JP5157880B2 - Electrode inspection method for redox potential measuring device and standard solution for electrode inspection of redox potential measuring device - Google Patents
Electrode inspection method for redox potential measuring device and standard solution for electrode inspection of redox potential measuring device Download PDFInfo
- Publication number
- JP5157880B2 JP5157880B2 JP2008326608A JP2008326608A JP5157880B2 JP 5157880 B2 JP5157880 B2 JP 5157880B2 JP 2008326608 A JP2008326608 A JP 2008326608A JP 2008326608 A JP2008326608 A JP 2008326608A JP 5157880 B2 JP5157880 B2 JP 5157880B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- oxidation
- reduction potential
- standard solution
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Description
本発明は、測定電極及び比較電極を被検液に浸漬して被検液の酸化還元電位を測定する酸化還元電位測定装置の電極を検査する方法、及びその検査に使用する標準液に関するものである。 The present invention relates to a method for inspecting an electrode of an oxidation-reduction potential measuring apparatus for measuring the oxidation-reduction potential of a test solution by immersing a measurement electrode and a comparison electrode in the test solution, and a standard solution used for the inspection. is there.
酸化還元電位測定装置は、ある物質が他の物質を酸化、或いは還元する力の度合いを測定するのに用いられている。酸化還元可逆平衡状態にある水溶液に水素電極と白金電極を挿入すると、1つの可逆電池が構成され、その溶液の酸化還元平衡状態に応じて一定の電位差が検出される。この電位差のことを酸化還元電位(ORP:Oxidation-Reduction Potential)と呼ぶ。酸化還元電位は、下記式(ネルンストの式)で表すことができる。
Eh=E0+(RT/nF)×ln([Ox]/[Red])
(但し、[Ox]:酸化物の活量、[Red]:還元物の活量、E0:[Ox]=[Red]のときの酸化還元電位(標準電位差)、F:ファラデー定数、n:1分子あたり授受される電子の数、R:気体定数、T:水溶液の温度(絶対温度))
The oxidation-reduction potential measuring device is used to measure the degree of force with which one substance oxidizes or reduces another substance. When a hydrogen electrode and a platinum electrode are inserted into an aqueous solution in a redox reversible equilibrium state, one reversible battery is formed, and a constant potential difference is detected according to the redox equilibrium state of the solution. This potential difference is called an oxidation-reduction potential (ORP). The oxidation-reduction potential can be expressed by the following equation (Nernst equation).
Eh = E 0 + (RT / nF) × ln ([Ox] / [Red])
(However, [Ox]: Activity of oxide, [Red]: Activity of reduced product, E 0 : Redox potential (standard potential difference) when [Ox] = [Red], F: Faraday constant, n : Number of electrons transferred per molecule, R: gas constant, T: temperature of aqueous solution (absolute temperature))
上記式のE0は、[Ox]=[Red]のときの酸化還元電位であり、それぞれの酸化還元系において固有の値を有している。標準水素電極(NHE:Normal Hydrogen Electrode)は、水素イオンの活量が1であるような溶液、例えば1.18mol塩酸溶液中に、白金黒をつけた白金電極を浸し、1気圧の水素ガスを通じて得られる。標準水素電極の電位はすべての温度において0mVであると約束され、国際的な基準電極として受け入れられている。酸化還元電位Ehは、標準水素電極を基準にしたときの電位として表される。しかしながら、水素電極は構成が複雑で実用的でないため、酸化還元電位の測定は、通常、白金電極等の酸化還元電位測定電極(測定電極)と比較電極を被検液の中に入れ、その時の指示値を読み取ることにより行われる。この場合に使用される比較電極は標準水素電極とは異なり、銀/塩化銀電極やカロメル電極(甘コウ電極)が用いられるので、得られた指示値は正しい酸化還元電位Eh値ではない。酸化還元電位Eh値を得るためには、標準水素電極と比較電極との電位差の値(比較電極の単極電位)を測定値に加える必要がある。 E 0 in the above equation is a redox potential when [Ox] = [Red], and has a unique value in each redox system. A normal hydrogen electrode (NHE) is a solution in which the activity of hydrogen ions is 1, for example, a 1.18 mol hydrochloric acid solution is immersed in a platinum electrode with platinum black and passed through 1 atmosphere of hydrogen gas. can get. The standard hydrogen electrode potential is promised to be 0 mV at all temperatures and is accepted as an international reference electrode. The oxidation-reduction potential Eh is expressed as a potential when the standard hydrogen electrode is used as a reference. However, since the hydrogen electrode has a complicated configuration and is not practical, the redox potential is usually measured by placing a redox potential measuring electrode (measuring electrode) such as a platinum electrode and a reference electrode in the test solution. This is done by reading the indicated value. Unlike the standard hydrogen electrode, the reference electrode used in this case is a silver / silver chloride electrode or a calomel electrode (sweet potato electrode), so the obtained indicated value is not the correct redox potential Eh value. In order to obtain the redox potential Eh value, it is necessary to add the value of the potential difference between the standard hydrogen electrode and the reference electrode (unipolar potential of the reference electrode) to the measured value.
酸化還元電位の測定では、測定電極の汚れなどによって電位が変動することがあるため、一定の温度において一定の酸化還元電位を有する安定した標準液(チェック液)を用いることで、電極の性能が正常であるか否かを判断することが行われる。 In the measurement of the oxidation-reduction potential, the potential may fluctuate due to contamination of the measurement electrode. Therefore, by using a stable standard solution (check solution) having a constant oxidation-reduction potential at a constant temperature, the performance of the electrode can be improved. It is determined whether or not it is normal.
従来、このような酸化還元電位測定装置の電極を検査するための標準液としては、キンヒドロンをフタル酸塩pH標準液(pH4.01)などに溶解した標準液(キンヒドロン標準液)が用いられている(例えば、特許文献1)。 Conventionally, a standard solution (quinhydrone standard solution) in which quinhydrone is dissolved in a phthalate pH standard solution (pH 4.01) or the like has been used as a standard solution for inspecting the electrode of such a redox potential measuring device. (For example, Patent Document 1).
従来のキンヒドロン標準液の酸化還元電位は、例えば比較電極としての銀−塩化銀電極(電解液:3.3mol/L・KCl)を基準として25℃では256mVを示す。このキンヒドロン標準液は、被検液の酸化還元電位が酸化系電位、還元系電位のいずれであるかに関わらず用いられている。
しかしながら、従来のキンヒドロン標準液の酸化還元電位は、上述のように、例えば比較電極としての銀−塩化銀電極(電解液:3.3mol/L・KCl)を基準として25℃において256mVであり、酸化側の電位を示す。カロメル電極(電解液:飽和KCl)、銀−塩化銀電極(電解液:飽和KCl)などの、その他の比較電極を基準とした場合でも、従来のキンヒドロン標準液の酸化還元電位は、通常の使用温度(例えば、0℃〜55℃)にて酸化側の電位を示す。 However, as described above, the oxidation-reduction potential of the conventional quinhydrone standard solution is 256 mV at 25 ° C. with reference to, for example, a silver-silver chloride electrode (electrolytic solution: 3.3 mol / L · KCl) as a reference electrode. The potential on the oxidation side is shown. Even when other reference electrodes such as calomel electrode (electrolytic solution: saturated KCl) and silver-silver chloride electrode (electrolytic solution: saturated KCl) are used as a reference, the oxidation-reduction potential of the conventional quinhydrone standard solution is normal use. The potential on the oxidation side is indicated by temperature (for example, 0 ° C. to 55 ° C.).
従って、従来のキンヒドロン標準液は、酸化側の電位に対して電極の性能が正常であるか否かの確認には適しているが、還元側でも電極の性能が正常であるか否かの確認には適していない。一般の使用においては、酸化側の電位について電極の性能が正常であれば、還元側の電位についても電極の性能が正常であるものとすることが可能である。しかし、例えば主に還元側の電位の被検液の測定を行う使用者にとっては、還元側の電位についてもより確実な方法で電極を検査できることが望ましいことがある。例えば、ボイラー水の酸化還元電位測定においては、被検液が主に還元側の電位を示し、上述のように還元側の電位についても電極の性能をチェックしたいとする要望がある。 Therefore, the conventional quinhydrone standard solution is suitable for confirming whether the electrode performance is normal with respect to the potential on the oxidation side, but confirming whether the electrode performance is normal on the reduction side as well. Not suitable for. In general use, if the electrode performance is normal for the oxidation side potential, the electrode performance can be normal for the reduction side potential. However, it may be desirable for a user who mainly measures a test solution having a potential on the reduction side to be able to inspect the electrode in a more reliable manner with respect to the potential on the reduction side. For example, in the measurement of the oxidation-reduction potential of boiler water, there is a demand for the test solution to mainly show the potential on the reduction side and to check the electrode performance for the potential on the reduction side as described above.
ここで、キンヒドロンを各種pH標準液に添加して溶解することにより得られる溶液は、そのpHに対応した酸化還元電位を示す。しかし、そのようなキンヒドロン溶液は、酸化方向の電位を示す酸性側のpH領域では電位が安定しているが、還元方向の電位を示すアルカリ側のpH領域では、時間経過とともに酸化還元電位が低下してしまい、酸化還元電位測定装置の電極の検査のための信頼性ある標準液として使用することが困難であることが分かった。 Here, the solution obtained by adding and dissolving quinhydrone in various pH standard solutions shows an oxidation-reduction potential corresponding to the pH. However, such a quinhydrone solution has a stable potential in the acidic pH range indicating the oxidation direction potential, but the redox potential decreases with time in the alkaline pH range indicating the reduction direction potential. Thus, it has been found that it is difficult to use as a reliable standard solution for the inspection of the electrode of the oxidation-reduction potential measuring device.
フタル酸塩pH標準液(pH4.01)、中性りん酸塩pH標準液(pH6.86)、ほう酸塩pH標準液(pH9.18)の各pH標準液にキンヒドロンを添加して溶解することにより得られた溶液の酸化還元電位の安定性を、それぞれ図5、図6、図7に示す。これらの図から、中性からアルカリ側のpH領域で酸化還元電位の変動が著しいことがわかる。 Add quinhydrone to phthalate pH standard solution (pH 4.01), neutral phosphate pH standard solution (pH 6.86), borate pH standard solution (pH 9.18) and dissolve. The stability of the redox potential of the solution obtained by the above is shown in FIG. 5, FIG. 6, and FIG. 7, respectively. From these figures, it can be seen that the oxidation-reduction potential fluctuates significantly in the pH range from neutral to alkaline.
又、キンヒドロン以外の化合物で検討したが、還元側の適度な酸化還元電位を安定して発生する、酸化還元電位測定装置の電極を検査するための標準液として適当なものがなかった。 In addition, examination was made with compounds other than quinhydrone, but there was no suitable standard solution for inspecting the electrode of the oxidation-reduction potential measuring apparatus that stably generates an appropriate oxidation-reduction potential on the reduction side.
従って、本発明の目的は、還元側の酸化還元電位に対して電極の性能が正常であるか否かをより確実に検査することを可能とする酸化還元電位測定装置の電極検査方法及び酸化還元装置の電極検査用の標準液を提供することである。 Accordingly, an object of the present invention is to provide an electrode inspection method for an oxidation-reduction potential measuring apparatus and an oxidation-reduction that can more reliably inspect whether or not the performance of the electrode is normal with respect to the reduction-side oxidation-reduction potential It is to provide a standard solution for the electrode inspection of the device.
上記目的は本発明に係る酸化還元電位測定装置の電極検査方法及び酸化還元電位測定装置の電極検査用の標準液にて達成される。要約すれば、第1の本発明は、測定電極及び比較電極を被検液に浸漬して被検液の酸化還元電位を測定する酸化還元電位測定装置の電極を検査する方法であって、水に亜硫酸塩とキンヒドロンとを添加して調製された容器内の標準液に前記測定電極及び前記比較電極を浸漬する工程を有することを特徴とする酸化還元電位測定装置の電極検査方法である。本発明の一実施態様によると、前記標準液は、水100mLに対して2.1g以上、8g以下の量のキンヒドロンが添加されている。又、本発明の一実施態様によると、前記標準液は、水100mLに対して3g以上、5g以下の量のキンヒドロンが添加されている。 The above object is achieved by the electrode inspection method of the oxidation-reduction potential measuring device and the standard solution for electrode inspection of the oxidation-reduction potential measuring device according to the present invention. In summary, the first aspect of the present invention is a method for inspecting an electrode of an oxidation-reduction potential measuring device for measuring an oxidation-reduction potential of a test solution by immersing a measurement electrode and a comparison electrode in the test solution, It is an electrode inspection method for an oxidation-reduction potential measuring apparatus, comprising the step of immersing the measurement electrode and the comparison electrode in a standard solution in a container prepared by adding sulfite and quinhydrone. According to an embodiment of the present invention, the standard solution is added with quinhydrone in an amount of 2.1 g or more and 8 g or less with respect to 100 mL of water. According to one embodiment of the present invention, the standard solution is added with quinhydrone in an amount of 3 g or more and 5 g or less with respect to 100 mL of water.
第2の本発明によると、測定電極及び比較電極を被検液に浸漬して被検液の酸化還元電位を測定する酸化還元電位測定装置の電極を検査する方法であって、水に亜硫酸塩とキノンとを添加して調製された容器内の標準液に前記測定電極及び前記比較電極を浸漬する工程を有することを特徴とする酸化還元電位測定装置の電極検査方法が提供される。 According to a second aspect of the present invention, there is provided a method for inspecting an electrode of an oxidation-reduction potential measuring device for measuring an oxidation-reduction potential of a test solution by immersing a measurement electrode and a comparison electrode in the test solution, wherein sulfite is added to water. There is provided an electrode inspection method for an oxidation-reduction potential measuring apparatus, comprising a step of immersing the measurement electrode and the comparison electrode in a standard solution in a container prepared by adding quinone and quinone.
第3の本発明によると、測定電極及び比較電極を被検液に浸漬して被検液の酸化還元電位を測定する酸化還元電位測定装置の電極を検査する方法であって、水に亜硫酸塩とヒドロキノンとを添加して調製された容器内の標準液に前記測定電極及び前記比較電極を浸漬する工程を有することを特徴とする酸化還元電位測定装置の電極検査方法が提供される。 According to a third aspect of the present invention, there is provided a method for inspecting an electrode of an oxidation-reduction potential measuring device for measuring an oxidation-reduction potential of a test solution by immersing a measurement electrode and a comparison electrode in the test solution, wherein sulfite is added to water. There is provided an electrode inspection method for an oxidation-reduction potential measuring apparatus, which comprises a step of immersing the measurement electrode and the comparison electrode in a standard solution in a container prepared by adding water and hydroquinone.
第4の本発明によると、測定電極及び比較電極を被検液に浸漬して被検液の酸化還元電位を測定する酸化還元電位測定装置の電極を検査するために、容器内に収容されて前記測定電極及び前記比較電極が浸漬される標準液であって、水に亜硫酸塩とキンヒドロンとを添加して調製されることを特徴とする酸化還元電位測定装置の電極検査用の標準液が提供される。本発明の一実施態様によると、前記標準液は、水100mLに対して2.1g以上、8g以下の量のキンヒドロンが添加されている。又、本発明の一実施態様によると、前記標準液は、水100mLに対して3g以上、5g以下の量のキンヒドロンが添加されている。 According to the fourth aspect of the present invention, the electrode of the oxidation-reduction potential measuring device for measuring the oxidation-reduction potential of the test solution by immersing the measurement electrode and the comparison electrode in the test solution is contained in a container. Provided is a standard solution in which the measurement electrode and the comparison electrode are immersed, and is prepared by adding sulfite and quinhydrone to water. Is done. According to an embodiment of the present invention, the standard solution is added with quinhydrone in an amount of 2.1 g or more and 8 g or less with respect to 100 mL of water. According to one embodiment of the present invention, the standard solution is added with quinhydrone in an amount of 3 g or more and 5 g or less with respect to 100 mL of water.
第5の発明によると、測定電極及び比較電極を被検液に浸漬して被検液の酸化還元電位を測定する酸化還元電位測定装置の電極を検査するために、容器内に収容されて前記測定電極及び前記比較電極が浸漬される標準液であって、水に亜硫酸塩とキノンとを添加して調製されることを特徴とする酸化還元電位測定装置の電極検査用の標準液が提供される。 According to the fifth invention, in order to inspect the electrode of the oxidation-reduction potential measuring device for measuring the oxidation-reduction potential of the test solution by immersing the measurement electrode and the comparison electrode in the test solution, A standard solution for immersing the measurement electrode and the comparative electrode, which is prepared by adding sulfite and quinone to water, is provided. The
第6の発明によると、測定電極及び比較電極を被検液に浸漬して被検液の酸化還元電位を測定する酸化還元電位測定装置の電極を検査するために、容器内に収容されて前記測定電極及び前記比較電極が浸漬される標準液であって、水に亜硫酸塩とヒドロキノンとを添加して調製されることを特徴とする酸化還元電位測定装置の電極検査用の標準液が提供される。 According to the sixth invention, in order to inspect the electrode of the oxidation-reduction potential measuring device for measuring the oxidation-reduction potential of the test solution by immersing the measurement electrode and the comparison electrode in the test solution, A standard solution for immersing the measurement electrode and the comparison electrode, which is prepared by adding sulfite and hydroquinone to water, is provided. The
上記各本発明の一実施態様によると、前記標準液は、飽和濃度の亜硫酸塩を含む。好ましい一実施態様によれば、前記標準液を収容する容器には亜硫酸塩の結晶が存在する。 According to one embodiment of each of the present invention described above, the standard solution contains a sulphite salt having a saturated concentration. According to a preferred embodiment, sulfite crystals are present in the container containing the standard solution.
本発明によれば、還元側の酸化還元電位に対して電極の性能が正常であるか否かをより確実に検査することが可能となる。 According to the present invention, it is possible to more reliably inspect whether or not the performance of the electrode is normal with respect to the redox potential on the reduction side.
以下、本発明に係る酸化還元電位測定装置の電極検査方法及び酸化還元電位測定装置の電極検査用の標準液を図面に則して更に詳しく説明する。 Hereinafter, the electrode inspection method of the oxidation-reduction potential measuring apparatus and the standard solution for electrode inspection of the oxidation-reduction potential measuring apparatus according to the present invention will be described in more detail with reference to the drawings.
先ず、本発明に従う酸化還元電位測定装置の電極検査用の標準液について説明する。 First, the standard solution for electrode inspection of the oxidation-reduction potential measuring device according to the present invention will be described.
図5、図6及び図7を参照して前述したように、キンヒドロンを各種pH標準液に添加して溶解することによって得られる溶液の酸化還元電位は、その溶液のpHが酸性側であれば安定しているが、中性からアルカリ側では時間経過とともに変動してしまう。即ち、キンヒドロンをフタル酸塩pH標準液に溶解した場合は問題ないが、中性りん酸塩pH標準液、ほう酸塩pH標準液に溶解した場合は、時間経過とともにその溶液の酸化還元電位は変動する。 As described above with reference to FIGS. 5, 6, and 7, the oxidation-reduction potential of the solution obtained by adding quinhydrone to various pH standard solutions and dissolving the solution is as long as the pH of the solution is acidic. Although it is stable, it changes with time from the neutral side to the alkali side. That is, there is no problem when quinhydrone is dissolved in phthalate pH standard solution, but when it is dissolved in neutral phosphate pH standard solution or borate pH standard solution, the redox potential of the solution varies over time. To do.
従って、そのようなキンヒドロン溶液では、還元側の電位を示すアルカリ側のpH領域において信頼できる酸化還元電位は得られない。そのため、そのようなキンヒドロン溶液を用いて酸化還元電位測定装置の電極が正常であるか否かを判断する場合、酸化側の電位では判断できても還元側の電位での判断は困難である。本発明者は、キンヒドロンに代わる化合物がないかを検討した。 Therefore, with such a quinhydrone solution, a reliable redox potential cannot be obtained in the alkaline pH region indicating the reduction potential. Therefore, when it is determined whether or not the electrode of the oxidation-reduction potential measuring device is normal using such a quinhydrone solution, it is difficult to make a determination based on the reduction-side potential even if the oxidation-side potential can be determined. The present inventor has examined whether there is a compound that can replace quinhydrone.
本発明者は、亜硫酸ナトリウムを水(純水)に添加した溶液の酸化還元電位を検討したところ、亜硫酸ナトリウムを単独で含む水溶液が、一定期間、還元側の酸化還元電位を安定して示すことが分かった。但し、この水溶液の酸化還元電位は−110mV程度と比較的高く、又光の影響を受けることが分かった。 The present inventor examined the oxidation-reduction potential of a solution in which sodium sulfite was added to water (pure water). As a result, an aqueous solution containing sodium sulfite alone showed a stable reduction-oxidation potential for a certain period of time. I understood. However, it was found that the oxidation-reduction potential of this aqueous solution was relatively high at about -110 mV and was affected by light.
一方、キンヒドロン溶液の酸化還元電位がアルカリ側のpH領域で安定しないのは、その溶液に溶存している酸素とキンヒドロンが反応することによると考えられる。 On the other hand, the reason why the oxidation-reduction potential of the quinhydrone solution is not stable in the pH range on the alkali side is considered to be due to the reaction between oxygen dissolved in the solution and quinhydrone.
そこで、亜硫酸ナトリウムが添加されたことで脱酸素状態になっている水溶液にキンヒドロンを添加した水溶液の酸化還元電位を検討したところ、酸化還元電位が−400mV以下に変化し、且つ、より安定した酸化還元電位を示すことが分かった。 Therefore, when the oxidation-reduction potential of an aqueous solution in which quinhydrone is added to an aqueous solution that has been deoxygenated by the addition of sodium sulfite was examined, the oxidation-reduction potential changed to −400 mV or less, and more stable oxidation was achieved. It was found to show a reduction potential.
このように、水に亜硫酸ナトリウムのみを添加したのでは、酸化還元電位がまだ比較的高い値を示し、又光の影響を受け、一方、キンヒドロンのアルカリ性水溶液は酸化還元電位が安定しないところ、水に亜硫酸ナトリウムとキンヒドロンとを添加することによって、驚くべきことに、光の影響を受けず、又還元側の理想的な酸化還元電位をより安定して示す標準液が得られることが分かった。 Thus, when only sodium sulfite was added to water, the oxidation-reduction potential still showed a relatively high value and was affected by light. On the other hand, the alkaline aqueous solution of quinhydrone was not stable because the oxidation-reduction potential was not stable. Surprisingly, it was found that by adding sodium sulfite and quinhydrone, a standard solution that is not affected by light and more stably exhibits the ideal redox potential on the reduction side can be obtained.
尚、キンヒドロン溶液の酸化還元電位を、アルカリ側のpH領域で安定させるに、その溶液の溶存酸素の濃度を実質的にゼロとすることが考えられ、一般的には、窒素曝気により溶存する酸素を追い出せば安定した指示が得られると考えられるが、実験の結果、注意深く曝気しても数十ppbの溶存酸素が残存するため安定した酸化還元電位を得ることが困難であった。 In order to stabilize the oxidation-reduction potential of the quinhydrone solution in the pH range on the alkali side, it is conceivable that the concentration of dissolved oxygen in the solution is substantially zero, and in general, oxygen dissolved by nitrogen aeration Although it is considered that a stable instruction can be obtained by expelling the oxygen, it has been difficult to obtain a stable oxidation-reduction potential because several ppb of dissolved oxygen remains even after careful aeration.
このように、本発明者は、亜硫酸塩とキンヒドロンとを水に溶解することによって得られた標準液は、pH9以上のアルカリ性を示すと共に、還元側の適当な酸化還元電位を安定して示すことを見出した。
As described above, the present inventor shows that the standard solution obtained by dissolving sulfite and quinhydrone in water exhibits an alkaline property of
即ち、本発明の一態様によれば、測定電極及び比較電極を被検液に浸漬して被検液の酸化還元電位を測定する酸化還元電位測定装置の電極を検査するために、容器内に収容されて測定電極及び比較電極が浸漬される、酸化還元電位測定装置の電極検査溶の標準液は、水に亜硫酸塩とキンヒドロンとを添加して調製される。 That is, according to one aspect of the present invention, in order to inspect the electrode of the oxidation-reduction potential measuring device that measures the oxidation-reduction potential of the test solution by immersing the measurement electrode and the comparison electrode in the test solution, The standard solution for the electrode inspection solution of the oxidation-reduction potential measuring device, in which the measurement electrode and the reference electrode are immersed, is prepared by adding sulfite and quinhydrone to water.
標準液の溶媒としては、通常、水、特に、純水が好適に用いられている。 As a solvent for the standard solution, usually water, particularly pure water is preferably used.
亜硫酸塩としては、通常、亜硫酸ナトリウムを好適に使用できるが、これに限定されるものではなく、亜硫酸カリウム、亜硫酸リチウム、亜硫酸カルシウムなどを用いることもできる。 Usually, sodium sulfite is preferably used as the sulfite, but is not limited thereto, and potassium sulfite, lithium sulfite, calcium sulfite and the like can also be used.
又、標準液は、亜硫酸塩を飽和濃度で含んでいることが好ましい。より好ましくは、亜硫酸塩は、標準液を収容する容器にその亜硫酸塩の結晶が存在する程度に添加される。 The standard solution preferably contains sulfite at a saturated concentration. More preferably, the sulfite is added to such an extent that the sulfite crystals are present in the container containing the standard solution.
又、詳しくは後述するように、水100mLに対する添加量で表したとき(以下単位は「g/100mL」とする。)、標準液は、キンヒドロンの添加量が、2.1g/100mL以上、8g/100mL以下であることが好ましい。より好ましくは、標準液は、キンヒドロンの添加量が、3g/100mL以上、5g/100mL以下である。 As will be described in detail later, when expressed in terms of the amount added to 100 mL of water (the unit is hereinafter referred to as “g / 100 mL”), the standard solution has an addition amount of quinhydrone of 2.1 g / 100 mL or more, 8 g / 100 mL or less is preferable. More preferably, the amount of quinhydrone added to the standard solution is 3 g / 100 mL or more and 5 g / 100 mL or less.
更に説明すると、キンヒドロンの酸化に影響する溶存酸素を電極の検査中に実質的に常時除くなどのためには、標準液中に亜硫酸塩が飽和濃度で、且つ、結晶が残存する程度に含まれていることが好ましい。例えば、溶媒として純水を用い、亜硫酸塩として亜硫酸ナトリウムを用いる場合、25℃において40g/100mL以上の添加量とすれば十分である。 To explain further, in order to remove dissolved oxygen that affects the oxidation of quinhydrone substantially constantly during the inspection of the electrode, sulfite is contained in the standard solution at a saturated concentration and crystals remain. It is preferable. For example, when pure water is used as the solvent and sodium sulfite is used as the sulfite, an addition amount of 40 g / 100 mL or more at 25 ° C. is sufficient.
上記亜硫酸ナトリウムの添加量が40g/100mLの溶液に、種々の添加量にてキンヒドロンを加えて標準液を調製し、20時間以上撹拌しながらエージングした後の酸化還元電位の値を測定すると、下記表1のような酸化還元電位の結果が得られた。 When a standard solution was prepared by adding quinhydrone at various addition amounts to a solution having an addition amount of sodium sulfite of 40 g / 100 mL, the redox potential value after aging with stirring for 20 hours or more was measured. The results of redox potential as shown in Table 1 were obtained.
キンヒドロンの添加量が1.8g/100mL以上で、−430mV〜−455mVの酸化還元電位の値を示し、例えば、下水処理槽の嫌気性環境下の酸化還元電位の測定に用いられる電極の性能チェック用として理想的である。 When the amount of quinhydrone added is 1.8 g / 100 mL or more, it shows a redox potential value of −430 mV to −455 mV, for example, a performance check of an electrode used for measuring the redox potential in an anaerobic environment of a sewage treatment tank Ideal for use.
又、この標準液の応答性は、図2に示すようになった。キンヒドロンの添加量が2.1g/100mL以上であれば、酸化還元電位の測定値は10分以内に安定した。尚、酸化還元電位の測定値が安定するまでの時間は短ければ短いほどよいが、実用上は、20分以内であれば問題ないことが多い。 The response of this standard solution is as shown in FIG. When the amount of quinhydrone added was 2.1 g / 100 mL or more, the measured redox potential was stable within 10 minutes. The shorter the time until the measured value of the oxidation-reduction potential is stabilized, the better. However, in practice, there is often no problem as long as it is within 20 minutes.
又、上述のようにして調製した標準液のpHは、約9.60を示し、キンヒドロンの添加量によるpHの変動は見られなかった。 Further, the pH of the standard solution prepared as described above was about 9.60, and no change in pH due to the amount of quinhydrone added was observed.
以上から、酸化還元電位の値、応答速度などの点で、キンヒドロンの添加量が2.1g/100mL以上であることが好ましく、3g/100mL以上であることがより好ましいことが分かった。尚、不溶解キンヒドロンが過剰になりすぎるため、キンヒドロンの添加量の上限としては、8g/100mL以下であることが好ましく、5g/100mL以下であることがより好ましい。 From the above, it has been found that the amount of quinhydrone added is preferably 2.1 g / 100 mL or more, and more preferably 3 g / 100 mL or more in terms of the value of redox potential, response speed, and the like. In addition, since insoluble quinhydrone becomes excessive, the upper limit of the amount of quinhydrone added is preferably 8 g / 100 mL or less, and more preferably 5 g / 100 mL or less.
尚、キンヒドロンの添加量を3g/100mL以上、例えば、4g/100mL、5g/100mLと増加させても、pH、酸化還元電位とも、ほとんど同一の値を示した。これは、キンヒドロンの添加量を3g/100mL以上とする場合、添加したキンヒドロンの一部は固形として存在し、組成バランスが同一となり、一定の酸化還元電位の値を示すようになるためと考えられる。 In addition, even if the addition amount of quinhydrone was increased to 3 g / 100 mL or more, for example, 4 g / 100 mL, 5 g / 100 mL, both pH and oxidation-reduction potential showed almost the same value. This is considered to be because when the amount of quinhydrone added is 3 g / 100 mL or more, a part of the added quinhydrone exists as a solid, the composition balance becomes the same, and a constant redox potential value is exhibited. .
図3は亜硫酸ナトリウムの添加量40g/100mL、キンヒドロンの添加量3g/100mLにおける、標準液の長時間安定性を調べた試験データである。又、調製の90時間後における酸化還元電位、調製の45日後に再度測定(測定開始後15分)した酸化還元電位を下記表2に示す。電位変動は7mV以内であり、45日後でも変動は小さかった。 FIG. 3 shows test data for examining the long-term stability of the standard solution at an addition amount of sodium sulfite of 40 g / 100 mL and an addition amount of quinhydrone of 3 g / 100 mL. Table 2 below shows the redox potential after 90 hours of preparation and the redox potential measured again after 15 days of preparation (15 minutes after the start of measurement). The potential fluctuation was within 7 mV, and the fluctuation was small even after 45 days.
図4は、標準液の更に長期的な寿命を調べた試験データである。約2ヶ月間指示変動は10mV以内であり、一旦調製すれば、長期使用可能であることが分かった。 FIG. 4 shows test data obtained by examining the long-term life of the standard solution. The indication variation for about 2 months is within 10 mV, and it was found that once prepared, it can be used for a long time.
又、本発明者の更なる検討によれば、本発明に従う標準液は、一定の温度では一定の酸化還元電位を示し、即ち、温度変化に対する標準液の酸化還元電位の相関関係(温度特性)は一定である。従って、予め、当該温度特性を予め求めておくことで、電極の検査時には、標準液の温度に対応する標準液の酸化還元電位に対して、測定された酸化還元電位が許容範囲に入るか否かを判断することで、電極の性能が正常であるか否かを判断することができる。 Further, according to further studies by the inventor, the standard solution according to the present invention exhibits a constant oxidation-reduction potential at a constant temperature, that is, the correlation (temperature characteristic) of the oxidation-reduction potential of the standard solution with respect to temperature change. Is constant. Therefore, by obtaining the temperature characteristics in advance, whether or not the measured oxidation-reduction potential falls within an allowable range with respect to the oxidation-reduction potential of the standard solution corresponding to the temperature of the standard solution at the time of electrode inspection. It can be determined whether or not the performance of the electrode is normal.
ここで、キンヒドロンの成分について説明すれば、キンヒドロンは、p−ベンゾキノン(p−Benzoquinone)(キノン)とヒドロキノン(Hydroquinone)との1:1の混合物である。そこで、キンヒドロンの代わりに、キノンとヒドロキノンの各成分のみで用いても良好な酸化還元電位が得られるか検討した。 Here, the components of quinhydrone will be described. Quinhydrone is a 1: 1 mixture of p-benzoquinone (quinone) and hydroquinone. Therefore, whether or not a good redox potential can be obtained by using only quinone and hydroquinone components instead of quinhydrone was investigated.
飽和亜硫酸ナトリウム溶液のpHは9.82であり、ヒドロキノンを3g/100mLの量にて添加すると、添加後の溶液のpHは8.55となり、酸化還元電位は−320mV程度を示した。一方、飽和亜硫酸ナトリウム溶液にキノンを3g/100mLの量にて添加すると、添加後の溶液のpHは10.30となり、酸化還元電位は−440mV程度を示した。 The pH of the saturated sodium sulfite solution was 9.82. When hydroquinone was added in an amount of 3 g / 100 mL, the pH of the solution after the addition was 8.55, and the oxidation-reduction potential was about -320 mV. On the other hand, when quinone was added to the saturated sodium sulfite solution in an amount of 3 g / 100 mL, the pH of the solution after the addition was 10.30, and the redox potential was about −440 mV.
亜硫酸ナトリウムとヒドロキノン単独とを含む溶液では、亜硫酸ナトリウムの還元作用によりヒドロキノンがキノンに酸化されるのを抑えている。又、亜硫酸ナトリウムとキノン単独とを含む溶液では、キノンは還元されてヒドロキノンに変化していくと考えられるが、すべて変化するのではなく、pHが一定であれば、キノンとヒドロキノンとがバランスされて、一定の酸化還元電位に収束されていくと考えられる。 In a solution containing sodium sulfite and hydroquinone alone, hydroquinone is prevented from being oxidized to quinone by the reducing action of sodium sulfite. In a solution containing sodium sulfite and quinone alone, quinone is considered to be reduced to change to hydroquinone, but not all change. If the pH is constant, quinone and hydroquinone are balanced. Thus, it is considered that the light is converged to a certain redox potential.
キンヒドロンの代わりにヒドロキノンのみを亜硫酸ナトリウムと共存させた場合は、キンヒドロンの場合よりもpHが低くなり、そのため酸化還元電位もより高い値になる。この場合、ヒドロキノンはキノンに変化することなく安定していると考えられる。ただし、時間経過とともにヒドロキノンは着色していき、一部は大気酸素と接触してキノンに変化し、キンヒドロンの酸化還元電位に近づいてくると考えられる(キノンは褐色に着色、ヒドロキノンは無色)。 When only hydroquinone is allowed to coexist with sodium sulfite instead of quinhydrone, the pH is lower than that of quinhydrone, and therefore the redox potential is also higher. In this case, hydroquinone is considered stable without changing to quinone. However, it is considered that hydroquinone is colored with the passage of time, and partly changes to quinone upon contact with atmospheric oxygen, approaching the redox potential of quinhydrone (quinone is colored brown and hydroquinone is colorless).
以上のような観点から、キノン、ヒドロキノンをそれぞれ単独で亜硫酸ナトリウムと共存させても、最終的にはキンヒドロンの酸化還元電位に収束してくると考えられる。従って、酸化還元電位の安定性や添加量の設定しやすさなどの観点から、標準液の調製にはキンヒドロンを用いることが好ましい。 From the above viewpoints, it is considered that even if quinone and hydroquinone are present together with sodium sulfite alone, they finally converge to the oxidation-reduction potential of quinhydrone. Therefore, it is preferable to use quinhydrone for the preparation of the standard solution from the viewpoint of the stability of the oxidation-reduction potential and the ease of setting the addition amount.
但し、上述のように最終的にはキンヒドロンの酸化還元電位に近づくと考えられるが、当初、水に亜硫酸塩と、キノン単独、ヒドロキノン単独、又はキノン及びヒドロキノンと、を添加して標準液を調製してもよい。この場合、キノン単独、ヒドロキノン単独、又はキノン及びヒドロキノンのそれぞれの添加量は、標準液の所望の最終的な酸化還元電位が、前述の添加量にてヒドロキノンを添加して調製された標準液の酸化還元電位と同等となるように設定すればよい。 However, as mentioned above, it is thought that it will eventually approach the redox potential of quinhydrone, but initially a sulfite and quinone alone, hydroquinone alone, or quinone and hydroquinone are added to water to prepare a standard solution. May be. In this case, each addition amount of quinone alone, hydroquinone alone, or quinone and hydroquinone is that of the standard solution prepared by adding hydroquinone at the desired final redox potential of the standard solution as described above. What is necessary is just to set so that it may become equivalent to a redox potential.
即ち、本発明の別の一態様では、測定電極及び比較電極を被検液に浸漬して被検液の酸化還元電位を測定する酸化還元電位測定装置の電極を検査するために、容器内に収容されて測定電極及び比較電極が浸漬される、酸化還元電位測定装置の電極検査用の標準液は、水に亜硫酸塩とキノンとを添加して調製される。又、本発明の別の一態様では、当該標準液は、水に亜硫酸塩とヒドロキノンとを添加して調製される。尚、当該標準液は、水に亜硫酸塩を添加すると共に、キノンとヒドロキノンとの両方を1:1とは異なる比にて添加して調製してもよい。 That is, in another aspect of the present invention, in order to inspect the electrode of the oxidation-reduction potential measuring device that measures the oxidation-reduction potential of the test solution by immersing the measurement electrode and the comparison electrode in the test solution, The standard solution for the electrode inspection of the oxidation-reduction potential measuring device in which the measurement electrode and the comparison electrode are immersed is prepared by adding sulfite and quinone to water. In another embodiment of the present invention, the standard solution is prepared by adding sulfite and hydroquinone to water. The standard solution may be prepared by adding sulfite to water and adding both quinone and hydroquinone at a ratio different from 1: 1.
次に、本発明に係る酸化還元電位測定装置の電極検査方法について説明する。 Next, an electrode inspection method for the oxidation-reduction potential measuring apparatus according to the present invention will be described.
本発明の一態様によれば、測定電極及び比較電極を被検液に浸漬して被検液の酸化還元電位を測定する酸化還元電位測定装置の電極を検査する方法は、水に亜硫酸塩とキンヒドロンとを添加して調製された容器内の標準液に測定電極及び比較電極を浸漬する工程を有する構成とされる。又、典型的には、当該方法は更に、標準液に浸漬された測定電極と比較電極との間の電位差に係る情報を検出する工程を有している。そして、検出された情報から認識される測定電極と比較電極との間の電位差が、予め設定された許容範囲に入っている場合には電極の性能は正常であると判断でき、一方その許容範囲から外れている場合には電極の性能が正常ではないと判断できる。 According to one aspect of the present invention, a method for inspecting an electrode of an oxidation-reduction potential measuring device that measures the oxidation-reduction potential of a test solution by immersing the measurement electrode and the comparison electrode in the test solution includes: The measurement electrode and the comparison electrode are immersed in a standard solution in a container prepared by adding quinhydrone. Moreover, typically, the method further includes a step of detecting information relating to a potential difference between the measurement electrode immersed in the standard solution and the comparison electrode. When the potential difference between the measurement electrode and the comparison electrode recognized from the detected information is within the preset allowable range, it can be determined that the electrode performance is normal, while the allowable range If it is out of the range, it can be determined that the electrode performance is not normal.
図1は、酸化還元電位測定装置の一例の概略ブロック図である。酸化還元電位測定装置1は、酸化還元電位測定電極(測定電極)21と、比較電極22と、電位差計31を備えた本体3と、を有する。測定電極21と比較電極22とは、本体3の電位差計31に接続されて使用される。又、測定電極21と比較電極22とは、一体的に酸化還元測定用複合電極2とされていてよい。又、測定電極21、比較電極22若しくは複合電極2と一体的に、又は単独で、温度検出手段(測温抵抗体素子を有する温度センサなど)が設けられ、測定電極21と比較電極22との間の電位差を測定する際の被検液又は標準液の温度を測定できるようになっていてよい。
FIG. 1 is a schematic block diagram of an example of an oxidation-reduction potential measuring apparatus. The oxidation-reduction potential measuring device 1 includes an oxidation-reduction potential measurement electrode (measurement electrode) 21, a
測定電極21としては、金属電極、特に、不活性金属電極である白金電極が好適に用いられる。又、比較電極22としては、内部液として3.3mol/L・KClを使用する銀−塩化銀電極、内部液として飽和KClを用いるカロメル電極、内部液として飽和KClを用いる銀−塩化銀電極などを好適に用いることができる。尚、比較電極として標準水素電極を用いることもできる。
As the
本体3は、主に測定電極21と比較電極22との間の電位差に係る情報を検出するための電位差計31を有するものであるが、その他に測定結果を表示するための表示器、測定の開始又は終了指示や各種設定を行うための操作部、電源回路等を有していてよい。
The
尚、本発明においては、酸化還元電位差測定装置自体は、任意の入手可能なものを用いることができる。 In the present invention, any available redox potential difference measuring apparatus can be used.
酸化還元電位測定装置1の電極の検査を行う際には、容器4に収容された本発明に従う標準液5に、測定電極21と比較電極22とを浸漬し、電位差計31において測定電極21と比較電極22との間の電位差に係る情報を検出する。当該電位差に係る情報は、電位差の値自体、電位差に対応する適当に増幅等の処理がなされたアナログ若しくはデジタルのデータなど、当該電位差に対応した任意の形態の情報であってよい。本発明に従う標準液5は、一定の温度で一定の酸化還元電位を示すことから、ここで測定されたある温度における標準液5の酸化還元電位が、予め求められている対応する温度における酸化還元電位の許容範囲内(例えば±10mV以内)に入るか否かにより、電極の性能の良否を判断することができる。
When inspecting the electrode of the oxidation-reduction potential measuring apparatus 1, the
尚、前述のように、本発明の別の態様によれば、酸化還元電位測定装置の電極検査方法において、測定電極及び比較電極が浸漬される容器内の標準液は、水に亜硫酸塩とキノンとを添加して調製されたものであってもよいし、水に亜硫酸塩とヒドロキノンとを添加して調製されたものであってもよい。尚、当該標準液は、水に亜硫酸塩を添加すると共に、キノンとヒドロキノンとの両方を1:1とは異なる比にて添加して調製してもよい。 As described above, according to another aspect of the present invention, in the electrode inspection method of the oxidation-reduction potential measuring device, the standard solution in the container in which the measurement electrode and the reference electrode are immersed is sulfite and quinone in water. May be prepared by adding sulfite and hydroquinone to water. The standard solution may be prepared by adding sulfite to water and adding both quinone and hydroquinone at a ratio different from 1: 1.
以上、本発明によれば、還元側の酸化還元電位に対して電極の性能が正常であるか否かをより確実に検査することが可能となる。 As mentioned above, according to this invention, it becomes possible to test | inspect more reliably whether the performance of an electrode is normal with respect to the oxidation-reduction potential of a reduction | restoration side.
1 酸化還元電位測定装置
2 酸化還元電位測定用複合電極
3 本体
4 容器
5 酸化還元電位差測定装置の電極検査用の標準液
21 測定電極
22 比較電極
31 電位差計
DESCRIPTION OF SYMBOLS 1 Redox
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008326608A JP5157880B2 (en) | 2008-12-22 | 2008-12-22 | Electrode inspection method for redox potential measuring device and standard solution for electrode inspection of redox potential measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008326608A JP5157880B2 (en) | 2008-12-22 | 2008-12-22 | Electrode inspection method for redox potential measuring device and standard solution for electrode inspection of redox potential measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010145380A JP2010145380A (en) | 2010-07-01 |
JP5157880B2 true JP5157880B2 (en) | 2013-03-06 |
Family
ID=42565963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008326608A Expired - Fee Related JP5157880B2 (en) | 2008-12-22 | 2008-12-22 | Electrode inspection method for redox potential measuring device and standard solution for electrode inspection of redox potential measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5157880B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103196975B (en) * | 2013-03-05 | 2014-11-05 | 浙江大学 | Detection apparatus and detection method of medical relative oxidation reduction potential |
JP6036558B2 (en) * | 2013-06-07 | 2016-11-30 | 住友金属鉱山株式会社 | Calibration method for redox potential measurement |
WO2015040684A1 (en) * | 2013-09-18 | 2015-03-26 | 株式会社日立製作所 | Reference electrode with thermometer function, lithium-ion secondary battery including reference electrode with thermometer function, lithium-ion secondary battery system including reference electrode with thermometer function, and lithium-ion secondary battery control method |
KR101453286B1 (en) * | 2014-05-12 | 2014-10-22 | 길주형 | Verification Methods of Reference Electrode and Glass Electrode |
JP6534264B2 (en) * | 2015-02-10 | 2019-06-26 | 国立大学法人九州大学 | Measurement method of dissolved hydrogen concentration |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63128341A (en) * | 1986-11-19 | 1988-05-31 | Fuji Photo Film Co Ltd | Direct positive color image forming method |
JP2780057B2 (en) * | 1990-03-12 | 1998-07-23 | 横河電機株式会社 | Redox electrode pass / fail judgment device |
EP0598144B1 (en) * | 1992-11-10 | 1996-10-09 | Agfa-Gevaert N.V. | Use of a pH sensitive reference electrode in electrolytic desilvering |
JP4203291B2 (en) * | 2002-09-27 | 2008-12-24 | 東亜ディーケーケー株式会社 | Electrochemical measurement method, comparative electrode and composite electrode |
JP4614841B2 (en) * | 2005-07-28 | 2011-01-19 | 東亜ディーケーケー株式会社 | Redox potential measuring device |
-
2008
- 2008-12-22 JP JP2008326608A patent/JP5157880B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010145380A (en) | 2010-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2321348T3 (en) | PROCEDURE AND APPARATUS FOR CORRECTING THE EFFECT OF ENVIRONMENTAL TEMPERATURE ON BIODETECTORS. | |
ES2588178T3 (en) | Method to implement correction functions based on a threshold for biosensors | |
US6176988B1 (en) | Membrane electrode for measuring the glucose concentration in fluids | |
JP5157880B2 (en) | Electrode inspection method for redox potential measuring device and standard solution for electrode inspection of redox potential measuring device | |
CN101583721B (en) | Determination of hydrogen peroxide concentrations | |
RU2007141387A (en) | OXIDIZABLE TYPES OF COMPOUNDS AS AN INTERNAL STANDARD IN CONTROL SOLUTIONS FOR BIOSENSORS | |
CN101493466B (en) | Method for reducing interference in electrochemical sensor using two different applied potentials | |
JP2009250806A (en) | Biosensor system, sensor chip and measuring method of concentration of analyte in blood sample | |
US6021339A (en) | Urine testing apparatus capable of simply and accurately measuring a partial urine to indicate urinary glucose value of total urine | |
GB2526643A (en) | Chlorine detection with pulsed amperometric detection | |
US10460133B2 (en) | Systems and methods for correction of on-strip coding | |
WO2020091033A1 (en) | Triple-pole electrode having electrically conductive diamond electrode as reference electrode, device, and electrochemical measuring method | |
WO2009055093A1 (en) | Electrochemical methods for selective detection of free chlorine, monochloramine and dichloramine | |
JP6534264B2 (en) | Measurement method of dissolved hydrogen concentration | |
JP5480108B2 (en) | pH measurement method | |
Deýlová et al. | Voltammetric determination of 2-amino-6-nitrobenzothiazole at two different silver amalgam electrodes | |
JP5189934B2 (en) | Dissolved oxygen sensor | |
US8496800B2 (en) | Use of polyoxyalkylene nonionic surfactants with magnesium ion selective electrodes | |
RU2442976C2 (en) | Method for production of highly stable sensitive element of hydrogen peroxide sensor | |
Lewenstam | Clinical analysis of blood gases and electrolytes by ion-selective sensors | |
Fisicaro et al. | Assessment of the uncertainty budget for the amperometric measurement of dissolved oxygen | |
JP5054756B2 (en) | Substrate concentration measuring method and measuring apparatus, and substrate concentration measuring reagent | |
Bier | Introduction to oxidation reduction potential measurement | |
US4891124A (en) | Reference electrode for strong oxidizing acid solutions | |
Li et al. | Voltammetry in sheep's blood: Membrane-free amperometric measurement of O2 concentration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111213 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121108 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5157880 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151221 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |