane 2-isocyanatoethyl acid, 2,6-diisocyanatohexanoic acid-1-methyl-2-isocyanatoethyl aliphatic triisocyanate compound, tricyclohexylmethane triisocyanate, bicycloheptane triisocyanate and other alicyclic triisocyanates Examples thereof include aromatic triisocyanate compounds such as compounds, triphenylmethane triisocyanate and tris (isocyanatephenyl) thiophosphate. Examples of the polyisocyanate include polymethylene polyphenyl polyisocyanate, polyisocyanate derived from the above diisocyanate, and low molecular triisocyanate. Examples of the polyisocyanate derived from the diisocyanate and triisocyanate include isocyanurate type polyisocyanate, burette type polyisocyanate, urethane type polyisocyanate, allophanate type polyisocyanate, and carbodiimide type polyisocyanate. These isocyanates can be used alone or in combination of two or more.

アミンアダクトが有する活性水素基とイソシアネートとの反応により、アミンアダクトとイソシアネートとが結合して、コア表面に生成物による被膜が形成される。そして、反応系中に活性水素基を有する化合物及び/又は水を存在させることにより、それらとイソシアネートとの反応生成物を含む被膜が成長して、カプセルが形成される。カプセルに含まれる反応生成物のうち少なくとも一部は、イソシアネートとアミンアダクトとの反応により生成するウレタン結合によってコアに結合している。このように被膜が成長したマイクロカプセル型潜在性硬化剤を用いることにより、一液性エポキシ樹脂組成物の十分な貯蔵安定性が得られると考えられる。   Due to the reaction between the active hydrogen group of the amine adduct and the isocyanate, the amine adduct and the isocyanate are bonded to form a product film on the core surface. And by making the compound and / or water which have an active hydrogen group in a reaction system, the film containing the reaction product of them and isocyanate grows and a capsule is formed. At least a part of the reaction product contained in the capsule is bonded to the core by a urethane bond generated by the reaction between the isocyanate and the amine adduct. It is considered that sufficient storage stability of the one-part epoxy resin composition can be obtained by using the microcapsule-type latent curing agent having a film thus grown.

マイクロカプセル型潜在性硬化剤において、カプセル(不活性膜)の割合は、マイクロカプセル型潜在性硬化剤の全体質量を基準として5〜80質量%であることが好ましい。カプセルの割合は、所望の用途や目的等に応じて、40〜80質量%、15〜40質量%または5〜15質量%であってもよい。   In the microcapsule-type latent curing agent, the ratio of capsules (inert film) is preferably 5 to 80% by mass based on the total mass of the microcapsule-type latent curing agent. The ratio of the capsule may be 40 to 80% by mass, 15 to 40% by mass, or 5 to 15% by mass depending on the desired use or purpose.

カプセルの割合は、例えば、コアの部分を選択的に溶解する溶媒中に質量M1のマイクロカプセル型潜在性硬化剤を分散させ、そのときの未溶解の固形分の質量M2を測定し、下記式:カプセルの割合(質量%)=(M2/M1)×100からカプセルの割合を算出する方法により求めることができる。コアを選択的に溶解する溶媒としては、例えばメタノールが用いられる。   The ratio of capsules is determined by, for example, measuring the mass M2 of the undissolved solid content by dispersing the microcapsule-type latent curing agent having a mass M1 in a solvent that selectively dissolves the core portion. : Capsule ratio (% by mass) = (M2 / M1) × 100. For example, methanol is used as the solvent for selectively dissolving the core.

カプセルを形成するために用いられる化合物の活性水素基としては、一級アミノ基、二級アミノ基、水酸基、チオール基、カルボン酸及びヒドラジド基が例示される。1分子中に1個以上の活性水素基を有する化合物であればよいが、好ましくは1分子中に2個以上の活性水素基を有する化合物が用いられる。2個以上の活性水素基を有する化合物を用いることにより、コア表面の被膜が効率的に成長して、貯蔵安定性が特に優れたマイクロカプセル型潜在性硬化剤を製造することができる。活性水素基を有する化合物は、1種を単独で又は2種以上を組合わせて用いることができる。   Examples of the active hydrogen group of the compound used to form the capsule include a primary amino group, a secondary amino group, a hydroxyl group, a thiol group, a carboxylic acid, and a hydrazide group. A compound having one or more active hydrogen groups in one molecule may be used, but a compound having two or more active hydrogen groups in one molecule is preferably used. By using a compound having two or more active hydrogen groups, a coating film on the core surface can be efficiently grown, and a microcapsule-type latent curing agent having particularly excellent storage stability can be produced. The compound which has an active hydrogen group can be used individually by 1 type or in combination of 2 or more types.

カプセル形成の反応は、分散媒中にコアを分散させた反応液中で行うことができる。反応はコアを構成する成分(特にアミンアダクト)の融点又は軟化点以下の温度で行うことが好ましい。   The capsule formation reaction can be performed in a reaction solution in which a core is dispersed in a dispersion medium. The reaction is preferably carried out at a temperature below the melting point or softening point of the components (particularly amine adducts) constituting the core.

分散媒の沸点は好ましくは1気圧で150℃以下である。分散媒の沸点が150℃以上であると、反応液から分散媒を除去することが困難になる傾向がある。また、分散媒の粘度は好ましくは25℃で1000mPa・s以下である。分散媒の粘度が1000mPa・s以上であると、均一な反応が困難になって、得られるマイクロカプセル型潜在性硬化剤が凝集し、硬化特性を著しく低下させる可能性がある。同様の観点から、より好ましくは、分散媒の沸点は50〜120℃であり、分散媒の粘度は0.2〜10mPa・sである。   The boiling point of the dispersion medium is preferably 150 ° C. or less at 1 atmosphere. If the boiling point of the dispersion medium is 150 ° C. or higher, it tends to be difficult to remove the dispersion medium from the reaction solution. The viscosity of the dispersion medium is preferably 1000 mPa · s or less at 25 ° C. When the viscosity of the dispersion medium is 1000 mPa · s or more, a uniform reaction becomes difficult, and the resulting microcapsule-type latent curing agent may aggregate to significantly reduce the curing characteristics. From the same viewpoint, more preferably, the boiling point of the dispersion medium is 50 to 120 ° C., and the viscosity of the dispersion medium is 0.2 to 10 mPa · s.

分散媒は、活性水素基や、アミンアダクトと反応するエポキシ基などの置換基を有しないことが好ましい。これらの置換基は、カプセル形成の反応を阻害する可能性がある。好適な分散媒の具体例として、シクロヘキサン(沸点80.7℃、粘度0.898mPa・s:25℃)及びヘキサン(沸点69℃、粘度0.299mPa・s:25℃)が挙げられる。   The dispersion medium preferably does not have a substituent such as an active hydrogen group or an epoxy group that reacts with an amine adduct. These substituents may inhibit the capsule formation reaction. Specific examples of suitable dispersion media include cyclohexane (boiling point 80.7 ° C., viscosity 0.898 mPa · s: 25 ° C.) and hexane (boiling point 69 ° C., viscosity 0.299 mPa · s: 25 ° C.).

カプセル形成の後、マイクロカプセル型潜在性硬化剤及び分散媒等を含む混合物から、分散媒が除去される。分散媒中には、未反応のイソシアネートや副生成物、水および/または活性水素基を有する化合物が残存する場合があるが、分散媒を除去することにより、分散媒中の残存物から分離してマイクロカプセル型潜在性硬化剤を取り出すことができる。未反応物がマイクロカプセル型潜在性硬化剤に含まれていると、貯蔵安定性が低下する可能性がある。   After the capsule formation, the dispersion medium is removed from the mixture containing the microcapsule type latent curing agent and the dispersion medium. In the dispersion medium, unreacted isocyanate and by-products, water and / or a compound having an active hydrogen group may remain. However, by removing the dispersion medium, it is separated from the residue in the dispersion medium. Thus, the microcapsule type latent curing agent can be taken out. If unreacted substances are contained in the microcapsule-type latent curing agent, the storage stability may be lowered.

分散媒の除去の方法は特に限定されないが、未反応のイソシアネートや副生成物、水および活性水素基を有する化合物などの残存物を分散媒と共に除去することが好ましい。好ましい方法として、ろ過が挙げられる。ろ過等により分散媒を除去した後、マイクロカプセル型潜在性硬化剤を洗浄することが好ましい。洗浄の方法は特に限定されないが、ろ過後、マイクロカプセル型潜在性硬化剤を溶解しない溶媒を用いて洗浄することができる。係る溶媒として分散媒と同種のものを用いてもよい。洗浄により、マイクロカプセル型潜在性硬化剤表面に付着している未反応の化合物を除去できる。ろ過したマイクロカプセル型潜在性硬化剤は、乾燥することにより粉末状になる。乾燥の方法は特に限定されないが、コアの融点または軟化点以下の温度で乾燥することが好ましい。このような方法として減圧乾燥が挙げられる。粉末状のマイクロカプセル型硬化剤は、一液性エポキシ樹脂組成物において、幅広い種類の配合のために容易に適用することができる。   The method for removing the dispersion medium is not particularly limited, but it is preferable to remove unreacted isocyanate, by-products, water, and a residue such as a compound having an active hydrogen group together with the dispersion medium. A preferred method includes filtration. It is preferable to wash the microcapsule-type latent curing agent after removing the dispersion medium by filtration or the like. The method for washing is not particularly limited, and after filtration, washing can be performed using a solvent that does not dissolve the microcapsule-type latent curing agent. As the solvent, the same kind as the dispersion medium may be used. By washing, unreacted compounds adhering to the surface of the microcapsule type latent curing agent can be removed. The filtered microcapsule-type latent curing agent is powdered by drying. The drying method is not particularly limited, but it is preferable to dry at a temperature below the melting point or softening point of the core. Such a method includes drying under reduced pressure. The powdery microcapsule-type curing agent can be easily applied for a wide variety of formulations in a one-part epoxy resin composition.

エポキシ樹脂中でカプセル化を行う方法の場合、未反応のイソシアネートや副生成物、水および/または活性水素基を有する化合物が一液型エポキシ樹脂組成物中にまで残存する結果、貯蔵安定性が低下する。また、粉末状のアミンアダクト粒子を高濃度でエポキシ樹脂中に添加すると粘度が著しく高くなり、均一な反応が出来ず、ロット間の特性の差が大きくなる、カプセル化反応を行うこと自体ができないなどの問題も生じる。反応性を高める為に、エポキシ樹脂との反応性の高い化合物を添加したコアや、反応性の高いエポキシ樹脂を分散媒として用いてカプセル化を行うと、コアとエポキシ樹脂との反応が優先的に進行し、マイクロカプセル型潜在性硬化剤または一液性エポキシ樹脂組成物の製造が困難となる。   In the case of the encapsulation method in the epoxy resin, the unreacted isocyanate, by-product, water and / or the compound having an active hydrogen group remain in the one-pack type epoxy resin composition, so that the storage stability is improved. descend. Moreover, when powdery amine adduct particles are added to the epoxy resin at a high concentration, the viscosity becomes remarkably high, a uniform reaction cannot be performed, and the difference in characteristics between lots becomes large, and the encapsulation reaction itself cannot be performed. Such a problem also occurs. In order to enhance the reactivity, if the core is added with a compound that is highly reactive with the epoxy resin or if the encapsulation is performed using a highly reactive epoxy resin as the dispersion medium, the reaction between the core and the epoxy resin is preferential. Therefore, it becomes difficult to produce a microcapsule type latent curing agent or a one-part epoxy resin composition.

カプセル形成の反応は、必要であれば2回以上行ってもよい。このとき、少なくとも一回は、アミンアダクトとイソシアネートと活性水素基を有する化合物および/または水との反応を行えばよく、これ以外に、イソシアネートと活性水素基を有する化合物および/または水とから選ばれるいずれか一方を用いて反応を行ってもよい。カプセル形成の反応は5回以下が製造コストを抑える点から好ましく、より好ましくは3回以下である。   The capsule formation reaction may be performed twice or more if necessary. At this time, at least one reaction may be performed between the amine adduct, the isocyanate, the compound having an active hydrogen group, and / or water. In addition, the compound may be selected from the compound having the isocyanate, the active hydrogen group, and / or water. The reaction may be carried out using any one of them. The capsule formation reaction is preferably 5 times or less from the viewpoint of suppressing the production cost, and more preferably 3 times or less.

本実施形態に係る一液性エポキシ樹脂組成物は、マイクロカプセル型潜在性硬化剤と、エポキシ樹脂とを含有する。マイクロカプセル型潜在性硬化剤の量は、特に限定されないが、通常、エポキシ樹脂及びマイクカプセル型潜在性硬化剤の合計量100質量部に対して5〜70質量部程度である。この量が5質量部未満であるとエポキシ樹脂が十分に硬化し難くなる傾向、又は硬化に長時間を要する傾向があり、70質量部を超えるとエポキシ樹脂組成物の流動性が低下する傾向がある。   The one-component epoxy resin composition according to this embodiment contains a microcapsule-type latent curing agent and an epoxy resin. The amount of the microcapsule type latent curing agent is not particularly limited, but is usually about 5 to 70 parts by mass with respect to 100 parts by mass of the total amount of the epoxy resin and the microphone capsule type latent curing agent. When this amount is less than 5 parts by mass, the epoxy resin tends to be hard to be cured sufficiently, or the curing tends to take a long time, and when it exceeds 70 parts by mass, the fluidity of the epoxy resin composition tends to decrease. is there.

一液性エポキシ樹脂組成物に用いられるエポキシ樹脂としては、平均2個以上のエポキシ基を有するエポキシ化合物を好ましく用いることができる。具体的にはビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA及びテトラフルオロビスフェノールA等のビスフェノール類をグリシジル化して得られるビスフェノール型エポキシ樹脂;ビフェノール、ジヒドキシナフタレン及び9,9−ビス(4−ヒドロキシフェニル)フルオレン等のその他の2価フェノール類をグリシジル化して得られるエポキシ樹脂;1,1,1−トリス(4−ヒドロキシフェニル)メタン及び4,4−(1−(4−(1−(4−ヒドロキシフェニル)−1−メチルエチル)フェニル)エチリデン)ビスフェノール等のトリスフェノール類をグリシジル化して得られるエポキシ樹脂;1,1,2,2,−テトラキス(4−ヒドロキシフェニル)エタン等のテトラキスフェノール類をグリシジル化して得られるエポキシ樹脂;フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化フェノールノボラック及び臭素化ビスフェノールAノボラック等のノボラック類をグリシジル化して得られるノボラック型エポキシ樹脂等;多価フェノール類をグリシジル化して得られるエポキシ樹脂、グリセリンやポリエチレングリコール等の多価アルコールをグリシジル化して得られる脂肪族エーテル型エポキシ樹脂;p−オキシ安息香酸、β−オキシナフトエ酸等のヒドロキシカルボン酸をグリシジル化して得られるエーテルエステル型エポキシ樹脂;フタル酸、テレフタル酸のようなポリカルボン酸をグリシジル化して得られるエステル型エポキシ樹脂;4,4−ジアミノジフェニルメタンやm−アミノフェノール等のアミン化合物のグリシジル化物やトリグリシジルイソシアヌレート等のアミン型エポキシ樹脂等のグリシジル型エポキシ樹脂と、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート等の脂環族エポキサイド等が例示される。エポキシ樹脂の他の例としては、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂、アルキッド変性エポキシ樹脂等の変性エポキシ樹脂がある。これらのエポキシ樹脂は単独で用いても2種類以上併用してもよい。   As the epoxy resin used in the one-component epoxy resin composition, an epoxy compound having an average of two or more epoxy groups can be preferably used. Specifically, bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A, tetrachlorobisphenol A and tetrafluorobisphenol A Bisphenol-type epoxy resin obtained by glycidylation of bisphenols such as bisphenol; Epoxy resin obtained by glycidylation of other dihydric phenols such as biphenol, dihydroxynaphthalene and 9,9-bis (4-hydroxyphenyl) fluorene 1,1,1-tris (4-hydroxyphenyl) methane and 4,4- (1- (4- (1- (4-hydroxyphenyl) -1-methylethyl) phenyl) Liden) Epoxy resin obtained by glycidylation of trisphenols such as bisphenol; Epoxy resin obtained by glycidylation of tetrakisphenols such as 1,1,2,2, -tetrakis (4-hydroxyphenyl) ethane; Phenol novolak , Novolak type epoxy resins obtained by glycidylation of novolaks such as cresol novolak, bisphenol A novolak, brominated phenol novolak and brominated bisphenol A novolak; epoxy resins obtained by glycidylation of polyhydric phenols, glycerin and polyethylene Aliphatic ether type epoxy resin obtained by glycidylation of polyhydric alcohol such as glycol; obtained by glycidylation of hydroxycarboxylic acid such as p-oxybenzoic acid and β-oxynaphthoic acid Ether ester type epoxy resins; ester type epoxy resins obtained by glycidylation of polycarboxylic acids such as phthalic acid and terephthalic acid; glycidylated products of triaminedyl compounds such as 4,4-diaminodiphenylmethane and m-aminophenol Examples thereof include glycidyl type epoxy resins such as amine type epoxy resins such as isocyanurate, and alicyclic epoxides such as 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate. Other examples of epoxy resins include modified epoxy resins such as urethane-modified epoxy resins, rubber-modified epoxy resins, and alkyd-modified epoxy resins. These epoxy resins may be used alone or in combination of two or more.

一液性エポキシ樹脂組成物は、マイクロカプセル型潜在性硬化剤に加えて、酸無水物類、フェノール類、ヒドラジド類、およびグアニジン類よりなる群より選ばれる少なくとも1種の硬化剤を更に含有していてもよい。また、一液性エポキシ樹脂組成物は、所望によって、増量剤、補強材、充填材、導電微粒子、顔料、有機溶剤、反応性希釈剤、非反応性希釈剤、樹脂類、結晶性アルコール、カップリング剤等を含有していてもよい。   The one-part epoxy resin composition further contains at least one curing agent selected from the group consisting of acid anhydrides, phenols, hydrazides, and guanidines in addition to the microcapsule-type latent curing agent. It may be. In addition, the one-part epoxy resin composition can be used as required by a filler, a reinforcing material, a filler, conductive fine particles, a pigment, an organic solvent, a reactive diluent, a non-reactive diluent, a resin, a crystalline alcohol, a cup. A ring agent or the like may be contained.

充填剤の例としては、例えば、コールタール、ガラス繊維、アスベスト繊維、ほう素繊維、炭素繊維、セルロース、ポリエチレン粉、ポリプロピレン粉、石英紛、鉱物性ケイ酸塩、雲母、アスベスト粉、スレート粉、カオリン、酸化アルミニウム三水和物、水酸化アルミニウム、チョーク粉、石こう、炭酸カルシウム、三酸化アンチモン、ペントン、シリカ、エアロゾル、リトポン、バライト、二酸化チタン、カーボンブラック、グラファイト、カーボンナノチューブ、フラーレン、酸化鉄、金、銀、アルミニウム粉、鉄粉、ナノサイズの金属結晶、金属間化合物等を挙げることができる。これらはいずれもその用途に応じて有効に用いられる。   Examples of the filler include, for example, coal tar, glass fiber, asbestos fiber, boron fiber, carbon fiber, cellulose, polyethylene powder, polypropylene powder, quartz powder, mineral silicate, mica, asbestos powder, slate powder, Kaolin, aluminum oxide trihydrate, aluminum hydroxide, chalk powder, gypsum, calcium carbonate, antimony trioxide, penton, silica, aerosol, lithopone, barite, titanium dioxide, carbon black, graphite, carbon nanotube, fullerene, iron oxide , Gold, silver, aluminum powder, iron powder, nano-sized metal crystals, intermetallic compounds, and the like. Any of these is effectively used according to the application.

導電微粒子の例としては、例えば、半田粒子、ニッケル粒子、ナノサイズの金属結晶、金属の表面を他の金属で被覆した粒子、銅と銀の傾斜粒子等の金属粒子や、例えば、スチレン樹脂、ウレタン樹脂、メラミン樹脂、エポキシ樹脂、アクリル樹脂、フェノール樹脂、スチレン−ブタジエン樹脂等の樹脂粒子に金、ニッケル、銀、銅、半田などの導電性薄膜で被覆を施した粒子等が挙げられる。   Examples of the conductive fine particles include, for example, solder particles, nickel particles, nano-sized metal crystals, metal particles coated with other metals, metal particles such as copper and silver inclined particles, and styrene resin, Examples thereof include particles obtained by coating resin particles such as urethane resin, melamine resin, epoxy resin, acrylic resin, phenol resin, and styrene-butadiene resin with a conductive thin film such as gold, nickel, silver, copper, and solder.

有機溶剤としては、例えば、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル及び酢酸ブチルが挙げられる。   Examples of the organic solvent include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate and butyl acetate.

反応性希釈剤としては、例えば、ブチルグリシジルエーテル、N,N’−グリシジル−o−トルイジン、フェニルグリシジルエーテル、スチレンオキサイド、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル及び1,6−ヘキサンジオールジグリシジルエーテルが挙げられる。非反応性希釈剤としては、例えば、ジオクチルフタレート、ジブチルフタレート、ジオクチルアジベート及び石油系溶剤が挙げられる。   Examples of reactive diluents include butyl glycidyl ether, N, N′-glycidyl-o-toluidine, phenyl glycidyl ether, styrene oxide, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and 1,6-hexanediol diester. A glycidyl ether is mentioned. Examples of non-reactive diluents include dioctyl phthalate, dibutyl phthalate, dioctyl adipate, and petroleum solvents.

樹脂類としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリエーテル樹脂、メラミン樹脂及びフェノキシ樹脂が挙げられる。   Examples of the resins include polyester resins, polyurethane resins, acrylic resins, polyether resins, melamine resins, and phenoxy resins.

結晶性アルコールとしては、例えば、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、ペンタエリスリトール、ソルビトール、ショ糖及びトリメチロールプロパンが挙げられる。   Examples of the crystalline alcohol include 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, pentaerythritol, sorbitol, sucrose, and trimethylolpropane.

一液性エポキシ樹脂組成物は、好ましくは、マイクロカプセル型潜在性硬化剤とエポキシ樹脂と混合した混合物中でマイクカプセル型潜在性硬化剤を分散させる工程と、分散したマイクロカプセル型潜在性硬化剤を加熱処理する工程とを備える製造方法により得ることができる。   The one-part epoxy resin composition preferably comprises a step of dispersing the microphone capsule type latent curing agent in a mixture of the microcapsule type latent curing agent and the epoxy resin, and a dispersed microcapsule type latent curing agent. It can obtain by a manufacturing method provided with the process of heat-processing.

マイクロカプセル型潜在性硬化剤とエポキシ樹脂との混合物をミキサーやロールなどを用いて攪拌することにより、マイクロカプセル型潜在性硬化剤をエポキシ樹脂中に分散させることができる。   The microcapsule type latent curing agent can be dispersed in the epoxy resin by stirring the mixture of the microcapsule type latent curing agent and the epoxy resin using a mixer or a roll.

エポキシ樹脂中のマイクロカプセル型潜在性硬化剤を加熱処理することにより、カプセルにエポキシ樹脂が取り込まれて、貯蔵安定性が更に向上する。加熱処理の温度は、常温(25℃)より高く、コアを構成するアミンアダクトの融点又は軟化点以下が好ましい。常温より低い温度では、貯蔵安定性向上効果が小さくなる傾向があり、アミンアダクトの融点又は軟化点より高い温度では、エポキシ樹脂との反応により硬化剤の特性が低下しやすい。処理時間は5分から72時間であることが生産性の観点から好ましい。   By heat-treating the microcapsule-type latent curing agent in the epoxy resin, the epoxy resin is taken into the capsule and the storage stability is further improved. The temperature of the heat treatment is higher than room temperature (25 ° C.) and is preferably below the melting point or softening point of the amine adduct constituting the core. When the temperature is lower than room temperature, the effect of improving the storage stability tends to be small, and when the temperature is higher than the melting point or softening point of the amine adduct, the properties of the curing agent are likely to deteriorate due to the reaction with the epoxy resin. The treatment time is preferably 5 minutes to 72 hours from the viewpoint of productivity.

本実施形態に係る一液性エポキシ樹脂組成物は、加熱により硬化して硬化物を形成する。係る一液性エポキシ樹脂組成物は、接着剤および/または接合用ペースト、接合用フィルムの他に、導電材料、異方導電材料、絶縁材料、封止材、コーティング材、塗料組成物、プリプレグ、熱伝導性材料等として有用である。   The one-component epoxy resin composition according to this embodiment is cured by heating to form a cured product. Such a one-component epoxy resin composition includes, in addition to an adhesive and / or a bonding paste and a bonding film, a conductive material, an anisotropic conductive material, an insulating material, an encapsulant, a coating material, a coating composition, a prepreg, It is useful as a heat conductive material.

以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these.

(検討1)
1−1.アミンアダクト粒子の合成
アミンアダクト粒子1
冷却管、等圧滴下ロート、攪拌装置を備えた3000mLの3口セパラブルフラスコに、1−ブタノールとトルエンを1/1(wt/wt)で混合した溶液824.2gに2−メチルイミダゾール288gを加え、撹拌しながらオイルバスで80℃に加熱して2−メチルイミダゾールを溶解させた。次いで、1−ブタノールとトルエンを1/1(wt/wt)で混合した混合溶媒300gにビスフェノールA型エポキシ樹脂(エポキシ当量173g/eq,加水分解塩素量0.01重量%)946gを溶解させた溶液を等圧滴下ロートを用いて90分間で滴下した。滴下終了後、80℃で5時間加熱した。その後、180℃まで昇温し、装置内を最終的に圧力が10mmHg以下になるまで減圧した。圧力が10mmHg以下になってから、さらに2時間減圧下での加熱により溶媒を留去して、暗赤褐色の粘調液体を得た。この粘調液体を室温まで冷却して暗赤褐色の固体状アミンアダクトを得た。このアミンアダクトをジェットミルで粉砕し、平均粒子径1.96μmのアミンアダクト粒子1を得た。
(Examination 1)
1-1. Synthesis of amine adduct particles 1
In a 3000 mL three-necked separable flask equipped with a condenser, an isostatic dropping funnel, and a stirrer, 288 g of 2-methylimidazole was added to 824.2 g of 1-butanol and toluene mixed in 1/1 (wt / wt). In addition, the mixture was heated to 80 ° C. in an oil bath with stirring to dissolve 2-methylimidazole. Next, 946 g of bisphenol A type epoxy resin (epoxy equivalent 173 g / eq, amount of hydrolyzed chlorine 0.01 wt%) was dissolved in 300 g of a mixed solvent in which 1-butanol and toluene were mixed at 1/1 (wt / wt). The solution was added dropwise over 90 minutes using an isobaric dropping funnel. After completion of dropping, the mixture was heated at 80 ° C. for 5 hours. Thereafter, the temperature was raised to 180 ° C., and the pressure in the apparatus was finally reduced until the pressure became 10 mmHg or less. After the pressure became 10 mmHg or less, the solvent was distilled away by heating under reduced pressure for 2 hours to obtain a dark reddish brown viscous liquid. The viscous liquid was cooled to room temperature to obtain a dark reddish brown solid amine adduct. The amine adduct was pulverized with a jet mill to obtain amine adduct particles 1 having an average particle size of 1.96 μm.

アミンアダクト粒子2
ビスフェノールA型エポキシ樹脂をビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007重量%)874gに変更したこと以外はアミンアダクト粒子1と同様の方法で、平均粒子径1.88μmのアミンアダクト粒子2を得た。
Amine adduct particle 2
The average particle size of the bisphenol A-type epoxy resin was changed to 874 g of bisphenol F-type epoxy resin (epoxy equivalent 160 g / eq, hydrolyzed chlorine content 0.007 wt%) in the same manner as the amine adduct particles 1 except that 88 μm amine adduct particles 2 were obtained.

1−2.マイクロカプセル型潜在性硬化剤の合成
マイクロカプセル型潜在性硬化剤1
冷却管、熱電対、撹拌装置を備えた500mLの3口セパラブルフラスコにアミンアダクト粒子1を45.0gとシクロヘキサン171.0gを加え、40℃に加熱した後、水1.2gを加えた。10分間攪拌した後、4,4’−ジフェニルメタンジイソシアネート3.0gを加えて40℃で2時間反応させた。次いで50℃に昇温して6時間反応させた。反応終了後、分散液をろ過し、回収された粉末を50℃に加熱したシクロヘキサンで洗浄した。得られた粉末から10mmHg以下の圧力で24時間の減圧乾燥により溶媒を除去して、マイクロカプセル型潜在性硬化剤1を得た。
1-2. Synthesis of microcapsule type latent curing agent Microcapsule type latent curing agent 1
45.0 g of amine adduct particles 1 and 171.0 g of cyclohexane were added to a 500 mL three-necked separable flask equipped with a condenser, a thermocouple, and a stirrer, heated to 40 ° C., and then 1.2 g of water was added. After stirring for 10 minutes, 3.0 g of 4,4′-diphenylmethane diisocyanate was added and reacted at 40 ° C. for 2 hours. Subsequently, it heated up at 50 degreeC and made it react for 6 hours. After completion of the reaction, the dispersion was filtered, and the recovered powder was washed with cyclohexane heated to 50 ° C. The solvent was removed from the obtained powder by drying under reduced pressure for 24 hours at a pressure of 10 mmHg or less to obtain a microcapsule-type latent curing agent 1.

マイクロカプセル型潜在性硬化剤2
アミンアダクト粒子1に代えてアミンアダクト粒子2を用いたことの他は実施例1と同様にして、マイクロカプセル型潜在性硬化剤2を得た。
Microcapsule type latent curing agent 2
A microcapsule-type latent curing agent 2 was obtained in the same manner as in Example 1 except that the amine adduct particle 2 was used in place of the amine adduct particle 1.

マイクロカプセル型潜在性硬化剤3(マイクロカプセル型潜在性硬化剤1の再カプセル化)
冷却管、熱電対、攪拌装置を備えた500mLの3口セパラブルフラスコにトルエン146.3gと4,4’−ジフェニルメタンジイソシアネート2.5gを加え、オイルバスで50℃に加熱した。次いでマイクロカプセル型潜在性硬化剤(F)1を15.0g加え、50℃で3時間反応させた。反応終了後、分散液をろ過し、回収された粉末を50℃に加熱したトルエンで洗浄した。得られた粉末から10mmHg以下の圧力で24時間の減圧乾燥により溶媒を除去して、マイクロカプセル型潜在性硬化剤3を得た。
Microcapsule type latent curing agent 3 (Recapsulation of microcapsule type latent curing agent 1)
To a 500 mL three-necked separable flask equipped with a condenser, a thermocouple, and a stirrer, 146.3 g of toluene and 2.5 g of 4,4′-diphenylmethane diisocyanate were added and heated to 50 ° C. in an oil bath. Next, 15.0 g of the microcapsule type latent curing agent (F) 1 was added and reacted at 50 ° C. for 3 hours. After completion of the reaction, the dispersion was filtered, and the recovered powder was washed with toluene heated to 50 ° C. The solvent was removed from the obtained powder by drying under reduced pressure for 24 hours at a pressure of 10 mmHg or less to obtain a microcapsule-type latent curing agent 3.

マイクロカプセル型潜在性硬化剤4(エチレングリコール添加)
冷却管、熱電対、攪拌装置を備えた500mLの3口セパラブルフラスコにアミンアダクト粒子1を45.0gとシクロヘキサン171.0gを加え、40℃に加熱した。次いで、トリレンジイソシアネート2.0gを加え40℃で2時間加熱した。さらに50℃に昇温して、エチレングリコールを3.0gを6時間かけて加えた。反応終了後、分散液をろ過し、回収された粉末を50℃に加熱したシクロヘキサンで洗浄した。得られた粉末から10mmHg以下の圧力で24時間の減圧乾燥により溶媒を除去して、マイクロカプセル型潜在性硬化剤4を得た。
Microcapsule type latent curing agent 4 (with ethylene glycol added)
45.0 g of amine adduct particles 1 and 171.0 g of cyclohexane were added to a 500 mL three-necked separable flask equipped with a condenser, a thermocouple, and a stirrer, and heated to 40 ° C. Next, 2.0 g of tolylene diisocyanate was added and heated at 40 ° C. for 2 hours. The temperature was further raised to 50 ° C., and 3.0 g of ethylene glycol was added over 6 hours. After completion of the reaction, the dispersion was filtered, and the recovered powder was washed with cyclohexane heated to 50 ° C. The solvent was removed from the obtained powder by drying under reduced pressure for 24 hours at a pressure of 10 mmHg or less to obtain a microcapsule-type latent curing agent 4.

マイクロカプセル型潜在性硬化剤6
冷却管、熱電対、撹拌装置を備えた500mLの3口セパラブルフラスコにアミンアダクト粒子1を45.0gとシクロヘキサン171.0gを加え、40℃に加熱した後、水1.2gを加えた。10分間攪拌した後、ポリメリックMDI(日本ポリウレタン社製、商品名:ミリオネートMR−200)3.0gを加えて40℃で2時間反応させた。次いで50℃に昇温して6時間反応させた。反応終了後、分散液をろ過し、回収された粉末を50℃に加熱したシクロヘキサンで洗浄した。得られた粉末から10mmHg以下の圧力で24時間の減圧乾燥により溶媒を除去して、マイクロカプセル型潜在性硬化剤6を得た。
Microcapsule type latent curing agent 6
45.0 g of amine adduct particles 1 and 171.0 g of cyclohexane were added to a 500 mL three-necked separable flask equipped with a condenser, a thermocouple, and a stirrer, heated to 40 ° C., and then 1.2 g of water was added. After stirring for 10 minutes, 3.0 g of polymeric MDI (manufactured by Nippon Polyurethane Co., Ltd., trade name: Millionate MR-200) was added and reacted at 40 ° C. for 2 hours. Subsequently, it heated up at 50 degreeC and made it react for 6 hours. After completion of the reaction, the dispersion was filtered, and the recovered powder was washed with cyclohexane heated to 50 ° C. The solvent was removed from the obtained powder by drying under reduced pressure for 24 hours at a pressure of 10 mmHg or less to obtain a microcapsule-type latent curing agent 6.

1−3.一液性エポキシ樹脂組成物の調製
実施例1〜3
マイクロカプセル型潜在性硬化剤1、2又は3を33gと、ビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007重量%)67gを配合し、実施例1〜3の一液性エポキシ樹脂組成物を得た。
1-3. Preparation Examples 1 to 3 of One-Part Epoxy Resin Composition
33 g of microcapsule type latent curing agent 1, 2 or 3 and 67 g of bisphenol F type epoxy resin (epoxy equivalent 160 g / eq, amount of hydrolyzed chlorine 0.007 wt%) were blended. A liquid epoxy resin composition was obtained.

実施例4
マイクロカプセル型潜在性硬化剤4を33gと、ビスフェノールA型エポキシ樹脂(エポキシ当量173g/eq,加水分解塩素量0.01重量%)67gを配合し、一液性エポキシ樹脂組成物を得た。
Example 4
33 g of microcapsule type latent curing agent 4 and 67 g of bisphenol A type epoxy resin (epoxy equivalent 173 g / eq, hydrolyzed chlorine content 0.01 wt%) were blended to obtain a one-pack epoxy resin composition.

実施例5
マイクロカプセル型潜在性硬化剤3を45gと、ビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007重量%)55gを配合し、一液性エポキシ樹脂組成物を得た。
Example 5
45 g of the microcapsule type latent curing agent 3 and 55 g of bisphenol F type epoxy resin (epoxy equivalent 160 g / eq, hydrolyzed chlorine amount 0.007 wt%) were blended to obtain a one-pack epoxy resin composition.

実施例6
マイクロカプセル型潜在性硬化剤3を35gと、ビスフェノールA型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007重量%)25g、レゾルシンジグリシジルエーテル(エポキシ当量117g/eq,加水分解塩素量 0.7重量%)40gを配合し、一液性エポキシ樹脂組成物を得た。
Example 6
35 g of microcapsule type latent curing agent 3, 25 g of bisphenol A type epoxy resin (epoxy equivalent 160 g / eq, amount of hydrolyzed chlorine 0.007 wt%), resorcin diglycidyl ether (epoxy equivalent 117 g / eq, hydrolyzed chlorine) 40 g) was added to obtain a one-part epoxy resin composition.

実施例7
マイクロカプセル型潜在性硬化剤1を33g、冷却管、熱電対、攪拌装置を備えた3口セパラブルフラスコに加え、ビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007重量%)を67g加え、50℃で24時間撹拌し、一液性エポキシ樹脂組成物を得た。
Example 7
33 g of microcapsule-type latent curing agent 1 was added to a three-necked separable flask equipped with a condenser, a thermocouple, and a stirrer, and a bisphenol F-type epoxy resin (epoxy equivalent 160 g / eq, hydrolyzed chlorine content 0.007 wt. %) Was added and stirred at 50 ° C. for 24 hours to obtain a one-part epoxy resin composition.

実施例8
マイクロカプセル型潜在性硬化剤1の代わりに、マイクロカプセル型潜在性硬化剤2を用いた以外は、実施例7と同様にして、一液性エポキシ樹脂組成物を得た。
Example 8
A one-part epoxy resin composition was obtained in the same manner as in Example 7 except that the microcapsule type latent curing agent 2 was used instead of the microcapsule type latent curing agent 1.

1−4.マイクロカプセル型潜在性硬化剤の特性評価
実施例1〜8の一液性エポキシ樹脂組成物の硬化特性及び貯蔵安定性と、アミンアダクト粒子1、2の平均粒径を以下の方法により評価した。結果を表1にまとめて示す。
1-4. Characteristic Evaluation of Microcapsule Type Latent Curing Agent The curing characteristics and storage stability of the one-part epoxy resin compositions of Examples 1 to 8 and the average particle diameter of the amine adduct particles 1 and 2 were evaluated by the following methods. The results are summarized in Table 1.

硬化特性
一液性エポキシ樹脂組成物について、Perkin−Elmer社製DSC7示差熱量計を用い、昇温速度10℃/min、測定温度範囲30℃〜300℃、窒素雰囲気で効果特性を測定した。硬化発熱に由来するピークの極大点の温度が115℃未満ならば「AA」、115℃以上120℃未満ならば「A」、120℃以上130℃未満なら「B」、130℃以上なら「C」と判定した。硬化発熱に由来するピークの極大点の温度が低いほど、樹脂組成物が優れた低温硬化性を有することを意味する。
Curing characteristics Using a Perkin-Elmer DSC7 differential calorimeter, the effect characteristics of the one-part epoxy resin composition were measured at a temperature rising rate of 10 ° C / min, a measurement temperature range of 30 ° C to 300 ° C, and a nitrogen atmosphere. “AA” if the temperature at the maximum peak of the peak derived from the heat of curing is less than 115 ° C., “A” if it is 115 ° C. or higher and lower than 120 ° C., “B” if it is 120 ° C. or higher and lower than 130 ° C. Was determined. It means that the lower the temperature of the peak maximum point derived from the curing heat generation, the better the low temperature curability of the resin composition.

貯蔵安定性
一液性エポキシ樹脂組成物に、同重量のビスフェノールA型エポキシ樹脂(エポキシ当量173g/eq,加水分解塩素量0.01重量%)を加え、40℃恒温槽中で保管した。初期及び30日後における一液性エポキシ樹脂組成物の25℃での粘度をE型粘度計を用いて測定した。30日後の初期からの粘度増加率により貯蔵安定性を判断した。粘度測定は、3°(角度)のコーンを用い、粘度が3〜40Pa・sのときは10rpm、粘度が40〜200Pa・sのときは2.5rpm、200〜1000Pa・sのときは0.5rpmの回転数で行った。30日後の粘度増加率が25%以下であれば「AA」、50%以下であれば「A」、100%未満であれば「B」、100%以上であれば「C」と判定した。
Storage stability The same weight of bisphenol A type epoxy resin (epoxy equivalent: 173 g / eq, amount of hydrolyzed chlorine: 0.01% by weight) was added to the one-part epoxy resin composition and stored in a constant temperature bath at 40 ° C. The viscosity at 25 ° C. of the one-part epoxy resin composition at the initial stage and after 30 days was measured using an E-type viscometer. Storage stability was judged by the rate of increase in viscosity from the beginning after 30 days. Viscosity is measured using a 3 ° (angle) cone, 10 rpm when the viscosity is 3 to 40 Pa · s, 2.5 rpm when the viscosity is 40 to 200 Pa · s, and 0. The rotation was performed at 5 rpm. When the viscosity increase rate after 30 days was 25% or less, it was determined as “AA”, when it was 50% or less, “A”, when it was less than 100%, “B”, and when it was 100% or more, “C”.

平均粒径
アミンアダクト粒子の平均粒径は、Malvern社製レーザー回折式粒度分布測定装置(マスターサイザー2000:乾式測定ユニットScirocco2000)を用いて、3回測定した。このときの50%径(メディアン径)の平均値を平均粒径とした。
Average Particle Size The average particle size of the amine adduct particles was measured three times using a laser diffraction particle size distribution analyzer (Mastersizer 2000: dry measurement unit Sciroco 2000) manufactured by Malvern. The average value of 50% diameter (median diameter) at this time was defined as the average particle diameter.

以下、比較例のためのマイクロカプセル型潜在性硬化剤及び一液性エポキシ樹脂組成物を準備した。   Hereinafter, a microcapsule-type latent curing agent and a one-part epoxy resin composition for a comparative example were prepared.

マイクロカプセル型潜在性硬化剤5の合成
冷却管、熱電対、撹拌装置を備えた3口セパラブルフラスコにアミンアダクト粒子1を45.0gとシクロヘキサン171.0gを加え、40℃に加熱した後、10分間攪拌た。その後、4,4’−ジフェニルメタンジイソシアネート3.0gを加えて40℃で2時間反応させた。次いで50℃に昇温して6時間反応させた。反応終了後、分散液をろ過し、回収された粉末を50℃に加熱したシクロヘキサンで洗浄した。得られた粉末から10mmHg以下の圧力で24時間の減圧乾燥により溶媒を除去して、マイクロカプセル型潜在性硬化剤5を得た。
Synthesis of Microcapsule Type Latent Curing Agent 5 Add 45.0 g of amine adduct particles 1 and 171.0 g of cyclohexane to a three-necked separable flask equipped with a condenser, thermocouple, and stirrer, and heat to 40 ° C. Stir for 10 minutes. Thereafter, 3.0 g of 4,4′-diphenylmethane diisocyanate was added and reacted at 40 ° C. for 2 hours. Subsequently, it heated up at 50 degreeC and made it react for 6 hours. After completion of the reaction, the dispersion was filtered, and the recovered powder was washed with cyclohexane heated to 50 ° C. The solvent was removed from the obtained powder by drying under reduced pressure for 24 hours at a pressure of 10 mmHg or less to obtain a microcapsule-type latent curing agent 5.

比較例1
マイクロカプセル型潜在性硬化剤5を33gと、ビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007重量%)67gを配合し、一液性エポキシ樹脂組成物を得た。
Comparative Example 1
33 g of microcapsule type latent curing agent 5 and 67 g of bisphenol F type epoxy resin (epoxy equivalent 160 g / eq, hydrolyzed chlorine amount 0.007 wt%) were blended to obtain a one-pack epoxy resin composition.

比較例2
冷却管、熱電対、撹拌装置を備えた3口セパラブルフラスコにアミンアダクト粒子1を45gとビスフェノールA型エポキシ樹脂(エポキシ当量173g/eq,加水分解塩素量0.01重量%)55gを加え、40℃に加熱した後、水0.5gを加えた。10分間攪拌した後、4,4’−ジフェニルメタンジイソシアネート4.0gを加えて40℃で2時間加熱した。次いで50℃に昇温して6時間加熱したところ、フラスコ中で硬化反応が進行し、一液性エポキシ樹脂組成物が得られなかった。
Comparative Example 2
45 g of amine adduct particles 1 and 55 g of bisphenol A type epoxy resin (epoxy equivalent 173 g / eq, amount of hydrolyzed chlorine 0.01 wt%) were added to a three-necked separable flask equipped with a condenser, a thermocouple, and a stirring device. After heating to 40 ° C., 0.5 g of water was added. After stirring for 10 minutes, 4.0 g of 4,4′-diphenylmethane diisocyanate was added and heated at 40 ° C. for 2 hours. Next, when the temperature was raised to 50 ° C. and heated for 6 hours, the curing reaction proceeded in the flask, and a one-component epoxy resin composition could not be obtained.

比較例3
冷却管、熱電対、撹拌装置を備えた3口セパラブルフラスコにアミンアダクト粒子1を33gとビスフェノールA型エポキシ樹脂(エポキシ当量173g/eq,加水分解塩素量 0.01重量%)67gを加え、40℃に加熱した後、水0.5gを加えた。10分間攪拌した後、4,4’−ジフェニルメタンジイソシアネート4.0gを加えて40℃で2時間加熱した。次いで50℃に昇温して6時間加熱し、一液性エポキシ樹脂組成物を得た。
Comparative Example 3
33 g of amine adduct particles 1 and 67 g of bisphenol A type epoxy resin (epoxy equivalent 173 g / eq, amount of hydrolyzed chlorine 0.01 wt%) were added to a three-necked separable flask equipped with a condenser, a thermocouple, and a stirring device. After heating to 40 ° C., 0.5 g of water was added. After stirring for 10 minutes, 4.0 g of 4,4′-diphenylmethane diisocyanate was added and heated at 40 ° C. for 2 hours. Next, the temperature was raised to 50 ° C. and heated for 6 hours to obtain a one-component epoxy resin composition.

比較例1、3の一液性エポキシ樹脂組成物の硬化特性及び貯蔵安定性と、マイクロカプセル型潜在性硬化剤5を上記と同様の方法により評価した。   The curing properties and storage stability of the one-component epoxy resin compositions of Comparative Examples 1 and 3 and the microcapsule-type latent curing agent 5 were evaluated by the same method as described above.

ロット間の特性ばらつき比較
実施例1、3と比較例1のエポキシ樹脂組成物について、マイクロカプセル型潜在性硬化剤の合成から樹脂組成物の調製まで同様の実験を5回繰り返し、初期粘度のばらつきを検討した。実施例1の一液性エポキシ樹脂組成物では、初期粘度の最大値を最小値で割った値は1.3であり、最小粘度値を1としたとの標準偏差は0.012とばらつきが少なく良好であった。実施例3の一液性エポキシ組成物では、初期粘度の最大値を最小値で割った値は1.2であり、最小粘度値を1としたときの標準偏差は0.007とばらつきが少なく良好であった。一方、比較例3の一液性エポキシ樹脂組成物では、初期粘度の最大値を最小値で割った値は3.6であり、最小粘度値を1としたときの標準偏差は0.78とばらつきが大きかった。
Comparison of characteristics variation between lots For the epoxy resin compositions of Examples 1 and 3 and Comparative Example 1, the same experiment was repeated five times from the synthesis of the microcapsule type latent curing agent to the preparation of the resin composition, and the initial viscosity variation It was investigated. In the one-component epoxy resin composition of Example 1, the value obtained by dividing the maximum value of the initial viscosity by the minimum value is 1.3, and the standard deviation when the minimum viscosity value is 1 is 0.012, which varies. It was small and good. In the one-component epoxy composition of Example 3, the value obtained by dividing the maximum value of the initial viscosity by the minimum value is 1.2, and the standard deviation when the minimum viscosity value is 1 is as small as 0.007. It was good. On the other hand, in the one-component epoxy resin composition of Comparative Example 3, the value obtained by dividing the maximum value of the initial viscosity by the minimum value is 3.6, and the standard deviation when the minimum viscosity value is 1 is 0.78. The variation was large.

以上のような評価結果を表1にまとめて示す。   The evaluation results as described above are summarized in Table 1.

Figure 0005158088
Figure 0005158088

表1に示される結果から明らかなように、本発明に係るマイクロカプセル型潜在性硬化剤を用いることにより、十分な低温硬化特性及び優れた貯蔵安定性を有する一液性エポキシ樹脂組成物が得られることが確認された。   As is apparent from the results shown in Table 1, by using the microcapsule-type latent curing agent according to the present invention, a one-part epoxy resin composition having sufficient low-temperature curing characteristics and excellent storage stability is obtained. It was confirmed that

実施例9
マイクロカプセル型潜在性硬化剤1を30gと、ビスフェノールA型エポキシ樹脂(エポキシ当量173g/eq.,加水分解性塩素量0.01質量%)50gとビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq.,加水分解塩素量0.007質量%)20gを配合し、実施例9の一液性エポキシ樹脂組成物を得た。
Example 9
30 g of microcapsule type latent curing agent 1, 50 g of bisphenol A type epoxy resin (epoxy equivalent 173 g / eq., Hydrolyzable chlorine content 0.01% by mass) and bisphenol F type epoxy resin (epoxy equivalent 160 g / eq.). , Hydrolyzed chlorine amount 0.007 mass%) 20 g was added to obtain a one-part epoxy resin composition of Example 9.

実施例10、11
マイクロカプセル型潜在性硬化剤3又は6を30gと、ビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007質量%)50gとビスフェノールA型エポキシ樹脂エポキシ当量173g/eq.,加水分解性塩素量0.01質量%)20gを配合し、実施例10、11の一液性エポキシ樹脂組成物を得た。
Examples 10 and 11
30 g of microcapsule type latent curing agent 3 or 6; 50 g of bisphenol F type epoxy resin (epoxy equivalent 160 g / eq, hydrolyzed chlorine amount 0.007% by mass); and bisphenol A type epoxy resin epoxy equivalent 173 g / eq. , Hydrolyzable chlorine content 0.01 mass%) 20 g was blended to obtain one-part epoxy resin compositions of Examples 10 and 11.

比較例4
冷却管、熱電対、撹拌装置を備えた3口セパラブルフラスコにアミンアダクト粒子1を30gとビスフェノールA型エポキシ樹脂(エポキシ当量173g/eq.,加水分解性塩素量0.01質量%)50gとビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007質量%)20gを加え、40℃に加熱した後、水0.5gを加えた。10分間攪拌した後、4,4’−ジフェニルメタンジイソシアネート3.0gを加えて40℃で2時間加熱した。次いで50℃に昇温して6時間加熱し、一液性エポキシ樹脂組成物を得た。
Comparative Example 4
30 g of amine adduct particles 1 and 50 g of bisphenol A type epoxy resin (epoxy equivalent 173 g / eq., Hydrolyzable chlorine content 0.01% by mass) in a three-necked separable flask equipped with a condenser, a thermocouple and a stirrer 20 g of bisphenol F-type epoxy resin (epoxy equivalent 160 g / eq, hydrolyzed chlorine amount 0.007 mass%) was added and heated to 40 ° C., and then 0.5 g of water was added. After stirring for 10 minutes, 3.0 g of 4,4′-diphenylmethane diisocyanate was added and heated at 40 ° C. for 2 hours. Next, the temperature was raised to 50 ° C. and heated for 6 hours to obtain a one-component epoxy resin composition.

比較例5
冷却管、熱電対、撹拌装置を備えた3口セパラブルフラスコにアミンアダクト粒子1を30gとビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007質量%)50gとビスフェノールA型エポキシ樹脂エポキシ当量173g/eq.,加水分解性塩素量0.01質量%)20gを加え、40℃に加熱した後、水0.5gを加えた。10分間攪拌した後、ポリメリックMDI(日本ポリウレタン社製、商品名:ミリオネートMR−200)3.0gを加えて40℃で2時間加熱した。次いで50℃に昇温して6時間加熱し、一液性エポキシ樹脂組成物を得た。

Figure 0005158088
表2に示される結果から明らかなように、本発明に係るマイクロカプセル型潜在性硬化剤を用いることにより、十分な低温硬化特性及び優れた貯蔵安定性が得られるばかりでなく、同様な組成のエポキシ樹脂において比較したときに、アミンアダクト粒子よりも更に低い粘度が達成されること、すなわちより高い流動性が達成されることが確認された。Comparative Example 5
30 g of amine adduct particles 1 and 50 g of bisphenol F type epoxy resin (epoxy equivalent 160 g / eq, amount of hydrolyzed chlorine 0.007% by mass) and bisphenol A in a three-necked separable flask equipped with a condenser, thermocouple and stirrer Type epoxy resin Epoxy equivalent 173 g / eq. , Hydrolyzable chlorine content 0.01 mass%) 20 g was added and heated to 40 ° C., and then 0.5 g of water was added. After stirring for 10 minutes, 3.0 g of Polymeric MDI (manufactured by Nippon Polyurethane Co., Ltd., trade name: Millionate MR-200) was added and heated at 40 ° C. for 2 hours. Next, the temperature was raised to 50 ° C. and heated for 6 hours to obtain a one-component epoxy resin composition.
Figure 0005158088
As is apparent from the results shown in Table 2, not only sufficient low-temperature curing characteristics and excellent storage stability can be obtained by using the microcapsule-type latent curing agent according to the present invention, but a similar composition can be obtained. When compared in epoxy resins, it was confirmed that even lower viscosities were achieved than amine adduct particles, i.e. higher flowability was achieved.

(検討2)
2−1.アミンアダクト粒子の合成
アミンアダクト粒子3
冷却管、等圧滴下ロート、攪拌装置を備えた3000mLの3口セパラブルフラスコに、1−ブタノールとトルエンを1/1(wt/wt)で混合した溶液824.2gに2−メチルイミダゾール336.4gを加え、撹拌しながらオイルバスで80℃に加熱して2−メチルイミダゾールを溶解させた。次いで、1−ブタノールとトルエン1/1(wt/wt)溶液300gにビスフェノールA型エポキシ樹脂(エポキシ当量173g/eq、加水分解塩素量 0.01質量%)945.8g溶解させた溶液を、等圧滴下ロートを用いて90分間かけて滴下した。滴下終了後、80℃で5時間加熱した。その後、180℃まで昇温し、装置内を最終的に圧力が10mmHg以下なるまで減圧した。溶媒を留去した。圧力が10mmHg以下になってから、さらに2時間減圧下での加熱により溶媒を留去して、暗赤褐色の粘調液体を得た。この粘調液体を室温まで冷却して暗赤褐色の固体状アミンアダクトを得た。このアミンアダクトをジェットミルで粉砕し、平均粒子径2.50μmのアミンアダクト粒子3を得た。
(Examination 2)
2-1. Synthesis of amine adduct particles Amine adduct particles 3
In a 3000 mL 3-neck separable flask equipped with a condenser, an isostatic dropping funnel, and a stirrer, 1-butanol and toluene were mixed in 1/1 (wt / wt) at 824.2 g and 2-methylimidazole 336. 4 g was added and heated to 80 ° C. in an oil bath with stirring to dissolve 2-methylimidazole. Next, a solution obtained by dissolving 945.8 g of bisphenol A type epoxy resin (epoxy equivalent 173 g / eq, amount of hydrolyzed chlorine 0.01 mass%) in 300 g of 1-butanol and toluene 1/1 (wt / wt) solution, etc. It dropped over 90 minutes using the pressure dropping funnel. After completion of dropping, the mixture was heated at 80 ° C. for 5 hours. Then, it heated up to 180 degreeC and pressure-reduced until the pressure finally became 10 mmHg or less inside the apparatus. The solvent was distilled off. After the pressure became 10 mmHg or less, the solvent was distilled away by heating under reduced pressure for 2 hours to obtain a dark reddish brown viscous liquid. The viscous liquid was cooled to room temperature to obtain a dark reddish brown solid amine adduct. The amine adduct was pulverized with a jet mill to obtain amine adduct particles 3 having an average particle diameter of 2.50 μm.

アミンアダクト粒子4
ビスフェノールA型エポキシ樹脂をビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007質量%)874gに変更した以外はアミンアダクト粒子1と同様の方法で、平均粒子径3.14μmのアミンアダクト粒子4を得た。
Amine adduct particle 4
The average particle size of 3.14 μm was the same as that of the amine adduct particle 1 except that the bisphenol A type epoxy resin was changed to 874 g of the bisphenol F type epoxy resin (epoxy equivalent 160 g / eq, hydrolyzed chlorine amount 0.007 mass%). The amine adduct particle 4 was obtained.

2−2.マイクロカプセル型潜在性硬化剤の合成
マイクロカプセル型潜在性硬化剤7
冷却管、熱電対、撹拌装置を備えた3口セパラブルフラスコにアミンアダクト粒子を45.0gとシクロヘキサン171.0gを加え、40℃に加熱した後、水1.1gを加えた。10分間攪拌した後、4,4’−ジフェニルメタンジイソシアネート6.0gを加えて40℃で2時間反応させた。次いで50℃に昇温して6時間反応させた。反応終了後、分散液をろ過し、回収された粉末を50℃に加熱したシクロヘキサンで洗浄した。得られた粉末から10mmHg以下の圧力で24時間の減圧乾燥により溶媒を除去して、粉末状のマイクロカプセル型潜在性硬化剤7を得た。得られたマイクロカプセル型潜在性硬化剤7のうちカプセルの割合は14質量%であった。
2-2. Synthesis of microcapsule type latent curing agent Microcapsule type latent curing agent 7
45.0 g of amine adduct particles 3 and 171.0 g of cyclohexane were added to a three- necked separable flask equipped with a condenser, a thermocouple, and a stirrer, heated to 40 ° C., and 1.1 g of water was added. After stirring for 10 minutes, 6.0 g of 4,4′-diphenylmethane diisocyanate was added and reacted at 40 ° C. for 2 hours. Subsequently, it heated up at 50 degreeC and made it react for 6 hours. After completion of the reaction, the dispersion was filtered, and the recovered powder was washed with cyclohexane heated to 50 ° C. The solvent was removed from the obtained powder by drying under reduced pressure for 24 hours at a pressure of 10 mmHg or less to obtain a powdery microcapsule-type latent curing agent 7. The proportion of capsules in the obtained microcapsule-type latent curing agent 7 was 14% by mass.

マイクロカプセル型潜在性硬化剤8
冷却管、熱電対、攪拌装置を備えた500mLの3口セパラブルフラスコにアミンアダクト粒子を45.0gとシクロヘキサン171.0gを加え、40℃に加熱した後、水1.1gを加えた。次いで、4,4’−ジフェニルメタンジイソシアネート3.0gを加えて40℃で2時間反応させた。さらに50℃に昇温して6時間反応させた。反応終了後、分散液をろ過し、回収された粉末をトルエンで洗浄した。得られた粉末から10mmHg以下の圧力で24時間の減圧乾燥により溶媒を除去して、粉末状のマイクロカプセル型潜在性硬化剤8を得た。得られたマイクロカプセル型潜在性硬化剤8のうちカプセルの割合は9質量%であった。
Microcapsule type latent curing agent 8
45.0 g of amine adduct particles 3 and 171.0 g of cyclohexane were added to a 500 mL three-necked separable flask equipped with a condenser, a thermocouple, and a stirrer. After heating to 40 ° C., 1.1 g of water was added. Subsequently, 3.0 g of 4,4′-diphenylmethane diisocyanate was added and reacted at 40 ° C. for 2 hours. Further, the temperature was raised to 50 ° C. and reacted for 6 hours. After completion of the reaction, the dispersion was filtered, and the collected powder was washed with toluene. The solvent was removed from the obtained powder by drying under reduced pressure for 24 hours at a pressure of 10 mmHg or less to obtain a powdery microcapsule-type latent curing agent 8. The proportion of capsules in the obtained microcapsule-type latent curing agent 8 was 9% by mass.

マイクロカプセル型潜在性硬化剤9
冷却管、熱電対、撹拌装置を備えた3口セパラブルフラスコにアミンアダクト粒子を45.0gとシクロヘキサン171.0gを加え、40℃に加熱した後、水1.1gを加えた。10分間攪拌した後、4,4’−ジフェニルメタンジイソシアネート6.0gを加えて40℃で2時間反応させた。次いで50℃に昇温して6時間反応させた。反応終了後、分散液をろ過し、回収された粉末を50℃に加熱したシクロヘキサンで洗浄した。得られた粉末から10mmHg以下の圧力で24時間の減圧乾燥により溶媒を除去して、粉末状のマイクロカプセル型潜在性硬化剤9を得た。得られたマイクロカプセル型潜在性硬化剤9のうちカプセルの割合は15質量%であった。
Microcapsule type latent curing agent 9
45.0 g of amine adduct particles 4 and 171.0 g of cyclohexane were added to a three-necked separable flask equipped with a condenser, a thermocouple, and a stirrer, heated to 40 ° C., and then 1.1 g of water was added. After stirring for 10 minutes, 6.0 g of 4,4′-diphenylmethane diisocyanate was added and reacted at 40 ° C. for 2 hours. Subsequently, it heated up at 50 degreeC and made it react for 6 hours. After completion of the reaction, the dispersion was filtered, and the recovered powder was washed with cyclohexane heated to 50 ° C. The solvent was removed from the obtained powder by drying under reduced pressure for 24 hours at a pressure of 10 mmHg or less to obtain a powdery microcapsule-type latent curing agent 9. The proportion of capsules in the obtained microcapsule type latent curing agent 9 was 15% by mass.

マイクロカプセル型潜在性硬化剤10(マイクロカプセル型潜在性硬化剤7の再カプセル化)
冷却管、熱電対、攪拌装置を備えた500mLの3口セパラブルフラスコにトルエン146.3gと4,4’−ジフェニルメタンジイソシアネート3.7gを加え、オイルバスで50℃に加熱した。次いでマイクロカプセル型潜在性硬化剤7を15.0g加え、50℃で3時間反応させた。反応終了後、分散液をろ過し、回収された粉末を50℃に加熱したトルエンで洗浄した。得られた粉末を10mmHg以下の圧力で24時間の減圧乾燥により溶媒を除去して、粉末状のマイクロカプセル型潜在性硬化剤10を得た。得られたマイクロカプセル型潜在性硬化剤10のうちカプセルの割合は45質量%であった。
Microcapsule type latent curing agent 10 (Re-encapsulation of microcapsule type latent curing agent 7)
To a 500 mL three-necked separable flask equipped with a condenser, a thermocouple, and a stirrer were added 146.3 g of toluene and 3.7 g of 4,4′-diphenylmethane diisocyanate, and the mixture was heated to 50 ° C. in an oil bath. Next, 15.0 g of the microcapsule type latent curing agent 7 was added and reacted at 50 ° C. for 3 hours. After completion of the reaction, the dispersion was filtered, and the recovered powder was washed with toluene heated to 50 ° C. The solvent was removed from the obtained powder by drying under reduced pressure for 24 hours at a pressure of 10 mmHg or less to obtain a powdery microcapsule-type latent curing agent 10. The proportion of capsules in the obtained microcapsule type latent curing agent 10 was 45% by mass.

マイクロカプセル型潜在性硬化剤11(マイクロカプセル型潜在性硬化剤7の再カプセル化)
冷却管、熱電対、攪拌装置を備えた500mLの3口セパラブルフラスコにトルエン146.3gと4,4’−ジフェニルメタンジイソシアネート1.8gを加え、オイルバスで50℃に加熱した。次いでマイクロカプセル型潜在性硬化剤7を15.0g加え、50℃で3時間反応させた。反応終了後、分散液をろ過し、回収された粉末を50℃に加熱したトルエンで洗浄した。得られた粉末から10mmHg以下の圧力で24時間の減圧乾燥により溶媒を除去して、粉末状のマイクロカプセル型潜在性硬化剤11を得た。得られたマイクロカプセル型潜在性硬化剤11のカプセルの割合は28質量%であった。
Microcapsule type latent curing agent 11 (Re-encapsulation of microcapsule type latent curing agent 7)
To a 500 mL three-necked separable flask equipped with a condenser, a thermocouple, and a stirrer, 146.3 g of toluene and 1.8 g of 4,4′-diphenylmethane diisocyanate were added and heated to 50 ° C. in an oil bath. Next, 15.0 g of the microcapsule type latent curing agent 7 was added and reacted at 50 ° C. for 3 hours. After completion of the reaction, the dispersion was filtered, and the recovered powder was washed with toluene heated to 50 ° C. The solvent was removed from the obtained powder by drying under reduced pressure for 24 hours at a pressure of 10 mmHg or less to obtain a powdery microcapsule-type latent curing agent 11. The ratio of the capsules of the obtained microcapsule type latent curing agent 11 was 28% by mass.

2−3.一液性エポキシ樹脂組成物の調製
実施例12〜16
マイクロカプセル型潜在性硬化剤7〜11をそれぞれ33gと、ビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007質量%)67gとを配合し、実施例12〜16の一液性エポキシ樹脂組成物を得た。
2-3. Preparation of one-part epoxy resin composition Examples 12-16
33 g of each of the microcapsule-type latent curing agents 7 to 11 and 67 g of a bisphenol F type epoxy resin (epoxy equivalent 160 g / eq, hydrolyzed chlorine amount 0.007% by mass) are blended, and one of Examples 12 to 16 A liquid epoxy resin composition was obtained.

実施例17
マイクロカプセル型潜在性硬化剤10を33gと、ビスフェノールA型エポキシ樹脂(エポキシ当量173g/eq,加水分解塩素量0.01質量%)67gとを配合し、実施例17の一液性エポキシ樹脂組成物を得た。
Example 17
One-part epoxy resin composition of Example 17 containing 33 g of microcapsule type latent curing agent 10 and 67 g of bisphenol A type epoxy resin (epoxy equivalent 173 g / eq, hydrolyzed chlorine content 0.01 mass%) I got a thing.

実施例18
マイクロカプセル型潜在性硬化剤10を33gと、ナフタレン型エポキシ樹脂(エポキシ当量142g/eq、加水分解塩素量0.017質量%)を67gとを配合し、実施例18の一液性エポキシ樹脂組成物を得た。
Example 18
One-part epoxy resin composition of Example 18 containing 33 g of microcapsule type latent curing agent 10 and 67 g of naphthalene type epoxy resin (epoxy equivalent 142 g / eq, hydrolyzed chlorine amount 0.017 mass%). I got a thing.

実施例19
マイクロカプセル型潜在性硬化剤10を35gと、ビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007質量%)を25gと、レゾルシンジグリシジルエーテル(エポキシ当量117g/eq,加水分解塩素量0.7質量%)を40gとを配合して、実施例19の一液性エポキシ樹脂組成物を得た。
Example 19
35 g of microcapsule type latent curing agent 10, 25 g of bisphenol F type epoxy resin (epoxy equivalent 160 g / eq, hydrolyzed chlorine amount 0.007% by mass), resorcin diglycidyl ether (epoxy equivalent 117 g / eq, water) A one-component epoxy resin composition of Example 19 was obtained by blending 40 g of cracked chlorine content 0.7 mass%).

2−4.比較のためのマイクロカプセル型潜在性硬化剤及び一液性エポキシ樹脂組成物
マイクロカプセル型潜在性硬化剤12の合成
冷却管、熱電対、撹拌装置を備えた3口セパラブルフラスコにアミンアダクト粒子を45.0gとシクロヘキサン171.0gを加え、40℃に加熱した後、10分間攪拌した。その後、4,4’−ジフェニルメタンジイソシアネート1.0gを加えて40℃で2時間反応させた。次いで50℃に昇温して6時間反応させた。反応終了後、分散液をろ過し、回収された粉末を50℃に加熱したシクロヘキサンで洗浄した。得られた粉末から10mmHg以下の圧力で24時間の減圧乾燥により溶媒を除去して、マイクロカプセル型潜在性硬化剤12を得た。得られたマイクロカプセル型潜在性硬化剤12のカプセルの割合は3質量%であった。
2-4. Microcapsule type latent curing agent for comparison and synthesis of one-part epoxy resin composition microcapsule type latent curing agent 12 Amine adduct particle 3 in a three-neck separable flask equipped with a cooling tube, a thermocouple, and a stirring device 45.0 g and cyclohexane 171.0 g were added and heated to 40 ° C., followed by stirring for 10 minutes. Thereafter, 1.0 g of 4,4′-diphenylmethane diisocyanate was added and reacted at 40 ° C. for 2 hours. Subsequently, it heated up at 50 degreeC and made it react for 6 hours. After completion of the reaction, the dispersion was filtered, and the recovered powder was washed with cyclohexane heated to 50 ° C. The solvent was removed from the obtained powder by drying under reduced pressure for 24 hours at a pressure of 10 mmHg or less to obtain a microcapsule-type latent curing agent 12. The ratio of capsules of the obtained microcapsule type latent curing agent 12 was 3% by mass.

比較例6
マイクロカプセル型潜在性硬化剤12を33gと、ビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007質量%)67gとを配合し、比較例6の一液性エポキシ樹脂組成物を得た。
Comparative Example 6
One-part epoxy resin composition of Comparative Example 6 containing 33 g of microcapsule type latent curing agent 12 and 67 g of bisphenol F type epoxy resin (epoxy equivalent 160 g / eq, hydrolyzed chlorine content 0.007 mass%) I got a thing.

比較例7
冷却管、熱電対、撹拌装置を備えた3口セパラブルフラスコにアミンアダクト粒子を45gとビスフェノールA型エポキシ樹脂(エポキシ当量173g/eq,加水分解塩素量0.01質量%)55gを加え、40℃に加熱した後、水0.5gを加えた。10分間攪拌した後、4,4’−ジフェニルメタンジイソシアネート4.0gを加えて40℃で2時間加熱した。次いで50℃に昇温して6時間加熱したところ、フラスコ中で硬化反応が進行し、一液性エポキシ樹脂組成物が得られなかった。
Comparative Example 7
45 g of amine adduct particles 3 and 55 g of bisphenol A type epoxy resin (epoxy equivalent 173 g / eq, amount of hydrolyzed chlorine 0.01% by mass) were added to a three-neck separable flask equipped with a condenser, a thermocouple, and a stirring device. After heating to 40 ° C., 0.5 g of water was added. After stirring for 10 minutes, 4.0 g of 4,4′-diphenylmethane diisocyanate was added and heated at 40 ° C. for 2 hours. Next, when the temperature was raised to 50 ° C. and heated for 6 hours, the curing reaction proceeded in the flask, and a one-component epoxy resin composition could not be obtained.

比較例8
冷却管、熱電対、撹拌装置を備えた3口セパラブルフラスコにアミンアダクト粒子を45gとビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量 0.007質量%)55gを加えたところ、フラスコ中で硬化反応が進行し、一液性エポキシ樹脂組成物が得られなかった。
Comparative Example 8
45 g of amine adduct particles 3 and 55 g of bisphenol F type epoxy resin (epoxy equivalent 160 g / eq, amount of hydrolyzed chlorine 0.007% by mass) were added to a three-neck separable flask equipped with a condenser, a thermocouple, and a stirrer. However, the curing reaction proceeded in the flask, and a one-part epoxy resin composition could not be obtained.

2−5.マイクロカプセル型潜在性硬化剤の特性評価
実施例及び比較例の一液性エポキシ樹脂組成物の硬化特性及び貯蔵安定性と、アミンアダクト粒子3、4の平均粒径を以下の方法により評価した。結果を表3にまとめて示す。
2-5. Characteristic Evaluation of Microcapsule Type Latent Curing Agent The curing characteristics and storage stability of the one-part epoxy resin compositions of Examples and Comparative Examples and the average particle diameter of the amine adduct particles 3 and 4 were evaluated by the following methods. The results are summarized in Table 3.

硬化特性
一液性エポキシ樹脂組成物について、Perkin−Elmer社製DSC7示差熱量計を用い、昇温速度10℃/min、測定温度範囲30℃〜300℃、窒素雰囲気で硬化特性を測定した。硬化発熱に由来するピークの極大点の温度が110℃未満ならば「AA」、110℃以上125℃未満ならば「A」、125℃以上135℃未満ならば「B」、135℃以上ならば「C」と判定した。
Curing characteristics The curing characteristics of the one-part epoxy resin composition were measured using a Perkin-Elmer DSC7 differential calorimeter at a heating rate of 10 ° C / min, a measurement temperature range of 30 ° C to 300 ° C, and a nitrogen atmosphere. “AA” if the temperature at the peak maximum point derived from the heat generated by curing is less than 110 ° C., “A” if it is 110 ° C. or more and less than 125 ° C., “B” if it is 125 ° C. or more and less than 135 ° C., and if it is 135 ° C. or more. It was determined as “C”.

貯蔵安定性
検討1の場合と同様の測定条件及び基準にしたがって、エポキシ樹脂組成物の貯蔵安定性とアミンアダクト粒子の平均粒径を測定した。
Storage Stability The storage stability of the epoxy resin composition and the average particle size of the amine adduct particles were measured according to the same measurement conditions and criteria as in Study 1.

カプセルの割合
マイクロカプセル型潜在性硬化剤に充分量のメタノールを加えて調製した分散液を、室温で6時間攪拌することにより、マイクロカプセル型潜在性硬化剤のうちアミンアダクト粒子に由来する部分をメタノールに溶解させた。分散液をろ過し、ろ過物を50℃以下の温度で乾燥して、メタノールを完全に除去した。乾燥後のろ過物の重量を計量した。ろ過物の重量のマイクロカプセル型エポキシ樹脂用硬化剤全体重量に対する割合をカプセルの割合とみなした。
Proportion of capsules A dispersion prepared by adding a sufficient amount of methanol to a microcapsule-type latent curing agent is stirred at room temperature for 6 hours, whereby a portion derived from amine adduct particles in the microcapsule-type latent curing agent is obtained. Dissolved in methanol. The dispersion was filtered, and the filtrate was dried at a temperature of 50 ° C. or lower to completely remove methanol. The weight of the filtrate after drying was weighed. The ratio of the weight of the filtrate to the total weight of the microcapsule type epoxy resin curing agent was regarded as the ratio of capsules.

耐溶媒性
溶媒としてトルエン/酢酸エチル=1/1(wt/wt)を用い、一液性エポキシ樹脂組成物/溶媒=15g/3.5gの混合物を40℃の水浴中で保持し、そのときの混合物の粘度変化を観察した。流動性が無くなった時間が0〜3時間であれば「C」、3〜6時間であれば「B」、6〜10時間であれば「A」、10時間以上であれば「AA」と判定した。
Solvent resistance Toluene / ethyl acetate = 1/1 (wt / wt) was used as a solvent, and a one-part epoxy resin composition / solvent = 15 g / 3.5 g mixture was kept in a water bath at 40 ° C. The viscosity change of the mixture was observed. If the time when fluidity is lost is 0 to 3 hours, it is “C”, if it is 3 to 6 hours, “B”, if it is 6 to 10 hours, “A”, if it is 10 hours or more, “AA”. Judged.

2−6.結果
実施例及び比較例の評価結果を下記表3にまとめて示す。表中、括弧内の数値は一液性エポキシ樹脂組成物の配合比(重量部)である。表中の略号の内容は下記の通りである。
BisA:ビスフェノールA型エポキシ樹脂(エポキシ当量173g/eq,加水分解塩素量0.01質量%)
BisF:ビスフェノールF型エポキシ樹脂(エポキシ当量160g/eq,加水分解塩素量0.007質量%)
Nap:ナフタレン型エポキシ樹脂(エポキシ当量142g/eq,加水分解塩素量0.017質量%)
Res:レゾルシン ジグリシジルエーテル(エポキシ当量117g/eq,加水分解塩素量0.7質量%)
2-6. Results The evaluation results of Examples and Comparative Examples are summarized in Table 3 below. In the table, the numerical value in parentheses is the blending ratio (parts by weight) of the one-component epoxy resin composition. The contents of the abbreviations in the table are as follows.
BisA: bisphenol A type epoxy resin (epoxy equivalent 173 g / eq, hydrolyzed chlorine content 0.01% by mass)
BisF: bisphenol F type epoxy resin (epoxy equivalent 160 g / eq, amount of hydrolyzed chlorine 0.007% by mass)
Nap: Naphthalene type epoxy resin (epoxy equivalent 142 g / eq, amount of hydrolyzed chlorine 0.017% by mass)
Res: Resorcin diglycidyl ether (epoxy equivalent 117 g / eq, amount of hydrolyzed chlorine 0.7 mass%)

Figure 0005158088
Figure 0005158088

上記実験結果からも、本発明によれば、低温硬化性及び貯蔵安定性を両立するエポキシ樹脂用粉末状マイクロカプセル型潜在性硬化剤及び製造方法、並びに一液性エポキシ樹脂組成物が得られることが確認された。   From the above experimental results, according to the present invention, it is possible to obtain a powdery microcapsule type latent curing agent for epoxy resin that satisfies both low-temperature curability and storage stability, a production method, and a one-part epoxy resin composition. Was confirmed.

Claims (11)

コアに含まれるアミンアダクトとイソシアネートと活性水素基を有する化合物及び/又は水とを分散媒中で反応させることにより、前記コアを被覆するカプセルを形成させる工程と、
反応後の混合物から、コア及びカプセルを有する粉末状のマイクロカプセル型潜在性硬化剤を取り出す工程と、を備える、エポキシ樹脂用マイクロカプセル型潜在性硬化剤の製造方法。
A step of forming capsules covering the core by reacting an amine adduct contained in the core, an isocyanate, a compound having an active hydrogen group and / or water in a dispersion medium ;
Removing the powdery microcapsule-type latent curing agent having a core and a capsule from the mixture after the reaction, and a method for producing a microcapsule-type latent curing agent for epoxy resin.
未反応の前記イソシアネートや副生成物、水及び/又は前記活性水素基を有する化合物と共に前記分散媒を除去することにより、前記混合物から粉末状の前記マイクロカプセル型潜在性硬化剤を取り出す、請求項1記載のエポキシ樹脂用マイクロカプセル型潜在性硬化剤の製造方法。The powdery microcapsule-type latent curing agent is taken out of the mixture by removing the dispersion medium together with the unreacted isocyanate and by-products, water and / or the compound having an active hydrogen group. 2. A process for producing a microcapsule type latent curing agent for epoxy resin according to 1. ろ過により前記分散媒を除去することにより、前記混合物から粉末状の前記マイクロカプセル型潜在性硬化剤を取り出す、請求項1又は2記載のエポキシ樹脂用マイクロカプセル型潜在性硬化剤の製造方法。The method for producing a microcapsule type latent curing agent for epoxy resin according to claim 1 or 2, wherein the powdery microcapsule type latent curing agent is taken out of the mixture by removing the dispersion medium by filtration. 前記分散媒が、シクロヘキサン及び/又はヘキサンを含む、請求項1〜3のいずれか一項に記載のエポキシ樹脂用マイクロカプセル型潜在性硬化剤の製造方法。The manufacturing method of the microcapsule type | mold latent hardener for epoxy resins as described in any one of Claims 1-3 in which the said dispersion medium contains a cyclohexane and / or hexane. 前記コアが質量比で50〜100%の前記アミンアダクトを含む、請求項1〜4のいずれか一項に記載のエポキシ樹脂用マイクロカプセル型潜在性硬化剤の製造方法 The manufacturing method of the microcapsule type | mold latent hardener for epoxy resins as described in any one of Claims 1-4 with which the said core contains the said amine adduct of 50-100% by mass ratio. 前記カプセルの割合が、当該マイクロカプセル型潜在性硬化剤の全質量を基準として5〜80質量%である、請求項1〜5のいずれか一項に記載のマイクロカプセル型潜在性硬化剤の製造方法 The production of the microcapsule type latent curing agent according to any one of claims 1 to 5, wherein the ratio of the capsule is 5 to 80% by mass based on the total mass of the microcapsule type latent curing agent . Way . 請求項1〜6のいずれか一項に記載の製造方法により得ることができるエポキシ樹脂用マイクロカプセル型潜在性硬化剤。The microcapsule-type latent hardening | curing agent for epoxy resins which can be obtained by the manufacturing method as described in any one of Claims 1-6 . 請求項記載のエポキシ樹脂用マイクロカプセル型潜在性硬化剤と、エポキシ樹脂とを含有する一液性エポキシ樹脂組成物。A one-component epoxy resin composition comprising the microcapsule-type latent curing agent for epoxy resin according to claim 7 and an epoxy resin. 前記エポキシ樹脂用マイクロカプセル型潜在性硬化剤が、前記エポキシ樹脂中で加熱処理されたものである、請求項記載の一液性エポキシ樹脂組成物。The one-component epoxy resin composition according to claim 8 , wherein the microcapsule-type latent curing agent for epoxy resin is heat-treated in the epoxy resin. 前記エポキシ樹脂及び前記マイクカプセル型潜在性硬化剤の合計量100質量部に対して前記マイクカプセル型潜在性硬化剤5〜70質量部を含有する、請求項記載の一液性エポキシ樹脂組成物。Said containing microphone capsule type latent curing agent 5-70 parts by mass relative to the total 100 parts by weight of the epoxy resin and the microphone capsule type latent curing agent, one-component epoxy resin composition according to claim 8 . 請求項記載の一液性エポキシ樹脂組成物を加熱により硬化して形成される硬化物。A cured product formed by curing the one-component epoxy resin composition according to claim 8 by heating.
JP2009533162A 2007-09-20 2008-09-17 Microcapsule type latent curing agent for epoxy resin and method for producing the same, and one-part epoxy resin composition and cured product thereof Expired - Fee Related JP5158088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009533162A JP5158088B2 (en) 2007-09-20 2008-09-17 Microcapsule type latent curing agent for epoxy resin and method for producing the same, and one-part epoxy resin composition and cured product thereof

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2007243852 2007-09-20
JP2007243852 2007-09-20
JP2007243851 2007-09-20
JP2007243851 2007-09-20
JP2008043346 2008-02-25
JP2008043346 2008-02-25
JP2008166246 2008-06-25
JP2008166246 2008-06-25
JP2009533162A JP5158088B2 (en) 2007-09-20 2008-09-17 Microcapsule type latent curing agent for epoxy resin and method for producing the same, and one-part epoxy resin composition and cured product thereof
PCT/JP2008/066774 WO2009038097A1 (en) 2007-09-20 2008-09-17 Microcapsule-type latent curing agent for epoxy resin and process for production thereof, and one-pack-type epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JPWO2009038097A1 JPWO2009038097A1 (en) 2011-01-06
JP5158088B2 true JP5158088B2 (en) 2013-03-06

Family

ID=40467907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009533162A Expired - Fee Related JP5158088B2 (en) 2007-09-20 2008-09-17 Microcapsule type latent curing agent for epoxy resin and method for producing the same, and one-part epoxy resin composition and cured product thereof

Country Status (5)

Country Link
JP (1) JP5158088B2 (en)
KR (2) KR101243511B1 (en)
CN (2) CN102936331A (en)
TW (2) TW201008971A (en)
WO (1) WO2009038097A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101086701B1 (en) * 2009-06-10 2011-11-25 한국과학기술연구원 Latent hardener composite particleswith improved storage stability using mechanochemical bonding system and fabrication method thereof, and one component epoxy resin formulation using the same
KR102270461B1 (en) * 2016-03-10 2021-06-29 한국전자기술연구원 Adhesive composition and preparing method thereof
KR101870777B1 (en) * 2017-03-28 2018-06-26 한국신발피혁연구원 Manufacturing method of microcapsule type latent curing agent and microcapsule type latent curing agent using the same
KR102095115B1 (en) * 2018-07-27 2020-03-30 한국전력공사 Self-healing silicon insulator and manufacturing method for thereof
CN111087576A (en) * 2019-12-31 2020-05-01 芜湖天道绿色新材料有限公司 Preparation and application of degradable microcapsule curing agent
CN111171285B (en) * 2020-02-15 2022-04-26 常州大学 Epoxy resin curing agent microcapsule taking polyurethane as shell material and preparation method thereof
CN111518500B (en) * 2020-04-22 2023-04-11 湖北回天新材料股份有限公司 Solvent type single-component epoxy microcapsule precoated thread locking glue and preparation method thereof
CN111389317B (en) * 2020-04-28 2022-04-12 西北工业大学 Preparation method of imidazole microcapsule based on mercapto-isocyanate click reaction and oil-in-oil interfacial polymerization
CN116323837A (en) * 2020-09-30 2023-06-23 旭化成株式会社 Polyurethane curing agent and application thereof
JPWO2023286499A1 (en) * 2021-07-12 2023-01-19
CN114230767B (en) * 2021-12-13 2024-03-19 江苏钛得新材料技术有限公司 Imidazole derivative microcapsule type latent curing agent for adhesive and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199655A (en) * 1998-01-12 1999-07-27 Hitachi Ltd Microcapsule type phosphorous curing accelerator and epoxy resin composition using the same and used for sealing semiconductor
JP2005344046A (en) * 2004-06-04 2005-12-15 Asahi Kasei Chemicals Corp Latent curing agent and composition
WO2007037378A1 (en) * 2005-09-29 2007-04-05 Asahi Kasei Chemicals Corporation High-stability microencapsulated hardener for epoxy resin and epoxy resin composition
JP2007091900A (en) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp Curing agent for rapidly curable epoxy resin and epoxy resin composition
JP2007091901A (en) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp Curing agent for mildly reactive epoxy resin and epoxy resin composition
JP2007091899A (en) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp Highly stable curing agent for epoxy resin and epoxy resin composition
WO2007088889A1 (en) * 2006-02-03 2007-08-09 Asahi Kasei Chemicals Corporation Microcapsule type hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack type epoxy resin composition, and processed article
JP2007204669A (en) * 2006-02-03 2007-08-16 Asahi Kasei Chemicals Corp Curing agent for epoxy resin, having specific small particle diameter particle size distribution and epoxy resin composition
JP2007204670A (en) * 2006-02-03 2007-08-16 Asahi Kasei Chemicals Corp Highly water- and solvent-containing curing agent for epoxy resin, and epoxy resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199655A (en) * 1998-01-12 1999-07-27 Hitachi Ltd Microcapsule type phosphorous curing accelerator and epoxy resin composition using the same and used for sealing semiconductor
JP2005344046A (en) * 2004-06-04 2005-12-15 Asahi Kasei Chemicals Corp Latent curing agent and composition
WO2007037378A1 (en) * 2005-09-29 2007-04-05 Asahi Kasei Chemicals Corporation High-stability microencapsulated hardener for epoxy resin and epoxy resin composition
JP2007091900A (en) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp Curing agent for rapidly curable epoxy resin and epoxy resin composition
JP2007091901A (en) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp Curing agent for mildly reactive epoxy resin and epoxy resin composition
JP2007091899A (en) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp Highly stable curing agent for epoxy resin and epoxy resin composition
WO2007088889A1 (en) * 2006-02-03 2007-08-09 Asahi Kasei Chemicals Corporation Microcapsule type hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack type epoxy resin composition, and processed article
JP2007204669A (en) * 2006-02-03 2007-08-16 Asahi Kasei Chemicals Corp Curing agent for epoxy resin, having specific small particle diameter particle size distribution and epoxy resin composition
JP2007204670A (en) * 2006-02-03 2007-08-16 Asahi Kasei Chemicals Corp Highly water- and solvent-containing curing agent for epoxy resin, and epoxy resin composition

Also Published As

Publication number Publication date
KR101243511B1 (en) 2013-03-20
KR20120024963A (en) 2012-03-14
CN102936331A (en) 2013-02-20
TW201244814A (en) 2012-11-16
KR20100072030A (en) 2010-06-29
TW201008971A (en) 2010-03-01
CN101802050A (en) 2010-08-11
WO2009038097A1 (en) 2009-03-26
JPWO2009038097A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5158088B2 (en) Microcapsule type latent curing agent for epoxy resin and method for producing the same, and one-part epoxy resin composition and cured product thereof
JP4326524B2 (en) Capsule type curing agent and composition
JP5763527B2 (en) Imidazole compound-containing microencapsulated composition, curable composition using the same, and masterbatch type curing agent
KR100938523B1 (en) Latent hardener for epoxy resin and epoxy resin composition
JP4583373B2 (en) Curing agent for epoxy resin and epoxy resin composition
JP2010053353A (en) Microcapsule type latent curing agent for epoxy resin and method for producing the same, one-part epoxy resin composition, cured product of epoxy resin, adhesive, film for bonding, conductive material, and anisotropically conductive material
JP5558118B2 (en) Microcapsule type epoxy resin curing agent and masterbatch type epoxy resin curing agent composition containing the same
WO2007088889A1 (en) Microcapsule type hardener for epoxy resin, masterbatch type hardener composition for epoxy resin, one-pack type epoxy resin composition, and processed article
JP2007204670A (en) Highly water- and solvent-containing curing agent for epoxy resin, and epoxy resin composition
JP4877716B2 (en) Curing agent for fast-curing epoxy resin and epoxy resin composition
JP4463208B2 (en) Latent curing agent and composition
JP5228644B2 (en) Microcapsule type latent curing agent for epoxy resin and method for producing the same, one-pack epoxy resin composition and cured epoxy resin
JP5138685B2 (en) Curing agent for epoxy resin and curing agent composition for epoxy resin
JP5266936B2 (en) Microcapsule type latent curing agent for epoxy resin, one-part epoxy resin composition, and epoxy resin cured product
JP2011208098A (en) Imidazole compound-containing micro-encapsulated composition, curable composition using the same, and master batch curing agent
JP5245790B2 (en) One-part epoxy resin composition
JP4567377B2 (en) Latent curing agent and composition
JP2015221859A (en) Epoxy resin curing agent, microcapsule-type epoxy resin curing agent, master batch-type epoxy resin curing agent composition, one-component epoxy resin composition, and processed product
JP6114037B2 (en) Curing agent for epoxy resin and epoxy resin composition
JP2013053228A (en) Curing agent for epoxy resin, and microcapsule-type curing agent for epoxy resin
CN117580888A (en) Epoxy resin composition, film, method for producing film, and cured product
JP2019189834A (en) Curing agent for epoxy resin, curing agent composition for master batch type epoxy resin, one-component epoxy resin composition, and processed article
JP2013053230A (en) Epoxy resin composition, and pasty composition and film composition using the same
JP2023137042A (en) Masterbatch type curing agent for one-pack epoxy resin composition, and epoxy resin composition
TW202305025A (en) Epoxy resin composition, film, film production method, and cured product

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees